
Transportmetrica A: Transport Science

ISSN: 2324-9935 (Print) 2324-9943 (Online) Journal homepage: www.tandfonline.com/journals/ttra21

Heterogeneous vehicle scheduling with
precedence constraints

Ruiyou Zhang, Zhujun Liu & Ilkyeong Moon

To cite this article: Ruiyou Zhang, Zhujun Liu & Ilkyeong Moon (2026) Heterogeneous vehicle
scheduling with precedence constraints, Transportmetrica A: Transport Science, 22:1, 1, DOI:
10.1080/23249935.2024.2338249

To link to this article:  https://doi.org/10.1080/23249935.2024.2338249

Published online: 08 Apr 2024.

Submit your article to this journal 

Article views: 266

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21

https://www.tandfonline.com/journals/ttra21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23249935.2024.2338249
https://doi.org/10.1080/23249935.2024.2338249
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2024.2338249?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2024.2338249?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2024.2338249&domain=pdf&date_stamp=08%20Apr%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2024.2338249&domain=pdf&date_stamp=08%20Apr%202024
https://www.tandfonline.com/doi/citedby/10.1080/23249935.2024.2338249?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/23249935.2024.2338249?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21


TRANSPORTMETRICA A: TRANSPORT SCIENCE
2026, VOL. 22, NO. 1, 2338249
https://doi.org/10.1080/23249935.2024.2338249

Heterogeneous vehicle scheduling with precedence
constraints

Ruiyou Zhanga, Zhujun Liua,b and Ilkyeong Moon c

aCollege of Information Science and Engineering, Northeastern University, Shenyang, People’s Republic of
China; bTechnology Testing Center of Shengli Oilfield Branch, China Petrochemical Co., Ltd., Dongying,
People’s Republic of China; cDepartment of Industrial Engineering and Institute of Engineering Research,
Seoul National University, Seoul, Republic of Korea

ABSTRACT
The problem of heterogeneous vehicle scheduling with precedence
constraints is inspired by the transportation service in tourism areas.
Touristsmust take the shuttle vehicles providedby the areas because
of the long distances between the scenic spots. The scheduling of
vehicles in tourism areas is complicated because the transportation
requests of tourists are precedence-constrained temporally and spa-
tially. The problem optimises both the cost of using vehicles and
the waiting time of tourists. A mixed-integer linear programming
model is formulated according to the description of a graph. An
adaptive large neighbourhood search algorithm with several spe-
cialised operators is designed to solve the problem. Experiments
based on randomly generated instances validate the mathematical
model and the algorithm. A real-size instance based onQiandao Lake
in China is also analysed. The results indicate that the algorithm out-
performs themodel. The sensitivities of key parameters are analysed
with managerial insights presented.
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1. Introduction

Efficient operation management in the tourism industry is a recent hot topic in both aca-
demic and industrial fields. The management and operation of a tourism area influence
both the revenue of the area and the satisfaction degree of customers directly. Many
tourism areas provide shuttle transportation services because of the long distances among
the scenic spots. For instance, shuttle buses are provided in both the Kanas scenic area
located in Xinjiang, China, and theGrandCanyon located inArizona, USA. In theAegean Sea
locatedon theGreekpeninsula and theQiandaoLake scenic area located inZhejiang, China,
visitors take steamers or boats to travel among the islands in areas. Such areas are respon-
sible for the management of shuttle transports. They usually prohibit the use of private
transport, given concerns over public order and driving safety.

Vehicle (or some other transportation modes) scheduling is significant for improving
the operational efficiency of tourism areas. However, the shuttle vehicles in many areas
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are usually operated traditionally with some weaknesses (Dou, Meng, and Liu 2021; Guo
et al. 2024). For example, a typical mode, in which one group of people charters one vehicle
(Duan et al. 2020), is common in many areas. The fares for chartering a vehicle are usually
high and the idle time of vehicles is usually long in this mode. One main reason for this is
that a vehicle in the typical mode has to stop at a scenic spot to wait for visitors. Further-
more, many tourism areas provide the same transportation services using homogeneous
vehicles, but the transportation demands are usually diverse.

Flexible operationmodes of vehicles are necessary and significant in tourism areas. One
of the reasons for this is that the complexity of vehicle scheduling has increased with both
the growth of the number of visitors and the increase of personalised requirements. The
flexible operationmode of vehicles proposed in the research of Zhang, Liu, and Feng (2021)
is typical in tourism areas. A vehicle in such a flexible mode need not wait for visitors at any
location. It can be scheduled to pick up or deliver some other tasks after it has finished a
delivery task. Furthermore, the transportation requirements of a visitor to different loca-
tions could be satisfied by different vehicles in the mode. As a result, the flexible mode is
the potential to improve the utilisation rate of vehicles, especially when compared to the
commonmodes (Chen et al. 2017; Guo et al. 2019).

The problem of heterogeneous vehicle scheduling with precedence constraints in
tourism areas considers the flexible operation mode of vehicles. Specifically, the trans-
portation requests in the problem are precedence-constrained temporally and spatially.
An example (Example 1) is given to explain the problem, in which a group of tourists arrives
at a scenic area and leaves the area after visiting two scenic spots in sequence. A group of
tourists consists of several persons who travel together in a scenic area. As shown in Figure
1, for any two neighbouring transportation requests (Requests 1 and 2, or Requests 2 and
3) of Example 1, the destination of the former request is the same as the origin of the latter
request. These are the spatial precedence constraints (Melis and Sörensen 2021; Mo et al.
2020). Moreover, the time of a pickup task at a scenic spot must be later than the time of
the delivery task at the spot, and the time gap is at least the visit duration. All the starting
times of transportation requests are interrelated and precedence-constrained in the prob-
lem. However, in general, vehicle scheduling problems, the starting times of transportation
requests are usually independent of each other and are only constrained by given time
windows or planning horizons.

Furthermore, the problem of heterogeneous vehicle scheduling with precedence con-
straints is an extension of the research of Liu, Moon, and Zhang (2024). Themain extensions
are as follows: (1) Heterogeneous vehicleswith different fixed costs, driving costs, and load-
ing capacities are used to serve tourists. A vehicle can pick up or deliver several groups
on every trip within its loading capacity. Therefore, the actual ride time of a transporta-
tion request may be longer than the direct driving time between the departure location
and the destination of this request. (2) The longest waiting time of tourists in a transporta-
tion request is optimised as a component of the objective function, which is related to
the satisfaction degree of tourists. (3) The decision of the starting time of a pickup ser-
vice is precedence-constrained not only by the time related to the tourist but also by the
time related to the vehicle. Moreover, the starting times of pickup services would influence
tourists’ waiting time in the objective function.

Such characteristics and extensions bring great challenges to formulate and to solve
the problem. First, the vehicle routes, the vehicle type of each route, and the starting time
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Figure 1. Example 1 illustrating the problem.

of each pickup or delivery service should be determined simultaneously. In particular, the
starting times of services are hard to decide because they are precedence-constrained and
are related to the longest waiting time of tourists in the optimisation objective. Second,
matching different transportation requests to each trip of vehicles is limited by the loading
capacities of different types of vehicles. Thematchingwould affect both the utilisation rate
of vehicles and the waiting time of tourists. More importantly, the vehicle routes in a solu-
tion are interdependent of each other because the precedence-constrained transportation
requests may be handled by different vehicles.

The main contributions made in this study can be summarised as follows. A problem
of heterogeneous vehicle scheduling with precedence constraints (HVS-P) inside tourism
areas is formally presented and efficiently solved. The problem considers a flexible oper-
ation mode of vehicles and minimises both the using cost of vehicles and the cost of the
longest waiting time of tourists. Furthermore, a graph-based method is presented to for-
mulate the problem based on the description of task nodes and feasible arcs. Precedence
constraints are clearly described based on the graph-based method. An Adaptive Large
Neighborhood Search (ALNS) algorithm is also designed to handle the problem efficiently,
inwhich somesimplifiedmathematicalmodels are employed todecode the staring timesof
services and to check the feasibility of solutions. Importantly, the model and the algorithm
are validated using a number of numerical instances.

The following sections of this paper are organised as follows. Section 2 summarises the
literature regarding the heterogeneous vehicle scheduling problems, vehicle scheduling
with precedence constraints, and the ALNS algorithm. Section 3 describes the HVS-P prob-
lem in tourism areas. Section 4 presents the graphical description and the mixed-integer
linear programmingmodel of the problem. Section 5 proposes an ALNS algorithm to solve
the problem. Several experiments are implemented in Section 6. Finally, the conclusions
are given in Section 7.

2. Literature review

This section reviews the related literature. Specifically, Section 2.1 summarises the het-
erogeneous vehicle scheduling problems. Section 2.2 reviews the vehicle scheduling with
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precedence constraints in various fields. Finally, the ALNS algorithm for vehicle scheduling
problems is briefly reviewed in Section 2.3.

2.1. Heterogeneous vehicle scheduling problems

The heterogeneous vehicle scheduling (HVS) problem, as a main variant of the vehicle
routeing problem, has been around for more than thirty years (Koç et al. 2016). In the HVS
problem, heterogeneous fleets with different loading capacities, fixed costs of using a vehi-
cle and the travelling costs of a unit distance, are considered to provide transportation
services for customers (Ren, Jin, and Wu 2023). The operational cost of vehicles in many
industries can be 50% to 60% of the total cost. Some researchers pointed out that the use
of heterogeneous fleets plays a crucial role in saving transportation costs and improving
the flexibility of transportation services (Chaowasakoo et al. 2017).

The research of theHVS problemand its variants is still important and popular nowadays
because of its application inmany fields (Messaoud 2022; Moon, Salhi, and Feng 2020; Ren,
Jin, and Wu 2023). For example, a green HVS problem was researched to optimise carbon
emissions in the transportation industry, inwhich the experiments indicated that the use of
heterogeneous vehicles can reduce carbon emissions inmost scenarios (Sun, Yu, andWang
2019). A similar green logistics problemwas also researchedbyWang et al. (2020a). Further-
more, the use of heterogeneous transport is significant for the development of a logistics
system. For instance, a collaborative two-echelonmulticenter vehicle routeingoptimisation
setup was researched to increase operation efficiencies and to reduce the transportation
emissions of service providers (Wang et al. 2020b). A truck drone hybrid routeing problem
was studied by Wang, Moon, and Zhang (2022) to facilitate a sustainable urban logistics
distribution system.

A public transit vehicle scheduling problem with multiple vehicle types (Lai et al. 2022;
Shang et al. 2023) is similar to the problem in this research except for the operation
mode of vehicles. Public vehicles are usually operated with fixed routes and schedules.
Consequently, the research on public vehicle scheduling mainly focuses on creating effi-
cient schedules or optimising timetables (Lin et al. 2023; Tian, Lin, and Wang 2023). In
recent years, multiple types of electric vehicles have usually been considered in the pub-
lic transit scheduling problem because there is the potential to improve the satisfaction of
passengers and the incomeofbus companies (Yaoet al. 2020; Zhanget al. 2022b). Theprob-
lem of routeing scheduling for technicians is also a type of HVS problem. Heterogeneous
technicians with different skills are usually scheduled to satisfy the requirements of cus-
tomers (Cappanera, Requejo, and Scutellà 2020). For example, Hanafi, Mansini, and Zanotti
(2020) solved a route scheduling problem of workers that was motivated by the assembly
of kitchen equipment, in which each assembly requirement needed to be accomplished
orderly by several workers with different skills.

Heuristic algorithms are usually designed to solve the HVS problem in literature. One
of the main reasons behind this is that the HVS problem is more complex than gen-
eral vehicle routeing problems (Tayachi and Jendoubi 2023) and it is usually applied in
many industry fields with a limited calculation time (Rattanamanee and Nanthavanij 2022).
For instance, a math-heuristic based on kernel search was designed to solve a flexible
periodic vehicle routeing problem with heterogeneous fleets (Huerta-Muñoz et al. 2022).
Furthermore, many heuristic algorithms based on the local search (Máximo, Cordeau,
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Table 1. Summary of heterogeneous routeing problems.

Problems Articles Solution methods

Transportation and logistics Ren, Jin, and Wu (2023) Fast elitist non-dominated sorting genetic
algorithm

Chaowasakoo et al. (2017) Heuristic truck dispatching methods
Moon, Salhi, and Feng (2020) Heuristic and a hybrid genetic algorithm
Messaoud (2022) Hybrid genetic algorithm
Sun, Yu, and Wang (2019) Exact algorithm
Wang et al. (2020a) Gaussian mixture clustering algorithm
Wang et al. (2020b) Tree-component solution framework
Wang, Moon, and Zhang (2022) Iterative local search heuristic

Public transit vehicle
scheduling

Shang et al. (2023) Capacity restraint incremental assignment

Lai et al. (2022) Heuristic and mathematical model
Lin et al. (2023) Bilevel model
Tian, Lin, and Wang (2023) Two-stepped heuristic
Yao et al. (2020) Heuristic procedure
Zhang et al. (2022b) Adaptive large neighbourhood search
Xue et al. (2022) Adaptive large neighbourhood search

Routeing scheduling of
technicians

Cappanera, Requejo, and Scutellà (2020) Mathematical model and lower bounding
techniques

Hanafi, Mansini, and Zanotti (2020) Kernel search; Branch-and-cut
Vehicle routeing Huerta-Muñoz et al. (2022) Math-heuristic

Máximo, Cordeau, and Nascimento (2022) Adaptive large neighbourhood search
Meliani et al. (2022) Tabu search

Transportation of tourists This paper Adaptive large neighbourhood search

and Nascimento 2022), such as the tabu search (Meliani et al. 2022) and the adaptive
large neighbourhood search (Xue et al. 2022), are typically designed for solving the HVS
problems.

As shown in Table 1, the application of heterogeneous vehicle scheduling is significant.
However, it has not beenwidely researched for the transportation of tourists in scenic areas.
In fact, the usage of heterogeneous vehicles in tourism areas has the potential to save the
operational cost of vehicles, satisfy the diversified transportation requirements of tourists,
and improve the degree of tourists’ satisfaction.

2.2. Vehicle scheduling with precedence constraints

Vehicle scheduling with precedence constraints (VS-P) exists in various fields, such as
freight transportation and package delivery in the logistics industry (Baykasoglu et al. 2019;
Esztergar-Kiss, Gentile, and Nuzzolo 2020; Huang et al. 2023). The precedence constraint
in such problems is that some customers (or services) need to be served before others
(Roohnavazfar and Pasandideh 2022). For example, Bai et al. (2020) investigated a pack-
age delivery problem minimising the total time of serving all customers, in which some
customers need to be visited before others.

The precedence constraint in the vehicle scheduling problem for tourists in tourism
areas is different from the constraints in literature because two types of precedence con-
straints exist simultaneously in the tourist transportation problem. One type of precedence
is between the pickup and the delivery activities in a single transportation request; the
other is between the transportation requests of the same tourist. Consequently, the prece-
dence constraints among the requests of tourists are considered not only in time but also
in space.
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Table 2. Comparison between this study and the relevant previous studies.

Problems Articles

Precedence
constraints
in time

Precedence
constraints
in space

Capacity
constraints

Heterogeneous
vehicles

Time
constraints

Solution
methods

Package
delivery

Bai et al.
(2020)

� � � PH∗1 Heuristic
algorithm

Home
healthcare
scheduling

Cinar et al.
(in press)

� � TW∗2, PH Exact
algorithm

Assembly
problem

Ali, Côté, and
Coelho
(2021)

� � TW, PH ALNS∗4

Container
drayage

Zhang,
Wang, and
Wang
(2021)

� TW, PH Heuristic
algorithm

Wang, Moon,
and Zhang
(2022)

� TW, PH ALNS

Vessel routeing Lianes et al.
(2021)

� � � TW, PH ALNS

Transportation
of tourists

Zhang, Liu,
and Feng
(2021)

� WT∗3, PH Two-staged
algorithm

Liu, Moon,
and Zhang
(2024)

� � � PH Math-heuristic

This research � � � � WT, PH ALNS

PH∗1: Planning Horizon; TW∗2: Time Window; WT∗3: Wait Time; ALNS∗4: Adaptive Large Neighborhood Search

However, as shown in Table 2, only one type of precedence constraint is considered
in literature usually. For example, in the home healthcare scheduling problem, patients
enjoyed the care provided by multiple medical staff with synchronisation or precedence
constraints at their homes (Cinar et al. in press), which is the precedence in time. The
research on the precedence constraint that is similar to the home healthcare problem
can also be found in the assembly problem (Ali, Côté, and Coelho 2021), the container
drayage problem (Wang, Moon, and Zhang 2022; Zhang, Wang, and Wang 2021), as well
as the vessel routeing problem arising in the aquaculture service industry (Lianes et al.
2021).

Both Zhang, Liu, and Feng (2021) and Liu, Moon, and Zhang (2024) studied VS-P prob-
lems for tourists in scenic areas. However, Zhang, Liu, and Feng (2021) only considered the
precedence between the delivery and the pickup tasks of the same tourist at the same loca-
tion. Furthermore, Zhang, Liu, and Feng (2021) assumed that the capacity of a vehicle was
exactly one group of tourists.

Liu, Moon, and Zhang (2024) considered the same precedence constraints but with the
followingdifferent components as theHVS-P problem. Firstly, Liu,Moon, andZhang () stud-
ied the scheduling of homogeneous vehicles. Furthermore, the waiting time that involved
the satisfaction degree of tourists’ was not considered. Finally, the decision of the starting
time of each pickup taskwas only constrained by the time of tourists. Liu, Moon, and Zhang
() assumed that a tourist group would be picked up without any waiting time when the
tourists finished visiting a scenic spot. However, the HVS-P problem in this research relaxes
the assumption because the decision of starting times would influence the waiting time of
tourists.
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2.3. ALNS for vehicle scheduling problems

Very few articles focus on exact algorithms to handle some similar complicated prob-
lems, including the problem of VS-P (Dohn, Rasmussen, and Larsen 2011), although exact
algorithms have been researched to solvemany vehicle scheduling problems. For example,
Rasmussen et al. (2012) handled theprecedence constraints using thebranchingprocedure
of a branch-and-price algorithm according to the preprocessing of time windows. Similar
handling of the precedence constraints in the exact algorithm can also be found in the
research of Li et al. (2020).

Heuristic algorithms have attractedmuch attention for solving vehicle scheduling prob-
lems in academic fields because of their advantages in solving large-scale instances (Char-
gui et al. 2023;Messaoud 2022). For example, a hybrid variable neighbourhoodmetaheuris-
tic was designed to solve a heterogeneous vehicle routeing problem, where a tabu search
was used to explore the neighbourhood of the metaheuristic (Molina et al. 2020).

The Adaptive LargeNeighborhood Search (ALNS), as an important heuristic algorithm, is
popular for solving vehicle scheduling problems in various fields (Huang and Zhang 2023;
Ji et al. 2020; Zhang, Guo, andWang 2022a). One of themain reasons behind this is that the
removal and repair operators in ALNS can be designed according to the characteristics of
the researched problem. For instance, a heterogeneous electric vehicle scheduling prob-
lemwas solved by an ALNS algorithm, which showed that the algorithm outperformed the
common solvers for different scales of instances (Yu, Jodiawan, and Gunawan 2021).

The ALNS algorithm is also famous for solving vehicle scheduling with synchronisation
or precedence constraints (Ali, Côté, andCoelho 2021; Lianes et al. 2021). For instance, Sara-
sola and Doerner (2020) designed an ALNS algorithm to solve a vehicle routeing problem
with synchronisation constraints in urban area freight transportation, where two person-
alised operators were designed according to the time windows of customers. An ALNS
algorithmwas proposed to handle a vehicle routeing problemwith timewindows and syn-
chronisation constraints, where the repair operators employed several linear programming
models to evaluate the insertions (Hà et al. 2020). Wang, Moon, and Zhang (2022) gave an
ALNS algorithm to solve a container drayage problem, in which the algorithm employed a
mathematical model to decode a solution.

In summary, the HVS-P problem is motivated by the transportation services for tourists
in scenic areas, in which the scheduling of heterogeneous vehicles is considered. An ALNS
algorithm is designed to solve the problem efficiently. Therefore, this research contributes
to the literature from both the viewpoint of problem description and the viewpoint of
algorithm design.

3. Problem description

A tourism area comprises a set of scenic spots O and a gate e, where the gate is both the
entrance and the exit. A fleet of heterogeneous vehicles with a set of vehicle types K is
provided in the area. The number of each type of vehicle is supposed to be large enough.
For a vehicle with type k ∈ K , the loading capacity of tourists is Qk(≥ 0); the fixed cost
of using a vehicle on a working day is fk(≥ 0); the using cost of a vehicle for a unit of
driving time is dk(≥ 0). Specifically, we have Qk < Qk′ , fk < fk′ , and dk < dk′ for two vehi-
cle types k < k′. The maximum loading capacity among all types of vehicles is Qmax(≥ 0).
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Both the initial departure and the final destination of a vehicle are the gates. Tourists
must take the aforementioned vehicles to travel between locations in the tourism area
because private transports are forbidden in consideration of the public order. The driv-
ing speed of vehicles with or without tourists is assumed to be the same. The driving time
of a vehicle between locations i ∈ O ∪ {e} and j ∈ O ∪ {e} is τ(i, j). Furthermore, we have
τ(i, j) ≥ 0, τ(i, j) = τ(j, i), and τ(i, i) = 0 for any two locations i and j.

The tourists in the scenic area travel in groups, with the set of groups given as C. The
area is opened at time TA and is closed at time TB(TA ≤ TB) in every working day. A tourist
group c ∈ C is composed of qc tourists with an arrival time tc, where tc is the time when all
tourists in the group arrive. The groups with a larger number of tourists than themaximum
loading capacity of vehicles are divided in advance such that the number of tourists of any
group is not larger than Qmax . The selected scenic spots of a tourist group c is Oc. Both the
first and the last locations in Oc are the gate and the spots in Oc are visited in a predefined
sequence. Furthermore, the visit duration of a group c ∈ C at a spot o ∈ Oc is Tco(≥ 0).

When a tourist group has finished visiting a scenic spot, a vehicle should pick up the
tourists at the spot and deliver the tourists to the next location. The coupling of a pickup
task and its corresponding delivery task is a transportation request of a tourist group. The
waiting time threshold of tourists in a transportation request is given as L(≥ 0) in consid-
eration of the satisfaction degree of tourists. The time for tourists to get on and get off a
vehicle is ignored.

The HVS-P problem determines the vehicle routes and the vehicle type of each route
simultaneously to satisfy all theprecedence-constrained transportation requests of tourists,
considering the loading capacity of vehicles and the waiting time threshold of tourists. The
objective function of the problem is to minimise the total cost of the use and driving of all
involved vehicles, as well as the waiting cost of tourists. The cost of a unit waiting time for
tourists is ρ(≥ 0).

4. Graphical formulation andmathematical model

A directed graph was introduced before the HVS-P problem was formulated as a mixed-
integer linear programming model. One main reason is that even a similar but simpler
vehicle scheduling problem in tourism areas is difficult to mathematically model directly
(Zhang, Liu, and Feng 2021).

4.1. Graphical formulation

Pickup and delivery services are the basic components of the transportation requests of
tourists. Specifically, the delivery of a tourist group to a location is called a delivery task.
The pickup of a tourist group at a location is called a pickup task.

An example (Example 2) with one tourist group is presented in Figure 2 to illustrate the
transportation requests of groups. The visit route of the tourist group is (e, o1, o3, o2, e). That
is, the tourist group should be picked up at the gate and delivered to scenic spot o1, picked
up at o1 and delivered to o3, picked up at o3 and delivered to o2, and finally picked up at
o2 and delivered to e. As shown in Figure 2, the group has a delivery task and a pickup
task at each location. The delivery and the pickup tasks at the same location are involved in
two different transportation requests with precedence constraints. The four transportation
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Figure 2. The transportation requests of Example 2.

requests of the group are precedence-constrained by the visit route and could be served
by different vehicles.

The HVS-P problem can be described on a directed graph G = (V ,A). Specifically,

V = P ∪ D ∪ {e} (1)

is thenode set,where P = {1, · · · , n} is thepickupnode set,D = {n + 1, · · · , 2n} is thedeliv-
ery node set. Node i in P and i + n in D refer to the same group. Let e = 0 and Node 0 is a
virtual node. As a comparison, N = P ∪ D represents the task node set. n = ∑

c∈C
(|Oc| − 1) is

the total number of transportation requests, where | · | is the number of elements of a given
set throughout this paper.

For a task node i ∈ N, the group attribute, say α(i), the location attribute, say β(i), and
the group size attribute, say γ (i), are defined as the corresponding tourist group, location,
and the number of tourists of task i, respectively. Furthermore, the delivery node that has
the same group and location attributes as a pickup node i ∈ P is recorded as θ(i).

In Graph G,

A = A1 ∪ A2 ∪ A3 ∪ A4 (2)

is the set of arcs, where

A1 = {(i, j)|i = 0, j ∈ P; or i ∈ D, j = 0}, (3)

A2 = {(i, j)|i ∈ P, j ∈ P, α(i) �= α(j); or i ∈ D, j ∈ D,α(i) �= α(j)}, (4)

A3 = {(i, j)|i ∈ P, j ∈ D, α(i) �= α(j); or i ∈ P, j = (n + i) ∈ D,α(i) = α(j)}, (5)

and

A4 = {(i, j)|i ∈ D, j ∈ P, α(i) �= α(j); or i ∈ D, j ∈ P,α(i) = α(j),β(j) locates later than (1)

β(i) in Oα(i)} (6)

In particular, set A1 includes the arcs that leave or enter Node 0. Note that the arc (0, 0)
does not exist. Set A2 involves the arcs that transfer either from a pickup node to another
pickupnode, or fromadelivery node to another delivery node. Such arcs that transfer either
between the pickup nodes or between the delivery nodes for the same group are infeasible
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and hence discarded. Set A3 contains the arcs that leave a pickup node and enter a delivery
node. Specifically, for the same group α(i) = α(j), the delivery node corresponding to a
pickup node i can be only n + i. The other arcs are infeasible and hence removed. A4 is
the set of such arcs that transfer from a delivery node to a pickup node. Specifically, for
the same group α(i) = α(j), the transferring from a delivery node i to such a pickup node j
that its corresponding spot β(j) locates in front of spot β(i) according to the order Oα(i) is
infeasible and hence is removed. The travel time of an arc (i, j) ∈ A is tij = τ(β(i),β(j)).

The HVS-P problem described in Graph G can be summarised as follows: A set of vehicle
routes as well as the vehicle type of each route with the minimal cost are to be determined
simultaneously to satisfy all the tasks. Each task node in set Nmust be served exactly once.
Each route starts from Node 0, travels along the feasible arcs in set A, and finally returns
to Node 0. A transportation request of a tourist group on Graph G is recorded as (i, n + i),
which means picking up tourist group α(i) at the departure place β(i) and delivering it to
the destinationβ(n + i). The precedence constraints of the starting times of task nodes, the
waiting time threshold of transportation requests, and the loading capacity of vehicles are
considered at the same time.

4.2. Themixed-integer linear programmingmodel

The notations are as follows:

e The gate of the tourism area
K The set of vehicle types of heterogeneous vehicles
Qk The loading capacity of tourists of a vehicle with type k ∈ K
Qmax The maximum loading capacity among all types of vehicles
fk The fixed cost of using a vehicle with type k ∈ K on a working day
dk The cost of a vehicle with type k ∈ K for a unit of driving time
TA The opening time of the tourist area on every working day
TB The closing time of the tourist area on every working day
tc The time when all tourists of the group c ∈ C arrive at the scenic area
Tco The visit duration of a group c ∈ C at a spot o ∈ Oc

L The waiting time threshold of tourists in a transportation request
ρ The cost of a unit waiting time for tourists
G The graph that is used to describe the problem
A The arc set of Graph G
V The node set of Graph G
N The task node set
0 The virtual node located at the gate
P The pickup task node set
D The delivery task node set
n The total number of transportation requests
α(i) The group attribute of a task node i ∈ N
β(i) The location attribute of a task node i ∈ N
γ (i) The group size attribute of a task node i ∈ N
θ(i) The delivery node that has the same group and the same location attributes as a

pickup node i ∈ P
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tij The travel time of an arc (i, j) ∈ A on Graph G
N∗ The set of positive integers

Two decision variables were introduced as

xijk =
{
1, if a vehicle of type k ∈ K serves an arc (i, j) ∈ A,

0, otherwise,

yi: the time when a task node i ∈ N is served.
Four intermediate variables were introduced as
zi: the number of tourists in a route after serving a node i ∈ N,
vi: the index of a route that serves a node i ∈ N,
h: the longest waiting time for tourists,
ymin
i : the time when the tourist group α(i) finishes visiting the spot β(i), where i ∈ P.
We formulate the HVS-P problem as the following mixed-integer linear programming

(MILP) model:

min
∑
k∈K

∑
j∈P

fkx0jk +
∑
k∈K

∑
(i,j)∈A

dktijxijk + ρh, (7)

subject to∑
j∈P

x0jk =
∑
j∈D

xj0k , ∀k ∈ K , (8)

∑
k∈K

∑
j∈V and (i,j)∈A

xijk = 1,∀i ∈ N, (9)

∑
j∈V and (i,j)∈A

xijk −
∑

j∈V and (j,i)∈A
xjik = 0,∀i ∈ N, k ∈ K , (10)

yi + tij − yj ≤ (TB + tij)(1 − xijk),∀(i, j) ∈ A \ A1, k ∈ K , (11)

ymin
i ≤ yi ≤ ymin

i + h,∀i ∈ P, (12)

yi + ti,n+i ≤ yn+i ≤ ymin
i + ti,n+i + h,∀i ∈ P, (13)

ymin
i = tα(i), ∀ i ∈ {i|i ∈ P and β(i) = e}, (14)

ymin
i = yθ(i) + Tα(i)β(i), ∀ i ∈ {i|i ∈ P and β(i) �= e}, (15)

yi ≤ TB, ∀ i ∈ {i|i ∈ D and β(i) = e}, (16)

yi + ti0 − TB ≤ ti0(1 − xi0k),∀i ∈ {i|i ∈ D and β(i) �= e}, k ∈ K , (17)

ymin
i ≥ TA, ∀i ∈ P, (18)

0 ≤ h ≤ L, (19)

vi = vn+i, ∀i ∈ P, (20)

jx0jk ≤ vj ≤ jx0jk − |P|(x0jk − 1),∀ j ∈ P, k ∈ K , (21)

vi + |P|(xijk − 1) ≤ vj ≤ vi + |P|(1 − xijk),∀(i, j) ∈ A \ A1, k ∈ K , (22)

vi ∈ N∗, ∀i ∈ N, (23)



12 R. ZHANG ET AL.

− Qmax(1 − x0jk) ≤ γ (j) − zj ≤ Qmax(1 − x0jk),∀j ∈ P, k ∈ K , (24)

− 2Qmax(1 − xijk) ≤ zi + γ (j) − zj ≤ 2Qmax(1 − xijk),∀(i, j) ∈ A \ A1, k ∈ K , (25)

0 ≤ zi ≤ Qk + (Qmax − Qk)(1 − xijk),∀(i, j) ∈ A \ A1, k ∈ K , (26)

zi ≤ Qmax(1 − xi0k),∀ i ∈ D, k ∈ K , (27)

xijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K . (28)

In Model MILP, the objective function (7) minimises the total serving cost, including
the fixed-use cost of vehicles and the variable driving cost of vehicles, and the cost of the
longest waiting time of tourists. Constraints (8) guarantee that, for each type k, the number
of vehicles initially starting from the gate is equal to the number of vehicles finally returning
to the gate. Constraints (9) indicate that only one arc flows out from every task node. Con-
straints (10) imply that the number of incoming arcs is the same as the number of outgoing
arcs of every task node. Constraints (9) and (10) illustrate that any task nodemust be carried
out by a vehicle of a type just once.

Constraints (11)–(19) are the formulations of the starting times. In particular, Constraints
(11) define the relationship of the starting times of any two neighbouring task nodes in
a route, removing the sub-tours among task nodes simultaneously. If xijk = 0, Constraints
(11) are relaxed automatically. If xijk = 1, Constraints (11) become

yi + tij ≤ yj, ∀(i, j) ∈ A\A1.
Constraints (12) ensure that the starting time of a pickup node i is later than or equal to the
time when group α(i) finishes visiting spot β(i), but it should be earlier than the longest
waiting time of tourists after group α(i) finishes visiting spot β(i). Constraints (13) illustrate
that the starting time of a delivery node n + i is later than or equal to the starting time of its
corresponding pickup node i plus the travelling time of the transportation request (i, n + i).
Meanwhile, yn+i is earlier than the sum of the time when group α(i) finishes visiting spot
β(i), the travelling time of transportation request (i, n + i), and the longest waiting time of
tourists. Constraints (14) and (15) denote ymin

i of a pickup node iwhen picking up tourists at
the gate and at a scenic spot, respectively. In particular, tα(i) is the arrival time of group α(i)
at the tourism area. The item yθ(i) + Tα(i)β(i) is the time when group α(i) finishes visiting
spot β(i). Constraints (16) ensure that the time of delivering a tourist group to the gate
is earlier than the ending time of the area. Constraints (17) limit that the finish time of a
route is earlier than the ending time of the area. If xi0k = 0, Constraints (17) are relaxed
automatically because they become

yi ≤ TB, ∀i ∈ D.

If xi0k = 1, they become

yi + ti0 ≤ TB, ∀i ∈ D.

Constraints (18) and (19) denote the types of decision variables ymin
i and h, respectively.

Constraints (20)–(23) guarantee that the pickup and delivery tasks in each transporta-
tion task (i, i + n) must be carried out by the same route. The introduction of a decision
variable vi in Constraints (20)–(23) is significant for solving the mathematical model, which
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has been verified in the research of Liu, Moon, and Zhang (2024). Specifically, Constraints
(20) imply that the route index of node i is the same as that of node (i + n). Constraints (21)
guarantee that the index of a route is the index of the first task node in the route. If x0jk = 0,
Constraints (21) are relaxed. If x0jk = 1, Constraints (21) become vj = j, ∀j ∈ P. Constraints
(22) denote that the indexes of all tasks in a route are same. If xijk = 0, Constraints (22) are
relaxed. If xijk = 1, Constraints (22) become vj = vi, ∀i ∈ N, j ∈ N. Constraints (23) show the
type of decision variable vi, where N∗ is the set of positive integers.

Constraints (24)–(27) limit the loading capacities of vehicles. Constraints (24)–(25)
update the number of tourists of a vehicle after serving an arc. If x0jk = 0, Constraints (24)
are relaxed. If x0jk = 1, they become

zj = γ (j), ∀j ∈ P.

Similarly, if xijk = 0, Constraints (25) are relaxed. If xijk = 1, they become

zi + γ (j) = zj, ∀(i, j) ∈ A \ A1.

The loading capacity of any type of vehicle is ensured by Constraints (26). If xijk = 0,
Constraints (26) are relaxed. If xijk = 1, they become

0 ≤ zi ≤ Qk , ∀(i, j) ∈ A \ A1, k ∈ K .

Constraints (27) limit that every route returns to the gate without loading any tourists. If
xi0k = 0, Constraints (27) are relaxed. If xi0k = 1, Constraints (27) become

zi = 0,∀i ∈ D.

Finally, Constraints (28) show the type of decision variable xijk .
The MILP model is mixed-integer, linear, and deterministic. However, the decision vari-

able yi makes the model harder to solve because it is not only constrained by the time
related to vehicles in Constraints (11) but also precedence-constrained by the time related
to tourists in Constraints (12)–(15). Particularly, the decision of the variable yi is critical
because it would also influence the value of the intermediate variable h in the objective
function.

4.3. Property of the problem

Theorem 1: The problem of HVS-P is NP-hard.

Proof: The HVS-P problem degenerates to the dial-a-ride problem (Cordeau and Laporte
2007) if the type of vehicles is reduced to one and the precedence constraints among trans-
portation requests of tourists are relaxed. Furthermore, the dial-a-ride problem reduces to a
vehicle routeing problem with pickup and delivery (Berbeglia et al. 2007) if the constraints
and the optimisation objective from the human perspective is ignored. The vehicle route-
ing problem with pickup and delivery is NP-hard because the vehicle routeing problem is
NP-hard. As a result, the HVS-P problem is NP-hard. �
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5. The ALNS algorithm

An Adaptive Large Neighborhood Search (ALNS) algorithm is designed for the HVS-P prob-
lem. The main reasons are as follows: Firstly, the problem is NP-hard and the MILP model
is difficult to solve. The design of a meta-heuristic to solve the problem is a better choice.
Secondly, theALNSalgorithm ismore flexible than someothermeta-heuristics becausepar-
ticular operators can be designed for different types of problems. Furthermore, the ALNS
algorithm has been popular and successful in solving various scheduling problems (Huang
and Zhang 2023; Zhang, Guo, and Wang 2022a). The HVS-P problem is distinct from the
existing problems such that it cannot be handled directly by the algorithms in literature.
Consequently, an ALNS algorithm that is particularly designed for the HVS-P problem is
meaningful.

5.1. Framework of the ALNS algorithm

In the framework of the ALNS algorithm presented in Figure 3, an initial solution SIni is gen-
erated first. Both the best-so-far solution SOpt and the current solution SCur are initialised
as solution SIni. Two removal and two repair operators were introduced. The score and the
weight of each operator are initialised as zero and one, respectively.

The algorithm is performed in a loop after the initialisation. In each iteration, both a
removal operator and a repair operator are selected according to their historical perfor-
mances using the roulette wheel selection. A solution SCur_DR is generated by destroying
and reconstructing the current solution using the selected removal and repair operators,
respectively. The acceptance mechanism of simulated annealing is used to update solu-
tions SOpt and SCur . If SCur_DR is better than SOpt , both SOpt and SCur are updated as SCur_DR;
if SCur_DR is only better than SCur , SCur is updated as SCur_DR; otherwise, SCur_DR is accepted
to update SCur with a probability. Furthermore, both the score ηCur and the number of calls
nCall of a selected operator are updated in the iteration.

The weight of an operator is updated according to its score and the number of calls for
each NWgt number of iterations in the algorithm. Furthermore, if solution SOpt has not been
updated for a given number of iterations, solution SCur is set as solution SOpt . The algorithm
stops with solution SOpt obtained if the maximum number of iterations, say NIte, is met.

5.2. Solution representation and evaluation

The fundamental building block for the solution representation of the problem is a trip-
segment, which is defined as one transportation request, or a combination of several
transportation requests with different group attributes. A vehicle is empty when it starts
to serve a trip-segment, and it is also empty after finishing serving the segment.

A solution to the problem is represented as a set of vehicle routes. An order encoding
scheme is used to represent each route in the ALNS algorithm. For example, a vehicle route
can be encoded as (k, e, r0, r1, ..., ri, e). That is, the kth vehicle starts from the gate, serves a
set of trip-segments in order, and returns to the gate finally.

The evaluation of a solution includes determining the starting time of each task, check-
ing the feasibility, and calculating the objective value simultaneously. In particular, the
feasibility of a solution is checkedaccording to theprecedenceof tasks, the loading capacity
of vehicles, and the waiting time threshold of transportation requests at the same time.
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Figure 3. Framework of the ALNS algorithm.

5.3. Initial solution

An initial solution is generatedbasedon the set of trip-segments, sayRS = {(i, n + i)|∀i ∈ P},
in which a trip-segment is a transportation request of a tourist group, and the waiting
time of each transportation request is set as zero. Therefore, the travelling time of a trip-
segment (i, n + i) is ti,n+i. Furthermore, the starting time of each pickup or delivery task of
the problem can be calculated according to the visit routes of tourist groups as:

yi = tα(i), ∀i ∈ {i|i ∈ P and β(i) = e}, (29)

yi = yθ(i) + Tα(i)β(i), ∀i ∈ {i|i ∈ P and β(i) �= e}, (30)

yn+i = yi + ti,n+i, ∀i ∈ P. (31)

As a result, the problem with the introduction of trip-segment set RS can be described
on a directed graph G′ = (V ′,A′) when each trip-segment is regarded as a vertex, where
V ′ = {0, 1, · · · , |RS|} is the node set, and A′ = {(u, v)|u ∈ V ′, v ∈ V ′, u �= v} is the arc set.
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The following parameters were introduced for a vertex u ∈ V ′\{0} on Graph G′: the
vehicle-type attribute ku ∈ K , which is defined as the minimum vehicle type whose load-
ing capacity of vehicles is feasible for serving vertex u; the original task rOu , the terminal task
rDu , the starting time tOu , the ending time tDu , and the travelling time TRSu . For Node 0, the loca-
tion of both the origin and the terminal is the gate. The travelling time between vertexes
u ∈ V ′ and v ∈ V ′ is tRSuv = τ(β(rDu ),β(rOv )).

Only one decision variable was introduced as

x′
uvk =

{
1, if a route of type k ∈ K travels from vertex u ∈ V ′ to vertex v ∈ V ′,
0, otherwise.

The initial solutionof the algorithmcanbeobtained easily using the following integer linear
programming (ILP-Init) model:

min
∑
k∈K

∑
v∈V ′\{0}

fkx
′
0vk +

∑
k∈K

∑
(u,v)∈A′

dk(t
RS
uv + TRSv )x′

uvk , (32)

subject to ∑
v∈V ′\{0}

x′
0vk =

∑
v∈V ′\{0}

x′
v0k , ∀k ∈ K , (33)

∑
k∈K

∑
v∈V ′

x′
uvk = 1,∀u ∈ V ′\{0}, (34)

∑
v∈V ′

x′
uvk −

∑
v∈V ′

x′
vuk = 0,∀u ∈ V ′\{0}, k ∈ K , (35)

tDu + tRSuv − tOv ≤ (TB + tRSuv)

(
1 −

∑
k∈K

x′
uvk

)
, ∀u, v ∈ V ′\{0}, k ∈ K (36)

max{ku, kv} ≤ k − |K|(x′
uvk − 1),∀u, v ∈ V ′\{0}, k ∈ K . (37)

In the ILP-Init model, the objective function (32) minimises the total use and driving cost
of all vehicles. Notably, the waiting cost of tourists has been supposed to be zero in set RS.
Constraints (33) denote that, for each type k, the number of vehicles initially starting from
the gate is equal to the number of vehicles finally returning to the gate. Constraints (34)
ensure that each vertex (trip-segment) u ∈ V ′\{0} must be handled just once. Constraints
(35) limit the flow conservation of each vertex. Constraints (36) indicate the relationship
between the starting times of any two continuous vertexes in a route. Sub-tours amongver-
texes can also be removed by Constraints (36). If

∑
k∈K

x′
uvk = 0, Constraints (36) are relaxed.

If
∑
k∈K

x′
uvk = 1, Constraints (36) become

tDu + tRSuv ≤ tOv , ∀u, v ∈ V ′\{0}.
Constraints (37) imply that the vehicle type of a route must be larger than or equal to
the vehicle-type attribute of any trip-segment in the route. If x′

uvk = 0, Constraints (37) are
relaxed. If x′

uvk = 1, Constraints (37) become

max{ku, kv} ≤ k, ∀u, v ∈ V ′\{0}, k ∈ K .
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5.4. Removal operators

A random removal operator and a relatedness-based removal operator were designed in
the ALNS algorithm. A trip-segment is removed from the current solution as a unit in a
removal operator. The number of the removed trip-segments is m ∈ (0.1n, 
πn�), where
�·
 is the downward integer function, 
·� is the upward integer function, and π is a ran-
dom parameter that belongs to (0, 1). The set of trip-segments of the current solution SCur

is recorded as Rcur . Three parameters were given in a removal operator as the following:
the set of the removed trip-segments RRem, the destroyed solution SCur_Des, and the set of
trip-segments RCur_Des of solution SCur_Des.

5.4.1. Random removal operator
We select m trip-segments randomly and remove them from the solution. The details are
shown as follows:

Step 1: Initialise solution SCur_Des as SCur , and set RCur_Des as RCur . Let set RRem be empty.
Step 2: Select a trip-segment r from set RCur_Des randomly. Put segment r into set RRem,

and remove it from both set RCur_Des and solution SCur_Des.
Step 3: If |RRem| < m, go to Step 2; otherwise, the procedure stops with sets RRem and

RCur_Des, and solution SCur_Des provided.

5.4.2. Relatedness-based removal operator
In the relatedness-based removal operator, the following parameters of a trip-segment i
were introduced: the number of transportation requests ni, the set of task nodes Vi, the
starting time of the first task node tOi , and the starting time of the last task node tDi .

Definition 1: The relatedness of trip-segments i and j is

R(i, j) = εn
ni + nj
2n

+ εd

∑
a∈Vi

∑
b∈Vj tab

D
+ εtϕij, (38)

where, εn, εd and εt are the weight coefficients. Specifically, the first component is about
the total number of trip-segments. Segments i and j are more related to each other when
the number of transportation requests is smaller. The second component is related to the
total travel time of the two segments, where

D =
∑
a∈N

∑
b∈N,b�=a

tab (39)

is the sum of Euclidean distance between any two tasks in set N. Segments i and j are more
related when the total travel time is smaller. Furthermore, the last component is related to
the overlap or the gap of time durations of the two segments, where

ϕij =

⎧⎪⎪⎨
⎪⎪⎩

min {tDi ,tDj }−max{tOi ,tOj }
TA−TB

, if tOj ≤ tOi and tDj ≥ tOi ;

or tOi < tOj ≤ tDi ,
min {|tOi −tDj |,|tOj −tDi |}

TB−TA
, otherwise.

(40)

Segments i and j are more related to each other when the overlap of the time
durations is larger or the gap of the time durations is smaller. The denominator in
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Function (40) is set as negative (TA − TB) when the time durations are overlapped
(tOj ≤ tOi and tDj ≥ tOi , or t

O
i < tOj ≤ tDi ). Consequently, in consideration of the three com-

ponents in the definition of relatedness, the smaller the value of R(i, j) is, the more related
trip-segments i and j would be.

The details of the relatedness-based removal operator are shown as the following:
Step 1: Initialise solution SCur_Des as SCur , and set RCur_Des as RCur . Let set RRem be empty.
Step 2: Select a trip-segment from set RCur_Des randomly. Put the selected segment into

set RRem, and remove it from both set RCur_Des and solution SCur_Des.
Step 3: Randomly choose a trip-segment r from set RRem. Let r′ be the segment with the

minimum value of R(r, r′) in set RCur_Des. Put r′ into set RRem, and remove it from both set
RCur_Des and solution SCur_Des.

Step 4: If |RRem| < m, return to Step 3; otherwise, the procedure stopswith sets RRem and
RCur_Des and solution SCur_Des provided.

5.5. Repair operators

A two-stage greedy (TG) operator and a mathematical insertion (MI) operator were intro-
duced to repair a destroyed solution in the ALNS algorithm. All tasks in the removed
trip-segment set RRem are inserted into the destroyed solution SCur_Des using a repair oper-
ator, where both set RRem and solution SCur_Des are obtained from a removal operator. A
solution SCur_Rep would be obtained using a repair operator finally.

5.5.1. TG repair operator
The TG repair operator consists of two stages. A repaired solution SCur_Rep is generated in
the first stage and is evaluated by amathematicalmodel in the second stage. Specifically, in
the first stage, all tasks in set RRem are greedily inserted into the destroyed solutionwith the
loading capacity of vehicles guaranteed. The evaluation of a solution in the second stage
comprises determining the starting timeof each task, checking the precedence of tasks and
the waiting time threshold of transportation requests, and calculating the objective value
of the solution.

Three types of insertions are considered in the first stage and a transportation request is
consideredas an insertedunit. In aType1 insertion, a request is inserted into a trip-segment
of thedestroyed solution. Its feasibility is checkedby themaximum loading capacity of vehi-
cles. In a Type 2 insertion, a transportation request is inserted into a vehicle route of the
destroyed solution as an independent trip-segment. Its feasibility is checked by the prece-
dence of the tasks in the selected route. In a Type 3 insertion, a request as a trip-segment
is put into an empty route, and the route is added to the destroyed solution.

Figure 4 illustrates three types of insertions when inserting transportation request
(i, n + i) into an original vehicle route in the destroyed solution (Figure 4(a)). Particularly,
Figure 4(b) shows an example of inserting request (i, n + i) into a trip-segment of the solu-
tion. An integrated trip-segment P2 → i → D2 → n + i is obtained finally. Figure 4(c) is an
example of inserting request (i, n + i) into the original vehicle route directly. Figure 4(d)
presents the situation of adding a vehicle route into the solution to serve request (i, n + i).

The details of the first stage of the TG repair operator are shown as follows.
Step 1: Initialise solution SCur_Rep as SCur_Des.
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Figure 4. Three types of insertions in the TG repair operator.

Step 2: If set RRem is empty, output solution SCur_Rep and the algorithm stops; otherwise,
remove the first request (i, n + i) in the first trip-segment r of set RRem. If segment r is empty,
remove it from set RRem.

Step3: Insert request (i, n + i) into solution SCur_Rep using Type 1. Theminimum increase
of driving timeWBest is set as a sufficiently large constant. The integrated trip-segment Iu∗v∗
is initialised as request (i, n + i). The selected segment is the first (u = 1) trip-segment in
the first (v = 1) vehicle route of solution SCur_Rep.

Step 4: If it is feasible to insert request (i, n + i) into the uth segment in the vth route,
let the integrated segment be Iuv and let its increase of driving time beWuv . IfWuv < WBest ,
update the parameters asWBest = Wuv , u∗ = u, v∗ = v, and Iu∗v∗ = Iuv .

Step 5: If the uth trip-segment is the last segment of solution SCur_Rep, go to Step 6. If the
uth trip-segment is the last segment in the vth route but the vth route is not the last one in
solution SCur_Rep, let v = v + 1, u = 1, and return to Step 4; otherwise, let u = u + 1, and go
to Step 4.

Step 6: If Type 1 insertion is feasible, the u∗th trip-segment in the v∗th route of solu-
tion SCur_Rep is updated as segment Iu∗v∗ , and go to Step 2; otherwise, select the position
(uT2, vT2) with the minimum increase of driving time when inserting request (i, n + i) into
solution SCur_Rep using Type 2 insertion.

Step 7: If Type 2 insertion is feasible, insert request (i, n + i) into position (uT2, vT2)
of solution SCur_Rep; otherwise, insert request (i, n + i) into solution SCur_Rep using Type 3
insertion. Go to Step 2.

Given a repaired solution SCur_Rep generated from the first stage of the TG operator,
the vehicle type, say kR, of a route R is the maximum vehicle-type attribute among all
trip-segments in route R. Furthermore, the set of arcs of route R is

AGFR = {(iu, iu+1)|iu ∈ R, u = 0, · · · , |R| − 1}. (41)

Consequently, the set of arcs of solution SCur_Rep is

AGF =
⋃

R∈SCur_Rep
AGFR . (42)
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The summation of the fixed cost and the driving cost of all vehicles involved in solution
SCur_Rep is

W_ft =
∑

R∈SCur_Rep

⎛
⎜⎝fkR + dkR

∑
(u,v)∈AGFR

tuv

⎞
⎟⎠ . (43)

In the second stage of the TG operator, three variables about starting times introduced
in the MILP model, yi (i ∈ N), h, and ymin

i (i ∈ P) are still used. A linear programming (LP-
TG) model based on the MILP model is formulated to evaluate a repaired solution as the
following:

minW_ft + ρh, (44)

subject to

yi + tij ≤ yj, ∀(i, j) ∈ AGF , ∀i, j ∈ N, (45)

and Constraints (12) – (19).
In the LP-TG model, the objective function (44) minimises the total cost, and only the

cost of the longest waiting time of tourists should be determined. Constraints (45) indicate
the relationship between the starting times of any two neighbourhood tasks in a route.

The LP-TG model performs quickly and efficiently when evaluating solution SCur_Rep,
because the routes have been constructed and the decision variables only involve the
starting times. If solution SCur_Rep is feasible, its objective value can be calculated directly.

5.5.2. MI repair operator
The trip-segments in set RCur_Des are set as the given segments in the repaired solution of
theMI repair operator. The problemwith a number of given trip-segments is a sub-problem
of the HVS-P problem. It can also be solved using theMILPmodel. Let AMF be the set of arcs
of the given trip-segments. For each trip-segment r in set RCur_Des, arc (iu, iu+1) of segment
r is put into set AMF , where iu ∈ r and u = 0, · · · , |r| − 1. We have∑

k∈K
xijk = 1,∀(i, j) ∈ AMF . (46)

Constraints (46) guarantee that each arc in AMF must be served by a vehicle exactly once.
Furthermore, let N−

i (N+
i ) be the set of the former (latter) tasks of task i in the given visit

route of group α(i). If the group attributes α(i) and α(j) are different for an arc (i, j)in AMF ,
we have ∑

k∈K
xuvk = 0,∀u ∈ N−

i , v ∈ N+
j , (u, v) ∈ A, (i, j) ∈ AMF ,α(i) �= α(j), (47)

and ∑
k∈K

xuvk = 0,∀u ∈ N+
i , v ∈ N−

j , (u, v) ∈ A, (i, j) ∈ AMF ,α(i) �= α(j). (48)

Constraints (47)–(48) limit the decision variables involving infeasible arcs to zero, which
indicates that a route cannot travel from a former (latter) task u ∈ N−

i (N+
i ) of task i to a
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latter (former) task v ∈ N+
j (N−

j ) of task j. One reason is that it violates the precedence con-

straints in the given visit routes of tourist groupsα(i) andα(j)when arc (i, j) ∈ AMF has been
guaranteed in Constraints (46).

An enhanced model with an introduction of Constraints (46)–(48) to the MILP model,
called the MILP-MI model, is used in the MI operator to obtain the repaired solution. The
MILP-MI model solves a restricted sub-problem of the HVS-P problem so that it would be
more efficient than the MILP model in terms of the calculation time.

6. Validation and evaluation

This section evaluates the problem as well as the algorithm. Specifically, Section 6.1 gives
information of equipment, software, and instances of the experiments. Section 6.2 tunes
the main parameters of the algorithm. Section 6.3 validates the MILP model and the ALNS
algorithm. Section 6.4 compares the ALNS algorithm to amath-heuristic algorithm. Section
6.5 explores the advantages of using heterogeneous vehicles. Section 6.6 analyses the sen-
sitivity of the cost coefficient of waiting time and the degree of dispersion of the scenic
spots in a tourism area. Furthermore, Section 6.7 gives a real-size instance study.

6.1. Setting of experiments

6.1.1. Hardware and software
Apersonal computerwith 3.30GHz CPU and 4.0 GB RAMwas used to carry out all the exper-
iments. All procedures are coded in C++. All mathematical models are solved by IBM ILOG
CPLEX 12.6.1. The CPLEX software handles mathematical models using the branch-and-
bound algorithm. The callback function in the solver provides the objective value, the best
lower bound, and the gap between the objective value and the best lower bound at each
search node of the branch-and-bound algorithm.

Each run of the solver for a model cannot be longer than 7, 200 s, except for theMILP-MI
model. The longest calculation time of theMILP-MImodelwas set according to the solution
information obtained at the root node of the branch-and-bound algorithm. If the solver
cannot provide a feasible solution at the root node, the longest computation time of the
MILP-MI model is 20 s; otherwise, it is set considering the value of the gap, say gRoot(≥ 0),
between the objective value and the best lower bound of the root node. If gRoot ≤ GRoot

1 ,
the longest computation time is 100 s; if GRoot

1 < gRoot ≤ GRoot
2 , the longest computation

time is 60 s; if gRoot > GRoot
2 , the longest computation time is 40 s. Both GRoot

1 and GRoot
2 are

the parameters in the range of (0,1), and GRoot
1 ≤ GRoot

2 , which are tuned in Section 6.2.

6.1.2. Generation of instances
The existing instances for some other problems do not lend themselves easily to this
research, even after minor modifications. One reason is that the precedence constraints in
the HVS-P problem depend on the characteristics of tourists’ transportation requests in the
tourism area, which is quite distinct from the existing research. Consequently, small-size
instances S1–S15, middle-size instances M1–M15, and large-size instances L1–L15, were
randomly generated with the number of task nodes ranging from 6 to 120.

The opening time of a tourism area is set as [8 : 00, 19 : 00]. The locations of scenic spots
and the distances among locations refer to the data of Qiandao Lake in China in the Baidu
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Table 3. Parameters of the heterogeneous vehicles.

Vehicle type k Qk fk dk

1 22 60 1.0
2 35 62 1.1
3 49 64 1.2

map, where the number of scenic spots is seven. The set of vehicle types is K = {1, 2, 3}.
The loading capacity, the fixed cost, and the driving cost for different types of vehicles are
presented in Table 3. The cost coefficient of the longest waiting time, ρ, is two per minute
unless explicitly stated.

For the arriving tourists, the number of scenic spots and the visit time of a group at a
spot are generated randomly from 1 to 5, and from 50 to 120min, respectively. Parameters
tc and qc of tourist group c are generated randomly from 8:00 to 13:00, and from 3 to 40,
respectively. The number of tourist groups is set in the range of 3–20. The waiting time
threshold is 30min. The given data of all instances are available in the Figshare repository
(https://doi.org/10.6084/m9.figshare.24053652).

6.2. Parameter setting and tuning of the ALNS algorithm

The parameters εn, εd , and εt in the relatedness-based operator are 0.8, 1.6, and 1.4, respec-
tively. Themaximumnumber of iterationsNWgt to update theweights of operators is 5. The
parameterμ that is used to update the weight of an operator is 0.3. Themaximum number
of iterations without improving the best-so-far solution is 4.

Four key parameters of the algorithm, including themaximumnumber of iterationsNIte,
parameters GRoot

1 and GRoot
2 that determine the longest computation time of the MILP-MI

model, and parameter π that is used to calculate the number of removed elements in the
removal operators, are tuned using Instances S5, M5, and L5. When changing a parameter,
the other parameters are fixed. Thepotential value of a parameterwith theminimumobjec-
tive value, on average, among the three instances is chosen and fixed. The details of the
parameter tuning are presented in Table 4. In particular, parameter NIte is set considering
the scales of instances.

6.3. Comparison between theMILPmodel and the ALNS

All instances were solved by both the MILP model and the ALNS algorithm. For each
instance, the ALNS algorithm runs three times independently and the best solution is
selected unless explicitly stated.

Table 4. Potential values and tuning results of the key parameters.

Parameters Instances Potential values Tuning results

NIte S1–S15 15; 25; 35 15
M1–M15 50; 70; 100 70
L1–L15 50; 70; 100 100

GRoot1 S1–S15, M1–M15, L1–L15 0.15; 0.25; 0.35 0.25
GRoot2 S1–S15, M1–M15, L1–L15 0.30; 0.45; 0.60 0.45
π S1–S15, M1–M15, L1–L15 0.20; 0.30; 0.40 0.20

https://doi.org/10.6084/m9.figshare.24053652


TRANSPORTMETRICA A: TRANSPORT SCIENCE 23

Table 5. Comparison results of Instances S1–S15.

CPLEX ALNS

Instance OBJ. CPU (s) OBJ. CPU (s) OBJ. Gap (%)

S1 251.60 1.06 251.60 5.69 0
S2 252.15 0.65 252.15 5.27 0
S3 157.86 0.84 157.86 6.90 0
S4 217.79 0.64 217.79 6.04 0
S5 258.40 2.43 258.40 6.98 0
S6 221.40 0.64 221.40 6.01 0
S7 406.37 167.66 406.37 73.98 0
S8 317.15 26.54 317.15 12.60 0
S9 407.68 371.73 413.08 22.23 −1.32
S10 288.83 6.14 288.83 6.38 0
S11 348.93 12.55 348.93 8.32 0
S12 253.74 2.09 253.74 7.34 0
S13 321.75 3.69 321.75 8.31 0
S14 251.92 1.97 251.92 6.81 0
S15 296.88 1.42 296.88 5.73 0
Average 40.00 12.57 −0.09

As shown in Table 5, the optimum solutions for Instances S1–S15 can be obtained by the
solver. The ALNS algorithm provides the optimum solutions for Instances S1–S8, S10–S15,
anda feasible solution for Instance S9with agapof 1.32%. The algorithm takes a little longer
calculation time for Instances S1–S6, S10, and S12–S15 when compared to the model. The
main reason behind this is that both the random factor and the iteration operation exist in
the algorithm. Furthermore, the calculation speed of the algorithm is faster than that of the
model for Instances S7–S9 and S11. The experiment validates both theMILPmodel and the
ALNS algorithm.

The results of both the middle- and large-size instances are shown in Table 6. The
algorithm outperforms the solver for middle- and large-size instances in terms of both
the objective value and the calculation speed. Specifically, the improvements regarding
the objective values for Instances M1–M15 and L1–L15 are 7.22% and 25.15% on average,
respectively. The calculation time of the ALNS algorithm for InstancesM1–M15 and L1–L15
are 434.56 s and 2,192.10 s on average, respectively. The ALNS algorithmprovides a feasible
solution for each instance within 3,600 s but the calculation time of the solver is 7,200 s for
each instance. Consequently, the ALNS algorithm provides much better solutions than the
MILP model, and within a shorter time.

Furthermore, the deviation of the objective values among three repeats of both the
middle- and large-size instances are shown in the last column of Table 6. The maximum
deviation is 5.50%, while the minimum deviation of that is 0. Even the deviation value of
5.50% should be acceptable in practice. As a result, the quality of solutions solved by the
algorithm is stable.

6.4. Comparison to amath-heuristic algorithm

The ALNS algorithm is compared to a math-heuristic (MH) algorithm to test its advantage
for solving theHVS-P problem. TheMH is a variant of the algorithm in Liu, Moon, and Zhang
(2024) and the modifications are as follows: First, the longest waiting time of tourists in a
solution-seed is calculated as

h = max
i∈P (yn+i − yi),
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Table 6. Comparison results for Instances M1–M15 and L1–L15.

CPLEX ALNS

Instance OBJ. CPU (s) OBJ. CPU (s) OBJ. Gap (%) The deviation of OBJ. (%)

M1 476.41 7200 420.50 642.80 11.74 1.30
M2 687.06 7200 514.62 529.50 25.10 2.28
M3 597.73 7200 534.40 265.91 10.60 0.00
M4 504.10 7200 447.11 1091.60 11.31 3.22
M5 660.81 7200 510.64 772.91 22.73 4.20
M6 461.15 7200 456.06 247.31 1.10 3.18
M7 473.16 7200 446.16 312.02 5.71 0.90
M8 478.40 7200 478.40 143.95 0.00 2.00
M9 443.80 7200 443.80 343.55 0.00 0.00
M10 491.98 7200 487.48 207.08 0.91 0.89
M11 481.40 7200 466.36 423.86 3.12 2.47
M12 507.50 7200 442.81 484.06 12.75 0.66
M13 574.18 7200 566.95 347.37 1.26 0.00
M14 420.23 7200 411.85 451.87 1.99 1.71
M15 439.84 7200 439.84 254.56 0.00 0.30
Average 7200 434.56 7.22 1.54
L1 953.29 7200 722.90 1815.98 24.17 3.92
L2 818.31 7200 640.60 1567.76 21.72 4.21
L3 881.86 7200 654.40 1876.61 25.79 3.22
L4 855.05 7200 686.03 1133.65 19.77 3.16
L5 1001.21 7200 771.13 2520.26 22.98 5.50
L6 1005.22 7200 751.63 2184.89 25.23 2.19
L7 1014.32 7200 768.60 1872.36 24.23 1.62
L8 1009.70 7200 725.33 2953.41 28.16 1.41
L9 821.86 7200 615.81 2562.11 25.07 0.44
L10 920.75 7200 678.52 2219.81 26.31 1.36
L11 1314.20 7200 967.84 2556.98 26.36 5.22
L12 1389.67 7200 1069.40 3016.61 23.05 4.02
L13 792.48 7200 601.80 1584.00 24.06 3.01
L14 1021.89 7200 696.08 2326.94 31.88 4.07
L15 1227.21 7200 877.00 2690.09 28.54 5.28
Average 7200 2192.10 25.15 3.24

where the starting timeof each task hasbeendeterminedwhengenerating a solution-seed.
The wait time of tourists for a vehicle to pick up them at a location is ignored. Second, the
vehicle-type of each route-segment in a solution-seed is recorded. Third, the evaluation
model of solution-seeds is modified as Model ILP-Init in Section 5.3, where the component
of waiting cost of tourists (ρh) was added to the objective function (32).

Instances L1–L15 are selected to compare the two algorithms. The comparison results
of the objective values are shown in Figure 5. The ALNS algorithmprovides better solutions
than theMHalgorithm for all the large-size instances, with the average improvement being

Figure 5. Comparison results between ALNS algorithm and the MH algorithm.
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15.88%. The main behind reason is that the decision of both the vehicle type of each route
and the waiting time of tourists have been particularly handled in the ALNS algorithm. The
calculation time of the MH algorithm is shorter than the ALNS algorithm. However, the
quality of solutions of the MH algorithm cannot be improved even given a longer calcu-
lation time, because that algorithm was designed based on the branch and construction
but not based on the random and iteration. Consequently, the ALNS algorithm provides
much better solutions for the HVS-P problem.

6.5. Comparison to the homogeneous vehicle scheduling with precedence
constraints

The HVS-P problem is compared to the problem of homogeneous vehicle scheduling with
precedence constraints (HoVS-P) to explore the advantage of the usage of heterogeneous
vehicles. Instances M1–M15 are used in this experiment. The HoVS-P problem is a special
case of the HVS-P problem, which considered only one vehicle type in set K . In considera-
tion of the three types of vehicles of the HVS-P problem in Table 3, the vehicles of the first
type are infeasible for solving Instances M1–M15 because of the limitation of the loading
capacity. Consequently, the HoVS-P problem using the vehicles of the second type (called
the HoVS-P-2), and the third type (called the HoVS-P-3) were verified separately.

Figure 6 shows the objective values of instances solved by the problems of HVS-P and
HoVS-P. The average improvements on the objective value are 13.70% and 2.65%when the
HVS-P problem is compared to the problems of HoVS-P-2 and HoVS-P-3, respectively. The
results indicate that the solutionsof InstancesM1-M15 involve agreater numberof the third
type of vehicles compared to the number of the second type of vehicles. The improvements
are sensitive to the setting of parameters of the heterogeneous vehicles. We changed the
parameters of both the fixed costs and the travel costs of the heterogeneous vehicles, as
shown in Table 7. Instances M1-M15 are resolved separately using the parameters noted in
Table 7, and Figure 7 shows the objective values. The average improvements in the objec-
tive value are 9.51% and 15.56% when the HVS-P problem is compared to the problems of
HoVS-P-2 and HoVS-P-3, respectively.

Figure 6. Comparison with the HoVS-P problem.

Table 7. The changed parameters of the heterogeneous vehicles.

Vehicle type k Qk fk dk

1 22 60 1.0
2 35 75 1.5
3 49 90 2.0
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Figure 7. Comparison with the HoVS-P problem under the parameters noted in Table 7.

Consequently, it is always positive to saveoperational costs for tourismareaswhenusing
heterogeneous vehicles, although different settings of the parameters of heterogeneous
vehicles are considered. One of the main reasons is that the usage of heterogeneous vehi-
cles provides more scheduling schemes, such as using vehicles with lower fixed costs to
serve some smaller-size groups.

6.6. Sensitivity analysis

6.6.1. The cost coefficient ρ
The sensitivity of the cost coefficient of the longest waiting time ρ is analysed using
Instances M1–M15. We modified the value of ρ from 2 per minute to 5 per minute, and
then to 10 per minute while the other parameters were fixed. Each of the instances was
handled by the ALNS algorithmwith every value of ρ. Two components of the optimisation
objective of each instance, including the longest waiting time and the sumof the fixed cost
and the driving cost of all the involved vehicles, are investigated individually.

Specifically, the value of h for each of the instances decreases as the value of ρ increases
from 2 per minute to 5 per minute as shown in Figure 8. The value ofW_ft for each of the
instances increases as the value of ρ increases from 2 per minute to 5 per minute as pre-
sented in Figure 9. The value of h continues decreasing, and the value of W_ft continues
increasing as ρ increases to 10 per minute for fourteen instances, except for Instance M3.
The reason is that more vehicles are required as the value of ρ increases. The driving time
of vehicles without loading tourists may be increased to reduce the longest waiting time of
tourists. The exceptional result of Instance M3 might be caused by the random feature of
the generation of data.

The sensitivity analysis of ρ illustrates that the tourists do not need to wait at any loca-
tion in the HVS-P problem if the value of ρ is too large. However, the total use cost of

Figure 8. Values of h under different values of ρ.
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Figure 9. Values of W_ft with different values of ρ.

Table 8. Results of Instance L-D under different sizes of Euclidean plane.

Size of a Euclidean plane (min2) Num. of involved vehicles OBJ. CPU (s)

20 6 1431.61 2755
40 10 1973.72 3041
60 13 3315.97 3692

vehicles would be increased. A management insight is that the managers of the tourism
area can adjust the value of ρ advisably to balance the operational cost of the area and the
satisfaction degree of tourists.

6.6.2. The degree of dispersion for scenic spots
The sensitivity of the degree of dispersion for the scenic spots in a tourism area is tested
using a large-size instance L-D, which is randomly generated according to Section 6.1.2.
In Instance L-D, the number of groups is 25 and the number of tasks is 124. Specifically,
the locations of scenic spots and the gate in a tourism area were randomly generated on a
Euclidean plane, where the length (width) is modified from 20min (by vehicle) to 40min,
and then to 60min. Furthermore, in the three sizes of planes, the direct travelling time
between any two locations is modified from 5min to 15min, and then to 25min.

Instance L-D with each setting of the degree of dispersion for locations was indepen-
dently solved by the ALNS algorithm. The results are shown in Table 8, where all the
objective value, the calculation time, and the number of involved vehicles increase as the
degree of dispersion for locations increases. The main reason is that the travelling cost of
detour or driving without tourist vehicles would increase as the distances between loca-
tions increase. Consequently, more vehicles would be used because the increase of the
fixed cost of vehicles maybe lower than the increase in the travelling cost of vehicles by
detour or driving without tourists. Furthermore, both a scheduling route and the distribu-
tion of scenic spots under the Euclidean plane with a length of 60min are presented in
Figure 10.

6.7. A real-size instance study

6.7.1. Data sources
A real-size instance is presented based on the data of Qiandao Lake in China on the day
of Spring Festival in 2023. The number of arrival tourists on that day is 1,246. It is nearly a
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Figure 10. A route in the solution of Instance L-D.

Figure 11. Locations of scenic spots in the Baidu map of Qiandao Lake.

30-fold increase compared with the number of the arrival tourists in Spring Festival in 2022
because of COVID-19.

Two main lakes are opened for tourists in Qiandao Lake, including the Central Lake and
the Southeast Lake. The locations of scenic spots in the Baidu map are shown in Figure 11.
The probability for tourists to choose each lake to visit is supposed to be the same. The visit
information of tourists in each lack is shown in Table 9. Furthermore, the visit duration of
tourists at each island is two hours. As shown in Table 10, the travelling time between any
two islands in Qiandao Lake is tested based on Baidu Map. The arrival times of tourists are
generated referred to Section 6.1.2.
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Table 9. The visit information of tourists in the two Lake areas.

The time interval The selected lakes The visit scenic spots

8:00-12:00 Central Lake Miefeng island, Yule island, and Yueguang island
Southeast Lake Mishan island, Tianchi island, and Huangshan island

12:00-14:00 Central Lake Yueguang island and Longshan island
Southeast Lake Huangshan island and Tianchi island

Table 10. The travelling times between scenic spots of Qiandao Lake.

Travelling time (min.) Gate Meifeng Yule Yueguang Longshan Huangshan Tianchi

Meifeng 9.3
Yule 7.4 2.6
Yueguang 2.2 9.1 7.7
Longshan 3.6 6.2 4.9 3.0
Huangshan 9.3 18.2 16.0 10.9 12.9
Tianchi 14.1 22.5 20.1 15.9 17.7 5.1
Mishan 15.9 23.7 21.4 17.6 19.2 6.9 1.8

6.7.2. The analysis of the operationmode
The real-size instance is solved under both the flexible operation mode and the char-
ter operation mode. Specifically, the flexible operation mode is the mode researched in
this problem, which has been described in the introduction section. The main difference
between the twomodes is the rules of vehicles for serving tourists. A vehicle in the charter
operation mode only serves a tourist group until the group leaves the scenic area.

The objective of both the two problems is Function (7). Specifically, the problem under
the chartermode is simple, and tourists have nowaiting time. The CPLEX solver can provide
the exact solution even for a real-size instance under the chartermode. The ALNS algorithm
is used to solve the real-size instance under the flexible mode because CPLEX cannot pro-
vide a feasible solution for the real-size instance even in two hours. Furthermore, Sections
6.3 and 6.4 have verified the superiority of the ALNS algorithm for the problem under the
flexible mode.

As shown in Table 11, the ALNS algorithm is able to solve the real-size instance within
one hour. Consequently, the ALNS algorithm is effective for theHVS-P problem considering
real-life scenarios, although it involves some integer linear programmingmodels. Onemain
reason is that the embedded models are simplified and are only used to solve some sub-
problems of the HVS-P problem. Consequently, the performance of the embeddedmodels
is acceptable even for a real-size instance of the HVS-P problem.

Furthermore, the comparative results on the real-size instance between the flexible
operation mode and the charter operation mode are shown in Table 11. The flexible oper-
ation mode is more effective in saving operational costs compared with the charter mode.
One main reason is that the flexible mode can improve the utilisation of vehicles and save
the fixed cost of using vehicles. Vehicles in this mode would detour or travel some routes

Table 11. The solutions of the real-size instance under the flexible mode and charter mode.

Operation mode OBJ. CPU (s) Fixed cost Travel cost Wait cost

Flexible mode 1796.27 2842 448.00 1291.20 57.07
Charter mode 2074.08 54.30 960.00 1114.08 0.00
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Table 12. Parameters of the fixed cost of a vehicle with different types.

Vehicle type k f 1k f 2k f 3k
1 30 60 90
2 32 62 92
3 34 64 94

Table 13. The solutions of the real-size instance with different fixed costs.

Fixed cost of a vehicle Number of involved vehicles Total travel time of vehicles

f 1k 15 813.1
f 2k 7 1076.0
f 3k 6 1128.5

without tourists to save the fixed cost although the travel cost and wait cost increase
slightly.

6.7.3. The analysis of the cost of vehicles
The relationship between the fixed cost and the travel cost of using vehicles in the real-size
instance is particularly analysed because the two components account for a large propor-
tion of the total cost according to the results in Table 11. The fixed cost of a vehicle with
different types is modified from f1k to f2k and then to f3k while the other parameters are fixed
(recall Table 3). The values of f1k , f

2
k and f3k for different vehicle types are shown in Table 12.

The real-size instance of the HVS-P problem described in Section 3 is handled by the
ALNS algorithm with every setting of fk . The number of involved vehicles decreases and
the total travel time of vehicles increases as the fixed cost of a vehicle increases from f1k
to f2k and then to f3k as shown in Table 13. The main reason for this is that the operation
efficiency of vehicles would be improved to save the vehicles when the fixed cost of a vehi-
cle increases. However, the total travel time would increase at the same time, because the
travel of vehicles without tourists would increase. Consequently, scenic areas could adjust
the allocated number and travel time of vehicles by modifying the parameters of costs.

7. Conclusions and further research

A vehicle scheduling problem for tourists in a tourism area is researched, in which the visit
requests with precedence constraints are served by heterogeneous vehicles. The objective
function of the problem minimises the total cost including the fixed cost and the driving
cost of all involved vehicles, as well as the waiting cost of tourists. A mixed-integer linear
programmingmodel is presented to formulate the problem. Meanwhile, an adaptive large
neighbourhood search algorithm with four specialised operators is designed to solve the
problem efficiently. Both themodel and the algorithm are evaluated based on a number of
random instances. Furthermore, a real-size instance is studied and analysed.

The experiments imply that both the mathematical model and the algorithm are effec-
tive for the problem. The algorithm is stable and it can provide better solutions within a
shorter time compared to the mathematical model for large-size instances. It is possible to
save operational cost for tourism areas when using heterogeneous vehicles with different
types. Managers could balance the operational cost of the tourism area and the satisfaction
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degreeof tourists by adjusting the cost coefficient ofwaiting timeadvisably. In addition, the
number of involved vehicles would increase as the degree of dispersion of the locations in
a tourism area increases.

The main limitation of this research is that the information of tourists is assumed to
be given in advance. Actually, many elements of tourists should be dynamic or uncertain.
Another limitation of this research is that the balance of task assignment has not been con-
sidered among the vehicle routes. Fair task assignment among vehicle routes would be
significant for the drivers, in practice.

Several more elements could be considered in the future. For example, the break time
of drivers could be introduced to the problem, because the scheduling of human resources
is essential. Furthermore, tourists could be divided into different grades according to the
prices of scenic tickets. Tourists with different gradesmight require different types of trans-
portation services. Some other problems regarding the satisfaction degree of tourists, for
instance, the clustering problem of tourists, would be considered simultaneously. The fore-
cast of the information of tourists, including the number of tourists and the arrival times of
tourists in one day, could also be considered in the future. The machine learning method
might be used for the forecast of tourists’ demands.
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