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Abstract

This paper deals with the situation of a number of end items, each facing uncertain demand in a single period of
interest. Besides being able to purchase units of the end items there is also available a stock of units that can be
converted into end items but at unit costs that depend on the specific end item. Efficient solution procedures are
presented for two situations: (i) where the end item demand distributions are assumed known (illustrated for the case of
normally distributed demand) and (ii) a distribution free approach where only the first two moments of the distributions
are assumed known. Computational results for a set of problems are presented. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In this paper, we consider the situation of a number of end items facing uncertain demand over a single
period (the multi-item newsvendor situation where purchase decisions must be made for each end item) but
where there is a stock of convertible units that can be transformed into any of the end items at unit costs
that depend upon the specific end items. This type of situation was first observed by one of the authors in a
consulting assignment for a telecommunications organization where customers returned used telephone
units that could be converted into other usable units (through repairs, adding a different colored plastic
cover, etc.). In this connection Copacino [4] reports “Refurbishing of products: Products such as vending
machines, computers, telephone equipment, and circuit boards are repaired and placed in inventory for
resale. Many companies are moving to hold more unrepaired equipment in inventory and refurbishing to
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order in a just-in-time fashion”. Another less obvious application is in a supply chain context where
partially processed items can be converted to different end items, e.g. personal computer printers for sale in
different countries (see [7,13]). Part of the manufacturing is done centrally and units are shipped to various
destinations where localized finishing (e.g. addition of special power source, user manual, etc.) is done.
Partially processed units at a particular location could be processed further there or transshipped to other
locations for completion. Also, in a supply chain context, some items can be held centrally and then
converted (by transportation) to finished items at different locations. The work of Cheung and Powell [3] is
in this spirit. Of course, a single period model is likely to be an approximation (and building block for more
complicated modeling) in some of the above illustrated situations where there is on-going demand.

The convertible situation is clearly related to the contexts of service parts and repairable items for which
there is a substantial literature. References, that include broad surveys of modeling efforts in these contexts,
include Brown [2], Diks et al. [5], Mabini and Gelders [14], Nahmias [19], Sherbrooke [22], Silver et al. [24],
and Verrijdt [26]. In addition, there is a connection with the so-called commonality problem where there are
a number of end items each having a number of components and some of the components are common to
more than one end item. In a sense our problem can be viewed as an extension of a special case of the
commonality situation, namely where there is a single component that is common to all end items, but
which can also be purchased externally. Some of the more recent references on the commonality problem
include Bagchi and Gutierrez [1], Eynan [6], and Jonsson et al. [12]. Silver et al. [24] provide a summary of
the associated literature.

In the next section we present the notation, assumptions, and basic mathematical model for the case
where we have a known distribution of demand for each of the end items. Properties of the optimal solution
(number of units to be converted to each end item and number of units of each end item that are purchased)
are presented as well as an efficient, associated algorithm. Then Section 3 deals with the distribution free
situation where all we assume are known are the means and variances of the demand distributions. Ad-
ditional related references are provided at that stage. Section 4 presents the results associated with a set of
test problems. Concluding remarks are provided in Section 5.

2. Basic model
2.1. Notation

The notation to be used is as follows:

j index for end items (j = 1,2,...,J)

c; unit conversion cost from the convertible item to end item j, in dollars/unit
£0 salvage value of convertible item, in dollars/unit

g salvage value of end item j, in dollars/unit

v; purchase cost of end item j, in dollars/unit

B; penalty for not satisfying demand of end item j, in dollars/unit

I initial inventory of end item j, in units

D; demand for end item j during the period, in units

f;(D;) probability density function of demand for end item j

F;(D;) cumulative probability distribution of demand for end item j
o expected value of demand for end item j

o; standard deviation of demand for end item j

N available number of units of the convertible item, in units
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R; number of convertible units that are converted into end item j (decision variables)
0, number of units of end item j that are purchased (decision variables)
xt max{x,0}

2.2. Assumptions

We use the following assumptions:

(1) We consider a single period model with stochastic demand in which demand can be satisfied from two

methods: conversion and purchasing.

(i1) The demand for item j has a probability density function with known mean and standard deviation.

(iii) There exists an initial inventory for each end item. This inventory is less than the optimal uncon-

strained order-up-to level based on the item’s purchase cost. (This optimal value will be defined later.)

Thus, if the conversion option was not available, some units of this item would definitely be purchased.

(In the single period context of this paper one would expect to have little, if any, initial inventory of the

item available, hence the reasonableness of this assumption.)

(iv) The unit salvage value of each item after conversion is less than its unit conversion cost. Moreover,

the unit salvage value of convertible items gy is less than v; — ¢; for all j.

(v) The conversion and purchase decisions have to be made simultaneously (i.e. the associated lead times

are the same).

Regarding assumption (iv), if there is an item whose v; value is less than or equal to ¢; + gy, there is no
need to convert units to that item. We can purchase the item using its order-up-to level computed inde-
pendently of other items. Thus, we can eliminate the item from further consideration.

2.3. Modeling and algorithm

We can interpret the problem as follows: A service department (or purchasing department), which is
in charge of providing items to other departments or factories, has N units of an item that are not
directly usable. The unit salvage value is gy. Each unit can be converted to an end item j (j =1,2,...,J)
at a cost of ¢;. The end item can also be purchased at a unit cost of v;. There is a cost B; per unit of
demand for item j not satisfied. Since it takes some time to convert or purchase items, we need to decide
how many units should be converted and how many purchased in advance of knowing demands. This
problem is similar to the classical newsvendor problem [24]. However, there is the added opportunity for
conversion.

The expected cost can be written as

Li+R;+0;
iR +v,0; — gj/o (I;+R; + Q; — D))f;(D;)dD;

_g()(N_jle_i).

CF(R]7...,RJ,Q1a-"7QJ) :Z

J=1

+B; /IOC (D —1; — R; — 0,)f;(D;)dD;

+R;+Q;

Noting that

/L (Dj—1;—R;— 0))f;(D;)dD; = E[D; = I; = R; — Q)]

+R;+Q;



E. A. Silver, I. Moon | European Journal of Operational Research 132 (2001) 466477 469

we can write the expected cost as

J
C(Ry, - Ry, Oy, ) = D lles = )Ry + (0 = 8)0; — il + &y

+ (B~ g)ED; — 1, — R, — O}]'"] —80<N—ZR1>‘ (1)

Thus we wish to minimize (1) subject to the constraints

0,>0 V.

If we can find an algorithm that satisfies Kuhn-Tucker conditions [25], it is an optimal algorithm. The
Lagrangian function is

L(Rla-" RJlea-" QJa/1 alv”w“/aﬁlﬁ"':ﬁj)

J
= e —&)R; + (v — 8)Q; — &l + gy + (B; — &)ED; — I — R; — O}
j=1

J J J J
(Nz) YSSTIS S 3y
j=1 J=1 J=1 =1

where /A is a Lagrange multiplier associated with the constraint on the total number of convertible items. «;
and f; are Lagrange multipliers associated with the nonnegativity constraints on R; and Q;, respectively.
The Kuhn-Tucker conditions are as follows:

oL ) .
ﬁzc,—g,»+go—(3,~—g,-)[l—F,-(1]»+Rb,~+Q/.)]+A_aj:0 VJ, )
J
oL ‘
a—Q:U,—gJ—(B,—g,)[l—F,-(I,-—Ier—FQ,-)]—ﬁj:o vJ, (3)
J
J
AR N] =0, @)
=1
%R; =0 Vj, (5)
B0y =0 Yj. (6)

Using Eqs. (2) and (3), we can derive the following proposition.

Proposition 1. The optimal solution must satisfy the following equations:

vi—¢—& —pito =41 Vj (7)
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V). (8)

Before we develop an optimization algorithm for this problem, we first derive the following proposition on
the optimal solution.

Proposition 2. Without loss of generality, we reorder items in decreasing order of v; — c;. Then, the optimal
R;, O;’s must have the following form:

R1>0, Q1:0,...,Rj>0, QJZO, Rj+1:0, Qj+1>07"' (9)

Proof. Let v; — ¢; > v;11 — ¢4 for adjacent items j and j + 1. We use a contradiction method to prove this
proposition. Suppose R; > 0, Q; >0 and R;; > 0, Q;+; > 0 are optimal.

Case 1. Ry > Q.
LetR,=R;+0;, O;=0,R,, =R;11 — O;, O,y = 0js1 + 0, be another solution. Then, clearly the last
two parts of the cost function (1) do not change since R; + Q; = R; + O and Rj1 + Qj1 = R, + 0. The

cost difference of the two solutions is as follows:

CF(RI7 o RLR, RO, 00,005, .,0))
~C"(Ry,...,R,R,\,...,R;,O1,..., 0,0, 1,....00)
= [(c; — g)R; + (v; — €))Q; + (¢js1 — &) Rjwr + (V11 — g11)Qpnt] — [(¢; — ) (R + O))
+ (o1 = &) Rjs = Op) + (vjs1 — 1) (Qpn1 + O))] = Oil(v; — ¢;) — (vjs1 — ¢541)] > 0.
This contradicts the optimality of the current solution of (Ry,...,R;,0y,...,0,;). Thus, the optimal
solution must have the form of (9).

Case 2. R < 0.
This case can be proven similarly. [

/
j+1°

Remark 1. Let S; and 7; be the optimal unconstrained order-up-to levels based on ¢; and v;, respectively.
From the result of the standard newsvendor problem, we can derive the following equations:

B —c, —
S =F" (#) (10)
J J
B. — v
J J

It is clear that the optimal solution must satisfy the following inequality:
Ti<Li+R+0;<S;
Moreover, if Q; > 0, then 7; =1, + R; + O,.

From Proposition 2, we can derive the following Corollary which will be the basis for the optimal al-
gorithm.

Corollary 1. At most one item can have its o; = B, = 0. In addition, for any optimal solution, o;8; = 0 for all j.
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Using the above Corollary, we can derive the following algorithm to find an optimal solution. The algo-
rithm is basically a line search on A.

Step 1 (Optimal line search algorithm). We check whether the unconstrained order-up-to levels, S;s,
satisfy the constraint on the available number of units of the convertible item or not as follows:

J
>
=
If they satisfy the above constraint, they are indeed optimal. Otherwise, go to (Step 2).

Step 2. Start with an arbitrary 4 > 0.

Step 3. Compute o; and f8; sequentially using (7) and o;f; = 0.

Step 4. Using o; and f3; computed in (Step 3), we know whether O; =0 or O, > 0 (i.e. R; > 0 or R; = 0).
There is a possibility that both R; > 0 and Q; > 0 for one item (if A happens to equal v; — ¢; — go).

Step 5. Using (8), compute the R;s and Qjs. In the case of both «;=f = 0 we assign
R;=max{N -3, R, 0}. If R, =N — quRk and the corresponding Q; becomes negative, then set
R, =0.

Step 6. 1f Z R; < N, then decrease 4 and go to (Step 3).

If > R > N then increase A and go to (Step 3).

If Z R = N, we have found an optimal solution.

Remark 2. We can also solve this problem using dynamic programming.

Example. We assume independent normal distributions and that there are 150 units of the convertible item
available. The detailed data for this example are given in Table 1. We set gy = $5. The unconstrained
optimal order-up-to levels have been computed in Table 2. Note that the 7s and Ss will not be integers in
general. We have rounded them to the nearest integers.

Let (RY,...,R},0V,...,0)) be the optimal solution for the normal distribution. The results for the
example are (RY,0)) = (70,0), (RY,0)) = (71,0), (RY,0Y) =(9,71), (R}, 0)) = (0,165) with a total
cost of $76,076.21. Note that A* = 15 is equal to v; — c3 — gy, which has produced positive values of both R3
and ;. Suppose we change both /; and I3 to [, =80, I3= 41. Then the solution becomes

Table 1

Data for the example (N = 150)
Item v; ($) c; () g (9) B; ($) 1 g; g
1 300 150 125 400 80 20 30
2 400 351 250 503 90 25 20
3 300 280 151 320 120 17 20
4 50 40 20 70 230 60 50

Table 2

Unconstrained optimal order-up-to levels
Item T; S;
1 73 105

2 84 95
3 100 106
4 215 230
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(RY,0V) = (20,0), (RY,0) = (71,0), (RY,0%) = (59,0), (RY,OY) =(0,165) with total cost of
$61,276.21. The optimal Lagrange multiplier, A", is 14.85 for this case.

2.4. Hlustration of the value of convertible units available

By repeating the above algorithm for different integer values of N, we can develop a table or graphical
representation of the value of having different numbers of convertible units available. This is illustrated in
Fig. 1 and Table 1 for N from 0 to 300. If there are options of acquiring different numbers of convertible
units, with associated costs, then one can use the results of Fig. 1 or Table 1 to choose among the options. If
we compute the incremental savings in Table 1, we can notice that the cost savings are marginally de-
creasing (Table 3).

3. Distribution free model

In practice, the distributional information about the demand is often limited. Sometimes all that is
available are estimates of the mean and variance. There is a tendency to use the normal distribution under
these conditions. However, the normal distribution does not offer the best protection against the occur-
rences of other distributions with the same mean and variance. Scarf [21] addressed a newsvendor problem
where only the mean p and the variance ¢° of the demand are known without any further assumptions
about the form of the distribution of the demand. Taking a conservative approach, he modeled the problem
as that of finding the order quantity that maximizes the expected profit against the worst possible distri-
bution of the demand with mean u and variance ¢>. The approach is called the minimax distribution free

16000 -

14000 A "
12000 - o

Cumulative Value 10000 /

houng Neomenie 8000 1

unts 6000 - /
4000 { /
2000
0 ; : . . ; s
0 50 100 150 200 250 300

N

Fig. 1. Cumulative value (cost savings) of having different numbers of convertible units available.

Table 3
Cumulative value (cost savings) of having different numbers of convertible units available

N Optimal cost ($) Cost savings of having N units

of convertible items ($)
0 88,247.51 -
50 80,876.97 7370.54

100 78,048.49 10,199.02

150 76,076.21 12,171.30

200 75,076.21 13,171.30

250 74,316.55 13,930.96

300 73,816.55 14,430.96
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approach. Recently, there have been many related papers. Gallego and Moon [8] presented a very compact
proof of the optimality of Scarf’s ordering rules for the newsvendor problem and extended the analysis to
several cases including a fixed ordering cost, multiple products, random yield, and the possibility of re-
course. Moon and Gallego [18] applied the approach to several inventory models including both continuous
and periodic review models. Moon and Choi [15] extended the model of Gallego and Moon [§8] to the case
that allows customers to balk when inventory level is low. Shore [23] derived explicit approximate solutions
to the standard newsboy problem, to some (Q, ) models, and to a periodic review model in which the first
three or four moments of the demand are known. Moon and Choi [16] applied the approach to the two-
echelon stochastic production/inventory models in which assemble-to-order (ATO), assemble-to-make
(ATM), and composite policies can be adopted. Hariga [11] extended the work of Moon and Choi [16] to
the multi-echelon case. Gallego et al. [9] considered stochastic finite-horizon inventory models with discrete
demand distributions that are incompletely specified by selected moments, percentiles, or a combination of
moments and percentiles. Hariga and Ben Daya [10] and Moon and Choi [17] independently solved the
continuous review inventory problem in which lead time can be reduced by investment. Their models
generalized the distribution free model of Ouyang and Wu [20] by simultaneously optimizing both the order
quantity and reorder point.

Thus, we now consider the distribution free approach, i.e. we make no assumption on the distribution F
of D; other than saying that it belongs to the class 7 of cumulative distribution functions with mean y; and
variance 012.. Since the distribution F of D is unknown we want to minimize the total expected cost against
the worst possible distribution in %#. The distribution free approach for this model involves finding the
most unfavorable distribution in # for each (Ry,...,R;,0,...,Q;). Our problem is to solve:

min ~ maxC’(Ry,...,R;,01,...,0))

Ry,...R;,01,...0;) FeF

J
subject to ZRj <N,

Jj=1
R; >

0; =

A

0
0 V).

To this end, we need to use the following proposition as in Gallego and Moon [8].

Proposition 3. For any F € &

1
E[D./—Ij—R./—erg5{\/0?+(IJ+R./+QJ—H/)2—(11+R1+Qf—ﬂj>}-

Moreover, the upper bound is tight. In other words, we can always find a distribution in which the above
bound is satisfied with equality for every R; and Q;.

Using the above proposition, our problem becomes

min o > {(C/‘ — &R+ (v; — 8)0; — gl + giuy
;

o J
+B—’2 gj{\/0f+(11+Rj+Qjﬂj)2(IJJFRJJFQJNJ)H gO<NZRf>
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J
subject to ZRjgN,
j=1
R, =0 Vj,
=0 V).

LQ\.

We use the same approach as in the previous section to find an optimal solution. The Lagrangian function
is

L(Rl, . RJ,Ql, ..7Q_/,i,a1,...,Otj,ﬁl,...,ﬁj)

J
E:[ — g)R; + (v, — £)Q; — gil; + giny

j=1

B, — o
+ jzg/{\/612-+([/+Rj+Qjﬂj)2(IJ+RJ+QJM1)}}

n J J J
ICE 3T ERD STEI B oS o2
j=1 Jj=1 j=1 J=1

Kuhn-Tucker conditions are as follows:

oL Bi—g Li+Ri+0— 1

ﬁ:C;_gj-l-go_ 2 - 2 2 +)L_af:O V), (12)
j ¢q+@+&+g—w

oL B —g L+R+0 —u _

a_Q_yj — 12 J 1— J J J J - _ﬁjzo v]7 (13)
J \/012+(II+RI+QJ_,UJ)

%R =0 V), (15)

B,Q;=0 V. (16)

Using Eqgs. (12) and (13), we can derive the following proposition which is similar to Proposition 1 in the
previous section.

Proposition 4. The optimal solution must satisfy the following equations:

Li+Ri+ 0y — _Bi—2v+g+25 vj (18)

\/‘7./2' + (0 + R+ 0 — ) £l
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We can use the same algorithm as in the previous section to find an optimal solution except that Eq. (8)
is replaced by Eq. (18).

Let the optimal solutions for distribution F and for the worst distribution be (R},..., R}, 0f, ..., 0F)
and (RY,....,RY,0F,...,07), respectively. We are interested in the Expected Value of Additional Infor-
mation (EVAI) [8], i.e.

CFRY,....,RV,0F,....0" Y= C'"(RY,...,RY,0F,...,0). (19)

This is the largest amount that we would be willing to pay for the knowledge of the specific distribution in
the absence of knowledge of the specific distribution. If this quantity is small, the use of the distribution free
solution can be justified.

Example. We solve the same example as in the previous section to illustrate the distribution free approach.
We compare the performance of the normal solution of (RY,... R}, 0Y,..., O)) with the distribution free
solution (R} ,...,RY, OV, ...,0F).

The results for the base case (of Table 1) are (R, 0)) = (68,0), (RY,0Y) = (71,0), (R}, 0F) = (11, 69),
(R}, 0) = (0,168) with total cost of $76,082.00, and the EVAI is

CYRY,....RV,Q",....0") = C"(R,...,RY,QV,...,0)) = $76,082.00 — $76,076.21 = $5.79

Suppose we again change both /; and ;3 to I;=80, 3= 41. Then the solution becomes
(RY,07) =(19,0), (RY,0F) = (71,0), (RY,0¥) = (60,0), (R},0))=(0,168) with total cost of
$61,279.43, and the EVAI is

CYRY,...RV.QV....,0" = CV(RY,...,RY,0V,...,0)) = $61,279.43 — $61,276.21 = $3.22.

From this example, we can conjecture that the distribution free approach is very robust. We will confirm
this in the next section.

4. Computational results
In order to further investigate the robustness of the distribution free approach, 25 test problem instances
were generated randomly from uniform distributions on the given intervals as shown below:

J ~ DU(10,20) where DU denotes a discrete uniform distribution,

v ~ U(300,500), ¢~ U(0.5,09)xv, g~ U(0.507) xc, B~U(1215)xu,

i~ U(100,300), 6~ U(0.1,0.3) x g, [~ U(0.1,0.5 x i N~ U0.1,05) x> .

=1
We compute the following ratio to test the robustness of the distribution free solution:

Cr(RY,...,RV.OF,...,0")
CF(RE,...,RE,OF ....00)
We report the minimum, maximum and mean values of this ratio in Table 4. The ratios are very close to 1

which indicates that use of the distribution free solution in the absence of the specific form of the distri-
bution function produces negligible penalties when the true distributions are normal.
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Table 4

Results of computational tests
Minimum ratio Maximum ratio Mean ratio
1.00005 1.00021 1.00012

5. Conclusions

In this paper, we have dealt with a multiple end item, single period problem where, besides having the
usual option of purchasing units of the end items, one has a number of units of a convertible item available
that can be converted into units of the end items. Efficient algorithms have been developed for the cases of:
(1) known distributions of end item demands and (ii) a distribution free approach where only the mean and
standard deviation of demand for each item are assumed known. As mentioned in the Introduction, a single
period formulation is clearly an approximation of the practical situations that motivated our interest in
analysis of decisions involving the use of convertible items. An obvious, but difficult, extension would be to
the case of multiple periods of demand where unused convertible and/or end item units could be carried
forward in stock. Another extension would be to the case where the conversion and purchase lead times are
not the same, in particular conversion might be quicker and one could wait to partially observe the demand
before carrying out some of the conversion activity.

There are at least two possible extensions to this work. The first is where there is more than one class of
convertible items. The second is where there is ongoing demand for more than one period. We hope to
report at a later date on useful results in these two directions.
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