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1. Introduction

Managers of many supply chains with a single supplier and multiple retailers face a pricing-and-routing problem. With
one vehicle, the supplier distributes newsvendor-type products to different retailers located within different geographic
regions. The retailers do not compete with each other and make ordering decisions on the basis of the wholesale prices
charged by the supplier. These newsvendor-type products require long lead times and are sold in short selling seasons.
The arrival time of products at each retailer depends on the delivery route selected by the supplier, but the arrival times
of the customers to purchase the products vary. Suppliers in these supply chains cannot start production too early because
of specific constraints. Therefore, some customers visit local retailers before product arrive, and because these customers
typically do not look for the products at other retailers, the orders are lost. This problem can be widely found in many supply
chains in the real world and our study was motivated by the following real examples.

In China, customers use many traditional food supply chains. In each supply chain, a single supplier distributes food to
multiple retailers every day. Each retailer only places one order every day. Because the food must be used shortly after har-
vested or produced, customers will not purchase food after specific, fixed, time points. A traditional food supply chain, as
described, has several unique characteristics. On the supply side, to guarantee product freshness or appropriateness, suppli-
ers cannot start production too early. Because suppliers usually deliver food to retailers with a single vehicle, the route selec-
tion influences when retailers can sell the food. On the demand side, consumers of traditional foods in rural China, primarily
housewives, visit retailers in the morning to purchase traditional foods and other goods for use at lunch or dinner. The
housewife consumers in our example visit at different time points as determined by their own schedules. Those who visit
local retailers before product arrival fail to purchase the desired product, but they typically do not search for the product
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at other retailers. In addition, although some retailers have predictably early-arriving clientele, the supplier may not serve
them first because of the increased transportation costs, which might exceed the increased revenue gained by delivering
early. Some retailers who receive late deliveries complain to the supplier or even quit the supply chain. Their pricing and
ordering decisions are more complicated by customer arrival times and supplier route selections. A similar situation is found
in the traditional bread supply chains of Argentina.

The second example involves newspaper supply chains. One traveling salesperson, who determines the route, delivers
newspapers to several newsstands. In the morning of every business day, workers pass by newsstands near mass transit
areas and buy available newspapers. Those who arrive at their local newsstands before the newspapers are delivered typi-
cally neither wait for the supply to arrive nor look for the newspapers at other newsstands. This purchasing pattern also
characterizes many university campuses where instructors and students try to buy newspapers from local vendors during
break times. In these cases, customer arrivals fall within a wide range of time points at different newsstands. However,
because of the nature of the news cycle, publishers cannot start production too early.

On the basis of the practice, we developed our model that differs from others in the literature in two aspects. First, the
demands at all retailers are generated by customers arriving at different times; in most real cases, customers enter the sys-
tem at different time points. With the assumption that the products can be delivered to retailers before the selling time (sea-
son) starts, many studies on supply chain coordination describe the total demand at each retailer as a probability
distribution. In some supply chains, however, the arrival time of each customer needs to be considered. For example,
Grubbstrom (2010) studied the newsvendor problem to show ways to maximize the net present value of the payments
involved, and customer demand was considered a compound renewal process. In our supply chain model, we account for
the arrival time of customers because the product arrival times are decision variables that affect the overall supply chain
profit. Second, the route decided by the supplier influences the profits of all supply chain members. Many studies show that
supply chain coordination cannot be achieved because of double marginalization (Spengler, 1950) and the competition
between retailers. A well-known phenomenon, double marginalization is found when the retailer’s optimal order quantity
is smaller than the channel-wide optimal inventory level. A fairly large number of contracts have been developed to align
retailers’ pricing and ordering decisions. In our supply chain model, the supplier uses a new decision framework and plays
a more important role than in existing supply chain models. We show that the supplier’s route selection can create a new
barrier to supply chain coordination. To the best of our knowledge, this type of supply chain has rarely been studied. Fig. 1
illustrates such a supply chain with n retailers.

Managers of one food supply chain in China realized supply chain profit losses and raised the following questions: Are the
profits of members maximized in a decentralized supply chain? If not, how do we increase the profits of supply chain mem-
bers? Can existing supply chain contracts improve the supply chain profit? On the basis of these questions, we study the
coordination of supply chains. To the best of our knowledge, coordination of such supply chains has been unexplored,
and this article is the first to answer these managerial questions. Therefore, our study fills the research gap by coordinating
the decentralized supply chain. The specific contributions of this study are as follows:

(1) We uncover barriers to the coordination of the supply chain, in which the supplier charges each retailer a price for
each unit purchased and decides the route. On the basis of prices and route, the retailers decide their own selling
prices and order quantities. Double marginalization exists in all of the subsystems, each of which involves a retailer
and the supplier. In addition, the supplier may prefer a local optimal route that cannot maximize supply chain profit
(this phenomenon is described in detail in Section 3).

(2) In contrast to combining or extending existing contracts, we developed a wholesale-price-and-carpooling (WPC) con-
tract based on practice in the taxi industry in China to address the unique characteristics of the supply chain, which
enhances the feasibility of our contract. The contract suggests use of a carpooling strategy through which retailers pay
the supplier wholesale prices for each unit purchased and share the transportation costs of the delivery routes, which
they share in part. We demonstrate that the WPC contract can achieve supply chain coordination and arbitrarily allo-
cate supply chain profit. Principles of carpooling have not been used to design a supply chain contract. In traditional
carpooling, passengers share a transportation service, usually one vehicle in which several people ride, sacrificing
some individual benefits, such as streamlined travel time and privacy, while saving transportation fees, easing traffic
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Fig. 1. Supply chain model.
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congestion, and emitting less carbon dioxide. In Beijing, the government encourages carpooling contracts. When two
independent passengers share one taxi, for example, they pay 60% of the taxi fee for the common route. The passenger
with a farther destination pays the remaining costs of the taxi ride. In this case, both passengers spend less money
than if they each employed a separate taxi, and the taxi driver also earns more through carpooling than when serving
one passenger. Several types of carpooling problems and relevant studies have focused on developing algorithms to
obtain optimal routes for vehicles (e.g., Baldacci et al., 2004; Yan and Chen, 2011). See Agatz et al. (2012) for a detailed
discussion of existing studies on optimization for carpooling problems.

(3) We analyze the way the popular revenue-sharing contract and the buy-back contract perform in newsvendor supply
chains. We found that these two contracts lose flexibility in terms of profit allocations. We also discuss the way the
decision variables under the contracts influence supply chain profit.

This paper is organized as follows: In Section 2, we review related studies to reveal our contribution to the literature. In
Section 3, we analyze the decision frameworks of members in centralized and decentralized supply chains. Section 4 pre-
sents the coordinating WPC contract. Section 5 offers discussion of the revenue-sharing contract under a newsvendor supply
chain. In Section 6, we summarize the managerial implications of this study, and we give concluding remarks, including sug-
gestions for several directions of future research, in Section 7.

2. Literature review

The price-setting newsvendor problem is a classic inventory problem that has been widely studied. The retailer decides
order quantity and selling price under different conditions to achieve sales targets (Xu et al., 2010; Murray et al., 2012; Abad,
2014; Wang et al., 2014; Rubio-Herrero et al., 2015). For example, Wang and Chen (2015) studied the retailer’s optimal
ordering policy with option contracts under which the retailer can purchase products from a supplier or purchase options.
Luo et al. (2016) discussed a price-setting newsvendor problem under a demand function in which the stochastic part also
depends on the selling price. Ye and Sun (2016) extended the basic price-setting newsvendor problem by considering strate-
gic customers, some of whom may purchase the products at the end of the selling season at the salvage value. The above
studies focused on the optimal decision of the retailer.

When the optimization problem is extended to the supply chain, contracts which have been widely studied and used in
the real world are essential for supply chain coordination, and this paper is mostly related to this topic. See Cachon (2003)
for a review of contracts for supply chains with a single supplier and a single retailer. Many studies extended the contracts
to coordinate supply chains consisting of one supplier and multiple retailers. Ingene and Parry (1995) demonstrated that a
two-part tariff wholesale pricing policy can be used to coordinate the supply chain with multiple independent retailers.
Revenue-sharing contracts are reportedly used widely in the video rental supply chain with multiple retailers (e.g., see
Dana and Spier, 2001). Cachon and Lariviere (2005) proposed the revenue-sharing contracts under which the supply chain
with multiple competing retailers can be coordinated. Bernstein and Federgruen (2005) proposed a buy-back contract
(also called price-discount sharing contract) that can achieve coordination for supply chains with competing retailers
under demand uncertainty. Zhao (2008) showed that a buy-back contract can be employed to coordinate a supply chain
with retailers under both price and inventory competition. Chen and Xiao (2009) analyzed the supply chain model with a
dominant retailer and several fringe retailers. That study also compared the performances of quantity discount and whole-
sale price contracts with the consideration of demand disruption. Zhang et al. (2012) developed the revenue-sharing con-
tract to coordinate supply chains with competing retailers and demand disruption. Cao et al. (2013) extended the revenue-
sharing contract for supply chains with competing retailers by considering both demand and production cost disruptions.
Chiu et al. (2015) proposed menus of contracts on the basis of target sales rebate, fixed quantity, and quantity discount to
coordinate supply chains with mean-variance retailers. David and Adida (2015) studied the coordination of a supply chain
in which a single supplier sells the products through a direct channel and multiple retailers. In that paper, the quantity
discount contract is extended to coordinate the supply chain. The above studies focused on the supply chain operating
newsvendor-type products.

Several researchers also investigated the coordination of supply chains in which multiple retailers use continuous review
inventory policy and have unlimited opportunities of sending orders to a single supplier. For example, Chen et al. (2001) pro-
posed a composite contract with fixed payment and quantity discount mechanisms to coordinate such supply chains with
independent retailers. Boyaci and Gallego (2002) developed a consignment mechanism for the coordination of the supply
chain. Chiou et al. (2007) investigated a supply chain in which multiple retailers have budget constraints and developed a
price-discount-and-savings-sharing contract to coordinate the supply chain. Chen and Xiao (2017) extended the model by
considering competing retailers and proposed a Grove wholesale price contract for coordination.

Table 1 summarizes the relevant studies on the supply chain coordination with consideration of multiple retailers. As can
be seen from the literature described, most existing studies on the supply chain coordination with newsvendor-type prod-
ucts consideration were based on considerations of total demand of each retailer. Customer arrival and route selection of the
supplier were not included in those studies. The related research in the continuous review inventory model did not consider
how the supplier’s route selection affects the supply chain performance. Moreover, the contracts in these studies are
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Table 1
Comparison of this study with some relevant studies.
Inventory Problem characteristic Customer Supplier’s route Coordination mechanism
model arrival selection
Ingene and Parry (1995) N Independent retailers / / Two-part tariff
Chen et al. (2001) C Independent retailers Vv / Quantity discount and fixed
payment
Dana and Spier (2001) N Inventory and price competing / / Revenue-sharing
retailers
Boyaci and Gallego (2002) C Independent retailers Vv / Consignment
Cachon and Lariviere N Price competing retailers / / Revenue-sharing
(2005)
Bernstein and Federgruen N Price competing retailers / / Buy-back
(2005)
Chiou et al. (2007) C Budget-constrained retailers Vv / Price discount and savings
sharing
Zhao (2008) N Inventory and price competing / / Buy-back
retailers
Chen and Xiao (2009) N A dominant retailer / / Quantity discount; Wholesale
price
Zhang et al. (2012) N Demand disruption / / Revenue-sharing
Cao et al. (2013) N Cost and demand disruption / / Revenue sharing
Chiu et al. (2015) N Risk consideration / / Target sales rebate
David and Adida (2015) N Dual channel / / Quantity discount
Chen and Xiao (2017) C Price competing retailers Vv / Wholesale price
This study N Timing issue of demand and Vv V4 Wholesale-price- and-
supply carpooling

“N” represents Newsvendor-type product model and “C” represents continuous review model
“/" represents covered and “/” represents not covered

developed with the combination or extension of existing classic contracts. In contrast to the existing studies, our study is
based on consideration of the customer arrival times and the route, as decided by the supplier, that influence the profits
of all supply chain members. Moreover, the idea of carpooling is unexplored in the supply chain literature, despite the
use of it in some industries. We develop a novel WPC contract that can bring new methodology and insights applicable
to the supply chain contract.

In addition to supply chain coordination, there are other three streams of literature on the supply chain with one supplier
and multiple retailers. The first direction focuses on transshipment under which a retailer can move excess inventories or
capacity to another with excess demand (Anupindi et al., 2001; Shao et al., 2011; Li and Zhang, 2015; Feng et al., 2017).
The second type of literature features inventory competition under which customers of one retailer can switch to other
retailers when the demand is not fully satisfied. Lippman and McCardle (1997) studied multiple retailers whose demand
is allocated by using a splitting rule based on the realization of demand. Anupindi and Bassok (1999) analyzed how the level
of market search influences the profit of the manufacturer. Netessine and Rudi (2003) studied the system with n different
types of products. In that system, a deterministic fraction of the excess demand of each product shows the ratio of consumers
who will switch to another product as a substitute. Zhao and Atkins (2008) studied multiple competitive newsvendors in
which a proportion of customers lost by one vendor switch to another one. Jiang and Anupindi (2010) compared the
customer-driven search with transshipment between two retailers. However, these studies did not consider the supplier’s
decision making or vertical coordination of the supply chain.

The third direction is known as the inventory routing problem (IRP). The IRP involves a single supplier who is responsible
for monitoring and replenishing inventories for multiple geographically dispersed retailers (customers). The decision
includes when to replenish, how much to replenish, and which route to use (Song and Savelsbergh, 2007). There exists a rich
body of literature on the IRP (e.g., Bassok and Ernst, 1995; Xu et al., 2007; Kleywegt et al., 2002; Campbell and Savelsbergh,
2004; Gaur and Fisher, 2004; Song and Savelsbergh, 2007; Zhao et al., 2007; Yu et al., 2008; Li et al., 2011; Niakan and
Rahimi, 2015; Cheng et al., 2017). These studies were based on the vendor managed inventory systems in which the retailer’s
role was ignored. In these models, the supplier made all of the decisions with the purpose of optimizing its own or the supply
chain’s target value. The trade-off is between inventory cost and utilization of vehicles (transportation cost). Liu and Chen
(2011) considered the deterministic demand that is a linear function of the sales prices. However, they also assumed that
the supplier and retailers act as one company to maximize the total supply chain profit. Existing studies on the IRP focused
on developing efficient policies or algorithms to obtain a channel-wide optimal solution. In our supply chain model, the sup-
plier cannot control retailers’ ordering decisions, and our study focuses on design of contracts under which supply chain
coordination can be achieved. In particular, Alaei and Setak (2015) studied a multi-objective coordination problem of a sup-
ply chain with route selection by using the revenue-sharing contract. Their model took into account total demand at each
retailer but did not explore the impact of supplier’s route selection on supply chain coordination.
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3. Model analysis

Our model presents a single-period supply chain model with one supplier and n independent retailers, all of whom are
risk neutral. Each retailer has an exclusive territory, which means that there is no pricing and inventory competition among
these retailers. In each selling season, with one vehicle and one trip, the supplier distributes a common product to the retail-
ers in the chain. Customers leave the system if they find the products unavailable when they arrive at their local retailers. In
a set SC={0,1,...,n} of supply chain members, member O represents the supplier, and member i represents retailer i,
wherei=1,2,...,n. The supplier decides wholesale prices to charge retailers and the delivery route that determines the pro-
duct arrival time at each retailer. Based on the product arrival time and wholesale price, retailer i makes two decisions: the
order quantity of the product, g;, and its selling price, p;. The time when the products arrive at retailer i is denoted by t;. In
this model, the revenue of retailer i generated from sales is influenced by t;. Ri(p;, g;|t;) is the total revenues of retailer i under
t;, including the revenue generated from sales and salvage activity. We assume that, for any pair of {p;, q;}, Ri(p;, q;|t;) is non-
increasing with t;. The supplier’s unit production cost is ¢, and p; > ¢ > 0,i =1,2,...,n. Ri(p;, g;|t;) can present the revenue
under either a deterministic or stochastic demand. R;(p;, q;|t;) represents the expected revenue of retailer i who faces a
stochastic demand. If we set p; as exogenously specified and p; =p, = ... = p,, the demand function is close to the case
in newspaper supply chains. Without loss of generality, we assume that the production costs of the retailers are zero and
the speed of the vehicle is a constant. We assume that the vehicle capacity is unlimited. This assumption is based on the
observation on the food supply chain in China that the utilization rate of the vehicle capacity is around 50% in each trip.
The goodwill penalty for lost sales is not considered in this model.

3.1. Centralized supply chain

In a centralized supply chain, the supplier and all of the retailers act to maximize the supply chain profit. Let x; be equal to
1 if and only if member j is visited immediately after member i and it is O otherwise. The travel time and transportation cost
from member i to member j are respectively represented by g; and a;, where i,j = 0,1,..., n. For simplicity, we assume that
the service time of member i is negligible. Without loss of generality, we let the time when the product leaves the supplier, to
be 0 and set M as a big positive number. We denote the vectors of selling prices, order quantities, product arrival times, and
sub-routes (arcs) as p= (Py,---,04);q = (q1,---,qn),t = (t1,...,tn), and X = (Xo1,- ., Xon, - -, Xi0y - - s Xiny « - - s Xn0s - - - , Xnn_1)-
Ts(D,q, £, X) is the supply chain profit. With the approach of modeling the traveling salesman problem (TSP), we obtain
the decision framework of the supply chain as follows.

(P1)
Max Tsc(p, G, £,%) = > _Ri(Dy, qilt) —¢>_qi— D> ayxy (1)
i=1 i=1 ijeSC.i#j
subject to

> x=1 ViesC (2)

jeSCj#i
> xj=1 VjeSC (3)

ieSC,ij
ti>ti+8; —M(1—x;) VijeSCj#0 (4)
Xxj=0,1 VijeSC (5)
ti>0 VjeSC (6)

In (P1), the objective function is to maximize the supply chain profit. Constraints (2) and (3) ensure that the supplier and
each retailer are visited exactly once. Constraint (4) guarantees that the product arrival time to a retailer is longer than or
equal to the product arrival time to the retailer visited immediately before (or t, in case i = 0) plus the travel time between
the two members. Because g; is positive for all i,j € SC, sub-tour elimination can also be achieved by this constraint. Any x
satisfying these constraints presents a feasible route. As we can see, (P1) is an extension of the TSP problem that is NP-hard.
Therefore, small problems of centralized supply chains can be solved by using optimization tools like LINDO and CPLEX. We
can obtain the channel-wide optimal solution for large problems by using existing algorithms. We set p°, q°, t°, and x° as the
vectors of the optimal prices, order quantities, product arrival times, and sub-routes that maximize the supply chain profit,
ie,p’=(ps,...,0%), q° =(q5,....q°), = (t7,...,t0), and X° = (X3;, ... . X3y, .. .. X%, ..., X0, ..., X0, ..., X0, _4), Tespectively. We
assume that Ri(p;, g;|t;) is differentiable. For the case with stochastic demand, the marginal revenue of retailer i is decreasing
in g, i.e., °Ri(p;, q;|t:)/0(q;)* < O (e.g., see Cachon and Lariviere, 2005). Because £ and x° satisfy Constraints (2)-(6), for all
i=1,2,...,n,p? and q° should satisfy

ORi(p?, 47 1t7)/9p; = 0, (7)

ORi(p?, q7|7) /0g; = c. (8)
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Egs. (7) and (8) present the necessary conditions for p? and q?, respectively. Considering that R;(p;, g;|t;) is non-increasing
with t;, t can be determined by X based on Constraint (4) and t, is always equal to 0. Consequently, we can use t to present the
route and write the objective function as

Max 7 (P, . £) ZR (i, qilt:) —cqu TC(t 9)
where TC(t) = 3, jcsc i iiXis-
3.2. Decentralized supply chain

In a decentralized supply chain, members make decisions in three stages. As shown in Fig. 2, the supplier makes two deci-
sions: the route and the wholesale price, w;, that retailer i pays per unit purchased. Based on t; and w;, retailer i decides p; and
g; to maximize its own profit,i=1,2,...,n.

With a specific route and wholesale price, the profit function of retailer i is

(i, qilti, wi) = Ri(p;, qilti) — wig;. (10)

We set p; and q; as the optimal selling price and order quantity for retailer i. For any ¢; and w;, p; and q; should respec-
tively satisfy

ORi(p;, q; |t:) /0p; = 0, (11)
oRi(p; . q;1ti)/0q; = wi. (12)
We can see that p; and q; are functions of t; and w;, where i=1, 2, ..., n. We denote the vector of wholesale prices as
W = (Wy,...,w,) and the decision framework of the supplier in the decentralized supply chain (P2) can be written as follows:
n
Max mo(W,t) = > (Wi — O)g; (Wi, t) — Y ayx; (13)
i=1 ijeSC,i#j
subject to

Constraints (2)—(6).

In (P2), the objective function is to maximize the supplier’s profit and the same constraints as in (P1) are used. It is easy to
show that the optimal w; in (P2) should satisfy w; >c,i=1,2,...,n

Proposition 1. If (p°,q°,p*, q*) are determined by Egs. (7), (8), (11) and (12), respectively, then the channel-wide optimal prices
and order quantities, p° and q°, cannot be achieved in decentralized supply chains.

Proposition 1 still holds under the case with deterministic demand. On the basis of Proposition 1, we can infer that for any
t satisfying Constraints (2)-(6) and p, the retailers’ optimal order quantities cannot maximize supply chain profit. This find-
ing means that a retailers’ optimal pricing-and-ordering decision differs from the channel-wide optimal decision. When the
selling prices are fixed, retailer order quantities are lower than the channel-wide optimal order quantities. The well-known
double marginalization exists in all of the subsystems in the newsvendor supply chain. Therefore, managers need to imple-
ment contracts to coordinate the supply chain and improve total profits. Moreover, they should pay attention to the retailer
decisions during contract development.

3.3. Supplier’s problem

In many supply chain models, double marginalization and competition among retailers are considered barriers for supply
chain coordination. In our model, however, the supplier’s route decision creates a potential barrier for improving the supply
chain profit. In this subsection, we discuss how the route selection influences the total profit in a decentralized supply chain.
Because p; and q; are functions of t; and w;, we can obtain the decentralized supply chain’s profit as a function of wand ¢, i.e.,

(W, t). Let w* and t* be the vectors of (wj,...,w;) and (t,...,t;) that maximize 7, (W,t) and that satisfy Constraints
Supplier selects Supplier decides Retailers make orders
aroute wholesaleprices and decide selling prices

Fig. 2. Time line of decisions.
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(2)-(6). The optimal supply chain profit is 7, (W*, £*) = >"i_,Ri(p;, q; |t}) — ¢>,q; — TC(t*). From (P2) we can see that, for any
t and x that satisfy Constrains (2)-(6), the supplier has an optimal W to maximize 7o(W, ). Suppose that route A is the optimal
route determined by (P2), and the transportation cost under route A is smaller than under the channel-wide optimal route
Under route A with £4, the supplier’s profit is mo(W4,£4) = Y1, (W — ¢)g* — TC(t*), in which W# and G# are the supplier’s
optimal W and retailer i’s optimal order quantity under route A. We obtain the optimal profit of the supply chain under route
A as Tt (WA, T4 = S0 Ri(pA, g |t?) — -, qf — TC(E4) and e (W*, T) > T, (WA, T4). Let the gross profits of the supply chain
and the supplier be 37 Ri(p;, qilti) — ¢>_1,q; and "I, (w; — ¢)g;, respectively. We can see that when switching from route A
to the channel-wide optimal route, the supplier may find that its increased gross profit is smaller than the increased channel
gross profit. It means that the increased channel gross profit is shared by the supplier and retailers. Meanwhile, the trans-
portation cost is undertaken by the supplier. This difference may distort the supplier’s route decision. If the increased trans-
portation cost is higher than the increased gross profit of the supplier, then the supplier will select a suboptimal route.
Mathematically speaking, if mo(W*, ) — mo(WA,t4) = 31, (W — ¢)q; — S0, (W — ©)g# — TC () + TC(£*) < 0, then the sup-
plier prefers route A and the optimal supply chain profit cannot be achieved.

The above discussion shows that the supplier’s route selection can set up a barrier to improved supply chain profit in the
decentralized setting. Because the proof under a general demand function is complicated, we take the linear demand func-
tion as an example to prove that there exist cases in which the supplier may prefer a suboptimal route. We select this
demand function for the following two reasons. First, this linear demand form is commonly used in the fields of supply chain
management, inventory management, and marketing. Second, it is close to the demands observed from the food and news-
paper supply chains in China. As discussed in Section 1, each customer’s arrival at the local retailer is fairly certain on each
working day. Note that this linear demand function is used only for the proof of supplier’s route selection problem. All of
other parts in this article are based on the general demand function. Assume that the customers arrive at retailer i at a deter-
ministic rate per time unit determined by p;; that is D;(p;) = e; — p;b; where e; and b; are positive constants. We assume that
e; — cb; > 0 and each customer orders one unit of product. The selling period of retailer i is limited within the range of [f;, ;]
and we assume that I; is always greater than t;. In the real world, f; and ; can be uncertain. However, based on our obser-
vation that the uncertainties are relatively low compared to the selling periods, we take f; and I; as exogenously specified,
i=1,2,...,n. The profit function of retailer i in the decentralized supply chain is

Ti(ps, Gilti, wi) = (p; — wi)(ei — pibi)T; (14)

In Eq. (14), q; = (e; — p;bi)T; and T; = Il; — max(f;, t;). Therefore, p; = (e; + byw;)/(2b;) and q; = (e; — bjw;)T;/2, and the sup-

plier’s optimal wholesale price to retailer i is w; = (e; + b;c)/(2b;). Therefore, e; — bjw; > 0 and g; is non-increasing with ;.

For any route, X,f can be obtained based on Constraint (4). In addition, we can obtain p; = (3e; + bic)/(4b;) and
q; = (e; — bic)T;/4. In this case, the decision framework of the supplier (P3) can be represented as

—, - u (ei — b,‘C)zT,‘

M =) ——

ax mo(W',f) =y 8h,

i=1

— TC(F) (15)

subject to
Constraints(2) — (6).

Moreover, the decision framework of the supply chain (P4) can be represented as

- "36,-—b1-C2T,- —
Max 75 (W, ) = ZHT-) —TC(b) (16)
i=1 !
subject to
Constraints (2)—(6).
Let t* be the vector of (t;,t3,...,t;) determined by a route that maximizes 7,.(W*, t) and that satisfies Constraints (2)-(6).

Proposition 2. In a decentralized supply chain with the linear demand functions, (i) if TC(t*) is smaller than or equal to all other
TC(t) values in which t satisfies Constraints (2)-(6), t* represents the optimal route of the supplier; (ii) otherwise, the supplier may
prefer another route that cannot maximize the supply chain profit.

Proposition 2 indicates that, in the decentralized supply chain under linear demand functions, the supplier is incentivized
to select the channel-wide optimal route only when it generates the smallest transportation cost. In other cases, the supplier
may prefer a route that is not optimal for the supply chain. When switching from one route to another, the supplier may find
that the gross profit increment for the channel is larger than its gross profit increment generated from supplying the chain.
Furthermore, the supplier shoulders any increased transportation cost. This imbalance may distort the supplier’s route selec-
tion, which should also be considered in the contract design. This phenomenon is illustrated in Example 1. The optimal
routes for the supplier and supply chain are denoted as routes S and O, respectively.
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Example 1. For a supply chain with one supplier and four retailers, we let ¢ = $1 and a;; = g;; x 1($/ min). The demand rates
and selling period ranges are shown in Table 2. Table 3 shows the travel time between different members. We solved (P3)
and (P4) by using CPLEX, and the computational time is negligible.

In this example, the optimal route that maximizes the supplier’s profit is 0-1-2-3-4-0 (route S); while the optimal route
that maximizes the supply chain profit is 0-2-1-3-4-0 (route O). Product arrival times of the four retailers under routes S and
O are shown in Table 4. From Egs. (15) and (16), we calculate the profits of the supplier and the supply chain. Let Tf and T,-O be
the product arrival times at retailer i under routes S and O, respectively. Using route S in Example 1, the supplier’s gross profit

b;
is Zl 1(Wl - C)ql Zx 1%
Zi,lRi(pi.qi|ti) - CZHqi = j' 1 % $622.4. In this case, the profits, after expenses, of the supplier and the supply

$414.9, and the transportation cost is $112.0. The gross profit of the supply chain is

chain are $302.9 and $510.4, respectively. Under route O, the suppller S gross profit is 37 1& $430.3 and the trans-

portation cost is $129.0. The supply chain’s gross profit is 21 1 '” = $645.5. The final profits of the supplier and the

supply chain are $301.3 and $516.5, respectively. We can see that When switching from route S to route O, the supplier’s
transportation cost increases by $17.0 and the gross profit of the supply chain increases by $23.1. This finding means that
the supply chain benefits from the selection of route O because the profit of the channel is maximized. However, in this case,
the supplier’s gross profit increases by $15.4, which is smaller than the increased transportation cost. Therefore, the supplier
is incentivized to choose route S to maximize its own profit, which leads to a lower total profit for the supply chain.

As Example 1 shows, if the supplier switches from route S to route O, then Retailer 2 obtains the products earlier and the
supply chain’s gross profit can be increased. However, the gap between the gross profits of the supplier and the supply chain
implies that the supplier’s gross profit increment is smaller than the one of the supply chain. Because the transportation cost
is undertaken by the supplier, this imbalance between gross profit and transportation cost may result in a suboptimal route
selected by the supplier. When managers seek to improve the performance of the supply chain, much attention should be
paid to encouraging the supplier to select the channel-wide optimal route. In such supply chains, supply chain coordination
is achieved when the retailers and the supplier select p°, g°, and £° simultaneously. However, coordinating such supply chains
is more difficult than coordinating the classic ones, because the supplier’s route decision is involved.

When the vehicle has a capacity constraint, the constraints in (P1) and (P2) can be extended to a multi-vehicle routing
problem in which one vehicle delivers products to retailers in one cluster. We can obtain the objective functions of the sup-
ply chain and the supplier by considering gross profits and transportation costs. In this case, a gap is found between the gross
profits of the supplier and channel. On the basis of the analysis in Sub Section 3.3, we can find cases in which the supplier
may prefer a local optimal transportation solution when multiple capacitated vehicles are used.

4. Coordinating wholesale-price-and-carpooling contracts

Carpooling contracts in the taxi industries have been encouraged by the government of cities in some cities with a large
population and relatively limited transportation supply capacities, such as Beijing, China.
For any route, we rearrange the retailers in ascending order according to the product arrival time:

t(l) < f(z) <0< t(n) (17)

The supplier is Member (0), and let the arc between members (i — 1) and (i) be sub-route (i) with transportation cost aj;,
i=1,2,...,n. Because the supplier must be the last visited member, the last sub-route is sub-route (0) with transportation
ao). For example, in one route with three retailers, the sequence of visited retailers is 0-2-3-1-0. Because t, < t3 < t;, Retailer
(1) represents Retailer 2, Retailer (2) represents Retailer 3, and Retailer (3) represents Retailer 1. We can also obtain the
indexes of sub-routes, as Fig. 3 shows.

Definition 1 (Partly common route). Sub-route (i) is the partly common route of retailers (i), (i + 1), ..., (n). In particular, the
sub-route between retailer (n) and the supplier is the partly common route of all of the retailers.

Under the WPC contract, each retailer pays the supplier a wholesale price for each unit purchased. In addition, the sup-
plier obtains a payment from the retailers for each sub-route. Let Z;a;; be the payment for the sub-route between member i
and member j, in which Zj; is a contract parameter. When the supplier selects a route, we can obtain sub-route (i) based on

(17) and arrange the retailers,i = 0, 1, ..., n. For simplicity, let Z; represent Zj if the arc between member j and member k is
Table 2
Demand rates and selling periods (minutes).
Retailer e b; fi I;
1 8 2 10 100
2 6 1 10 80
3 9 3 10 120
4 5 2 10 180
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Table 3
Travel time between different members (minutes).
Member 0 1 2 3 4
0 0 20 15 25 25
1 20 0 27 42 40
2 15 27 0 20 31
3 25 42 20 0 20
4 25 40 31 20 0
Table 4
Product arrival times (minutes) under different routes.
t1 ty t3 ta
route S 20 47 67 87
route O 42 15 84 104

Retailer 1/
Retai!

Sub-route (0)

Supplier j}

Sub-route (3)

Sub-route (1) Retailer2/

Retailer (1)

Sub-route (2) i Ns - vehicle

— : transportation route

Retailer 3/
Retailer (2

Fig. 3. An example of indexes of retailers and sub-routes.

sub-route (i), i,j,k =0,1,...,n and i # j # k. When the vehicle starts from the supplier and goes to Retailer (1), it is loaded
with the products of all of the retailers; this sub-route is the partly common route of Retailers (1)-(n). The sub-route between
retailers (n — 1) and (n) is the part in which the products of only retailer (n) are carried. The number of partly common routes
of retailer (i)isi+1,i=1,2,...,n. Retailers share the payment for their partly common route. The WPC contract works as
follows.

e Prior to the selling season,the supplier and retailers agree to the wholesale prices and the payment of Zja; to the supplier
for using the sub-route between member i and member j.

e The supplier selects the route based on Z;aj.

e Retailer i places an order for g; units and pays the supplier w; for each unit purchased.

e The supplier delivers the products to the retailers. The retailers are rearranged based on the route and share
Ziag),i,j=0,1,...,nand i #j.

Under the WPC contract, the supplier’s profit function is

n

To(W,1) =Y (Wi —o)g;(wi, ) + > (Zy — 1)agx; (18)
i-1 ijESC.i%]
Lemma 1. By setting Z; < 1 ifx;} =0 and Z; > 1 otherwise, the supplier’s optimal route is X* when w; =, i,j =0,1,...,n and
i#].

By setting w; and {Z;|i,j € SC and i # j} based on the Lemma, the supplier’s route decision can be optimized. Then, we can
rearrange the retailers based on (17) to obtain Z;,i = 0,1,...,n. Let m; be the profit of member (i) under the WPC contract,
i=0,1,...,n, and 7% be the maximum profit of the supply chain that can be achieved by {p°,q°, t°}. For a set of {k;|i € SC}
and a selected route, let k(; represent k; if member (i) is member j,i,j =0,1,...,n.

Theorem 1. For any set of {k;|i € SC} wherein 3"}  k; = n%. and k; € (0, %), the WPC contract with w; = ¢ and {Z;i,j € SC and
i # j} can be obtained from the Lemma where "' ((Z; — 1)ag = k(o) under the channel-wide optimal route. In addition, retailer
(i) pays the supplier ¢ ; of ag if sub-route (j) is its partly common route, satisfying Z?:m¢(i)(m) =Zm and Z?:ltj)(,-)m) =Z
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wherej=0,1,...,nand m = 1,2,...,n. We can always find a set of {Z;)|j € SC} and {;; |i,j € SC} for the WPC contract under
which supply cham coordmatlon is achleved and 7y = kg, i=0,1,...,n.

The theorem indicates that supply chain coordination can be achieved and the total profit can be arbitrarily allocated
under the WPC contracts. When w; = c, the retailers will select the channel-wide optimal pricing and ordering decisions
for any route; so the double marginalization can be solved under the WPC contract. Because the wholesale prices are the
same with the supplier’s unit production cost, the supplier needs to receive some compensation for the decreased wholesale
prices. Meanwhile, it should be guaranteed that the channel-wide route will be selected by the supplier. The idea of carpool-
ing takes good care of these two considerations. By using the carpooling, if the arc between retailers i and j is selected, the
supplier can obtain Z;a;;. The lemma and Theorem 1 show that there exist settings of WPC contract under which the supplier
will select the channel-wide optimal route. Therefore, the double marginalization and route selection are solved simultane-
ously under the WPC contract. When the channel-wide optimal route is selected, the supplier can obtain Z; ay; for sub-route
(i) that is greater than the related transportation cost, a(i), and this is the compensation for the low wholesale prices.

Moreover, under the WPC contract, the total profit can be arbitrarily allocated among all supply chain members. At first
glance, it seems that the contract might be unfair to the retailers who receive their products last by considering that they
need to pay for most of the sub-routes. However, this intuition does not hold under the WPC contract, because the payment
can be adjusted by setting ®. For example, even though retailer (n) needs to pay for all of the sub-routes, the total payment
can be smaller than other retailers’ if @, is sufficiently small, j = 0,1, ..., n. Note that the total supply chain profit can be
arbitrarily allocated under the WPC contract. The profits of supply chain members are determined by {k;|i € SC} that depends
on the members’ relative bargaining power. The supplier’s profit is increased with 31 ,(Z4 — 1)ag; and retailer (i)'s profit is

decreased with Z] 0% (.1 =1,2,...,n. The Lemma shows an easy way of setting {Z;|i,j € SC and i # j} that can be easily

understood and used by managers. Let member i's outside opportunity profit be k; where ! ki < 7% and
ki>0,i=0,1,...,n (see Cachon and Lariviere, 2005). We assume a profit split (ko + 7y,k1 +#;,.... ks +1,) with

>io(ki+n;) =7 and #; > 0 for all i=0,1,...,n. For a selected route, let 7, represent #; if member (i) is member j,
i,j=0,1,...,n. Based on the proof of Theorem 1, we can always find a set of {Z;|j € SC} and {¢;; |i,j € SC and i # j} wherein
>ino(Zay — 1)aw = k) + 1oy for the WPC contract under which 7y = ks + 7,1 =0,1,...,n. Consequently, by using the

{Z;li,j € SC and i # j} obtained from the Lemma, all of the opportunity profits are satisfied.
The above theorem presents the WPC contract in a general form. In the real world, the WPC contract can be used in some
simplified ways by adding some constraints on the decision variables.

Theorem 2. For any set of {k;|i € SC} where "' ok; = m%. and k; € (0, %), we can look at the WPC contract with w; = ¢ and
b5 = Pt = - = bmyd =1,2,...,n. For any {Z|i,j € SC and i#j} satisfying the Lemma, there exists a unique
{¢)qi.j € SC} for the WPC contract under which supply chain coordination is achieved and ;) = k(;,i =0,1,...,n

As Theorem 2 shows, the involved retailers pay the same percentage of the transportation cost for each sub-route. The
number of decision variables under this contract is fewer than under the general contract shown in Theorem 1. It implies
that this simplified version of WPC contract has the advantage of easy implementation.

The information required to implement the WPC contract is not difficult to manage. For the customer arriving process of
each retailer, the channel-wide optimal route can be consistent in different selling seasons and the optimal route is indepen-
dent of profit allocation. Retailer does not need to monitor each other’s revenues. In addition, retailers can easily monitor the
delivery route. From (P1), we can see that the product arrival times to retailers create discrete variables. Retailers can con-
jecture about the sequence of retailers visited first based on their own product arrival time. This characteristic also supports
that the WPC contract cannot be unfair to the retailers visited last. When all of the retailers can monitor their partly common
routes (except the last sub-route), the supplier should follow sub-routes from (1) to (n). Because each route consists of a
Hamiltonian tour, the number of sub-routes is n + 1. Then, the last sub-route is also followed. It means that when the retail-
ers who are served relatively late monitor their partly common routes, they also guarantee the final sub-route agreed upon
by all members.

5. Supply chain coordination under revenue-sharing contracts

The revenue-sharing and buy-back contracts are the most widely studied contracts under supply chains with a single sup-
plier and multiple retailers. These two contracts are also shown to be more attractive than some other contracts for these
supply chains (e.g., see Dana and Spier, 2001; Cachon and Lariviere, 2005). Buy-back contracts have been studied for coor-
dinating supply chains with multiple retailers (e.g., Cachon, 2003; Bernstein and Federgruen, 2005; Zhao, 2008). Supply
chain coordination is achieved under the buy-back contracts by making the retailer’s profit linearly increasing with the sup-
ply chain profit. Based on this property, we infer that buy-back contracts share the same limitations as the revenue-sharing
contract. Therefore, we discuss only the revenue-sharing contract under our supply chain model. Under the revenue-sharing
contract, each retailer pays the supplier a wholesale price for each unit purchased, and shares its total revenue with the
supplier.
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Proposition 3. Under the revenue-sharing contract, retailer i keeps v; of its revenue and w; = y;c,y; € (0,1). For any route,
retailer i’s optimal p; and q; maximize subsystem i’s profit, i = 1,2, ...,n. The profit function of the supplier is
n
To(7,8) = (1 =yl — TC(). (19)
i1
Proposition 3 tells that the revenue-sharing contract can address the double marginalization for any route. Hence, when
the supplier selects the channel-wide optimal route, subsystem i’s profit is I1{ and supply chain coordination is achieved
under the revenue-sharing contract. In addition, profit split is determined by (y,,7,.,...,7,). However, the supplier’s route
selection problem is not considered in this contract. We can obtain the supplier’s decision framework under the revenue-
sharing contract including Constraints (2)-(6) and the objective function to maximize (7, t).

Proposition 4. Under the revenue-sharing contract, if TC(°) is not the smallest among all feasible values of TC(t), the supply chain
profit cannot be arbitrarily allocated.

Proposition 4 shows that, in some cases, supply chain coordination cannot be achieved under certain profit-split scenar-
ios. Because the revenue-sharing contract focuses on coordinating each retailer’s pricing-and-ordering decision, the incen-
tives to align retailers’ decisions may distort the supplier’s route selection. If the available profit-split scenarios cannot be
accepted by some members, then those contracts are proven infeasible and the supply chain coordination cannot be
achieved. Therefore, contracts with a limited range of available profit split may not be widely implemented. In addition,
in the real world, the profit split usually depends on each supply chain member’s relative bargaining powers or outside
dynamic opportunity to earn higher profits. For instance, if retailer i has a higher opportunity profit outside the supply chain,
it may require a higher y; under which the supplier is not willing to select the channel-wide optimal route. Then, the
revenue-sharing contract may fail to coordinate the supply chain. This limitation can result in a negative impact on the
robustness of long-term implementation of the contract. Hence, the flexibility of profit allocation is an important character-
istic of supply chain contracts (e.g., Cachon and Lariviere, 2005; Feng et al., 2015).

Example 2 illustrates the limitation of the revenue-sharing contract in terms of profit split.

Example 2. Under the revenue-sharing contract, for any profit split and route, retailer i’s optimal p; and g; satisfy
p? = (e; + bic)/(2b;) and q? = (e; — bic)T;/2,i = 1,2,3,4. For a profit split of y; = 30%, 7, = 50%, y3 = 60%, and y, = 30%, the
supplier’s decision framework is
4 2
o~ =7)(ei—bio)’Ti 7
o) = b, TC(t) (20)

=1

subject to
Constraints (2)—(6).

The supply chain’s decision framework is

- e — biC zTi -

me® = G2 g 1)
i=1 1

subject to

Constraints (2)—(6).

We solved this problem by using CPLEX, and Table 5 shows the profits under routes S and O in Example 2. In this example,
the route that maximizes the supplier’s profit is 0-1-2-3-4-0 (route S); while the channel-wide optimal route is 0-2-1-3-4-0
(route O). Under route S, the supplier’s profit, exclusive of transportation cost, is $491.90 and the transportation cost is
$112.00. In this case, the final profits of the supplier and the supply chain are $379.90 and $717.80, respectively. Under route
0, the profits of the supplier and the supply chain are $359.80 and $731.70, respectively. As a consequence, the supplier pre-
fers route S, which leads to a lower total profit for the supply chain.

If a contract cannot allow for arbitrarily allocated supply chain profit, some supply chain members cannot reap
opportunity profits. In this case, the members cannot agree upon a revenue-sharing contract and supply chain coordination
cannot be achieved. Because the profits of the subsystems are fixed under supply chain coordination, profit split is also fixed

Table 5
Profit comparison under different routes.
Route IT; Tsc (1 —ypIT; To
1 2 3 4 1 2 3 4
S 360.0 206.2 159.0 104.6 717.8 252.0 103.1 63.6 73.2 379.9

0] 261.0 406.2 108.0 85.5 731.7 182.7 203.1 43.2 59.8 359.8
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under a given (y;,75,...,7,). For example, if the opportunity profits of supply chain members require a profit split of
71 = 30%, 7y, = 50%, 3 = 60%, 74 = 30%, supply chain coordination cannot be achieved, as Example 2 shows. To gain more
insight into how the revenue-sharing contract performs under such supply chains, we analyzed the profits under different
profit splits.

Proposition 5. For any (y,,7,,...,Y,), We assume retailer fis the first visited retailer under route S (i.e., tf <t,i=1,2,...,nand
i # f). For any &, the supplier’s optimal t is also t5 under (y,,..., Vr—&...,7,) wherein y;, —&>0and ¢ > 0.

Proposition 5 discusses how profit split of the subsystem containing the first visited retailer (retailer f) influences the sup-
ply chain profit under the revenue-sharing contract. There may exist profit split scenarios under which route S is the same as
route O and supply chain coordination is achieved. However, there is an upper bound on y;. If y; is beyond the upper bound,
the supplier cannot obtain its maximum profit by serving retailer f first and will select another route that cannot maximize
the supply chain profit. Fig. 4 illustrates this phenomenon by using the data in Example 2 with y, = 30%, 7, = 60%, and
74 = 30%. In this case, to achieve supply chain coordination, the upper bound on 7y, is 39.9%. Moreover, the supplier’s profit
is linearly decreasing and Retailer 2’s profit is linearly increasing with y,. When y, is greater than 39.9%, however, the pro-
portion of the subsystem’s profit obtained by the supplier is relatively small. Therefore, the supplier prefers another route
under which Retailer 2 is not the first visited retailer and supply chain coordination is not achieved, as Example 2 shows.
Because the subsystem’s profit is decreased, the decreasing rate of the supplier’s profit and the increasing rate of Retailer
2’s profit are respectively smaller than the rates when 0 < 7y, < 39.9%. In addition, Retailer 2 can obtain a higher profit by
selecting a sufficiently high y, than its maximum profit under supply chain coordination (when y, = 39.9%). Consequently,
if Retailer 2 has sufficient bargaining power, it can obtain a large y, and supply chain coordination cannot be achieved.

The cases for other retailers are more complex. Consider the retailers who are not visited first under route 0. Under other
routes, the product arrival times at these retailers can be either increased or decreased. Suppose retailer j is not visited first
under route O. Intuition suggests that under a coordinating profit split there could be a lower bound and an upper bound on
y; for these retailers. If y; is sufficiently small or large, the supplier may prefer another route under which ¢; is smaller or
greater than under route O. Fig. 5 shows the profits under different values of y; by using the data in Example 2 with
Y2 = 39.9%,y; = 60.0%, and y, = 30.0%. The supply chain coordination can only be achieved when 29.9% < y, < 53.2%.
When 7, is not within this range, the supplier selects two different routes under which Retailer 1 receives the product at
varying times. When 7y, < 53.2%, for example, the product arrival time of Retailer 1 is sooner than the one in which
71 > 53.2%.

In some cases y;(j # f) has only a lower bound to guarantee supply chain coordination. The possibility of these cases for
the last retailer visited under route O might be greater than the possibilities of other retailers. If retailer [ is the last visited
retailer under route O and 7, is increased, the supplier can obtain a smaller proportion of this subsystem’s profit. Conse-
quently, the supplier has lower incentive to decrease t;. If there is no other route under which ¢, is greater than under route
0, the supplier will keep route O for any y, between the lower bound and 1. Fig. 6 shows the profits under different y, by
using the data in Example 2 with y; = 30.0%, y, = 39.9%, and y, = 60.0%. The results show that supply chain coordination
can be achieved when y, > 29.5%. When ), < 29.5%, the product arrival time at Retailer 4 is sooner and this subsystem’s
profit is increased. Consequently, as Fig. 6 shows, the profits of the supplier and Retailer 4 have greater decreasing and
increasing rates than the rates when y, > 29.5%.

It can be proven that, givena (;,...,i_1,Vis1, - - - » Ya)» the supplier’s profit is decreasing with y;, foralli = 1,2, ..., n.If the
supplier has sufficient bargaining power to keep y; low, the channel-wide optimal route may not be achieved, as Figs. 5 and 6
illustrate. In Section 3, we show that the supplier’s route selection can set up a barrier to improving the supply chain profit
when the double marginalization exists. The results in this section suggest that even though retailers’ pricing-and-ordering
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decisions are coordinated, route selection could still create an obstacle to supply chain coordination under the revenue-
sharing contract. Some extended revenue-sharing contracts have been developed for supply chains with multiple retailers.
For example, Cachon and Lariviere (2005) extended the classic revenue-sharing contract to coordinate supply chains with
competing retailers. Under such a contract, the wholesale price of each retailer depends on the revenue functions and opti-
mal order quantities of other retailers. It means that the retailers must monitor other retailers’ revenue, an often expensive
or infeasible strategy. Therefore, we only discuss the classic revenue-sharing contract.

Many contracts have been developed for the coordination of supply chains. Therefore, comparison of our WPC contract
with all of them creates challenges. However, many contracts share the principle that supply chain members’ profit functions
should be some fixed linear functions of supply chain profit. Under this typical stipulation, channel members’ profit-
maximizing incentives are consistent with overall profit maximization for the channel (Qin et al., 2011). This finding implies
that under those fixed-linear function requirements in similar contracts, the profit function of each member includes other
members’ profit functions. In this situation, each member must monitor other members’ revenues and costs, which can be
very costly or infeasible in practice. Hence, the contracts that make each retailer’s profit function linear and incorporated into
the corresponding subsystem profit are difficult to implement. From the analysis of revenue-sharing contracts under this
type of supply chain, we conjecture that those contracts can only achieve limited profit-split scenarios. The WPC contract,
however, addresses double marginalization and supplier’s route selection simultaneously. By using the wholesale-price
mechanism, we coordinate the retailers’ pricing and ordering decisions. To compensate for the low wholesale price, the sup-
plier can charge a transportation service fee for each route. With appropriate values of contract parameters, the supplier is
incentivized to select the channel-wide optimal route. Because the WPC contract can coordinate the supply chain and arbi-
trarily split the total profit, it can be easily implemented in many supply chains in the real world.

6. Summary of managerial implications
In the decentralized supply chain, the retailers make pricing and ordering decisions on the basis of the time when the

products arrive. In this case, the delivery route not only determines the supplier’s transportation cost but also influences
retailers’ order quantities; thus, supplier’s profit is determined. Hence, the supplier’s route selection influences all of the
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members’ profits by determining when each retailer can obtain products. Moreover, under the WPC, retailers can be
more incentivized to promote their sales than under conventional supply chain models. By making an effort to increase
demand, a retailer may attract more customers to visit and purchase in a specific period. Under this condition, the retai-
ler benefits the supplier delivering products relatively early. The supplier needs to consider the retailers’ demands and
order quantities when deciding the delivery route. On the basis of our observation from food and newspaper supply
chains, the suppliers select the route mainly on the basis of transportation cost without comprehensively considering
retailers’ decisions. Our results suggest that suppliers notice the trade-off between gross profit and transportation cost.
The supplier may benefit from making the effort to deliver early to the retailer with a large demand rate and early open-
ing time.

The maximized total profit means that all members of the supply chain can obtain higher profits than when the channel is
under decentralized control (Feng et al., 2014). Hence, it is beneficial for managers to coordinate supplier and retailers’ deci-
sions. When designing a contract to coordinate such supply chains, all parties need to pay attention to both route selection
and ordering decisions. Under the WPC contract, the supplier can charge a low wholesale price to encourage the retailers to
order more products. Meanwhile, retailers pay for the delivery service that is a main part of the supplier’s revenue. By using
our WPC contract, supply chain managers can coordinate their decisions to benefit from a high performance supply chain,
and each member can obtain a higher profit than when the channel is under decentralized control. Therefore, the WPC con-
tract is likely to appeal to all supply chain members. However, the WPC contract would not be optimal in all supply chains.
For example, if the transportation cost is dominated by the revenue earned by the supplier, no trade-off exists between
transportation costs and product arrival times. In the studied food supply chains in China, transportation costs of different
delivery routes play an important part in supplier profit. This profit structure could explain the reason that managers in
those supply chains attempt to coordinate the route selection of the supplier.

Under a revenue-sharing contract, the retailers’ pricing and ordering decisions can be coordinated for the given route.
Our numerical results indicate that profit-split scenarios are possible under which the revenue-sharing contract can coor-
dinate the supply chain. However, one retailer can encourage the supplier to deliver the products earlier by sharing a
smaller proportion of the subsystem’s profit. Because gross profit on a proportion basis of the retailer’s revenue is relative
high, the supplier may prefer a route under which a retailer with more orders than others is visited early enough to max-
imize retail sales. This optimal route cannot be achieved because, in this type of situation, the revenue-sharing contract
cannot arbitrarily allocate the supply chain profit. If the opportunity profits of supply chain members are not feasible
under the revenue-sharing contract, then it cannot be used to coordinate the members. Although we resolved double
marginalization, the route selection can still present a barrier to supply chain coordination. However, the supplier can
implement the contract with some of the retailers, which can improve supply chain performance to some extent. The flex-
ibility of partner selection may make the contract easy to implement in practice. In summary, the revenue-sharing con-
tract can be helpful in limited situations.

7. Conclusions and future research

In our supply chain model, the arrival time of customers influences supply chain profit because product arrival times are
decision variables. For any route selected by the supplier, retailers’ local optimal ordering and pricing decisions differ from
the channel-wide optimal ones because of double marginalization. In addition, we showed that the supplier’s route selection
creates a new obstacle to supply chain coordination under decentralized control. Because of the gap between the gross prof-
its of supplier and the channel, in some cases, the supplier may prefer a route that cannot maximize supply chain profit.
Under linear demand functions, if the channel-wide optimal route generates the smallest transportation costs among all fea-
sible routes, this route can also maximize the supplier’s profit; otherwise, the supplier prefers another route that may not
maximize supply chain profit.

We developed a novel WPC contract under which the supplier charges low wholesale prices and retailers share the trans-
portation costs for parts of the routes they share. Our results demonstrated that the WPC contract can be used to coordinate a
supply chain and arbitrarily allocate supply chain profit. The general WPC contract can be rendered in several simplified ver-
sions. We analyzed one case in which retailers share the same proportion of their partly common routes (except the last sub-
route) and showed that supply chain coordination can be achieved under this simplified contract. Moreover, the information
required to implement this contract is also easy to manage. Supply chain members need not negotiate the delivery route for
every selling season. The supply chain also generates an easy information flow that decreases the administrative cost of the
WPC contract.

To explore the coordination of a large supply chain further, we studied the popular revenue-sharing contract. We showed
that revenue sharing can resolve double marginalization, but it also distorts the supplier’s route selection. By using the
revenue-sharing contract, supply chain coordination can be achieved, but the supply chain profit cannot be arbitrarily allo-
cated. As a consequence, the deal made between supply chain members can be relatively complex, creating an infeasible
contract if the opportunity profits of supply chain members cannot be satisfied. On the basis of the profit allocation to all
retailers, for the first retailer on channel-wide optimal route, an upper bound on y, guarantees supply chain coordination.
However, there could be both upper and lower bounds on 7; for all other retailers. In particular, in some cases, for the last
retailer visited under the channel-wide optimal route, y, has only a lower bound. Under the revenue-sharing contract, the
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supplier must monitor the retailers’ revenues at every selling season. Therefore, compared with the WPC contract, the infor-
mation flow could create an obstacle to the implementation of revenue-sharing contracts.

This study has several limitations that can be addressed in future research. First, on the basis of the observations of food
supply chains in China, we proposed a model using the assumption that retailers do not compete in pricing or inventory.
However, in some other supply chains, retailers compete on the basis of price and customers search for the products in sev-
eral retailers. This type of supply chains is much more complicated than the one we studied. Second, we assumed that the
supplier delivers products to retailers with a single vehicle without capacity limitation. However, multiple vehicles or vehi-
cles that make multiple trips can be essential to meet a high total demand. In this case, considerations of vehicle capacity can
make developing a WPC contract much more difficult. Under the WPC contract, retailers undertake the transportation cost
on the basis of their partly common route. If multiple vehicles deliver products or one vehicle delivers products in multiple
trips, then retailers are assigned to different clusters and the partly common routes of retailers from different clusters would
be difficult to define. Third, we proved the supplier’s problem under a linear demand assumption. Extending the proof by
assuming that customer arrivals follow a Poisson or renewal process might yield interesting findings. Fourth, an alternative
version that encourages lower administrative costs would be worthy of study. A simple contract that shares the advantages
of the WPC contract might present interesting possibilities for supply chain management.
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Appendix A

Proof of Proposition 1. As seen from Eq. (9), p{ and g should satisfy oR;(p?, q?|t?)/9q; = c. In the decentralized supply chain,
with p? and t7, retailer i's optimal order quantity, g;, satisfies oR;(p?, q;|t?)/dq; = w;. Because &Ri(p;, qilti)/9(q;)* < 0 and
w; > ¢, we can infer that retailer i’s optimal order quantity is less than q{. Therefore, p° and q° cannot be achieved. O

Proof of Proposition 2. (i) Because t* maximizes 7, (W*,f), for any route, route A with 4, we obtain

" 3(e; — bic)’T;  <~3(ei — bic)’T . A
; T6b, —; T6h; — TC(t*) + TC(t") = 0 (A1)
where T; = I; — max(f;,t;) and T,-A =L —max(f,,t}),i=1,2,....n.1f 3}, Mb’ﬁ# < 0, then
" 3(e; — bic) (T, = TA) I~ (e — bic)*(T; — T2
< i i .
> 16b; < 8b; (A2)
i=1 i=1
and
" (e; — bic) (T = TA _ _
% ~TC(t") + TC(t*) > 0 (A.3)
i=1 i
If 37, %w > 0, it follows that
" (e — bio)(T; = T7)
Z 8h, >0 (A4)
i=1
Considering that TC(t*) < TC(t*), we get
n (e —bo) (T =T .
— TC(F") + TC(t*) > 0 (A5)

8b;

i=1

Consequently, t* represents the optimal route of the supplier.(ii) If route B is characterized with £ and TC(t*) > TC(?), the
difference between the supply chain profits under two routes is

n _bOX(T — TR
y 3@ b T =T ey 4 1e@) > 0 (A6)
2 16h,
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Based on Inequality (22) and TC(t*) > TC(£),

" 3(e; — bic)X(T; = TP) I~ (e — bic)* (T} — TF)
2 16b; > 8h, >0 (A7)

i=1 i=1

The supplier prefers route B when

i% < TC(F') — TC(2) (A.8)

In this case, the supplier selects the route that cannot maximize 7, (W*,t). O

Proof of Lemma. When w; = ¢, we can write the decision framework of the supplier (P3) as follows.

Max mio(W,6) = > (Zj — 1)ayx; (A.9)
ijESC ij
subject to
Constraints (2)—(6).

Each feasible solution of (P3) is a Hamiltonian tour in which the number of x;; that is not equal to 0, is n + 1. For a feasible
route, x¢ that is different from x°, and where Z; <1 if xj=0 and Z; >1 otherwise, we can infer that
Yijescini @i — D)ayXg > 3 icsci(Zi — 1)agxs. Consequently, the supplier’s optimal route is the channel-wide optimal route,
x0.0

Proof of Theorem 1. By setting w; and {Z;|i,j € SC and i # j} based on the Lemma, the supplier will select X°. Under the WPC
contract, the profit functions of the supplier and retailer (i) can be shown as

n

Moy =Y _(Zo — 1)ag, (A.10)
i—0
i
iy (D) Q(i)|t‘()i):W(i)) =Ru (g, q(i)|tl()i)) —Cq — Z(b(i)u')a(i)- (A11)
=0

Consequently, retailer (i)’'s optimal p; and q; satisfy Egs. (7) and (8) and supply chain coordination is achieved. Let H‘(’i) be
the maximum profit of subsystem (i) under t° such that I'Ifi) = R (P 4| t7y) — €q7;, then we have

n n n
> MG = TC(E) = Y TG = > _ag) = 7. (A12)
i=1 i=1 i=0

For any kg, we can always find a set of {Z;|i,j€SC and i#j} obtained from the Lemma that satisfies
Sito(Zi — 1)ag = k). Then, we can obtain the following linear equation set.

H?l) — (daym @) + by 0) = ka)

0
I — (b)1)a0) + d)2)0@) + P)0)00) = k@)

I = (@mmn) + dmede) + - + dmmdm + Pmodo) = kn
(b)) + @) + -+ + b)) = Zmyan) (A12)

(P + P32 T+ dme)de) =Z2)a
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Equation set (A.13) has n(n + 3)/2 variables and 2n + 1 equations. The difference is (n + 1)(n — 2)/2. Because n > 2, the
number of equations is no more than the number of variables. Let ® and v be

T
(d)(l)(l)v ) ¢(n)(1)7 ¢(2)(2)> ) ¢(n)(2)7 ) ¢(n)(n)7 ¢(1)(0)7 ) d’(n)(O))
and
T
(IT%y) = kay, -+ TGy — ks Zoy @y, -, Zin Ay Z(0) o)) -

The above equation set can be presented as G® = v in which G is the coefficient matrix, given by the following augmented

matrix:
aq) 0 0 | aq 107y —kqy .
a) ap) a(0) 100 = k) ? .
. .
an ap) (n) aq) | 17, =k )
aq)  aq) a) Zmyaq) \
ag) a) Z(2)4(2) i
0 : } n+1
a) Z(n)(n) )
0 |aq@ aq a0y | Z0)a)
~—

Add the (n+ 1)th, (n+ 2)th, ..., and 2nth rows to the last row, and subtract the sum of the first n rows to obtain

n n n
(O 0o - O) E Z(,‘)a(,‘) - E Hl()l-) + E k(,‘)
i=0 i=1 i=1
n(n+3)/2

Because > iy (Zi) — 1)ag = ko) and i IT5) — > oaa = S-1L ki) + ko), the last element in the last row satisfies

n n n
> Zpag =Y T+ kg =0. (A.14)
i=0 i1 i=1
By moving the last n columns of the coefficient matrix to the left side of the matrix, we can obtain an augmented matrix U

that is an echelon matrix with 2n non-zero rows.

a0 ) 0 0 | T —kq
a) aq) ag) Dy, k| )
0 : }"
a) aq) ap) ap | M)~k | )
any  aq) aq) 0 | Zwaq N
a a Zna !
) ) 2)4@) }n .
Ay | Zin)a(n) )
0 0 0|0 o 0] 0 0 0 0

The rank of G is equal to the rank of U and is lower than n(n + 3)/2. Consequently, there always exist ® satisfying GO = v.
O

Proof of Theorem 2. If ¢; = ;),j = 1,2,...,n, we can obtain the following linear equation set.
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I} — (¢ aa) + )0 @0) = ki
M) = (@) + )0 + da)0%0) = ke

00, — (0 @a) + b)) + - + b @m + dy0)d0) = Ky
ngwan) = Zw)da)
(n=1)pa2) =Zpap

P am) =Zmam)
(D)o + P20 T+ dmyo) o) = Z0)d(0)

Equation set (15) has 2n variables and 2n + 1 equations. Let @, be

T
(d)(])» P2y Py P10 P2y0)s d)(n)(O)) .

We can present the above equation set as Gy ®sim = v and G, is the coefficient matrix of Equation set (15). The aug-
mented matrix can be presented as follows:

a) a) 7)) =k N
an) ae) a) 100, = k) }

n
aq) a@) a(n) aw) | MG =k | )
naqy) Znyaq)

(n—1ag) Zyae) )
}n+l
A(n) Z(n)A(n) )
) a) a0) | Z0)%)

Considering Eq. (A.14), we can obtain the following augmented matrix, Ug,, through elementary row transformation.

a() 10y —ka) =Zwya)/n N
a(0) 0%~k —Zmam /n—Z@a/(n=1) |
: ? n
o) | TG, —kew — X0 Zonaw/(n—i+1) )
nagy) Zmyaq)
(n—1)ag) Zo)a) )
: : ? n+1
af) Z(n)a(n) )
0 0 0 0
n n

The rank of G, is equal to the rank of U, that is equal to 2n. Consequently, we can always find a unique ®y;;, satisfying
Gsimq)sim =v.0

Proof of Proposition 3. If IT; is subsystem i’s profit under t; through the revenue-sharing contract, retailer i’s profit function
is

(D, G;, Vilti) = ViRi(pi, qilti) — yicq; = 1L (A.16)

Eq. (A.16) shows that retailer i’s profit function is an affine transformation of Il; under the revenue-sharing contract.
Therefore, for y; and t;, retailer i’s optimal p; and g; can maximize IT;. Because the supplier obtains (1 — 7;) of retailer i’s rev-
enue, we obtain
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n n

(7,8 = > (1 = 7)Rilpi, qilt) — cq) = TC(E) = Y (1 - y)IL ~TC(H). O (A17)

i=1 i=1

Proof of Proposition 4. Consider route S, that is not channel-wide optimal with TC(t®) < TC(£°). Let IT; be subsystem i's
maximum profit under route S. Because p°, q°, and t° maximize the supply chain profit, we can obtain

in;’ - annf —TC(f°) + TC() > 0. (A18)

i=1 i=1

H is the set containing all of subsystem i wherein IT? — IT; > 0. If L contains all of subsystem i wherein TI{ — IT; < 0 and
AIT; = T — IT, we can write Inequality (A.18) as

AT, + STAI - TC() + TC(F) > 0. (A19)
D A+

heH leL

When switching from & to t°, the supplier’s profit increment is

ATo(7) = > (1= 7)ATy + Y (1 = p)AIL - TC() + TC(E*) (A.20)

heH leL

When y, =1 for all h € H, we can infer that

Ao(7) = (1 — )AL — TC(®) + TC(F) < 0 (A21)

leL

Considering that mo(}) is continuous in P, we can always find a J with y; € (0,1) (for all i =1,2,...,n), under which
AT (7) < 0. In this case, £ cannot maximize the supplier’s profit and the supplier prefers route S under which supply chain
coordination cannot be achieved. Therefore, the revenue-sharing contract cannot arbitrarily allocate the supply chain profit.
O

Proof of Proposition 5. Without loss of generality, we let Retailer 1 be the first visited retailer under route S and
(Y1 V25 - - -+ ¥n)- Consider any other route W under which £V is different from . Because route S is the supplier’s optimal route
under (y;,75,---,Y,), we have

(1 -y -y + i(l — (I = IY) + TC(¢5) — TC(t") > 0. (A.22)
j=2

Because Retailer 1 is the first visited retailer under route S, we have £ <t and IT, > ITY. Considering that
1—y,+&>1—7, >0, we have (1—7y, +&)(IT — 1Y) > (1 —y,)IT; — IT¥). Therefore,

(1 —p, + &)1 -} + zn:a — )L = ") + TC(£*) — TC(t") > 0. (A.23)

=2

It means that route S is still the supplier’s optimal route under (y; — €,7,,...,7,). O
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