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a b s t r a c t

This paper considers a multi-port and multi-period container planning problem of shipping companies
that use both standard and foldable containers. A company must decide which number of empty
containers of each type to purchase and reposition at each port within a defined period to minimize the
total purchasing, repositioning, and storage costs.

Wedevelop amodel to optimally allocate both foldable and standard containers.We show that a single
commodity minimum cost network flow algorithm solves the problem by proving that a two commodity
flow problem can be modeled as a single commodity flow problem.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we deal with a container planning problem of
shipping companies. A shipping company hopes to satisfy the
demand for empty containers at ports over a time. We assume
that the demand at each port in each period is known and that a
number of empty containers are supplied fromconsignees after the
freight is unloaded. We also assume that the supply of containers
available at each port in each period is known. There usually is
an imbalance in the demand and the supply of containers at each
port in each period. At deficit ports, a shipping company may use
empty containers stored in inventory and/or purchase new ones
to meet the demand. Shipping companies also reposition empty
containers from surplus ports to deficit ports. There is a time lag
between the departure and the arrival of empty containers. In
the container planning process, a shipping company must decide
how many empty containers to purchase and reposition at each
port to minimize the total costs for purchasing, repositioning, and
storage. This problem is typical of shipping companies that own
both container ships and empty containers. Moreover, this kind of
shipping companies own depots in many ports around the world,
and they use their own vessels unless the schedule is unworkable
at which time they charter or pay other shipping companies to
reposition containers.

Repositioning seems to be a smart strategy to balance the flow
of containers, but it also incurs cost. Recently, shipping companies
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have considered the use of foldable containers to reduce the repo-
sitioning cost [5,6]. The foldable container reduces transportation
costs by saving on storage space but involves folding/unfolding
costs. Therefore, to generate savings, a shipping company must
carefully decide the type and number of containers to use. Natu-
rally, use of both standard and foldable containers complicates the
container planning problem which we address in this paper.

A large number of research articles have been devoted to
a variety of container planning problems with differences in,
among other characteristics, the structure of distribution systems,
assumptions on the uncertainty of demand and supply, and
company objectives [2–6,8,7,9–17]. In Table 1, we compare our
model to others. Two models are based on the network concept,
but do not apply a min-cost component [2,11]. Moreover, they
solve different problems based on different assumptions than
addressed by our model.

Most of the past studies were concerned with an unfolded
standard container. Two notable exceptions are the studies of
Shintani et al. [13] and Moon et al. [10], both of which developed
integer programming models to analyze the cost savings of
foldable containers. Shintani et al. [12] considered a model for
repositioning in the hinterland and Moon et al. [9] illustrated
a model for repositioning between seaports. In this paper, we
present a model similar to that of Moon et al. [10] and show that a
seemingly two commodity (i.e. standard and foldable containers)
flow problem can be modeled as a single commodity network
flow problem and that therefore integral solutions can be found
in polynomial time. The remainder of the paper is organized as
follows: Section 2 describes the problem, and in Section 3, we
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Table 1
Summary of relevant studies.

Paper Container type Repositioning Methodology

Cheang and Lim [2] Standard No Decision support system
Crainic et al. [3] Standard Yes MIP
Dong and Song [4] Standard Yes GA and simulation
Konings [5] Foldable No Economic analysis
Konings and Thijs [6] Foldable No Economic analysis
Meng and Wang [8] Standard Yes MIP
Li et al. [7] Standard Yes Heuristic
Moon et al. [9] Standard Yes MIP and hybrid GA
Moon et al. [10] Standard and foldable Yes MIP and heuristic
Shen and Khoong [11] Standard Yes Decision support system
Shintani et al. [12] Standard Yes Hybrid GA
Shintani et al. [13] Standard and foldable Yes MIP
Song and Carter [14] Standard Yes Mathematical program
Song and Dong [15] Standard No Simulation
Song and Dong [16] Standard Yes Heuristic
Song and Zhang [17] Standard Yes Dynamic program
This study Standard and foldable Yes Network flow algorithm
develop the network flow model and prove its validity. Some
concluding remarks are presented in Section 4.

2. Problem definition and model formulation

In our container planning problem, a shipping company must
satisfy the demand for empty containers at a set of ports over a
time horizon. The demand at each port in each period is assumed
to be known. Either a standard or a foldable container can be
used, but when a foldable container is provided in the folded state,
it must undergo an unfolding operation. To satisfy the demand,
the shipping company can use containers that are available via
different ways: containers stocked in inventory as well as those
transported to a port fully loaded and become available after the
freight is unloaded in port are called ‘‘supplied containers’’. We
assume that the supply of empty containers to each port in each
period is known. Another group, called ‘‘repositioned containers’’,
are empty and transported to a port for repositioning. A supplied
foldable container is delivered in the unfolded state while a
repositioned foldable container is in the folded state. The available
containers that exceed the demand can be stocked or repositioned.

Our model is based on the assumption that the supply of
empty containers sent to each port in each period is given as a
parameter. In reality, however, the number of containers used to
satisfy demand influences the handling of supplies in later periods.
We made this assumption because of the difficulty in estimating
the time needed for devanning (i.e., the process at the destination
port in which containers are delivered to customers and unpacked
and then returned to the port).

Despite theweakness caused by the set-container presumption,
our model still has practical use, with the primary purpose being
to analyze the potential cost savings of using foldable containers
in ocean transportation. Through our model, one can compare the
costs of various scenarios with different combinations of demands,
supplies, and cost elements and can find the optimal portion of
foldable containers according to different demand patterns.

For such experiments, an algorithm that quickly generates
an optimal solution is invaluable. Even when our model is used
for an operational purpose, the weakness of it is mitigated by
the decisions made in real world situations. Specifically, supply
parameters of early periods are relatively certain because the types
of containers to be supplied are determined before the starting
point of the planning horizon. Moreover, only the solution values
of the decision variables for early periods are typically put into
operation. This is, in the planning horizon, a shipping company
does not determine all operational decisions for every period based
on the initial solution of the model but rather implements the
model in each period after updating the parameters, including
supply.

We also assume linear costs. Container transportation costs
usually depend on the embarkment port and differ slightly among
shipping companies. Due to the small scale of most customers,
discounts are not typically applied. Because shipping companies
own enough containers and only purchase replacements, they
do not order many new ones. Therefore, quantity discounts for
purchasing are rare, and we cannot assume quantity discounts in
either the unit purchase or transportation cost.

The container planning problem involves decisions on the
number of containers to purchase and reposition to minimize the
sum of the costs for purchasing, repositioning, holding inventory,
and unfolding/folding operations. We use the following notations
to describe the parameters:

P: set of ports, P = {1, 2, . . . , np}

T : set of periods, T = {1, 2, . . . , nt}

W S
it : number of standard containers being supplied at port i in

period t
W F

it : number of foldable containers being supplied at port i in
period t

Dit : demand for empty containers at port i in period t
HS

i : unit storage cost of a standard container at port i in a period
HF

i : unit storage cost of a foldable container at port i in a period
AS
i : unit purchasing price of a standard container at port i

AF
i : unit purchasing price of a foldable container at port i

CS
ij : unit repositioning cost of a standard container from port i to

port j
C F
ij : unit repositioning cost of a foldable container from port i to

port j
LFi : unit folding cost of a foldable container at port i
LUi : unit unfolding cost of a foldable container at port i.

In our container planning problem, we determine the values of
the following decision variables:

xSit : number of standard containers to be used to satisfy the
demand at port i in period t

xFit : number of foldable containers to be used to satisfy the demand
at port i in period t

f Sijt : number of standard containers to be transported (for reposi-
tioning) from port i to port j in period t

f Fijt : number of foldable containers to be transported (for reposi-
tioning) from port i to port j in period t

ySit : number of standard containers to be purchased at port i in
period t

yFit : number of foldable containers to be purchased at port i in
period t
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ISit : inventory level of standard containers at port i in period t
IFit : inventory level of foldable containers at port i in period t .

To clearly explain the problem, we describe the objective and
the constraints of it using mathematical formulas constructed
by the above parameters and decision variables. Our objective
in addressing this problem is to minimize the total cost, which
consists of purchasing, repositioning, storage, unfolding, and
folding expenses. To describe the unfolding and folding costs,
we need to define the number of foldable containers to be
unfolded and folded at port i in period t . If we use xFit foldable
containers to satisfy a portion of demand, then the supplied
foldable containers are used first because the folding and unfolding
operation generates cost. Therefore, if xFit ≥ W F

it , then we unfold
xFit −W F

it containers to satisfy a portion of demand. Or, if xFit ≤ W F
it ,

we fold W F
it − xFit containers to keep in inventory or to reposition.

Therefore, we present the total cost function as follows:

Total cost =


i∈P


j∈P−{i}


t∈T

(CS
ij f

S
ijt + C F

ij f
F
ijt)

+


i∈P


t∈T

(HS
i I

S
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i I
F
it)
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
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
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i y

S
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F
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
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
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{LUi [xFit − W F
it ]

+
+ LFi [W

F
it − xFit ]

+
}

where [x]+ = Max[x, 0].
Constraints of our problem can be expressed as Eqs. (1) through

(3). We must satisfy all of the demands:

xSit + xFit = Dit , ∀i ∈ P, t ∈ T . (1)

In addition, xSit (xFit) cannot exceed the number of available
standard (foldable) empty containers at port i ∈ P in period t ∈ T ,
which is determined by the sumof the ending inventory ISit−1 (IFit−1)
from period t −1, the supplied empty containers, the repositioned
empty containers, and the purchased containers. The available
standard (foldable) empty containers in excess of xSit (xFit) can be
transported to other ports for repositioning and the remainder
makes up the ending inventory. These constraints are depicted in
the following two equations:

ISit−1 + W S
it +


j∈P−{i},τji<t

f Sjit−τji
+ ySit

= xSit +


j∈P−{i},τij+t≤nt

f Sijt + ISit , ∀i ∈ P, t ∈ T (2)

IFit−1 + W F
it +


j∈P−{i},τji<t

f Fjit + yFit

= xFit +


j∈P−{i},τij+t≤nt

f Fijt + IFit , ∀i ∈ P, t ∈ T (3)

where τij is the transportation time (in terms of time periods) from
port i to port j.

Our problem can be defined as the problem of finding the
nonnegative integer variables thatminimize the total cost function
while satisfying (1), (2), and (3). We refer to our problem as the
container planning problem (CPP).

The CPP is similar to the problem addressed byMoon et al. [10],
which featured an additional capacity constraint as follows:

f Sijt + f Fijt/N ≤ Kijt , ∀i, j ∈ P, t ∈ T . (4)

In Eq. (4), Kijt is the capacity limit of repositioning empty con-
tainers from port i to port j during period t , and N is the number
Fig. 1. The high-level structure of our network.

of folded containers that occupy the same space as a single stan-
dard container. The model by Moon et al. [10] is an integer pro-
gramming problem, which requires the application of an integer
programming algorithm to obtain an exact solution. However, we
show in the next section that instead of integer programming al-
gorithms, we can use an efficient minimum cost network flow al-
gorithm to solve the CPP. Moreover, a good algorithm for the CPP is
very useful to solve the problem of Moon et al. [10]. A popular so-
lution approach for solving an integer programming problem is a
branch and bound algorithm, and the success of which depends on
an efficientmethod to obtain a lower bound. Lagrangian relaxation
is a good method for obtaining a lower bound, and when we apply
it to the model by Moon et al. by dualizing Eq. (4), the resulting
Lagrangian sub-problem becomes the CPP.

3. Network flow model

In this section, we show that the CPP can be solved using amini-
mumcost network flow algorithm. For this purpose,we construct a
directed network as shown in Fig. 1. We derive an optimal solution
of the CPP from aminimum cost flow of the network. Our network
contains 3np ·nt +1 nodes. Among them, 3np ·nt nodes can be cat-
egorized into np ·nt groups of three nodes. Each group corresponds
to each port in each period. Three nodes, labeled as i-t-S, i-t , and
i-t-F , constitute a group corresponding to port i in period t and are
used to describe Eqs. (1), (2), and (3), respectively. The other node,
labeled node 0, is added to balance the total supply and demand of
a network.

In our network, arcs correspond to the decision variables of the
CPP. The arcs from node 0 to nodes i-t-S and i-t-F correspond to
ySit and yFit for each i ∈ P and t ∈ T . The amount of the flow from
node 0 to node i-t-S (i-t-F) represents the number of purchased
standard (foldable) containers at port i in period t . The arcs from
node i-(t − 1)-S to i-t-S and from node i-(t − 1)-F to i-t-F for each
i ∈ P and t ∈ T represent inventory. The amount of flow fromnode
i-(t − 1)-S to i-t-S represents the number of standard containers
carried in inventory at port i at the end of period t − 1. The arcs
from i-nt-S and i-nt-F to node 0 correspond to inventories at port i
at the end of the final period nt . The arcs between nodes associated
with different ports represent repositioning. The amount of flow
from node i-t-S (i-t-F) to j-(t + τij)-S (j-(t + τij)-F) represents the
number of the repositioned empty standard (foldable) containers
fromport i in period t to port j in period t+τij under the assumption
that it takes τij periods to transport containers from port i to port j.

The arcs from node i-t-S to node i-t and the arcs between i-t
and i-t-F for each i ∈ P and t ∈ T play a critical role in relating
the network with the CPP. The arc from node i-t-S to node i-t
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Fig. 2. Arc costs, arc capacities, and net flow requirements.

corresponds to xSit and the amount of flow from node i-t-S to node
i-t represents the number of standard containers to be used to
satisfy the demand at port i in period t . The arcs between node i-t
and node i-t-F are related with xFit . In the latter part of this section,
we will show that the amount of flow from node i-t to node i-t-F
can be viewed as the number of foldable containers to be folded at
port i in period t , i.e., [xFit − W F

it ]
+, while the amount of flow from

node i-t-F to node i-t as the number of foldable containers to be
unfolded, i.e., [W F

it − xFit ]
+.

In a flow network, numbers are associated with every node
to indicate the required net flow of the node. The net flow of
a node is defined as outflows minus inflows of the node. Let D
and W be the total demand and supply, i.e., D =


i∈P


t∈T Dit

and W =


i∈P


t∈T (W
S
it + W F

it ). We set the required net flow
of node 0 to D − W . For a group of triple nodes i-t-S, i-t , and
i-t-F for each i ∈ P and t ∈ T , we set the required net flow to
W S

it ,W
F
it − Dit , and 0, respectively. Each arc is associated with a

cost and a capacity. Arcs have no capacity limit except that each
arc from node i-t to node i-t-F for i ∈ P and t ∈ T has capacity
W F

it . Arc costs are related to the costs for purchasing, repositioning,
storage, unfolding, and folding. The required net flow of each node
and a cost and a capacity of each arc are shown in Fig. 2.

We say that a flow is feasible if it conforms to the capacity
limit of each arc and the net flow of each node equals the required
amount. The latter condition is called flow conservation constraint
for a node.Wedefine a subset of feasible flows that always contains
a minimum cost flow. We say that a feasible flow is efficient if, at
most, one of the two arcs between each pair of nodes i-t and i-t-F
for i ∈ P and t ∈ T has a positive flow. A clear depiction of efficient
flow is needed to associate each decision variable of the CPP with
the flow of each arc in a one-to-one fashion. The following theorem
indicates that the feasible region of the CPP corresponds to the set
of the efficient flows of our network flow model.

Theorem 1. The set of efficient flows of our network flow model and
the set of all feasible solutions of the CPP are in one-to-one correspon-
dence and the paired flow and solution have the same objective value.

Proof. We first show that every efficient flow of the network
flow model can be transformed to a feasible solution of the CPP.
Consider an efficient flow and set the values of the CPP variables
as shown in Fig. 3. Note that one of the two arcs between i-t and
i-t-F for i ∈ P and t ∈ T has a positive flow. Let f1 be the amount
of flow from node i-t to i-t-F and let f2 be the amount of flow
from node i-t-F to i-t . Suppose that f1 > 0. By flow conservation
of node i-t, f1 − xSit = W F

it − Dit . If we set W F
it − xFit = f1,

then variables xSit and xFit satisfy Eq. (1). In the same way, we can
show that (1) also holds when f2 > 0. By the flow conservation
Fig. 3. Decision variables associated with arc flows.

constraints for nodes i-t-S and i-t-F , we see that the variables also
satisfy Eqs. (2) and (3). Conversely, we obtain an efficient flow
by assigning the flow of each arc using a feasible solution of the
CPP as shown in Fig. 3. The resulting flow satisfies the capacity
constraints. The flow conservation constraints for nodes i-t, i-t-S,
and i-t-F for each i ∈ P and t ∈ T are satisfied by Eqs. (1),
(2), and (3). Summing Eq. (1), (2), and (3), we have the equation,
W +


i∈P


t∈T (y

S
it + yFit) =


i∈P(I

S
int + yFint ) + D. Therefore,

the flow conservation constraint for node 0 holds. As seen in the
straightforward depiction by the arc costs of the network model,
the efficient flow and the corresponding feasible solution have the
same objective value. �

The following theorem shows that we can consider only effi-
cient flows to find a minimum cost flow.

Theorem 2. In our network flow model, there always exists a mini-
mum cost flow that is efficient.
Proof. Suppose that there exists a minimum cost flow that is not
efficient.Wewill show thatwe can derive an efficient flowwithout
increasing the cost. Suppose that a feasible flow sends the positive
flow f1 from i-t to i-t-F and f2 from i-t-F to i-t with f1 > f2. If we
set the flow from i-t to i-t-F as f1 − f2 and the flow from i-t-F to i-t
as 0, then the resulting flow is also feasible and does not increase
the total flow cost. �

The two theorems indicate that we can obtain an optimal
solution of the CPP using an efficient minimum cost network flow
algorithm. Our model is a standard network flow model, which
means that any minimum cost flow algorithm can be used to find
a minimum cost flow. Moreover, our network model guarantees
the integrality of the optimal solution. For more details on the
minimum cost network flow problem and related algorithms, refer
to the book by Ahuja et al. [1]. Note that the capacity constraint
(4) in the model by Moon et al. [10] cannot be incorporated into
the flow model directly because it imposes a capacity restriction
simultaneously on more than one arc.

4. Conclusions

In this paper, we have considered amulti-port andmulti-period
container planning problem where both standard and foldable
containers can be used and showed that our problem can be
represented as a minimum cost flow problem. We developed a
network flowmodel and proved that theminimum cost flow of the
network is equivalent to the optimal solution of our problem. Even
though we assume that there are no quantity discounts in either
the unit purchase or transportation cost, it might be an interesting
research problem if we can consider that both transportation and
purchase costs for containers are non-linear which might occur in
practice.
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