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Hybrid genetic algorithm for the economic lot-scheduling problem

I. MOON *, E. A. SILVER and S. CHOI§

The economic lot-scheduling problem (ELSP) is an important production sched-
uling problem that has been intensively studied over 40 years. Numerous heuristic
algorithms have been developed since the problem is NP-hard. Dobson’s heuristic
has been regarded as the best in its performance. The present paper provides a
hybrid genetic algorithm based on the time-varying lot sizes approach in the
ELSP literature. Numerical experiments show that the hybrid genetic algorithm
outperforms Dobson’s heuristic.

1. Introduction
It is common in industry to produce several products on a single facility (or

machine) due to economies of scale. Typically, these facilities can only produce
one product at a time, and have to be stopped and prepared (i.e. set-up) at a cost
of time and money, before the start of the production run of a di� erent product. A
production scheduling problem arises because of the need to coordinate the set-ups
and the production runs of the products. The economic lot-scheduling problem
(ELSP) is the problem of scheduling production of several products on a single
facility, so that level demands are met without stockouts or backorders, and the
long run average inventory carrying and set-up costs are minimized. This problem
occurs in many production situations including the following (Boctor 1987).

. Metal forming and plastics production lines (press lines, and plastic and metal
extrusion machines), where each product requires a di� erent die to be set up on
the machine.

. Assembly lines, which produce several products and/or di� erent product mod-
els (electric appliances, motor cars, etc.).

. Blending and mixing facilities (for paints, beverages, animal food, etc.), in
which di� erent products are poured into di� erent containers.

. Weaving production lines (for textiles, carpets, etc.), in which the main prod-
ucts are manufactured in di� erent colours, widths and grades.

Typically, it is more economical to purchase one high-speed machine capable of
producing a number of products than to purchase many dedicated machines. This
situation leads to the question of how one should schedule production on this high-
speed machine. The issue is one of selecting both a sequence, in which the products
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will be manufactured, and a batch size for each product run. The issue of batching
arises because the system usually incurs a set-up cost and/or a set-up time when the
machine switches from one product to a di� erent product. The cost may be due to
cleaning or to scrap losses occurring when machine settings are adjusted for the next
product. Set-up times imply a downtime during which the machine cannot produce,
which, in turn, implies a need to carry more inventory. This problem has attracted
the attention of many researchers over 40 years, partly because it is a representation
of many frequently encountered scheduling problems, and simply because it seems to
be very di� cult to solve.

In the ELSP, it is typically assumed that production and demand rates are
known product-dependent constants, while set-up times and set-up costs are
known product-dependent , but sequence-independent constants. In addition,
research on the ELSP has focused on cyclic schedules, i.e. schedules that are repeated
periodically. Because of its non-linearity, combinatorial characteristics and complex-
ity, the ELSP is generally known as an NP-hard problem (Hsu 1983). Many heuristic
approaches have been developed for this problem. Basically, there are three types of
approaches.

(1) Common cycle approach: restricts all the products’ cycle times to equal
length (an item’s cycle time is the duration between the starts of two con-
secutive runs of that item). Then it ®nds the optimal common cycle time. This
approach has the advantage of always ®nding a feasible schedule using a very
simple procedure. This procedure, however, gives solutions far from the
lower bound in some situations.

(2) Basic period approach: allows di� erent cycle times for di� erent products, but
restricts each product’s cycle time to be an integer multiple k of a time period
called a basic period. All lots of each item are of the same size. Under this
approach, it is NP-hard to ®nd a feasible solution, given the number of
production runs per cycle for each of the items. This approach, in general,
gives better solutions than the common cycle approach. However, its main
drawback is the di� culty of ensuring feasibility.

(3) Time-varying lot sizes approach: allows di� erent lot sizes for any given
product during a cyclic schedule. It explicitly handles the di� culties caused
by set-up times and always gives a feasible schedule as proved by Dobson
(1987). This approach usually gives better solutions than the previous two
approaches.

Khouza et al. (1998) successfully applied genetic algorithms to solve the ELSP. Their
algorithm is based on the basic period approach since it is ideally suited for using
genetic algorithms. Even though the approach itself is meaningful, the results are not
encouraging. The deviation from a lower bound was sometimes >80% for the
famous Bomberger (1966) data. It could not improve over Dobson’s (1987) heuristic,
which has had the best performance up to now. (Note that the maximum deviation
from a lower bound using Dobson’s heuristic is <10%.) The cause of this result is
that their algorithm is based on the basic period approach whose performance
is inferior to the time-varying lot sizes approach. The purpose of the current research
is to develop a hybrid genetic algorithm to solve the ELSP. Our genetic algorithm is
based on the time-varying lot sizes approach.

The organization of the paper is as follows. A literature review on the ELSP is
presented in Section 2. Section 3 provides assumptions and notation for the ELSP,
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and it reviews the modi®ed Dobson’s heuristic. In addition, we point out how we
may improve upon Dobson’s heuristic using a genetic algorithm. Section 4 develops
a hybrid genetic algorithm and explains the algorithm using well-known numerical
examples. In Section 5, computational tests are performed to compare the perform-
ances of the hybrid genetic algorithm with those of Dobson’s heuristic. Finally, there
are concluding remarks in Section 6.

2. Literature review on the ELSP
The ELSP has been extensively studied over 40 years, and more than 100 papers

have been published in a variety of journals. We now review a small portion of the
literature on the ELSP. The earliest contributions to this problem include Eilon
(1957), Rogers (1958) and Hanssmann (1962). A lower bound on the minimum
average cost can be easily obtained by taking each product in isolation and calculat-
ing economic production quantities, and this approach is known as the independent
solution (IS) since it ignores the capacity issue of the sharing of the machine by
several products. A tight lower bound has been implicitly suggested by Bomberger
(1966), and rediscovered in several di� erent ways by several researchers (Dobson
1987, Gallego and Moon 1992). The idea is to compute economic production quan-
tities under a constraint on the capacity of a machine. The capacity constraint is that
enough time must be made available for set-ups. The problem can be formulated as a
non-linear program and easily solved via a line search algorithm. However, the
synchronization constraint, stating that no two items can be scheduled to produce
at the same time, is ignored. Thus, the value of the non-linear program results in a
lower bound on the minimum average cost.

Research on the ELSP has focused on cyclic schedules. Moreover, almost all
researchers have restricted their attention to cyclic schedules that satisfy the zero
switch rule (ZSR). This rule states that a production run for any particular product
can be started only if its physical inventory is zero. Counterexamples to the optim-
ality of this rule have been found but are rare (Maxwell 1964, Delporte and Thomas
(1978)).

If we restrict ourselves to the case that the cycle times for all products must be the
same, the problem is a simpler version of the ELSP and known as the common cycle
approach. The objective value obtained from this approach serves as the upper
bound on the general ELSP. Jones and Inman (1989) and Gallego (1990) showed
that this approach works well under certain situations.

There are two other approaches for heuristics for the ELSP: the basic period
approach and the time-varying lot sizes approach. The basic period approach
requires, in addition to the ZSR, that every item must be produced at equally
spaced intervals that are multiples of a basic period (this together with the ZSR
implies that each item is produced in equal lot sizes). Most of the heuristic algor-
ithms that follow this approach ®rst select the frequency (i.e. number of production
runs per cycle) with which each product is to be produced, and then search for a
feasible schedule that implements these frequencies (Doll and Wybark 1973). See
Elmaghraby (1978) for an excellent review on this approach up to the late 1970s.
Under this approach, it is NP-complete to determine the existence of a feasible
schedule (Hsu 1983). These di� culties have led some researchers to reject the
basic period paradigm, in particular the requirement of equally spaced production
lots.
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The time-varying lot sizes approach, which relaxes the restriction of equally
spaced production runs, was initiated by Maxwell (1964) and Delporte and
Thomas (1978). Dobson (1987) showed that any production sequence (i.e. the
order in which the products are produced in a cycle) can be converted into a feasible
production schedule in which the quantities and timing of production lots are not
necessarily equal provided that, beyond the time needed for production, there is
some time available for setups. Dobson also developed a heuristic to generate pro-
duction frequencies and a sensible production sequence. Near optimal schedules can
be obtained by combining Dobson’s heuristic with Zipkin’s (1991) algorithm which
®nds the production run times and machine idle times for each product for a given
production sequence. Gallego and Roundy (1992) extended the time-varying lot sizes
approach to the ELSP which allows backorders. Dobson (1992) extended his earlier
work (1987) allowing the set-up time to be sequence dependent. Gallego and Shaw
(1997) showed that the ELSP is strongly NP-hard under the time-varying lot sizes
approach with or without the ZSR restriction, giving theoretical justi®cation to the
development of heuristics.

As pointed out by Silver (1993) in his review, if quantitative models are to be
more useful as aids for managerial decision-making, they must represent more rea-
listic problem formulations, particularly permitting some of the usual givens to be
treated as decision variables. Givens can be de®ned as the parameters which have
been treated as ®xed or given, for example, setup time, setup cost, production rate,
defective rate, etc. Silver (1993) listed a wide variety of possible improvements to
undertake (equivalently, usual givens to change) in manufacturing operations, such
as set-up time/cost reduction, higher quality level, controllable production rates, lead
time reduction, etc. There is a rapidly growing literature on modelling the e� ects of
changing the givens in manufacturing decisions. In the realm of changing the givens,
a variety of modi®cations on the ELSP have been developed (Silver et al. 1998).
Allen (1990) modi®ed the ELSP to allow production rates to be decision variables.
He then developed a graphical method for the rates and cycle times for a two-prod-
uct problem. Silver (1990), Moon et al. (1991), Gallego (1993), Khouza (1997), and
Moon and Christy (1998) showed that production rate reduction was more pro®t-
able for underutilized facilities. Silver (1995) and Viswanathan and Goyal (1997)
considered the situation in which a family of products follows a cyclic schedule,
but there is a limit on shelf life. The cycle length and production rate are adjusted
to ensure a feasible schedule.

Gallego and Moon (1992) examined a multiple product factory that employs a
cyclic schedule to minimize holding and set-up costs. When set-up times can be
reduced, at the expense of set-up costs, by externalizing internal set-up operations,
they showed that dramatic savings are possible for highly utilized facilities. Gallego
and Moon (1995) developed an ELSP with the assumptions that set-up times can be
reduced by a one time investment. Hwang et al. (1993) and Moon (1994) developed
an ELSP in which both set-up reduction and quality improvement can be achieved
through investment. More recently, Moon et al. (1998) applied the stabilization
period concept, in which yield rates gradually increase during the period, to the
ELSP.

3. Hybrid genetic algorithm
3.1. Assumptions and notation

The following assumptions are used in the ELSP.
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(1) Multiple items compete for the use of a single facility.
(2) Demand rates, production rates, set-up costs and set-up times for all items

are known constants.
(3) Backorders are not allowed.

The following notation is used in the model.

item index i 1; 2; . . . ; m;
position index j 1; 2; . . . ; n;
constant production rate (units per day) pi i 1; 2; . . . ; m;
constant demand rate (units per day) di i 1; 2; . . . ; m;
inventory holding cost ($ per unit per day) hi i 1; 2; . . . ; m;
set-up cost ($) Ai i 1; 2; . . . ; m;
set-up time (days) si i 1; 2; . . . ; m;
item produced at position j f j j 1; 2; . . . ; n;
production time duration for item produced at position j t j j 1; 2; . . . ; n; and
idle time duration after the production of the item at position j

u j j 1; 2; . . . ; n;
cycle length (days) T :

The ELSP can be stated as follows. There is a single facility on which m distinct
products are to be produced. We try to ®nd a cycle length T, a production sequence
f f 1; . . . ; f n), where f j 1; ; m , production time durations t t1; . . . ; tn), and
idle time durations u u1; . . . ; un), so that the production sequence can be com-
pleted in the chosen cycle, the cycle can be repeated over time, demand can be fully
met, and the total of inventory and set-up costs is minimized (Silver et al. 1998).
De®ne

µ 1
Xm

i 1

di

pi

:

Note that µ is the long-run proportion of time available for set-ups. For in®nite
horizon problems µ > 0 is a necessary condition for the existence of a feasible
schedule. Dobson (1987) showed that if µ > 0, then any production sequence can
be converted into a feasible schedule by allowing time-varying production runs and a
su� ciently large cycle length.

3.2. Algorithm
We ®rst represent Dobson’s original formulation of the problem. Here subscript i

is used to indicate product i and superscript j indicates the product produced at the
jth position in the sequence. Let be the set of all possible ®nite sequences of
products. Here, Ji denotes the positions in a given sequence where product i is
produced, that is, Ji j f j i : Let Lk be the positions in a given sequence
from k, up to but not including the position in the sequence where product f k is
produced again. The complete formulation of the ELSP is

infj mint 0;u 0;T 0

1

T

Xn

j 1

1

2
h j p j d j p j

d j

³ ´
t j 2

Xn

j 1

Aj

Á !
1
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subject to
X

j Ji

pit
j diT ; i 1; . . . ; m 2

X

j Lk

t j s j u j pk=dk tk; k 1; . . . ; n 3

Xn

j 1

t j s j u j T : 4

Constraints (2) ensure that we allocate enough time to each product i to meet its
demand, diT , over the cycle. Constraints (3) mean that we must produce enough of a
product each time to last until the next time that that product is produced.
Constraint (4) simply states that the cycle time T must be the sum of production,
setup, and idle times for all the items produced in the cycle.

Our hybrid genetic algorithm to solve above problem can be described as follows.

Step 1. Find the production frequencies by solving the following LB model. This
lower bound is tighter than that obtained by using the so-called independent
solution in which each product is taken in isolation by calculating its eco-
nomic production quantity. The idea instead is to compute economic pro-
duction quantities under a constraint on the capacity of the machine. The
capacity constraint is that enough time must be made available for set-ups.
Since the long-run average proportion of time spent on set-ups is §isi=Ti,
where Ti is the cycle length for item i, and the proportion of time available
for set-ups is µ, the capacity constraint is as in (5) below. However, the
synchronization constraint, stating that no two items can be scheduled to
produce at the same time, is ignored. Consequently, the value of the follow-
ing nonlinear program results in a lower bound on the total daily cost for the
general ELSP. This lower bound scheme has been originally suggested by
Bomberger (1966), and rediscovered by several researchers in di� erent ways
(Dobson 1987, Gallego and Moon 1992).

LB

minT1 ;...;Tm

Xm

i 1

Ai

Ti

hidiTi

2
1

di

pi

³ ´µ ¶

subject to

Xm

i 1

si

Ti

µ 5

Ti 0 i 1; . . . ; m:

The objective function and the constraint set, in the above model, are convex
in the Ti’s. Therefore, the optimal points of the LB model are points which
satisfy the Karush±Kuhn±Tucker (KKT) conditions as follows:

Ti

�����������������
Ai ¶si

Hi

s

i
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¶ 0 complementary slackness with
Xm

i 1

si

Ti

µ;

where Hi hidi 1 di=pi =2. We can use the following procedure to ®nd
the optimal Ti.

Algorithm for lower bound

(Step 1) Check if ¶ 0 gives an optimal solution.
Find Tis from following equations Ti

�������������
Ai=Hi

p
i.

(Step 2) If
Pm

i 1 si=Ti µ, then the Tis are an optimal solution.
Otherwise, go to Step 3.

(Step 3) Start with an arbitrary ¶ > 0.

(Step 4) Compute Ti

����������������������������
Ai ¶si =Hi

p
i.

(Step 5) If
Pm

i 1 si=Ti < µ, reduce ¶. Go to Step 4.

If
Pm

i 1 si=Ti > µ, increase ¶. Go to Step 4.

If
Pm

i 1 si=Ti µ, stop. The Tis are optimal.

Let the optimal cycle length for item i in program LB be T*
i
. Also let xi represent

the relative production frequency for item i. Then xi is determined by the following:

xi

maxj T*
j

T*
j

i 1; 2; . . . ; m:

Step 2. Round the production frequencies obtained in Step 1 to the nearest integers.
Step 3. We use a genetic scheme to ®nd a good production sequence using the

production frequencies obtained in Step 2. We will explain the details of
the genetic scheme in the next section.

Step 4. Solve for t and u, given f. If we assume that there are no idle times (that is,
u 0) for a given production sequence f, we can ®nd t using equation (3).
This approximation works very well for a highly loaded facility. This
method is called a quick-and-dirty heuristic, and we use this method in
the study. Otherwise, we can use the parametric algorithm as in Zipkin
(1991).

Note that our algorithm is di� erent from Dobson’s heuristic in Steps 2 and 3. The
following steps are Dobson’s Steps 2 and 3.

Step 2. Round o� the frequencies to power-of-two integers. It has been shown by
Roundy (1989) that additional costs do not exceed 6% when we convert the
real values of production frequencies to power-of-two integers. The conver-
sion of production frequencies to power-of-two integers enables the deter-
mination of the production sequences to be easily accomplished in Step 3.
Let yi be the production frequency for item i, which is a power-of-two
integer.

Step 3. Find a production sequence using the bin-packing heuristic suggested by
Doll and Whybark (1973) and Dobson (1987). Given these new frequencies
y, the bin-packing heuristic attempts to spread them out as evenly as poss-
ible. In particular, create b bins in which b maxi yi . For each product i,
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estimate the production time duration vi for the lots by assuming that the
lots will be equally spaced. That is, we compute vi si dit=piyi . Now we

regard the problem as that of bin-packing with b bins and yi items of height
vi for all i. The only additional restriction is that we put items in bins equally

spaced. If b 4 and yi 2, we have two choices: either bins 1, 3 or 2, 4.
When we assign items to the bins, we use a variation of the longest pro-

cessing time (LPT) rule in which items are ordered lexicographically by
(yi, vi). The sequences given for the bins were strung together to provide a

production sequence which we need in this step. By minimizing the maxi-
mum height of the bin, the heuristic ®nds an e� cient production sequence f

(see Dobson 1987 for more details).

Now we explain how our hybrid genetic algorithm can improve upon Dobson’s
heuristic. First, why is the rounding-o � procedure required in the heuristic? The

reason is that the production frequencies must be power-of-two integers in order
to apply the classical bin-packing heuristic to ®nd a production sequence. Even

though we know that the penalty of rounding does not cause more than 6% addi-
tional cost, it may be critical when we want to save 1% in total cost.

Thus, our genetic algorithm uses production frequencies rounded to the near-
est integers rather than those rounded to the power-of-two integers. In addition,

we use a genetic scheme to ®nd a good production sequence rather than using the

bin-packing heuristic. However, we use the same lower bound scheme as in
Dobson’s heuristic to ®nd the xis. That’s why we call this algorithm a hybrid
genetic algorithm.

4. Finding a production sequence using the genetic algorithm
This section explains the Step 3 of the hybrid genetic algorithm more detail. The

main ideas of a genetic algorithm are introduced shortly and how we adapt a genetic

algorithm to our problem will be shown.
Genetic algorithms, which have been widely used in various areas for three

decades, are stochastic search algorithms based on the mechanism of natural selec-

tion and natural genetics. Genetic algorithms, di� ering from conventional search

techniques, start with an initial set of (random) solutions called a population. Each
individual in the population is called a chromosome, representing a solution to the

problem at hand. The chromosomes evolve through successive iterations, called
generations. During each generation, the chromosomes are evaluated, using some

measures of ®tness. Generally speaking, the genetic algorithm is applied to spaces
which are too large to be exhaustively searched.

It is generally accepted that any genetic algorithm to solve a problem must
have basic components, but have di� erent characteristics depending on the prob-

lem under study. We explain our overall strategies including chromosome style as
follows.

. Representation and initialization.

. Objective and ®tness function.

. Reproduction, crossover and mutation.

. Fitness scaling.
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4.1. Representation and initialization
The proper representation of a solution plays a key role in the development of a

genetic algorithm. A string consists of real integers is a solution (a chromosome) in
this paper. Chromosome length is the sum of the production frequencies (each
rounded to the nearest integers) and each gene in the chromosome is the index of
a product. Since creating the chromosome satisfying the given frequencies is not
easy, we introduce an extra chromosome, which provides the absolute location of
each of the genes in the ®rst chromosome. Thus, we use two kinds of chromosomes.
Info A represents the product numbers, and Info B indicates the absolute locations
of the genes. For example, suppose we have a ®ve-item problem with the items
having to be produced 2, 2, 3, 3, and 1 times during a cycle, respectively. Then,
we have the following chromosome information and its length is 11 (®gure 1).

Each gene in Info A has to be an integer between 1 and 5, and the number in Info
B identi®es the relative position in the chromosome. We should refer to Info A when
we convert the chromosome to a production sequence. That is, a chromosome (5, 3,
8, 6, 1, 9, 4, 7, 11, 10, 2) means actually the chromosome (3, 2, 4, 3, 1, 4, 2, 3, 5, 4, 1).

4.2. Objective and ®tness function
GAlib, which is very popular GA program and will be used in this study, pro-

vides various kinds of objective functions. Thus, the only thing we have to do is to
select an appropriate objective function. In this study, we choose minimization
function, ga.minimize(). A ®tness function is computed for each string (i.e. chromo-
some) in the population and the objective is to ®nd a string with the minimum ®tness
function value. For any given string, we can ®nd the production time durations from
Step 4 of the main algorithm of Section 3.2 and compute the ®tness function of the
chromosome from the objective function (equation 1).

4.3. Reproduction, crossover and mutation
A simple genetic algorithm that yields good results in many practical problems is

composed of three operators: reproduction, crossover and mutation. Reproduction
is a process in which individual strings are copied according to their objective func-
tions.

The reproduction operator may be implemented in algorithmic form in a number
of ways. Perhaps the easiest is to create a biased roulette wheel where each current
string in the population has a roulette wheel slot sized in proportion to its ®tness.
Stochastic tournament method will be adopted in this paper. In the method, selec-
tion probabilities are calculated as above and successive pairs of individuals are
drawn using roulette wheel selection. A pair is drawn and the string with the
higher ®tness is declared the winner. The string is inserted in the new population.
Another pair is drawn, etc. This process continues until the population is full.

The crossover operator takes two chromosomes and swaps a part of their genetic
information to produce new chromosomes. A simple way to achieve crossover would
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be to choose a random cut-point and generate the o� spring by combining the seg-
ment of one parent to the left of the cut-point with the segment of the other parent to
the right of the cut-point.

In this study, however, we deal with a sequence chromosome, not the binary one.
We need a more complicated crossover operator which enables us to prevent two or
more genes from having the same value in Info B. Various useful crossover operators
for this purpose have been developed, and we use PMX (partial matched crossover).
PMX has been developed to tackle a traveling salesman problem (Goldberg 1989).
Under PMX, two strings are aligned, and two crossing points are picked uniformly
at random along the strings. These two points de®ne a matching selection that is
used to e� ect a cross through position-by-position exchange operations. To see this,
consider the two strings in ®gure 2.

PMX proceeds by positionwise exchanges. First, mapping string P2 to string P1,
1 and 2, 9 and 7, 6 and 5, and 4 and 3 exchange places. Similarly mapping string P1
to string P2, the other pairs of 2 and 1, 7 and 9, 5 and 6, and 3 and 4 exchange places
(as indicated in bold). Through the mapping procedure, O1 and 02 have been devel-
oped.

Mutation is a background operator, which produces spontaneous random
changes in various chromosomes. A simple way to achieve mutation is to alter
one or more genes. In genetic algorithms, mutation serves the crucial role of repla-
cing the genes lost from the population during the selection process so that they can
be tried in a new context, or providing the genes that were not present in the initial
population. In a sequenced string, mutation should occur in a pair of genes since
each number represents a position in a sequence. For example, if a number 9 has
been mutated to a number 7, the number 7 in the original chromosome must be
changed to a number 9 in the new chromosome. This is illustrated in ®gure 3.

4.4. Fitness scaling
Since the early stages of genetic algorithm study, scaling of objective function

values has been widely accepted in practice. This is done to keep appropriate levels of
competition throughout a search. Without scaling, early on there is a tendency for a
few superindividuals to dominate the selection process. In our problem, the objective
functions must be scaled back to prevent domination of the population by these
superstrings. Later on, when the population is largely converged, competition among
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population members is less strong and the search tends to wander. In this case, the
objective functions must be scaled up to accentuate di� erences between population
members to continue to reward the best performers. There are various scaling
methods (linear scaling, sigma (¼) truncation, power law scaling, logarithmic scaling,
etc.) (Gen and Cheng 1997). We apply sigma truncation developed by Forrest (1985)
to the ELSP. It uses population variation information (the standard deviation, ¼) to
preprocess raw ®tness values prior to scaling.

5. Computational experiments

Example 1: First we solve Mallya’s ®ve-item problem (1992) to compare the
hybrid genetic algorithm with the modi®ed Dobson’s heuristic. The data for
Mallya’s problem are shown in table 1 (hi ici).

We ®rst show the detailed steps of the modi®ed Dobson’s heuristic as follows:

(Step 1) We compute a lower bound and associated cycle length for each item.

T1 45:06; T2 73:56; T3 33:53; T4 41:79; T5 112:41

with a lower bound $57:73:

(Step 2) Compute production frequencies rounded to power-of-two integers:

y1 2; y2 2; y3 4; y4 2; y5 1:

(Step 3) Obtain a production sequence using the bin-packing heuristic. We use the
following lexicographic order to assign items to the bins:

y3; v3 4; 3:845 L y4; v4 2; 17:483 L y1; v1 2; 14:943

L y2; v2 2; 9:599 L y5; v5 1; 12:542 :

819Hybrid GA for economic lot scheduling

Figure 3. Mutation.

Production Demand Set-up Set-up Standard
rate (pi) rate (di time (si) cost (Ai) cost (ci)

Product (units/day) (units/day) (days) (money unit) (money unit)

1 1800 474 0.20 80 0.00379
2 2500 413 0.35 140 0.00252
3 4000 528 0.15 60 0.00391
4 3200 985 0.25 100 0.00282
5 1500 166 0.15 60 0.00108

Table 1. Data for Mallya’s example.



Four lots for product 3 are the ®rst assigned to each of four bins. Next two
lots for product 4 are assigned to bins 1 and 3. Then, two lots for product 1
are assigned to bins 2 and 4. Two lots for product 2 are assigned again to
bins 2 and 4 since we want to minimize the maximum height of the bin.
Finally the lot for product 5 is assigned to bin 1. The resulting production
sequence is as follows:

f 3; 4; 5; 3; 1; 2; 3; 4; 3; 1; 2 :

(Step 4) Compute production time durations and total average daily cost:

t 4:655; 17:666; 12:392; 3:190; 11:880; 8:399; 2:616; 16:800; 4:320; 17:606; 10:099

with total average daily cost $61:63:

We now show the detailed steps of the hybrid genetic algorithm as follows:

(Step 1) We compute a lower bound and associated cycle lengths for each item:

T1 45:06; T2 73:56; T3 33:53; T4 41:79; T5 112:4

with a lower bound $57:73:

(Step 2) Compute production frequencies rounded to the nearest integers:

y1 2; y2 2; y3 3; v4 3; y5 1:

(Step 3) Obtain a production sequence using the genetic algorithm:

f 3; 2; 4; 3; 1; 4; 2; 3; 5; 4; 1 :

(Step 4) Compute production time durations and total average daily cost:

t 3:412; 10:093; 11:596; 6:382; 19:094; 12:730; 9:192; 5:615; 12:919; 11:607; 11:647

with total average daily cost $60:91:

We improved over the modi®ed Dobson’s heuristic by 1.1%. The 1% saving is quite
meaningful since the average cost penalty of the modi®ed Dobson’s heuristic com-
pared with the lower bound is only a few per cent.

Example 2: Bomberger’s (1966) 10-item problem is quite famous in the ELSP
literature. It has been frequently used to compare heuristics. We consider
the case of µ 0:01, which represents a highly loaded facility. Khouza et al.
(1998) reported that their GA algorithm resulted in $55 544.57/year, which is
equivalent to $231.44/day since 1 year is assumed to be 240 production days in
Bomberger’s problem. Our GA algorithm resulted in $126.12/day (i.e. an 1.8%
improvement over Dobson’s approach; approximately half the gap to the lower
bound) as shown in table 2. The detailed f and t for both algorithms are shown
below.
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Lower bound Present GA Dobson’s heuristic Khouza’s GA Common cycle solution

122.96 126.12 128.43 231.44 196.14

Table 2. Results for Bomberger’s 10-item problem (µ 0:01 case).



(1) Modi®ed Dobson’s heuristic:

f 8; 4; 5; 8; 9; 8; 4; 10; 8; 3; 2; 8; 4; 5; 8; 9; 8; 4; 6; 1; 8; 3; 2; 8; 4; 5; 8; 9; 8; 4; 10; 8; 3; 2; 8;

4; 5; 8; 9; 8; 4; 6; 7; 8; 3; 2 :

t 30:943; 53:917; 19:470; 34:956; 82:924; 31:630; 49:316; 26:100; 28:670; 42:891;

25:273; 32:171; 56:457; 19:892; 35:461; 84:140; 37:541; 50:513; 12:896; 25:991;

26:511; 39:432; 23:532; 30:298; 52:804; 19:030; 34:216; 81:144; 31:051; 48:139;

25:882; 27:840; 41:560; 24:604; 31:481; 55:101; 19:582; 35:062; 83:180; 34:917;

49:617; 13:095; 19:493; 27:078; 40:272; 24:058 :

(2) GA algorithm:

f 8; 9; 5; 8; 4; 2; 3; 8; 10; 4; 8; 5; 9; 8; 2; 4; 8; 3; 6; 1; 5; 8; 9; 4; 2; 8; 3; 4; 5; 8; 9; 8; 10; 4; 8;

2; 5; 3; 8; 7; 6; 4 :

t 39:540; 79:095; 14:368; 42:991; 40:219; 19:441; 42:863; 35:904; 28:488; 57:219;

35:913; 14:205; 70:524; 38:638; 20:069; 72:223; 33:637; 28:793; 11:755; 23:560;

15:266; 51:676; 61:846; 35:684; 25:407; 47:645; 39:356; 60:418; 13:582; 37:449;

88:929; 30:922; 18:633; 55:077; 31:503; 23:434; 13:261; 37:791; 36:326; 17:670;

11:805; 56:124 :

In addition, we performed computational experiments to compare the performance
of our GA with that of Dobson’s heuristic. The data set was generated randomly
from uniform distributions on the given intervals (table 3), and 50 problems were
generated. As it is well known, the ELSP is more meaningful and di� cult to solve
when µ is small. Thus, we only used problems with µ 0:1. Two kinds of parameters
are involved in the computation, i.e., problem data and GA parameters. The former
(table 3) include number of items, production rates, demand rates, inventory holding
costs, etc. The second set of parameters include the population size, replacement
policy, number of generations, crossover rate, and mutation rate. In this study, we
performed computational experiments with the following GA parameters.

. Population size: 100

. Elitist strategy (the best individual was always kept from generation to gen-
eration).
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Parameters Set

Number of items (units) [5, 15]
Production rate (units/unit time) [2000, 20000]
Demand rate (units/unit time) [1500, 2000]
Set-up times (unit times) [1, 4]
Set-up cost ($) [50, 100]
Holding cost ($/unit time) [1/240, 6/240]

Table 3. Distributions for randomly generated data
for test problems.



. Termination condition was to stop the algorithm when the number of genera-
tions reaches 1000 (actually most runs of the GA converged before 300 gen-
erations) or the best individual does not improve over 150 consecutive
generations.

. Crossover rate: 0.9.

. Mutation rate: 1/(string length of chromosome).

We compare the ratio of the objective value of the modi®ed Dobson’s heuristic to a
lower bound with the ratio of the objective value of the GA algorithm to the same
lower bound (table 4). GA outperformed Dobson’s heuristic in 38 out of 50 prob-
lems. Table 5 reports the ratio of the objective value of the modi®ed Dobson’s
heuristic to that of the GA algorithm. It also con®rms that GA outperformed
Dobson’s heuristic. In practice, it is a good idea to use the better of two results
after solving a problem with both algorithms.

6. Concluding remarks
The economic lot-scheduling problem has been studied by many researchers. It

captures many important features of real and frequently encountered scheduling
problems. Because of the non-linearity and combinatorial properties of the problem,
most researchers have focused on the development of a heuristic algorithm to ®nd a
near-optimal solution, which is commonly compared against a lower bound. We
have developed a hybrid genetic algorithm that improves over the best heuristic to
date in the ELSP literature.

Acknowledgements
The authors are grateful for the anonymous referees. Research was supported by

the Brain Korea (BK) 21 project sponsored by the Ministry of Education in Korea,
by the Natural Sciences and Engineering Research Council of Canada (Grant
A1485), and by the Carma Chair at the University of Calgary. The paper was
awarded a Gold prize for the best paper competition in the 1st Cyber conference
hosted by Korean Institute of Industrial Engineers.

822 I. Moon et al.

Mean ratio Minimum ratio Maximum ratio

Dobson’s heuristic 1.0424 1.0112 1.0889
GA algorithm 1.0302 1.0122 1.0564

Table 4. Computational results for test problems (I): ratio of the solution
value to the value of the lower bound.

Mean ratio Minimum ratio Maximum ratio

1.0119 0.9835 1.0567

Table 5. Computational results for test problems (II):
ratio of the value of Dobson’s heuristic to the value
of the GA solution.
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