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This paper addresses the economic challenges associated with operating shore side electricity (SSE) in ports, a
critical measure for reducing greenhouse gas emissions in the maritime industry. Although SSE offers significant
environmental benefits, its widespread adoption is hindered by operational costs and the volatility of electricity
prices. To ensure the sustainable operation of SSE, we propose a dynamic pricing and energy management strategy
integrated within a port microgrid to maximize operational profit. We leverage an actor-critic reinforcement
learning approach and propose a reward shaping technique based on a myopic algorithm to enhance performance

and stability. Through several experiments, we show that the proposed algorithm improves the port’s profit by
approximately 4.4 % compared to the rule-based heuristic algorithm, while also exhibiting greater stability and
robustness in the learning process. We also demonstrate that integrating SSE with port microgrids can increase
SSE utilization and benefit the entire system.

1. Introduction

The maritime industry is responsible for more than 80 % of global
trade volume, making it a critical part of the global supply chain [1].
However, it is also a significant source of global air pollution, emit-
ting 1.076 billion tons of greenhouse gas (GHG) emissions annually,
which accounts for 2.89 % of the world’s total GHG emissions [2]. With
growing concerns over environmental pollution, the maritime industry
is also moving toward decarbonization. As a key participant in the in-
dustry, ports are implementing various environmental policies, one of
which is shore side electricity (SSE, also known as cold ironing, on-
shore power supply, shore power, alternative maritime power, and other

terms). SSE refers to supplying electricity from the shore to a vessel while
it is berthed instead of having the vessel generate electricity using its
auxiliary engines. It has significant environmental benefits compared to
using vessel fuel to run the engines, reducing carbon dioxide emissions
by 49 % and sulfur dioxide emissions by 69 % [3].

Due to these factors, many organizations and governments world-
wide have implemented regulations or incentive policies to encourage
SSE utilization. For example, the California Air Resources Board in the
United States mandated that beginning in 2023, vessels berthed at ports
must source at least 80 % of their required electricity from SSE. In re-
sponse, ports within California, including the ports of Los Angeles, Long
Beach, Oakland, and others, have supplied SSE, allowing berthed vessels
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to comply with these regulatory standards by using SSE. Meanwhile, the
Shanghai Municipal Government in China offers incentives to vessels uti-
lizing SSE, including tariff subsidies or priority use of berths. Currently,
most of the SSE operations rely on such regulations and policies. Thus,
numerous studies have been conducted on effective policies aimed at
increasing the utilization rate of SSE [4-6]. However, despite such in-
terventions, the global utilization rate remains low because of its low
cost-effectiveness [7]. Ideally, vessels can gain economic advantages by
using SSE at a lower price compared to using traditional vessel fuel,
while ports benefit economically by selling SSE at a higher price than
the wholesale electricity price. Nevertheless, the volatility of electricity
prices and their high average price have been obstacles for both vessels
and ports in bearing the initial and operational costs. Recently, rising
vessel fuel prices, driven by the International Maritime Organization’s
fuel regulations, have incentivized vessels to use SSE [8]. However, from
the port’s perspective, it is still difficult to realize the economic benefits
of operating SSE, so it remains a challenge that should be addressed to
increase the utilization of SSE.

To address the above problem, Ahamad et al. [9] were the first to
propose the concept of a port microgrid as a solution to reduce emis-
sions, incorporating SSE as a key element. A microgrid is a small-scale
power grid that includes technologies such as renewable energy sources
and an energy storage system (ESS), aiming for efficient energy oper-
ation through intelligent control of generation and load [10]. It also
ensures high reliability and efficiency because it operates in a grid-
connected mode (connected to the main grid) during normal conditions.
In practice, there has been significant movement toward establishing
port microgrids, as ports are suitable for centralized energy manage-
ment and installing facilities such as offshore wind power, solar power,
and ESS. In line with this trend, several studies have focused on opti-
mizing the operation of individual components within the microgrid to
ensure their effective integration [11,12]. By using the ESS, ports can
effectively respond to the volatility in real-time electricity prices and
renewable energy generation, enabling the development of a profitable
model for operating SSE. The key factor for operational efficiency is how
effectively the port controls the balance between the demand and sup-
ply of electricity. The port can control electricity demand by adjusting
the prices of SSE and manage supply by purchasing electricity from the
main grid. Thus, considering the uncertainties in electricity prices and
renewable energy generation, energy management and pricing for SSE
are crucial for profitable SSE operation.

To the best of our knowledge, no research has addressed the above
issue at the operational level. This paper aims to deal with the pricing
and energy management problem for operating SSE in a port microgrid.
Specifically, this study focuses on the real-time electricity market, where
energy management is more challenging than in the day-ahead market
due to the uncertainty of electricity prices. In the day-ahead market,
where hourly electricity prices are established daily, the uncertainty
is lower, and relatively accurate modeling is possible, making model-
based approaches more appropriate. However, applying a model-based
approach in the real-time market requires the unrealistic assumption
that future electricity prices can be predicted accurately. Additionally,
as the time horizon extends and the problem size increases, the computa-
tional time required for model-based approaches increases significantly.
Instead, we adopt reinforcement learning (RL) approaches that can be
applied in model-free situations without relying on the unrealistic as-
sumption. With RL methods, it is possible to make dynamic decisions
based on real-time data within a short computational time.

We propose a Markov decision process (MDP) formulation and
actor-critic RL algorithms to solve the pricing and energy management
problem of maximizing the port’s profit. We also present numerical ex-
periments to analyze the algorithms’ results and performance. The main
contributions of this study are presented as follows:

1. We present a profitable model for operating SSE in ports and pro-
pose an RL algorithm with a reward shaping technique for pricing
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and energy management strategies. The proposed algorithm will
enable ports to bear initial and operational costs by enhancing
profitability. Ultimately, it serves as a foundational framework for
enhancing the sustainability of operating SSE.

2. We validate the performance of the algorithm using real-
world data, demonstrating its application in practical situations.
Furthermore, through sensitivity analysis, we demonstrate its ro-
bustness to changes in hyperparameters compared to existing
algorithms.

3. Several managerial insights into the operation of SSE are pro-
vided through the results of computational experiments. From
the port’s perspective, these insights help not only with the ef-
ficient operation of SSE, but also with the design and economic
feasibility assessment for SSE and microgrids. The experimental
results also provide insights for governments and institutions on
implementing regulations or incentive policies.

The rest of this paper is structured as follows: In Section 2, we in-
troduce existing studies on SSE and energy management. Our problem
description and mathematical formulation for the problem are presented
in Section 3. In Section 4, RL algorithms and a reward shaping technique
for solving the MDP problem are proposed. Numerical experiments
for the proposed algorithms are presented in Section 5, and Section 6
provides conclusions.

2. Literature review

This paper is related to two major research areas: decision-making in
SSE operations and the energy management problem. In Section 2.1, we
present existing studies that address various issues related to SSE opera-
tions, and in Section 2.2, we introduce research on energy management
problems across different domains.

2.1. Decision-making in SSE operations

With growing environmental concerns and increasingly strict regu-
lations in the maritime industry, significant studies have focused on the
operation of SSE in ports. One of the widely discussed areas of research
is the integration of SSE operations with other port operational prob-
lems. Zhen et al. [4,6] analyzed incentive policies aimed at promoting
SSE, incorporating berth allocation and ship scheduling while consid-
ering environmental benefits and operational costs. Yu et al. [13,14]
addressed the berth allocation and quay crane assignment problem with
SSE operations, aiming to reduce emissions while satisfying the eco-
nomic interests of both vessels and ports. They considered fluctuations in
electricity prices to evaluate the economic benefits of SSE usage. These
integrated studies focused on traditional port operational issues and did
not take into account energy management for operating SSE.

Several studies have addressed energy management strategies for
operating SSE through the port microgrids concept. Zhang et al. [15]
focused on the synergy between SSE technology and microgrids, ad-
dressing both energy management and berth allocation to minimize
operational costs. Wang et al. [11] addressed the design and operation of
port microgrids and SSE, considering initial and operational costs. Using
a two-stage optimization approach, they dealt with strategic decisions
related to initial installation and operational level energy management.
Additionally, several other studies have examined integrated energy
management, including SSE, in conjunction with traditional port opera-
tions such as berth allocation [16] and crane assignment [17]. All of the
above studies proposed ways to reduce operational costs by integrating
port microgrids with SSE but did not account for SSE pricing to maximize
profit. In contrast, Qiu et al. [18] focused on maximizing revenue from
SSE supply for all-electric ships by determining pricing and electricity
purchases from the main grid. However, the uncertainty of electricity
prices in the real-time market was not considered in their study.

Additionally, there are studies that have explored the economic feasi-
bility of adopting SSE. Yigit et al. [19] assessed the economic feasibility
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of SSE from the perspective of shipping companies based on electricity
and fuel prices, suggesting that SSE can provide economic benefits. Dai
et al. [20] evaluated SSE from the port’s perspective, considering carbon
emission trading, and concluded that radical investments can yield eco-
nomic gains with carbon emissions reduction. Case studies that conduct
an economic assessment from the perspectives of both shipping com-
panies and ports have also been presented [21]. Wang et al. [22,23]
explored government SSE subsidy policies by analyzing the decision-
making processes of governments, ports, and shipping companies using
game theory. Xing et al. [24] also addressed the problem of ports decid-
ing the production level and pricing of SSE, modeling it as a price-setting
newsvendor problem that considers the uncertainty of conventional fuel
prices. As an extension of these studies, Peng et al. [25] proposed a
model in which the government determines subsidy policies, while the
private/public port decides on investment scale and SSE pricing. While
the aforementioned studies accounted for the profitability of SSE pricing
for ports, they were conducted at a strategic level without considering
the volatility of electricity prices.

2.2. Energy management problem

The majority of research related to energy management has fo-
cused on balancing energy supply and demand to reduce costs or
increase profits. In microgrids, because the generation of renewable
energy is uncontrollable, supply is regulated by deciding how much
electricity to purchase from the main grid. At the same time, inter-
nal energy demand is managed directly, while external demand is
adjusted indirectly through electricity pricing decisions. Accordingly,
proper decision-making on both purchasing and pricing is essential for
efficient energy management in microgrids. Joint decisions on dynamic
pricing and purchasing have been widely studied in traditional inventory
management in multi-echelon supply chain settings [26-29]. However,
in contrast to these studies, the electricity market requires more dy-
namic and immediate decision-making due to the real-time fluctuations
in wholesale prices.

Several studies on port microgrids have focused on enhancing energy
efficiency through optimal system design and operation. Kumar et al.
[30] addressed the design problem for port microgrids related to battery
charging and SSE. Molavi et al. [12] proposed a two-stage programming
approach to evaluate the practical viability of integrating microgrids
into smart ports, considering both investment and operational decisions.
More recently, there has been growing interest in optimizing the control
strategies of distributed energy resources within port multi-energy sys-
tems to improve energy efficiency and reduce operational costs [31,32].
Although these studies dealt with operational issues related to energy
management in port microgrids, they did not consider electricity trad-
ing with the main grid and thus did not cover pricing and purchasing
decisions. Since there are few studies addressing the pricing and energy
management problem for operating SSE in ports, we introduce studies
that explore energy management strategies in other domains.

One of the main streams is the study of pricing strategies to control
electricity demand in smart grids. Srinivasan et al. [33] investigated
a pricing model for managing residential and commercial electricity
demand within smart grids. A game theory-based methodology was pro-
posed and the experiments demonstrated that real-time pricing policies
can reduce peak loads while increasing the grid operator’s profit. Lu
etal. [34] explored a situation in which a smart grid operator determines
retail electricity prices in a hierarchical electricity market, taking into
account uncertainties in demand and wholesale electricity prices. This
study aimed to optimize the overall system’s profit by considering both
the costs of the grid and customers. Zhang et al. [35] proposed an RL
approach for dynamic pricing to maximize the profit of the broker act-
ing as a retailer in the electricity market. Alves et al. [36] also addressed
the electricity pricing problem for maximizing retailers’ profit and de-
veloped a bilevel programming approach to model decision-making of
both retailers and consumers. Electric vehicle (EV) charging stations,

Applied Soft Computing 186 (2026) 114089

which purchase electricity from the main grid and resell it to EV users,
have also been the subject of research on electricity pricing. Dong et al.
[371 presented a simulation and optimization model for voltage control
in EV charging stations through dynamic pricing. Several studies have
also explored RL methodologies to find optimal pricing policies, taking
into account various factors such as the profit of charging stations, the
quality of service for EV users, and the utilization of charging facili-
ties [38,39]. The aforementioned studies focused on pricing decisions to
regulate demand and maximize profits; however, they did not address
purchasing decision-making, as they considered situations without ESS.

Xu et al. [40,41] examined scenarios where retailers not only de-
termine the selling price of electricity but also set the bidding price,
which affects purchasing actions from the main grid. They developed a
reinforcement learning model to simultaneously determine the bidding
and selling prices for profit maximization. As noted in their research,
in real-time electricity markets, a retailer’s bidding can influence the
wholesale price. However, in our study, we assume purchasing actions
rather than bidding actions, because the amount of electricity purchased
for SSE is not significant enough to impact the wholesale electricity
price. In other words, the port is set to only take information on the
wholesale price from the main grid, so bidding actions are out of our
scope. Luo et al. [42] and Lee et al. [43] studied decision-making of EV
charging stations similar to our study. They considered both electricity
purchasing and pricing actions to maximize the profits of EV charging
stations, while also taking renewable energy and ESS into consideration.
However, the former study modeled real-time electricity prices using a
Markov chain and assumed that the transition probability was known,
while the latter assumed time-of-use (TOU) wholesale prices with lower
uncertainty compared to real-time prices. To fill these research gaps,
we address purchasing and pricing decisions under the uncertainty of
the real-time electricity market without the unrealistic assumption on
wholesale price.

3. Problem description and mathematical formulation

In this study, we consider an infinite-horizon dynamic pricing and
energy management problem in a port microgrid aimed at maximizing
the port’s profit. Section 3.1 describes the dynamics of the system, in-
cluding the operational structure of the port microgrid and the decision-
making process of the vessels with respect to the use of SSE. Based on
this, in Section 3.2, we formulate the problem as a Markov Decision
Process (MDP) to enable a model-free approach. A list of notations used
throughout the paper is provided in Table 1.

3.1. System dynamics

The SSE operation model involves three main entities: the main grid,
the port, and the vessels. Electricity flows from the main grid through
the port microgrid to the vessels, and the system is represented in a
hierarchical structure as shown in Fig. 1. Based on the assumption men-
tioned in Section 2.2, the main grid sets the wholesale electricity price,
¢,, based on hourly real-time pricing, and the port decides how much
electricity to purchase, e,, at that price. At the same time, the port de-
cides the SSE price, p,, and resells electricity to vessels. Consequently,
the model can be shown as a multi-echelon supply chain, with the main
grid acting as the wholesaler, the port as the retailer, and the vessels
as the customers. In summary, at each time step ¢, the port makes two
decisions to maximize the profit from operating SSE: (1) the amount of
electricity to be purchased from the main grid, ¢,, and (2) the selling
price of SSE to vessels, p,.

The port not only purchases electricity from the main grid but also
generates it from its own renewable energy sources, such as solar and
wind power. Accordingly, the port secures a renewable energy genera-
tion amount r, +¢ at each time step and stores it in an ESS. With the ESS,
the port can purchase a large amount of electricity when the wholesale
price is low and store the excess electricity for future sale. Typically, the
electricity from the main grid or renewable energy sources, as well as the
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Table 1
Notations.
Sets
T - Set of time periods, 1 € T
S, - Set of states at time ¢
A, - Set of actions at time ¢
Parameters
emax - Maximum amount of electricity to be purchased per unit
time
dmex - Maximum amount of SSE to be sold per unit time
[ - Real-time wholesale price of electricity at time ¢
1, - Remaining electricity in ESS at the beginning of time ¢
Imax - Storage capacity of ESS
v, - Number of vessels berthed at time 7
D, - Total electricity consumption of vessels at time ¢
r, - Estimated renewable energy generation at time ¢
€ - Estimation error of renewable energy generation
S - Fuel price of vessel n at time ¢
neh - Charging efficiency of ESS (from AC to DC)
pdisech— — Discharging efficiency of ESS (from DC to AC)
8 - Storage efficiency of ESS
ks - Electricity consumption of a vessel n per unit time at time ¢

Decision variables

e, Continuous Amount of electricity to be purchased at time ¢
2 Continuous SSE price at time ¢
d, Continuous  Amount of SSE sold at time ¢
A Binary Whether vessel n is willing to use SSE at time 7; 1 if p, <
fns> 0 otherwise
A Continuous  Profit of the port at time ¢
Port microgrid
ST T R Vessels
! Energy \ ————
Wholesale price | storage : SSE price { C 1] !
information ' S~ . information , ' !
c 1 | 143 1 :
- = sl
Purchasing : I Selling SSE : X
Mai id electricity N G " : d, | & 1
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Fig. 1. Hierarchical structure of the pricing and energy management problem.

electricity consumed by vessels, is in AC form, whereas the ESS stores
energy in DC form. Thus, power conversion is required to change AC to
DC and then DC back to AC, resulting in electricity losses [44]. We ac-
count for these losses as the charging/discharging efficiency rate of the
ESS, n¢h/disch [16,18,42,45]. There are also electricity losses while the
energy is stored in the ESS, which we consider as the storage efficiency
rate, 6.

For each time step ¢, berthed vessels decide whether or not to use
SSE based on the SSE price provided by the port. Each vessel compares
its own fuel price f,, with the SSE price p, and chooses the more eco-
nomical option. In reality, fuel prices can vary even for the same type
of fuel depending on the port where the vessel is bunkered, and ves-
sels may also obtain fuel at a specific price through contracts with their
suppliers [46]. If f,, is lower than p,, the vessel n will generate elec-
tricity using its engines rather than using SSE. On the other hand, if
S, is higher, the vessel will choose to use SSE. In short, each vessel’s
fuel price can be considered as the reservation price (willingness to pay)
for using SSE, and we assume it follows a uniform distribution. We also
assume that the port does not know the fuel price information for each
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vessel but only knows the probability distribution of the fuel prices. It
is a realistic assumption that reflects the fact that shipping companies
are reluctant to disclose information about their fuel prices. Under this
assumption, the port does not make individual decisions for each vessel
but instead considers the aggregated electricity demand from all berthed
vessels when making pricing and purchasing decisions. As a result, the
model avoids the combinatorial complexity that could arise when plan-
ning at the individual vessel level, especially when the number of vessels
increases.

Based on the operational setting described above, the port’s profit at
time ¢ is formulated as follows:
7, = pd, — ce,, VteT, @
where d, denotes the amount of SSE sold to vessels at time . The first
term represents the revenue from SSE operations, and the second term
denotes the cost incurred from purchasing electricity from the main grid.

The electricity flow constraints, including those related to the ESS,
are defined as follows:

L S5(’:+’7€h(et+"t+€)—dx/’7dmh), VieT, 2)
0<I, <1™*, VieT. 3)
0<e <™, VteT, 4
0<d, <d", VieT. (5)

Constraint (2) is relevant to the ESS balance equation, which accounts
for the inflows (e,+r,+¢) and outflows (d,), adjusted by the charging, dis-
charging, and storage efficiency factors. It is formulated as an inequality
because the uncertain factors can cause the right-hand side to exceed the
ESS capacity. Constraint (3) represents the storage capacity limit of the
ESS. Constraints (4) and (5) specify the upper limits on the amount of
electricity that can be purchased from the main grid and sold from the
ESS to vessels, respectively.

The constraints related to the amount of SSE sold to vessels are as
follows:

D= ko ViEeT, (6)
n

A <Y ks VieT, )
n

d, < y@sehp 4 ychydische 4r 4e), VieT, (8)

0<d, <d™, vieT. 9)

In Eq. (6), D, is defined as the total electricity consumption from the ves-
sels at time ¢. Constraint (7) ensures that the amount of SSE sold does not
exceed the total SSE demand from vessels. In this constraint, k,, repre-
sents the electricity consumption of vessel n, and 4, is a binary variable
indicating whether the vessel is willing to purchase SSE, determined by
comparing p, and f,,. Constraint (8) requires that the ESS discharging
amount be less than or equal to the sum of the charged amount and the
current storage level. Constraint (9) defines the maximum amount of
SSE that can be sold.

To maximize the profit, the port makes joint decisions hourly on both
¢, and p, and each decision involves trade-offs. In the decision on e,, pur-
chasing a large amount when the wholesale price is low can reduce the
purchasing cost. However, it leads to electricity losses due to the storage
efficiency rate. In the decision on p,, a lower price reduces the unit mar-
gin but increases sales volume, whereas a higher price increases the unit
margin but reduces sales volume. Furthermore, when a large amount
of electricity is stored in the ESS, it is expected to be more profitable
to set a lower price to increase sales volume for reducing electricity
losses. Conversely, if less electricity is stored, a higher price may be
more beneficial. Accordingly, the port needs to consider various factors,
including the wholesale electricity price, ESS storage level, renewable
energy generation, and the electricity consumption of vessels.
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3.2. Markov decision process

An MDP is a mathematical formalization of sequential decision
making, which serves as the theoretical framework for reinforcement
learning. MDPs consist of five key components: a set of states S, a set
of actions A, a state transition probability matrix P, a reward function
R, and a discount factor y. The state has the Markov property, which
means the future state is independent of the past states given the current
state. In other words, the state perfectly represents all the information
about the current situation. Given the state, the agent interacts with the
environment to maximize the sum of the cumulative rewards. Because
the MDP problem forms the foundation of the reinforcement learning
environment, developing it well is crucial for effectively solving the
problem. In this section, we formulate the dynamic pricing and energy
management problem as a Markov decision process (MDP) problem.

State: At time ¢, the state is defined as follows:

8 =003, €02 -5 €15 ¢ Ly 1y, D). (10)

It contains information on the wholesale price, the ESS storage level,
the estimated renewable energy generation, and the total electricity
consumption. Specifically, we include not only the current wholesale
electricity price but also its history over the past 23 h. Optimal decision-
making requires information on future wholesale prices, but accurate
prediction is challenging under real-time pricing. Instead, we use the
wholesale price information from the most recent 24 h because real-time
price data typically follows a daily pattern. Although the information on
the fuel prices of the vessels is important for decision making, it is not
included in the state because it is unobservable to the port.
Action: The action spaces are formulated as follows:

a, = (e, py), (11)
0<e <e™*, 12)
I<p <u 13

Constraint (12) is the same as Constraint (4). As mentioned in
Section 3.1, because the reservation prices of vessels for SSE follow a
uniform distribution, there is a minimum value / and a maximum value
u. Under this information, it is clear that the port would not set the
SSE price lower than / or higher than u, so we set the feasible range
of the SSE price as shown in Constraint (13). Several previous studies
on energy management and pricing decisions use discrete action spaces
for reinforcement learning. However, discrete action spaces have limi-
tations when applied to real-world situations with a large action space.
In this paper, we use continuous action spaces for both actions to ensure
adaptability and applicability in practice.

Transition: In the MDP, the next state changes based on the action
chosen by the agent. The transition probability refers to the likelihood
that the next state will be s,,; given that the agent takes action g, in the
current state s,. In this problem, it is formulated as follows:

d, = min {d’”‘”‘, 2 Ky A 795N, + 7 ey + 1, + e))} , 14
n
L, = min{ "™, §(I, + v (e, + r, + €) — (1/y"*M)d,)}. (15)

Eq. (14) is defined by Constraints (7) through (9). Eq. (15) is derived
from Constraints (2) and (3). Note that uncertainty of the environ-
ment arises not only from future information such as ¢, and D, , but
also from the estimation error of renewable energy generation, ¢, and
unobservable factors, 4,,.

Reward: In the MDP, the agent receives a reward by taking action a,
in state s,. The objective of this problem is to maximize the port’s profit,
so it is formulated as shown in Eq. (16), which is identical to Eq. (1).

re =7 = pd — ey (16)
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4. Solution methods

In this section, we describe RL approaches to address the pricing and
energy management problem for the operation of SSE in a port micro-
grid. When perfect information about the MDP is available, model-based
algorithms such as dynamic programming can be utilized. However,
uncertainties in the environment, such as wholesale electricity prices,
renewable energy generation, and the total electricity consumption of
vessels, lead to incomplete information about the MDP. Accordingly, we
propose model-free RL algorithms that can be applied when the MDP is
unknown.

RL is a type of machine learning in which an agent learns to maxi-
mize rewards by interacting with its environment. The agent selects an
action from a set of feasible actions in the current state, receives a reward
from the environment, and improves its policy. Through this process, the
agent learns by trial and error, ultimately optimizing a policy for long-
term rewards. Recently, with the advancement of deep learning, there
has been significant research on deep RL (DRL) methods, which com-
bine RL with deep learning techniques. In DRL, deep neural networks
are used as function approximators for the actual value function or pol-
icy function. DRL methods can handle high-dimensional state spaces in
real-world problems and are applicable even when the state spaces are
continuous.

4.1. Actor-critic approach

As mentioned in Section 3.2, this problem involves a continuous
action space. Value-based algorithms estimate the value function and
select the action with the highest value for a given state. However, they
are challenging to use when dealing with continuous action spaces, be-
cause the process of selecting the action with the highest value becomes
an optimization problem. Another approach is to discretize the action
space. However, this makes exploration and effective learning difficult,
because it can significantly enlarge the action space due to the curse of
dimensionality. Therefore, we adopt the actor-critic approach, which ap-
proximates both the value function and the policy function using neural
networks, making it possible to handle continuous action spaces.

Most model-free RL algorithms iterate two key processes: policy
evaluation, where the value of an action is estimated, and policy im-
provement, where the policy is updated based on the action-value
function. The actor-critic approach consists of two networks: an actor
network, which maps a state to a specific action, and a critic network,
which estimates the value of the state-action pair. In this context, up-
dating the critic network to obtain more accurate state-action values is
referred to as policy evaluation, while updating the actor network based
on those values is known as policy improvement. By iteratively updating
both the actor and critic networks, the algorithm learns accurate value
estimates and an optimal policy. Because the actor-critic approach trains
both the actor and critic concurrently, it tends to be more stable than
value-based or policy-based methods. Additionally, it has the advantage
of being applicable even when the state and action spaces are large or
continuous.

In this study, all algorithms use the same architecture for the actor
and critic networks, as illustrated in Fig. 2. Each network consists of
three hidden layers with 256 nodes, and the rectified linear unit (ReLU)
function is used as the activation function for all hidden layers. The actor
network takes the state as input and outputs the corresponding action,
using the hyperbolic tangent (tanh) function as the output function. The
critic network takes a state-action pair as input and outputs a Q-value.
This architecture was chosen through repeated experiments to ensure
training stability.

4.2. Deep deterministic policy gradient algorithm

Recent RL research predominantly focuses on DRL methods, with
the first algorithm to successfully implement DRL being the deep Q-
network (DQN). DQN is an innovative algorithm capable of addressing
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Fig. 2. Architecture of the actor and critic networks.

problems with large or continuous state spaces. However, DQN remains
difficult to apply to continuous action spaces because it is a value-based
algorithm. Lillicrap et al. [47] proposed the deep deterministic policy
gradient (DDPG) algorithm to overcome this limitation by combining
the actor-critic approach with two key techniques from DQN. One of
these techniques is experience replay, which enhances the efficiency
of learning. The agent interacts with the environment to gain experi-
ences during the learning process, and these experiences are stored in
a replay buffer to be reused in training. It not only enhances data effi-
ciency but also reduces the correlation between experiences by sampling
randomly from the buffer, thereby increasing the overall efficiency of
learning. The other technique is use of a target network during the net-
work training process. The actor-critic approach involves training both
the actor network Ty and the critic network Q,, which are associated
with their own target networks z,, and Q. If the target values con-
tinuously change during the network training process, it can lead to
instability in learning. The target network is updated at fixed intervals
rather than continuously, which improves the stability of learning.

In the DDPG algorithm, the temporal difference (TD) target is used
to train the critic network. The TD target is an estimate of the current
step’s value, based on the actual reward from the current step and the
estimated value of the next step. The value of the next step is estimated
through the critic target network, and the TD target can ultimately be ex-
pressed as y, = r,+yQy (5,11, Ty (5,41))- Therefore, the critic loss function
can be derived as shown in Eq. (17), and the critic network is updated
using a gradient descent, as shown in Eq. (18).

L(O) = E,[(y - Qg(s. @)1 = N™' Y [(r + 70y (5", 14y (s')) = Q5. ))']
17

0 —0+a Y [(r+70p(s', 7y (s) = Qyls, )V Qy(s, )] (18)

In problems involving discrete action spaces, policy improvement
is achieved by solving for the action with the highest value in a given
state, argmax,Q7" (s, a). However, in continuous action spaces, finding the
optimal action becomes an additional optimization problem. Silver et al.
[48] proposed an alternative method where the policy is updated in the
direction of the gradient of the value function Q, and derived Eq. (19),
the gradient of the policy’s value function J(¢), using the deterministic
policy gradient (DPG) theorem. This outlines the theoretical background
of the DDPG algorithm, where the actor network is updated based on the
gradient ascent method, as shown in Eq. (20).

Vyd (@) = N7' Y V,04 (5.0)Vy7y(s) 19)
b b+ VI () (20)

Exploration is a critical and widely addressed issue in RL. RL agents
learn through experiences, so they cannot obtain the value of states

and actions they have never encountered. The DDPG algorithm enables
exploration by adding random noise G to the actions generated by the
actor network’s output. The detailed procedure of the DDPG algorithm
is presented in Algorithm 1.

4.3. Twin delayed DDPG algorithm

While numerous studies have employed the DDPG algorithm to ad-
dress continuous control problems, challenges such as converging to
local optimal solutions or divergence still remain. Fujimoto et al. [49]
proved that these issues are due to the overestimation of Q-values in the
DDPG algorithm and proposed the twin delayed DDPG (TD3) algorithm,
which incorporates several techniques to address this limitation. The
TD3 algorithm solves the overestimation bias problem by adopting the
concept of double Q-learning proposed by Ref. [50] during the critic net-
work update process. Specifically, it introduces two independent critic
networks Qe'] s Q%, and when updating the target, the algorithm selects
the minimum of the two estimated values. In addition, to prevent over-
fitting in the value estimation process, noise G is added to the original
action. This technique helps ensure that similar actions yield similar
value estimates in continuous action space environments. Accordingly,
the update process used in the DDPG algorithm, as presented in Eq. (18),
is replaced by that in Eq. (21).

Algorithm 1 DDPG algorithm.

Initialize actor network 7y, Critic network Q, with random parameters
¢, 0

Initialize actor target network z, critic target network Q, with param-
eters ¢’ « ¢, 0’ < 6.

Initialize replay buffer B

for episode e = 1 to E do

Initialize electricity price, renewable energy generation, total elec-
tricity consumption of vessels, and ESS storage

for time stept =1to T do

Observe state s,

Select action g, = my(s) + G with exploration noise G ~ N'(0, o).
Execute action a, and get reward r,, next state s, ;.

Add transition (s,, a;,7,,5,,1) to B.

Sample mini-batch (s, a, r, s") from B with batch size N.

Update critic network 6 using Eq. (18).

Update actor network ¢ using Egs. (19) and (20).

Update actor target network ¢’ = z¢p + (1 — 7)¢’

Update critic target networks 0’ = 70 + (1 — 7)¢’

end

end
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Fig. 3. Overview of the TD3 algorithm with reward shaping.

0, <6, +a 2[(r + ymini=1’ngl/(s’, 71'4)/(5’) + Q) — Qy,(5,2))V,Qp,(s, a)]
(21

In the DDPG algorithm, both the critic and actor networks are up-
dated at every time step. The actor network is updated based on the
value estimates provided by the critic network, so if the critic network
is inaccurate, the learning of the actor network also becomes unreli-
able. The TD3 algorithm addresses this issue by recognizing that such a
process can lead to instability in learning and instead adopts a method
where the actor network is updated after the critic network has been
trained more stably. Specifically, the critic network is updated at every
time step, while the actor network is updated at constant intervals.

4.4. Reward shaping technique

We propose a model that combines the TD3 algorithm with a reward
shaping technique to achieve better performance. Reward shaping is a
method used in RL to incorporate knowledge from an external policy
when applying RL to a specific domain. Since its theoretical introduction
by Ref. [51], this technique has been widely utilized in various fields,
such as inventory management [52,53] and energy management [54].
Reward shaping changes the original reward function R to a shaped
reward function R’ by adding a shaping function F. In this study, we use
a myopic algorithm that maximizes the expected reward in the current
step as a baseline policy, and the shaped reward function is defined as
shown in Eq. (22). In Eq. (22), it is constructed by subtracting the profit
obtained by myopic policy in time ¢ from that obtained by TD3 policy
in time ¢. We provide a detailed explanation of the myopic algorithm in
Appendix A.

r; = - ﬂtmyo”ic (22)

This shaped reward can be interpreted as the relative reward of the
TD3 policy compared to the myopic policy. In this study, the myopic
policy used for reward shaping is executed in a separate environment,
making it independent of the actions selected by the TD3 policy. Using
such a shaped reward function offers two key advantages for the model.
First, in line with the purpose of reward shaping mentioned earlier, our
model learns a better policy by leveraging the knowledge from the my-
opic policy. We expect the myopic policy’s reward to serve as a minimum
performance baseline for policy learning. Second, more importantly, the

shaped reward function offers a more accurate representation of the
action’s value.

As mentioned in Section 4.1, the key principle of the actor-critic
approach is to find an action that maximizes the expected cumulative
reward for a given state. However, in this problem, the reward is in-
fluenced by external factors such as the wholesale electricity price and
renewable energy generation, rather than the agent’s actions. Motivated
by the above observation, we designed the reward shaping technique to
remove the impact of external factors from the actual reward. In this con-
text, we use the myopic algorithm as a baseline because it provides the
most direct estimate of the current state’s value. This idea is similar to
the concept of advantage actor-critic (A2C) algorithms proposed by Ref.
[55], where the advantage is calculated by subtracting the state value
from the state-action value. While the A2C algorithm requires training
an additional neural network to estimate the state value, the reward
shaping technique proposed in this paper enables stable estimation of
the state value using a myopic algorithm. The overview of the TD3 algo-
rithm with reward shaping is shown in Fig. 3, and the detailed learning
procedure is presented in Algorithm 2.

5. Computational experiments

In this section, we conducted computational experiments to evaluate
and analyze the performance of the proposed RL algorithms, DDPG, TD3,
and TD3 with reward shaping (TD3-RS). The experiments consisted of
three main parts. In Section 5.1, we compared the performance of the
three proposed RL algorithms and validated the algorithms using a test
dataset. In Section 5.2, we performed a sensitivity analysis on several
environmental inputs. Finally, in Section 5.3, we analyzed the potential
side effects that arise from the port’s pricing and energy management
strategies.

We established the following common experimental settings across
the three experiments. Based on the problem description outlined in
Section 3.1, we implemented an environment for the dynamic pricing
and energy management problem. The electricity wholesale price data
used in the environment were obtained from the website of PJM, one of
the regional transmission organizations in the United States, and real-
time hourly electricity pricing data were used. The renewable energy
generation data were also generated based on PJM’s hourly renewable
energy generation dataset, while the number of berthed vessels was de-
rived from data on container ships berthed at the Port of Los Angeles.
The parameters for the upper and lower bounds of vessel fuel prices were
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Algorithm 2 TD3 algorithm with reward shaping.

Initialize actor network Ty critic networks le s ng with random
parameters ¢, 0, 6,

Initialize actor target network 7z, critic target networks Q‘gi , Qe; with
parameters ¢/ < ¢, 0] < 0y, 0, < 0,.

Initialize replay buffer B

Initialize policy update frequency d

for episode e = 1 to E do

Initialize electricity price, renewable energy generation, total elec-
tricity consumption of vessels, and ESS storage for two environments:
Env, Env,

for time stept = 1to T do
Observe state s, of Env; and select action a, = my(s,) + G with

exploration noise ¢ ~ N'(0, 5).
Execute action g, in Env; and get reward r,, next state s, ;.

Observe state s;”""“ of Env, and select action a,””"* using the
myopic algorithm.
myopic myopic

Execute action a, in Env, and receive reward r,
Shaped reward r| = r, - r{”"
Add transition (s, a,, 7}, 5,4;) to B.
Sample mini-batch (s, a, r, s") from B with batch size N.
Update critic networks by Eq. (21) with policy noise ¢ ~
clip(N(0, 5), —w, w)
if f mod d = 0 then
Update actor network by policy gradient: V,J(¢) =
N=' Y V,00, (s, )V 474(s)
Update actor target network ¢’ = t¢p + (1 — 7)¢’
Update critic target networks 6] = 76, + (1 — 7)6;
end

t

end

end

estimated using data from the website of Oilmonster, which provides
information on regional bunker prices. Parameters related to the ESS
were set based on data from the website of Hyosung Heavy Industries,
an energy solution company in South Korea. Most experiments were
conducted using an AMD Ryzen 5 7600X 6-Core Processor with Python
version 3.12, and the myopic algorithm was solved with FICO Xpress
version 8.14.

5.1. Performance evaluation of the proposed RL algorithms

In this subsection, we compared the performance of the three RL al-
gorithms with that of the time-segmented heuristic algorithm described
in Appendix B. Although we assumed that vessel fuel prices follow a
uniform distribution, we additionally conducted experiments under the
assumption that the prices follow a truncated normal distribution, aim-
ing to demonstrate the robustness of the algorithm to the underlying
price distribution. Because the cumulative distribution function of the
truncated normal distribution does not have a closed-form expression,
we used the Abramowitz & Stegun approximation [56] to represent
Constraint (A.2) in the myopic algorithm. In these experiments, each
episode had a length of 50 days, corresponding to 1200 time steps, and
the model was trained over 5000 episodes. During the training process,
the performance of the model was evaluated in a separate evaluation en-
vironment every 10 episodes, and this performance was used as a metric
for evaluation. We determined hyperparameters for the RL algorithms
through experiments as provided in Table 2, and these were identically
applied to all three algorithms.

Fig. 4 (a) shows the learning curves of the three RL algorithms and
the result of the heuristic algorithm, under the assumption that ves-
sel fuel prices follow a uniform distribution. The X-axis represents the
number of episodes during the training, while the Y-axis indicates the
average reward per time step. The DDPG algorithm, depicted by the
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Table 2

Hyperparameters of the RL algorithms.
Hyperparameter Value
Capacity of the experience replay buffer 1,000,000
Size of the sampled mini-batch 256
Discount factor y 0.99
Soft update parameter ¢ 0.005
Learning rate of actor and critic networks 0.0001
Exploration noise parameter o 0.2
Policy noise parameter & 0.1
Policy noise parameter w 0.1
Frequency of policy updates d 2

green graph, showed the lowest performance, even below that of the
heuristic algorithm. Although it achieved a high reward around the
1000th episode, the reward decreased as training progressed and finally
converged to a lower reward, which indicated instability in the learn-
ing process. With the TD3 algorithm, represented by the blue graph,
the learning process was relatively stable, and it converged after 4000
episodes. The average reward after convergence was $149.08, slightly
higher than the average reward of the heuristic algorithm, which was
$145.26. The result of the TD3-RS is shown by the red graph, and it
converged quickly and stably within 2000 episodes. It achieved the
highest performance and the average reward after convergence was
$151.69, approximately $6.43 higher than that of the heuristic algo-
rithm. Even though this difference may seem to be trivial, considering
that this value represents the reward per time step (one h), it becomes
a significant amount when extended to a day and a year. Fig. 4 (b)
presents the results obtained under the truncated normal distribution as-
sumption. Consistent with the previous experiment, TD3-RS algorithm
demonstrated the best performance among the evaluated algorithms.
The computational times of training 5000 episodes for DDPG and TD3
algorithms were approximately 10 h and 11 h, respectively. Although
there may have been concerns about the computational time required
for the TD3-RS algorithm due to the process of solving NLP problems,
the problem solved by the myopic algorithm was a small-size problem
that could be solved very quickly using a solver, resulting in a total
computational time of 13 h.

We also conducted a sensitivity analysis of hyperparameters for the
three RL algorithms. For each algorithm, the learning process was per-
formed under different values of the standard deviation of the policy
noise (0.1, 0.2, 0.3) and the capacity of the replay buffer (100,000,
500,000, 1000,000). Fig. 5 illustrates the average reward per time step
after convergence for each experimental setting. The DDPG algorithm
exhibited consistently lower performance than the other algorithms
across all settings and was especially sensitive to changes in the replay
buffer capacity. The TD3 algorithm achieved performance close to that
of the TD3-RS algorithm in certain settings, specifically when the policy
noise standard deviation was set to 0.2 and the replay buffer capacity to
10,00,000. However, it showed high sensitivity to both hyperparameters
overall. In contrast, we observed that the TD3-RS algorithm maintained
high performance across changes in both hyperparameters, indicating
its robustness to hyperparameter settings.

RL models trained with the training dataset may suffer from an over-
fitting problem, so we conducted validation experiments using a test
dataset. We also verified the economic impact of the ESS through these
experiments. While the ESS can benefit from fluctuations in wholesale
prices, it also has drawbacks due to charging and discharging electricity
losses. We executed experiments on a scenario where the port deter-
mines pricing and supplies SSE to vessels without using an ESS, and
compared the results with those obtained from the RL algorithms. We
classified the test dataset into four cases based on the mean and variance
of wholesale electricity prices, and validated the algorithms for each
case. The four cases were as follows: HH case, HL case, LH case, and
LL case, respectively representing high mean and high variance; high
mean and low variance; low mean and high variance; and low mean and
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low variance in wholesale electricity prices. The test data for each case
had a length of 30 days (720 time steps), and the means and standard
deviations of electricity prices within each case are specified in Table 3.

We repeated each validation experiment 10 times for all RL algo-
rithms and cases. The average reward per time step and the difference
from the results of the scenario without an ESS are presented in Table 4.
The validation experiment results showed that, similar to the findings

of the previous experiment, the TD3-RS algorithm achieved the highest
performance in all cases. In particular, the results of the TD3-RS algo-
rithm were considerably higher than those of the scenario without the
ESS for all cases, implying the economic benefits of an ESS. In comparing
the results of the TD3-RS algorithm across different cases, the algorithm
demonstrated relatively better performance in cases with high variance
in wholesale electricity prices (HH, LH cases) compared to those with
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Table 3
Means and standard deviations of
wholesale electricity prices.

Case Mean Std

HH case 42.38 38.93
HL case 41.96 19.26
LH case 27.29 27.57
LL case 28.44 13.51

low variance (HL, LL cases). These results suggest that the algorithm
takes advantage of purchasing electricity at low prices and storing it
for sale when prices are high. In HH and LH cases, the significant gap
between high and low wholesale prices enables the port to take full ad-
vantage of these benefits, while such benefits are less pronounced in HL
and LL cases.

Fig. 6 depicts the changes in wholesale electricity prices over time,
while Fig. 7 illustrates the changes in ESS storage levels when using
the TD3-RS algorithm. In Fig. 6, the wholesale prices in all four cases
commonly exhibit a pattern of being low during early morning hours,
increasing until evening, and then decreasing again. Due to this pattern,
the storage levels in Fig. 7 tend to increase during early morning hours
and decrease during the daytime when wholesale prices increase. These
results align with our intuition regarding the ideal ESS storage levels.
They also support the results of the validation experiments. In Fig. 6, the
high variance cases, such as the HH case (red graph) and the LH case
(green graph), show large differences between the peaks and valleys of
wholesale prices. Conversely, the low variance cases, such as the HL case
(blue graph) and the LL case (yellow graph), have smaller differences.
As a result, in Fig. 7, ESS storage levels in the low variance cases are
generally lower than those in the high variance cases.

Fig. 7 not only depicts the trends in ESS storage levels but also pro-
vides insights into the appropriate storage capacity for the ESS. The ESS
is a facility with high initial costs and its storage capacity has a signif-
icant impact on overall costs. Thus, it is a critical decision factor when
installing an ESS at a port. In this experiment, the ESS storage capacity
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was set to 50 MWh. However, if the storage levels resulting from the
application of the algorithm are lower than this value, it is proper to
select a lower initial storage capacity.

5.2. Sensitivity analysis

We conducted a sensitivity analysis on three factors: the electricity
consumption of vessels, the distribution of vessel fuel prices, and the
emission weight parameter. These factors either influence the demand
for SSE or directly affect the reward function, thereby impacting the
port’s decision-making process. We trained the TD3-RS algorithm under
varying values of each factor and compared the results. Each experiment
illustrates how different operating conditions affect the port’s decisions
and overall profit.

We compared the average reward for different mean values of ves-
sel’s electricity consumption per unit time, specifically 0.75, 1.0, 1.25,
and 1.5. The results are illustrated in Fig. 8. We observed that as the
vessel’s electricity consumption increased, the average reward also in-
creased. This is reasonable, given that the increase in the overall use of
electricity by vessels directly translates into increased SSE demand. In
addition, the results showed that the marginal increase in reward grad-
ually decreased. It could be interpreted as being due to constraints such
as the ESS capacity and the upper limit on SSE sales.

In the sensitivity analysis on the standard deviation of vessel fuel
prices, we conducted experiments using truncated normal distributions
with standard deviations of 1, 3, and 5, as well as a uniform distribution.
The uniform distribution has a larger standard deviation than the trun-
cated normal distributions. As shown in Fig. 9, the port’s profit decreased
as the standard deviation of fuel prices increased. Because the port does
not have information on each vessel’s fuel price, higher variability in-
creases environmental uncertainty, ultimately leading to a decrease in
profit.

All of the above experiments were conducted with the objective of
maximizing the port’s economic profit. However, in reality, ports oper-
ate SSE not only for economic gains but also to achieve environmental
benefits. Specifically, this trend has grown with the rise of carbon credit
trading, and many studies related to supply chain issues have incorpo-

Table 4
Validation results: means and differences from the scenario without ESS.
Case Without ESS DDPG TD3 TD3-RS
Mean Difference Mean Difference Mean Difference
HH case 140.35 140.83 0.34 % 157.41 12.16 % 159.35 13.54 %
HL case 100.59 93.59 —6.96 % 107.57 6.94 % 109.12 8.48 %
LH case 193.08 197.61 2.35% 209.66 8.59 % 212.56 10.09 %
LL case 148.87 144.42 —2.99 % 158.23 6.29 % 161.03 8.17 %
—— HH case
100 v —— HL case
—— LH case

Wholesale price ($/MWh)
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Fig. 6. Wholesale electricity price over time for each case.
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rated emission factors, such as carbon taxes and carbon credit trading
[57,58]. In this section, we incorporated an emission factor into the ex-
isting reward function, using a revised reward function that reflects both
economic and environmental benefits. The revised reward function is
defined as follows:

r,=m,+p-d, - benefit™

(23)

where p represents the weight assigned to the port’s environmental ben-
efits, d, is the sales volume of SSE, and benefit*"” means the social and
environmental benefits per unit of SSE sold. Based on the previous study
[21], we set benefit"’ = 22 ($/ MW h). The value of p varies depending
on the port’s emphasis on environmental factors, as well as on additional
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Fig. 10. Sensitivity analysis on emission weight p.

benefits from SSE sales through carbon credit trading, the regulatory
intensity imposed by the government, and other factors.

We carried out experiments for p = 0,0.25,0.5,0.75, and 1.0, and the
results are presented in Fig. 10. It should be noted that the average re-
ward shown in Fig. 10 does not include environmental benefits. The
results showed that the port’s profit decreased as p increased. This can
be explained by the port’s incentive to increase SSE sales, even at the
cost of higher electricity purchases and storage levels.

Fig. 11 shows the average ESS storage level for each value of p, sup-
porting the result of Fig. 10. Except for the interval where p increases
from 0.75 to 1.0, the average ESS storage level increased as the value of
p increased. This aligns with the expectation that a higher p would make
the port store larger amounts in the ESS to sell SSE even when future
wholesale prices are high. However, contrary to expectations, when p
increased from 0.75 to 1.0, the average storage level remained almost
the same. It was due to the limitations imposed by the storage capacity
of the ESS and the upper bound on the amount of electricity that could
be purchased from the main grid per unit time. If the port was already
fully utilizing the ESS when p was 0.75, an increase in p beyond this
value would not significantly affect the port’s policy. If the ESS capacity
and the electricity purchase limit had been set higher, the average stor-
age level would have continued to increase. These results imply that a
port’s emission weight also should be considered when determining the
initial design of the ESS.

5.3. Analysis of side effects

In this subsection, we analyzed the potential side effects of the port’s
decisions on dynamic pricing and energy management for operating SSE.
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While we have mainly focused on maximizing the port’s profit, it is also
important to consider how these decisions might impact stakeholders
and what socio-environmental outcomes they might evoke. Ideally, the
proposed algorithm helps with efficient energy management, so other
stakeholders, such as shipping companies would benefit from it. We ex-
amined the side effects from three perspectives: the utilization of SSE,
the costs incurred by vessels berthed at the port, and the profit of the
entire system. Vessel costs refer to the sum of costs associated with us-
ing SSE and the fuel costs used for electricity generation. For analysis,
we also conducted experiments on a scenario where the port did not
decide the pricing for SSE, and vessels used SSE at the wholesale elec-
tricity price, which is referred to as a “scenario without pricing.” The
scenario without pricing is a common situation observed at many ports,
and comparing our model with it clearly highlights the benefits of port
microgrids. We compared the side effects of using the TD3-RS algorithm
with those of the scenario without pricing.

Fig. 12 shows how the SSE utilization rate changes with varying val-
ues of p. Note that, in the scenario without pricing, the utilization rate
remains constant regardless of changes in p because the port does not
set prices. The results demonstrated that utilization rate when using the
TD3-RS algorithm was higher than that of the scenario without pricing,
even when p = 0. It indicated that the port could increase SSE utiliza-
tion through the advantage of the ESS, even when making decisions
only for its own economic benefit. This analysis of side effects can also
provide insights for governments and institutions implementing regula-
tions or incentive policies. For example, based on these results, if the
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Fig. 12. Utilization rate of SSE with different emission weights.
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government aims to increase the SSE utilization rate to 80 %, it would
need to intensify regulations or provide incentives to raise the port’s
emission weight to above 0.5.

Fig. 13 presents the results of the cost analysis for berthed vessels.
As p increased, the costs for vessels decreased because the port lowered
prices to increase the environmental benefits as p increased. However,
these costs are substantially higher than the vessel costs in the scenario
without pricing. This indicates that the port’s pricing strategy leads to
increased costs for vessels even when the emission weight is high due to
policies from institutions or the government. On the other hand, Fig. 14
represents the profit of the entire system, calculated by subtracting the
vessels’ costs from the port’s economic profit. The results show that the
entire system profit is highest when using the TD3-RS algorithm and sig-
nificantly higher compared to the scenario without pricing. This reveals
that while the port’s pricing strategy increases vessel costs, it is benefi-
cial from the perspective of the entire system. Accordingly, if the port
provides appropriate incentives for vessels to use SSE, the port’s pricing
and energy management strategy can benefit both the port and shipping
companies. Moreover, the profit of the entire system increases as the
emission weight rises from 0 to 0.25, but once it exceeds a certain level,
it begins to decrease. This means that excessively strict regulations or
incentives may reduce the overall system’s profit, so it is important to
consider this when establishing appropriate policies.

5.4. Managerial insights

Based on the results of the above experiments, we provide managerial
insights not only for ports that are operating or planning to adopt SSE
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Fig. 13. Average cost of berthed vessels with different emission weights.
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but also for governments and institutions implementing regulatory or
incentive policies.

1. The characteristics of electricity prices vary depending on the
structure and policies of the national or regional electricity mar-
ket. Through the experiments outlined in Section 5.1, we con-
firmed that the economic benefits of ESS are greater when there
is high volatility in wholesale electricity prices. Therefore, consid-
ering the initial cost of ESS, we recommend that ports in regions
with high electricity price volatility use ESS for operating SSE.

2. Determining the appropriate storage capacity when installing an
ESS at a port reduces unnecessary costs and enables an efficient
microgrid design. In Sections 5.1 and 5.2, we analyzed ESS storage
levels based on the characteristics of wholesale electricity prices
and emission factors, respectively. When price volatility is high
and emission weight is large, the benefits of energy storage are
substantial, making it advisable to choose greater storage capacity.
Conversely, in cases of low price volatility and a smaller emission
weight, an ESS with smaller capacity is recommended.

3. The experimental results in Section 5.3 show that while regula-
tions or incentives for ports certainly increase the SSE utilization
rate, they have limitations in reducing costs for vessels. Although
ports could lower vessel costs by providing incentives for using
SSE, institutions or governments cannot enforce it directly. A rea-
sonable approach would be for institutions or governments to
implement appropriate regulations on ports to maximize the profit
of the entire system, while introducing incentive policies for ves-
sels to use SSE. This would result in greater benefits for both
vessels and ports compared to the scenario without pricing.

6. Conclusions

As the maritime industry moves toward reducing emissions, SSE tech-
nology has emerged as a key solution for port decarbonization. Although
governments and organizations worldwide are promoting SSE adoption
through regulations and incentive policies, the utilization rate remains
low due to high initial and operational costs. To solve this fundamen-
tal problem, a profitable model for SSE operation is required, and we
focused on the economic benefits generated by integrating SSE with
port microgrids. In this study, we proposed a dynamic pricing and en-
ergy management strategy to maximize the profitability of the port’s
SSE operation. To the best of our knowledge, this is the first research
to address dynamic pricing and energy management from a retailer’s
perspective in a real-time electricity market without the unrealistic as-
sumption of predicting electricity prices. To address this challenging
problem, we adopted an actor-critic RL approach and applied reward
shaping to improve the model’s performance and stability.

We used three RL algorithms, DDPG, TD3, and TD3-RS, and demon-
strated through computational experiments that our proposed TD3-RS
algorithm outperforms the others. In particular, we evaluated the algo-
rithms’ performance in different cases based on the characteristics of
wholesale electricity prices. The results showed that the utility of an
ESS is higher when electricity prices are low and volatile, while the ad-
vantage of using an ESS is limited in the opposite case. The proposed
algorithm also exhibited strong performance with a revised reward func-
tion that incorporates the emission factor, demonstrating its robustness.
Additional experiments suggest that strategies for maximizing a port’s
profits have the potential to increase the utilization of SSE and enhance
the overall benefits of the system, leading to positive side effects.

The primary cause of the currently low SSE utilization rate is the
low installation rate of SSE systems in ports and vessels. The installation
rate at ports could be increased by proposing a profitable model and
algorithms for operating SSE. Additionally, the findings of this study
provide insights for regulatory and incentive policy decisions related to
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SSE adoption. At the regional level, public benefits such as higher SSE
utilization or higher overall system profits can be achieved by properly
adjusting the intensity of policies according to local electricity prices,
consumption patterns, and other regional factors. At the international
level, macro-level policies such as carbon trading and carbon taxation
should be designed in alignment with regional regulations and incentive
schemes. Moreover, the RL algorithm for dynamic pricing and energy
management proposed in this study is expected to be applied to other
domains in the real-time electricity market. The proposed model can
be applied to EV charging station operations, which share structural
similarities with SSE operations, by adjusting the demand model to re-
flect consumer behavior. It can also be applied to energy management
in smart grids or smart buildings by reformulating the problem as a
single-action decision framework focused on cost minimization.

We present several limitations of this study and propose directions
for future research. First, this study focuses only on the electricity
demand from container vessels using SSE. However, such an energy
management strategy could lead to unintended effects, such as energy
shortages for other electricity consumers within the port. This study can
be extended to a comprehensive energy management system by incorpo-
rating other sources of electricity demand, such as reefer containers and
port equipment like cranes. Second, while this study addresses the gen-
eral situation of SSE operations, there are additional factors to consider
for real-world application. In some countries, SSE prices are fixed in ad-
vance, and the electricity market is not liberalized, making it challenging
to earn a profit through operating SSE. In such cases, the algorithm pro-
posed in this study can be further extended to focus on reducing energy
costs. Finally, this study focuses on the operational aspect, so the initial
cost of the ESS was not considered. Future research from a strategic per-
spective is needed to analyze economic feasibility by taking into account
initial investment costs, operational costs, and revenues. Expanding this
research to incorporate such factors would enhance the adoption of SSE
operations in real-world settings.
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Appendix A. Myopic algorithm

We introduce the myopic algorithm as a baseline policy for reward
shaping. The myopic algorithm is a highly shortsighted approach that
makes decisions only to maximize the expected reward of the current
step. In the actual research problem, there is uncertainty in renewable
energy generation and vessel demand; however, in this algorithm, we
implement myopic decisions under a deterministic case. To formalize the
myopic decision-making process, we define the following optimization
problem, which takes the form of a nonlinear programming (NLP) prob-
lem. Consequently, the myopic algorithm solves this problem at each
time step 1.
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max p,d; —ce, (A1)
st. d, < D,Prob(f,, > p,) (A.2)
d, < yUiseh 4 ychydischiq 4 (A.3)

d, < d"> (A.4)

e, <M (A.5)
I<p<u (A.6)

e, >0 (A7)

d, >0 (A.8)

The objective function (A.1) is identical to Eq. (1). Constraints (A.2)
through (A.4) and Constraints (A.5) through (A.8) are derived from
Constraints (7)-(9) and Constraints (12)-(13), respectively. In partic-
ular, because the port cannot observe f,, and thus does not know 4,,,
Constraint (7) is reformulated as Constraint (A.2) based on the avail-
able information: the total electricity demand D, and the distribution
of f,,. Under the assumption that the fuel cost follows a uniform dis-
tribution with a lower bound / and an upper bound u, it is represented
as d, < D,(u — p,)/(u — 1) using the cumulative distribution function of
the uniform distribution. Constraint (A.3) corresponds to Constraint (8)
without the term ¢, because the estimation error ¢ in renewable energy
generation is also unobservable.

Appendix B. Time-segmented heuristic algorithm

To provide a benchmark for the proposed RL algorithms, we designed
a simple rule-based heuristic algorithm named time-segmented heuris-
tic. It is motivated by the daily pattern in real-time electricity prices. We
divide a day into four time segments and define a purchasing rule for
electricity in each segment. This algorithm is based on the intuitive prin-
ciple of purchasing electricity during off-peak periods with lower prices
and selling it during peak periods when the prices are higher. The SSE
price is determined directly based on the result of the myopic algorithm.
The four time segments and corresponding purchasing strategies are as
follows:

+ Off-peak period (0:00-6:00): Wholesale electricity prices are low.
The port purchases electricity in advance for sale during the peak
period, and the surplus is stored in the ESS.

* Pre-peak period (6:00-16:00): Wholesale electricity prices gradually
increase. Because the energy stored in the ESS is reserved for use
during the upcoming peak period, the port adopts a myopic decision-
making approach without using the stored energy.

Algorithm 3 Time-segmented heuristic algorithm.

Input: wholesale price ¢,, ESS storage level I,, estimated renewable
energy generation r,, total electricity consumption D,, current time T
Output: purchasing amount e,, SSE price p,
if T € off-peak period then
Derive (e,, p,) using myopic algorithm with 7, < 0
if ¢, < nyiseh| then
| e, < min[e™™, 2e,, I™*™ — (I, +r, — D, Prob(f,, > p))]
end
end
if T € pre-peak period then
| Derive (e, p,) by myopic algorithm with I, < 0
end
if T € peak period then
Let z-t””k be the number of remaining time steps in the peak period
Derive (e,, p,) by myopic algorithm with I, < 1,/z" cak
end
if T € post-peak period then
| Derive (e, p,) using myopic algorithm
end
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» Peak period (16:00-22:00): Wholesale electricity prices remain rel-
atively high on average. A myopic decision is made based on the
amount of energy stored in the ESS during the off-peak period, with
the aim of using the stored energy efficiently.

* Post-peak period (22:00-24:00): Wholesale electricity prices grad-
ually decrease. This period aims to consume any remaining stored
energy that was not used during the peak period, using a myopic
policy that considers the ESS storage level.

Algorithm 3 shows the detailed procedure of the heuristic algorithm.

Data availability

The authors do not have permission to share data.
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