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H I G H L I G H T S

∙ We present a profitable model for operating shore side electricity in a port microgrid.

∙ We address the dynamic pricing and energy management problem.

∙ Reinforcement learning algorithms are proposed for maximizing the port’s profit.

∙ A reward shaping technique based on the myopic optimization model improves the reinforcement learning algorithm’s performance.

∙ Positive side effects are observed in terms of the utilization of SSE and the overall system profit.
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A B S T R A C T

This paper addresses the economic challenges associated with operating shore side electricity (SSE) in ports, a 

critical measure for reducing greenhouse gas emissions in the maritime industry. Although SSE offers significant 

environmental benefits, its widespread adoption is hindered by operational costs and the volatility of electricity 

prices. To ensure the sustainable operation of SSE, we propose a dynamic pricing and energy management strategy 

integrated within a port microgrid to maximize operational profit. We leverage an actor-critic reinforcement 

learning approach and propose a reward shaping technique based on a myopic algorithm to enhance performance 

and stability. Through several experiments, we show that the proposed algorithm improves the port’s profit by 

approximately 4.4 % compared to the rule-based heuristic algorithm, while also exhibiting greater stability and 

robustness in the learning process. We also demonstrate that integrating SSE with port microgrids can increase 

SSE utilization and benefit the entire system.

1. Introduction

The maritime industry is responsible for more than 80 % of global 

trade volume, making it a critical part of the global supply chain [1]. 

However, it is also a significant source of global air pollution, emit-

ting 1.076 billion tons of greenhouse gas (GHG) emissions annually, 

which accounts for 2.89 % of the world’s total GHG emissions [2]. With 

growing concerns over environmental pollution, the maritime industry 

is also moving toward decarbonization. As a key participant in the in-

dustry, ports are implementing various environmental policies, one of 

which is shore side electricity (SSE, also known as cold ironing, on-

shore power supply, shore power, alternative maritime power, and other

terms). SSE refers to supplying electricity from the shore to a vessel while 

it is berthed instead of having the vessel generate electricity using its 

auxiliary engines. It has significant environmental benefits compared to 

using vessel fuel to run the engines, reducing carbon dioxide emissions 

by 49 % and sulfur dioxide emissions by 69 % [3].

Due to these factors, many organizations and governments world-

wide have implemented regulations or incentive policies to encourage 

SSE utilization. For example, the California Air Resources Board in the 

United States mandated that beginning in 2023, vessels berthed at ports 

must source at least 80 % of their required electricity from SSE. In re-

sponse, ports within California, including the ports of Los Angeles, Long 

Beach, Oakland, and others, have supplied SSE, allowing berthed vessels
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to comply with these regulatory standards by using SSE. Meanwhile, the 

Shanghai Municipal Government in China offers incentives to vessels uti-

lizing SSE, including tariff subsidies or priority use of berths. Currently, 

most of the SSE operations rely on such regulations and policies. Thus, 

numerous studies have been conducted on effective policies aimed at 

increasing the utilization rate of SSE [4–6]. However, despite such in-

terventions, the global utilization rate remains low because of its low 

cost-effectiveness [7]. Ideally, vessels can gain economic advantages by 

using SSE at a lower price compared to using traditional vessel fuel, 

while ports benefit economically by selling SSE at a higher price than 

the wholesale electricity price. Nevertheless, the volatility of electricity 

prices and their high average price have been obstacles for both vessels 

and ports in bearing the initial and operational costs. Recently, rising 

vessel fuel prices, driven by the International Maritime Organization’s 

fuel regulations, have incentivized vessels to use SSE [8]. However, from 

the port’s perspective, it is still difficult to realize the economic benefits 

of operating SSE, so it remains a challenge that should be addressed to 

increase the utilization of SSE.

To address the above problem, Ahamad et al. [9] were the first to 

propose the concept of a port microgrid as a solution to reduce emis-

sions, incorporating SSE as a key element. A microgrid is a small-scale 

power grid that includes technologies such as renewable energy sources 

and an energy storage system (ESS), aiming for efficient energy oper-

ation through intelligent control of generation and load [10]. It also 

ensures high reliability and efficiency because it operates in a grid-

connected mode (connected to the main grid) during normal conditions. 

In practice, there has been significant movement toward establishing 

port microgrids, as ports are suitable for centralized energy manage-

ment and installing facilities such as offshore wind power, solar power, 

and ESS. In line with this trend, several studies have focused on opti-

mizing the operation of individual components within the microgrid to 

ensure their effective integration [11,12]. By using the ESS, ports can 

effectively respond to the volatility in real-time electricity prices and 

renewable energy generation, enabling the development of a profitable 

model for operating SSE. The key factor for operational efficiency is how 

effectively the port controls the balance between the demand and sup-

ply of electricity. The port can control electricity demand by adjusting 

the prices of SSE and manage supply by purchasing electricity from the 

main grid. Thus, considering the uncertainties in electricity prices and 

renewable energy generation, energy management and pricing for SSE 

are crucial for profitable SSE operation.

To the best of our knowledge, no research has addressed the above 

issue at the operational level. This paper aims to deal with the pricing 

and energy management problem for operating SSE in a port microgrid. 

Specifically, this study focuses on the real-time electricity market, where 

energy management is more challenging than in the day-ahead market 

due to the uncertainty of electricity prices. In the day-ahead market, 

where hourly electricity prices are established daily, the uncertainty 

is lower, and relatively accurate modeling is possible, making model-

based approaches more appropriate. However, applying a model-based 

approach in the real-time market requires the unrealistic assumption 

that future electricity prices can be predicted accurately. Additionally, 

as the time horizon extends and the problem size increases, the computa-

tional time required for model-based approaches increases significantly. 

Instead, we adopt reinforcement learning (RL) approaches that can be 

applied in model-free situations without relying on the unrealistic as-

sumption. With RL methods, it is possible to make dynamic decisions 

based on real-time data within a short computational time.

We propose a Markov decision process (MDP) formulation and 

actor-critic RL algorithms to solve the pricing and energy management 

problem of maximizing the port’s profit. We also present numerical ex-

periments to analyze the algorithms’ results and performance. The main 

contributions of this study are presented as follows:

1. We present a profitable model for operating SSE in ports and pro-

pose an RL algorithm with a reward shaping technique for pricing

and energy management strategies. The proposed algorithm will 

enable ports to bear initial and operational costs by enhancing 

profitability. Ultimately, it serves as a foundational framework for 

enhancing the sustainability of operating SSE.

2. We validate the performance of the algorithm using real-

world data, demonstrating its application in practical situations. 

Furthermore, through sensitivity analysis, we demonstrate its ro-

bustness to changes in hyperparameters compared to existing 

algorithms.

3. Several managerial insights into the operation of SSE are pro-

vided through the results of computational experiments. From 

the port’s perspective, these insights help not only with the ef-

ficient operation of SSE, but also with the design and economic 

feasibility assessment for SSE and microgrids. The experimental 

results also provide insights for governments and institutions on 

implementing regulations or incentive policies.

The rest of this paper is structured as follows: In Section 2, we in-

troduce existing studies on SSE and energy management. Our problem 

description and mathematical formulation for the problem are presented 

in Section 3. In Section 4, RL algorithms and a reward shaping technique 

for solving the MDP problem are proposed. Numerical experiments 

for the proposed algorithms are presented in Section 5, and Section 6 

provides conclusions.

2. Literature review

This paper is related to two major research areas: decision-making in 

SSE operations and the energy management problem. In Section 2.1, we 

present existing studies that address various issues related to SSE opera-

tions, and in Section 2.2, we introduce research on energy management 

problems across different domains.

2.1. Decision-making in SSE operations

With growing environmental concerns and increasingly strict regu-

lations in the maritime industry, significant studies have focused on the 

operation of SSE in ports. One of the widely discussed areas of research 

is the integration of SSE operations with other port operational prob-

lems. Zhen et al. [4,6] analyzed incentive policies aimed at promoting 

SSE, incorporating berth allocation and ship scheduling while consid-

ering environmental benefits and operational costs. Yu et al. [13,14] 

addressed the berth allocation and quay crane assignment problem with 

SSE operations, aiming to reduce emissions while satisfying the eco-

nomic interests of both vessels and ports. They considered fluctuations in 

electricity prices to evaluate the economic benefits of SSE usage. These 

integrated studies focused on traditional port operational issues and did 

not take into account energy management for operating SSE.

Several studies have addressed energy management strategies for 

operating SSE through the port microgrids concept. Zhang et al. [15] 

focused on the synergy between SSE technology and microgrids, ad-

dressing both energy management and berth allocation to minimize 

operational costs. Wang et al. [11] addressed the design and operation of 

port microgrids and SSE, considering initial and operational costs. Using 

a two-stage optimization approach, they dealt with strategic decisions 

related to initial installation and operational level energy management. 

Additionally, several other studies have examined integrated energy 

management, including SSE, in conjunction with traditional port opera-

tions such as berth allocation [16] and crane assignment [17]. All of the 

above studies proposed ways to reduce operational costs by integrating 

port microgrids with SSE but did not account for SSE pricing to maximize 

profit. In contrast, Qiu et al. [18] focused on maximizing revenue from 

SSE supply for all-electric ships by determining pricing and electricity 

purchases from the main grid. However, the uncertainty of electricity 

prices in the real-time market was not considered in their study.

Additionally, there are studies that have explored the economic feasi-

bility of adopting SSE. Yiğit et al. [19] assessed the economic feasibility
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of SSE from the perspective of shipping companies based on electricity 

and fuel prices, suggesting that SSE can provide economic benefits. Dai 

et al. [20] evaluated SSE from the port’s perspective, considering carbon 

emission trading, and concluded that radical investments can yield eco-

nomic gains with carbon emissions reduction. Case studies that conduct 

an economic assessment from the perspectives of both shipping com-

panies and ports have also been presented [21]. Wang et al. [22,23] 

explored government SSE subsidy policies by analyzing the decision-

making processes of governments, ports, and shipping companies using 

game theory. Xing et al. [24] also addressed the problem of ports decid-

ing the production level and pricing of SSE, modeling it as a price-setting 

newsvendor problem that considers the uncertainty of conventional fuel 

prices. As an extension of these studies, Peng et al. [25] proposed a 

model in which the government determines subsidy policies, while the 

private/public port decides on investment scale and SSE pricing. While 

the aforementioned studies accounted for the profitability of SSE pricing 

for ports, they were conducted at a strategic level without considering 

the volatility of electricity prices.

2.2. Energy management problem

The majority of research related to energy management has fo-

cused on balancing energy supply and demand to reduce costs or 

increase profits. In microgrids, because the generation of renewable 

energy is uncontrollable, supply is regulated by deciding how much 

electricity to purchase from the main grid. At the same time, inter-

nal energy demand is managed directly, while external demand is 

adjusted indirectly through electricity pricing decisions. Accordingly, 

proper decision-making on both purchasing and pricing is essential for 

efficient energy management in microgrids. Joint decisions on dynamic 

pricing and purchasing have been widely studied in traditional inventory 

management in multi-echelon supply chain settings [26–29]. However, 

in contrast to these studies, the electricity market requires more dy-

namic and immediate decision-making due to the real-time fluctuations 

in wholesale prices.

Several studies on port microgrids have focused on enhancing energy 

efficiency through optimal system design and operation. Kumar et al. 

[30] addressed the design problem for port microgrids related to battery 

charging and SSE. Molavi et al. [12] proposed a two-stage programming 

approach to evaluate the practical viability of integrating microgrids 

into smart ports, considering both investment and operational decisions. 

More recently, there has been growing interest in optimizing the control 

strategies of distributed energy resources within port multi-energy sys-

tems to improve energy efficiency and reduce operational costs [31,32]. 

Although these studies dealt with operational issues related to energy 

management in port microgrids, they did not consider electricity trad-

ing with the main grid and thus did not cover pricing and purchasing 

decisions. Since there are few studies addressing the pricing and energy 

management problem for operating SSE in ports, we introduce studies 

that explore energy management strategies in other domains.

One of the main streams is the study of pricing strategies to control 

electricity demand in smart grids. Srinivasan et al. [33] investigated 

a pricing model for managing residential and commercial electricity 

demand within smart grids. A game theory-based methodology was pro-

posed and the experiments demonstrated that real-time pricing policies 

can reduce peak loads while increasing the grid operator’s profit. Lu 

et al. [34] explored a situation in which a smart grid operator determines 

retail electricity prices in a hierarchical electricity market, taking into 

account uncertainties in demand and wholesale electricity prices. This 

study aimed to optimize the overall system’s profit by considering both 

the costs of the grid and customers. Zhang et al. [35] proposed an RL 

approach for dynamic pricing to maximize the profit of the broker act-

ing as a retailer in the electricity market. Alves et al. [36] also addressed 

the electricity pricing problem for maximizing retailers’ profit and de-

veloped a bilevel programming approach to model decision-making of 

both retailers and consumers. Electric vehicle (EV) charging stations,

which purchase electricity from the main grid and resell it to EV users, 

have also been the subject of research on electricity pricing. Dong et al. 

[37] presented a simulation and optimization model for voltage control 

in EV charging stations through dynamic pricing. Several studies have 

also explored RL methodologies to find optimal pricing policies, taking 

into account various factors such as the profit of charging stations, the 

quality of service for EV users, and the utilization of charging facili-

ties [38,39]. The aforementioned studies focused on pricing decisions to 

regulate demand and maximize profits; however, they did not address 

purchasing decision-making, as they considered situations without ESS.

Xu et al. [40,41] examined scenarios where retailers not only de-

termine the selling price of electricity but also set the bidding price, 

which affects purchasing actions from the main grid. They developed a 

reinforcement learning model to simultaneously determine the bidding 

and selling prices for profit maximization. As noted in their research, 

in real-time electricity markets, a retailer’s bidding can influence the 

wholesale price. However, in our study, we assume purchasing actions 

rather than bidding actions, because the amount of electricity purchased 

for SSE is not significant enough to impact the wholesale electricity 

price. In other words, the port is set to only take information on the 

wholesale price from the main grid, so bidding actions are out of our 

scope. Luo et al. [42] and Lee et al. [43] studied decision-making of EV 

charging stations similar to our study. They considered both electricity 

purchasing and pricing actions to maximize the profits of EV charging 

stations, while also taking renewable energy and ESS into consideration. 

However, the former study modeled real-time electricity prices using a 

Markov chain and assumed that the transition probability was known, 

while the latter assumed time-of-use (TOU) wholesale prices with lower 

uncertainty compared to real-time prices. To fill these research gaps, 

we address purchasing and pricing decisions under the uncertainty of 

the real-time electricity market without the unrealistic assumption on 

wholesale price.

3. Problem description and mathematical formulation

In this study, we consider an infinite-horizon dynamic pricing and 

energy management problem in a port microgrid aimed at maximizing 

the port’s profit. Section 3.1 describes the dynamics of the system, in-

cluding the operational structure of the port microgrid and the decision-

making process of the vessels with respect to the use of SSE. Based on 

this, in Section 3.2, we formulate the problem as a Markov Decision 

Process (MDP) to enable a model-free approach. A list of notations used 

throughout the paper is provided in Table 1.

3.1. System dynamics

The SSE operation model involves three main entities: the main grid, 

the port, and the vessels. Electricity flows from the main grid through 

the port microgrid to the vessels, and the system is represented in a 

hierarchical structure as shown in Fig. 1. Based on the assumption men-

tioned in Section 2.2, the main grid sets the wholesale electricity price, 

𝑐 𝑡 

, based on hourly real-time pricing, and the port decides how much 

electricity to purchase, 𝑒 𝑡 

, at that price. At the same time, the port de-

cides the SSE price, 𝑝 𝑡 

, and resells electricity to vessels. Consequently, 

the model can be shown as a multi-echelon supply chain, with the main 

grid acting as the wholesaler, the port as the retailer, and the vessels 

as the customers. In summary, at each time step 𝑡, the port makes two 

decisions to maximize the profit from operating SSE: (1) the amount of 

electricity to be purchased from the main grid, 𝑒 𝑡 

, and (2) the selling 

price of SSE to vessels, 𝑝 𝑡 

.

The port not only purchases electricity from the main grid but also 

generates it from its own renewable energy sources, such as solar and 

wind power. Accordingly, the port secures a renewable energy genera-

tion amount 𝑟 𝑡 

+ 𝜖 at each time step and stores it in an ESS. With the ESS, 

the port can purchase a large amount of electricity when the wholesale 

price is low and store the excess electricity for future sale. Typically, the 

electricity from the main grid or renewable energy sources, as well as the

Applied Soft Computing 186 (2026) 114089 

3 



C. Oh and I. Moon

Table 1 

Notations.

Sets

𝑇 – Set of time periods, 𝑡 ∈ 𝑇
𝑆 𝑡 –

𝑡0 ≤ 𝐼 ≤ 𝐼 

𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇 . (3)

Set of states at time 𝑡
𝐴 𝑡 – Set of actions at time 𝑡

Parameters

𝑒 

𝑚𝑎𝑥 – Maximum amount of electricity to be purchased per unit

time

𝑑 

𝑚𝑎𝑥 – Maximum amount of SSE to be sold per unit time

𝑐 𝑡 

– Real-time wholesale price of electricity at time 𝑡 

𝐼 𝑡 – Remaining electricity in ESS at the beginning of time 𝑡
𝐼 

𝑚𝑎𝑥 – Storage capacity of ESS 

𝑣 𝑡 

– Number of vessels berthed at time 𝑡 

𝐷 𝑡 

– Total electricity consumption of vessels at time 𝑡 

𝑟 𝑡 – Estimated renewable energy generation at time 𝑡
𝜖 – Estimation error of renewable energy generation

𝑓 𝑛,𝑡 – Fuel price of vessel 𝑛 at time 𝑡
𝜂 

𝑐ℎ – Charging efficiency of ESS (from AC to DC)

𝜂 

𝑑𝑖𝑠𝑐ℎ – Discharging efficiency of ESS (from DC to AC)

𝛿 – Storage efficiency of ESS

𝑘 𝑛,𝑡 – Electricity consumption of a vessel 𝑛 per unit time at time 𝑡

Decision variables

𝑒 𝑡 

Continuous Amount of electricity to be purchased at time 𝑡
𝑝 𝑡 

Continuous SSE price at time 𝑡
𝑑 𝑡 Continuous Amount of SSE sold at time 𝑡
𝜆 𝑛,𝑡 Binary Whether vessel 𝑛 is willing to use SSE at time 𝑡; 1 if 𝑝 𝑡 

≤
𝑓 ,𝑛,𝑡  0 otherwise

𝜋 𝑡 Continuous Profit of the port at time 𝑡

Fig. 1. Hierarchical structure of the pricing and energy management problem.

electricity consumed by vessels, is in AC form, whereas the ESS stores 

energy in DC form. Thus, power conversion is required to change AC to 

DC and then DC back to AC, resulting in electricity losses [44]. We ac-

count for these losses as the charging/discharging efficiency rate of the 

ESS, 𝜂 

𝑐ℎ∕𝑑𝑖𝑠𝑐ℎ [16,18,42,45]. There are also electricity losses while the 

energy is stored in the ESS, which we consider as the storage efficiency 

rate, 𝛿.
For each time step 𝑡, berthed vessels decide whether or not to use 

SSE based on the SSE price provided by the port. Each vessel compares 

its own fuel price 𝑓 𝑛,𝑡 with the SSE price 𝑝 𝑡 

and chooses the more eco-

nomical option. In reality, fuel prices can vary even for the same type 

of fuel depending on the port where the vessel is bunkered, and ves-

sels may also obtain fuel at a specific price through contracts with their 

suppliers [46]. If 𝑓 𝑛,𝑡 

is lower than 𝑝 𝑡 

, the vessel 𝑛 will generate elec-

tricity using its engines rather than using SSE. On the other hand, if

𝑓 𝑛,𝑡 is higher, the vessel will choose to use SSE. In short, each vessel’s 

fuel price can be considered as the reservation price (willingness to pay) 

for using SSE, and we assume it follows a uniform distribution. We also 

assume that the port does not know the fuel price information for each

vessel but only knows the probability distribution of the fuel prices. It 

is a realistic assumption that reflects the fact that shipping companies 

are reluctant to disclose information about their fuel prices. Under this 

assumption, the port does not make individual decisions for each vessel 

but instead considers the aggregated electricity demand from all berthed 

vessels when making pricing and purchasing decisions. As a result, the 

model avoids the combinatorial complexity that could arise when plan-

ning at the individual vessel level, especially when the number of vessels 

increases.

Based on the operational setting described above, the port’s profit at 

time 𝑡 is formulated as follows:

𝜋 𝑡 = 𝑝 𝑡𝑑 𝑡 

− 𝑐 𝑡 

𝑒 𝑡 

, ∀𝑡 ∈ 𝑇 , (1)

where 𝑑 𝑡 

denotes the amount of SSE sold to vessels at time 𝑡. The first 

term represents the revenue from SSE operations, and the second term 

denotes the cost incurred from purchasing electricity from the main grid.

The electricity flow constraints, including those related to the ESS, 

are defined as follows:

𝐼 𝑡+1 ≤ 𝛿 

( 

𝐼 𝑡 + 𝜂 

𝑐ℎ (𝑒 𝑡 

+ 𝑟 𝑡 

+ 𝜖) − 𝑑 𝑡 

∕𝜂 

𝑑𝑖𝑠𝑐ℎ 

) 

, ∀𝑡 ∈ 𝑇 , (2)

0 ≤ 𝑒 𝑡 ≤ 𝑒 

𝑚𝑎𝑥, ∀𝑡 ∈ 𝑇 , (4)

0 ≤ 𝑑 𝑡 ≤ 𝑑 

𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇 . (5)

Constraint (2) is relevant to the ESS balance equation, which accounts 

for the inflows (𝑒 𝑡 

+𝑟 𝑡 

+𝜖) and outflows (𝑑 𝑡 

), adjusted by the charging, dis-

charging, and storage efficiency factors. It is formulated as an inequality 

because the uncertain factors can cause the right-hand side to exceed the 

ESS capacity. Constraint (3) represents the storage capacity limit of the 

ESS. Constraints (4) and (5) specify the upper limits on the amount of 

electricity that can be purchased from the main grid and sold from the 

ESS to vessels, respectively.

The constraints related to the amount of SSE sold to vessels are as 

follows:

𝐷 𝑡 = 

∑

𝑛
𝑘 𝑛,𝑡 

, ∀𝑡 ∈ 𝑇 , (6)

𝑑 𝑡 ≤ 

∑

𝑛
𝑘 𝑛,𝑡𝜆 𝑛,𝑡 

, ∀𝑡 ∈ 𝑇 , (7)

𝑑 𝑡 

≤ 𝛾 

𝑑𝑖𝑠𝑐ℎ 𝐼 𝑡 + 𝛾 

𝑐ℎ 𝛾 

𝑑𝑖𝑠𝑐ℎ (𝑒 𝑡 + 𝑟 𝑡 

+ 𝜖), ∀𝑡 ∈ 𝑇 , (8)

0 ≤ 𝑑 𝑡 ≤ 𝑑 

𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇 . (9)

In Eq. (6), 𝐷 𝑡 

is defined as the total electricity consumption from the ves-

sels at time 𝑡. Constraint (7) ensures that the amount of SSE sold does not 

exceed the total SSE demand from vessels. In this constraint, 𝑘 𝑛,𝑡 

repre-

sents the electricity consumption of vessel 𝑛, and 𝜆 𝑛,𝑡 

is a binary variable 

indicating whether the vessel is willing to purchase SSE, determined by 

comparing 𝑝 𝑡 

and 𝑓 𝑛,𝑡 

. Constraint (8) requires that the ESS discharging

amount be less than or equal to the sum of the charged amount and the 

current storage level. Constraint (9) defines the maximum amount of 

SSE that can be sold.

To maximize the profit, the port makes joint decisions hourly on both 

𝑒 𝑡 

and 𝑝 𝑡 

and each decision involves trade-offs. In the decision on 𝑒 𝑡 

, pur-

chasing a large amount when the wholesale price is low can reduce the 

purchasing cost. However, it leads to electricity losses due to the storage 

efficiency rate. In the decision on 𝑝 𝑡 

, a lower price reduces the unit mar-

gin but increases sales volume, whereas a higher price increases the unit 

margin but reduces sales volume. Furthermore, when a large amount 

of electricity is stored in the ESS, it is expected to be more profitable 

to set a lower price to increase sales volume for reducing electricity 

losses. Conversely, if less electricity is stored, a higher price may be 

more beneficial. Accordingly, the port needs to consider various factors, 

including the wholesale electricity price, ESS storage level, renewable 

energy generation, and the electricity consumption of vessels.
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3.2. Markov decision process

An MDP is a mathematical formalization of sequential decision 

making, which serves as the theoretical framework for reinforcement 

learning. MDPs consist of five key components: a set of states S, a set 

of actions A, a state transition probability matrix P , a reward function 

R, and a discount factor 𝛾. The state has the Markov property, which 

means the future state is independent of the past states given the current 

state. In other words, the state perfectly represents all the information 

about the current situation. Given the state, the agent interacts with the 

environment to maximize the sum of the cumulative rewards. Because 

the MDP problem forms the foundation of the reinforcement learning 

environment, developing it well is crucial for effectively solving the 

problem. In this section, we formulate the dynamic pricing and energy 

management problem as a Markov decision process (MDP) problem.

State: At time 𝑡, the state is defined as follows:

𝑠 𝑡 

= (𝑐 𝑡−23, 𝑐 𝑡−22 

,… , 𝑐 𝑡−1 

, 𝑐 𝑡 

, 𝐼 𝑡, 𝑟 𝑡 

, 𝐷 𝑡 

). (10)

It contains information on the wholesale price, the ESS storage level, 

the estimated renewable energy generation, and the total electricity 

consumption. Specifically, we include not only the current wholesale 

electricity price but also its history over the past 23 h. Optimal decision-

making requires information on future wholesale prices, but accurate 

prediction is challenging under real-time pricing. Instead, we use the 

wholesale price information from the most recent 24 h because real-time 

price data typically follows a daily pattern. Although the information on 

the fuel prices of the vessels is important for decision making, it is not 

included in the state because it is unobservable to the port.

Action: The action spaces are formulated as follows:

𝑎 𝑡 

= (𝑒 𝑡 

, 𝑝 𝑡 

), (11)

0 ≤ 𝑒 𝑡 

≤ 𝑒 

𝑚𝑎𝑥 , (12)

𝑙 ≤ 𝑝 𝑡 ≤ 𝑢. (13)

Constraint (12) is the same as Constraint (4). As mentioned in 

Section 3.1, because the reservation prices of vessels for SSE follow a 

uniform distribution, there is a minimum value 𝑙 and a maximum value 

𝑢. Under this information, it is clear that the port would not set the 

SSE price lower than 𝑙 or higher than 𝑢, so we set the feasible range 

of the SSE price as shown in Constraint (13). Several previous studies 

on energy management and pricing decisions use discrete action spaces 

for reinforcement learning. However, discrete action spaces have limi-

tations when applied to real-world situations with a large action space. 

In this paper, we use continuous action spaces for both actions to ensure 

adaptability and applicability in practice.

Transition: In the MDP, the next state changes based on the action 

chosen by the agent. The transition probability refers to the likelihood 

that the next state will be 𝑠 𝑡+1 

given that the agent takes action 𝑎 𝑡 

in the 

current state 𝑠 𝑡 

. In this problem, it is formulated as follows:

𝑑 𝑡 = min 

{

𝑑 

𝑚𝑎𝑥 , 

∑

𝑛
𝑘 𝑛,𝑡 

𝜆 𝑛,𝑡 

, 𝛾 

𝑑𝑖𝑠𝑐ℎ (𝐼 𝑡 + 𝛾 

𝑐ℎ (𝑒 𝑡 

+ 𝑟 𝑡 + 𝜖)) 

} 

, (14)

𝐼 𝑡+1 = min{𝐼 

𝑚𝑎𝑥 , 𝛿(𝐼 𝑡 + 𝛾 

𝑐ℎ (𝑒 𝑡 + 𝑟 𝑡 + 𝜖) − (1∕𝛾 

𝑑𝑖𝑠𝑐ℎ )𝑑 𝑡 

)}. (15)

Eq. (14) is defined by Constraints (7) through (9). Eq. (15) is derived 

from Constraints (2) and (3). Note that uncertainty of the environ-

ment arises not only from future information such as 𝑐 𝑡+1 

and 𝐷 𝑡+1 

, but 

also from the estimation error of renewable energy generation, 𝜖, and 

unobservable factors, 𝜆 𝑛,𝑡 

.

Reward: In the MDP, the agent receives a reward by taking action 𝑎 𝑡 

in state 𝑠 𝑡 

. The objective of this problem is to maximize the port’s profit, 

so it is formulated as shown in Eq. (16), which is identical to Eq. (1).

𝑟 𝑡 

= 𝜋 𝑡 = 𝑝 𝑡 

𝑑 𝑡 − 𝑐 𝑡 

𝑒 𝑡 (16)

4. Solution methods

In this section, we describe RL approaches to address the pricing and 

energy management problem for the operation of SSE in a port micro-

grid. When perfect information about the MDP is available, model-based 

algorithms such as dynamic programming can be utilized. However, 

uncertainties in the environment, such as wholesale electricity prices, 

renewable energy generation, and the total electricity consumption of 

vessels, lead to incomplete information about the MDP. Accordingly, we 

propose model-free RL algorithms that can be applied when the MDP is 

unknown.

RL is a type of machine learning in which an agent learns to maxi-

mize rewards by interacting with its environment. The agent selects an 

action from a set of feasible actions in the current state, receives a reward 

from the environment, and improves its policy. Through this process, the 

agent learns by trial and error, ultimately optimizing a policy for long-

term rewards. Recently, with the advancement of deep learning, there 

has been significant research on deep RL (DRL) methods, which com-

bine RL with deep learning techniques. In DRL, deep neural networks 

are used as function approximators for the actual value function or pol-

icy function. DRL methods can handle high-dimensional state spaces in 

real-world problems and are applicable even when the state spaces are 

continuous.

4.1. Actor-critic approach

As mentioned in Section 3.2, this problem involves a continuous 

action space. Value-based algorithms estimate the value function and 

select the action with the highest value for a given state. However, they 

are challenging to use when dealing with continuous action spaces, be-

cause the process of selecting the action with the highest value becomes 

an optimization problem. Another approach is to discretize the action 

space. However, this makes exploration and effective learning difficult, 

because it can significantly enlarge the action space due to the curse of 

dimensionality. Therefore, we adopt the actor-critic approach, which ap-

proximates both the value function and the policy function using neural 

networks, making it possible to handle continuous action spaces.

Most model-free RL algorithms iterate two key processes: policy 

evaluation, where the value of an action is estimated, and policy im-

provement, where the policy is updated based on the action-value 

function. The actor-critic approach consists of two networks: an actor 

network, which maps a state to a specific action, and a critic network, 

which estimates the value of the state-action pair. In this context, up-

dating the critic network to obtain more accurate state-action values is 

referred to as policy evaluation, while updating the actor network based 

on those values is known as policy improvement. By iteratively updating 

both the actor and critic networks, the algorithm learns accurate value 

estimates and an optimal policy. Because the actor-critic approach trains 

both the actor and critic concurrently, it tends to be more stable than 

value-based or policy-based methods. Additionally, it has the advantage 

of being applicable even when the state and action spaces are large or 

continuous.

In this study, all algorithms use the same architecture for the actor 

and critic networks, as illustrated in Fig. 2. Each network consists of 

three hidden layers with 256 nodes, and the rectified linear unit (ReLU) 

function is used as the activation function for all hidden layers. The actor 

network takes the state as input and outputs the corresponding action, 

using the hyperbolic tangent (tanh) function as the output function. The 

critic network takes a state-action pair as input and outputs a Q-value. 

This architecture was chosen through repeated experiments to ensure 

training stability.

4.2. Deep deterministic policy gradient algorithm

Recent RL research predominantly focuses on DRL methods, with 

the first algorithm to successfully implement DRL being the deep Q-

network (DQN). DQN is an innovative algorithm capable of addressing
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Fig. 2. Architecture of the actor and critic networks.

problems with large or continuous state spaces. However, DQN remains 

difficult to apply to continuous action spaces because it is a value-based 

algorithm. Lillicrap et al. [47] proposed the deep deterministic policy 

gradient (DDPG) algorithm to overcome this limitation by combining 

the actor-critic approach with two key techniques from DQN. One of 

these techniques is experience replay, which enhances the efficiency 

of learning. The agent interacts with the environment to gain experi-

ences during the learning process, and these experiences are stored in 

a replay buffer to be reused in training. It not only enhances data effi-

ciency but also reduces the correlation between experiences by sampling 

randomly from the buffer, thereby increasing the overall efficiency of 

learning. The other technique is use of a target network during the net-

work training process. The actor-critic approach involves training both 

the actor network 𝜋 𝜙 

and the critic network 𝑄 𝜃 

, which are associated 

with their own target networks 𝜋 𝜙 

′ , and 𝑄 𝜃 

′ . If the target values con-

tinuously change during the network training process, it can lead to 

instability in learning. The target network is updated at fixed intervals 

rather than continuously, which improves the stability of learning.

In the DDPG algorithm, the temporal difference (TD) target is used 

to train the critic network. The TD target is an estimate of the current 

step’s value, based on the actual reward from the current step and the 

estimated value of the next step. The value of the next step is estimated 

through the critic target network, and the TD target can ultimately be ex-

pressed as 𝑦𝑡 = 𝑟 𝑡+𝛾𝑄   

  𝜃 

′ (𝑠𝑡+1         

 

, 𝜋 𝑠𝑡+1 

)). Therefore,𝜙 

′ ( the critic loss function

can be derived as shown in Eq. (17), and the critic network is updated 

using a gradient descent, as shown in Eq. (18).

𝐿(𝜃) = E 𝜋 

[(𝑦 − 𝑄 𝜃 

(𝑠, 𝑎)) 

2 ] = 𝑁 

−1 

∑ 

[(𝑟 + 𝛾𝑄 𝜃 

′ (𝑠 

′ , 𝜋 𝜙 

′ (𝑠 

′ )) − 𝑄 𝜃 

(𝑠, 𝑎)) 

2]
(17)

𝜃 ← 𝜃 + 𝛼 

∑ 

[(𝑟 + 𝛾𝑄 𝜃 

′ (𝑠 

′, 𝜋𝜙′ (𝑠 

′ )) − 𝑄 𝜃 

(𝑠, 𝑎))∇ 𝜃 

𝑄 𝜃 

(𝑠, 𝑎)] (18)

In problems involving discrete action spaces, policy improvement 

is achieved by solving for the action with the highest value in a given 

state, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎𝑄 

𝜋 (𝑠, 𝑎). However, in continuous action spaces, finding the 

optimal action becomes an additional optimization problem. Silver et al. 

[48] proposed an alternative method where the policy is updated in the 

direction of the gradient of the value function 𝑄, and derived Eq. (19), 

the gradient of the policy’s value function 𝐽 (𝜙), using the deterministic 

policy gradient (DPG) theorem. This outlines the theoretical background 

of the DDPG algorithm, where the actor network is updated based on the 

gradient ascent method, as shown in Eq. (20).

∇ 𝜙 

𝐽 (𝜙) = 𝑁 

−1 

∑ 

∇ 𝑎 

𝑄 𝜃 1
(𝑠, 𝑎)∇ 𝜙 

𝜋 𝜙 

(𝑠) (19)

𝜙 ← 𝜙 + 𝛽∇ 𝜙𝐽 (𝜙) (20)

Exploration is a critical and widely addressed issue in RL. RL agents 

learn through experiences, so they cannot obtain the value of states

and actions they have never encountered. The DDPG algorithm enables 

exploration by adding random noise G to the actions generated by the 

actor network’s output. The detailed procedure of the DDPG algorithm 

is presented in Algorithm 1.

4.3. Twin delayed DDPG algorithm

While numerous studies have employed the DDPG algorithm to ad-

dress continuous control problems, challenges such as converging to 

local optimal solutions or divergence still remain. Fujimoto et al. [49] 

proved that these issues are due to the overestimation of Q-values in the 

DDPG algorithm and proposed the twin delayed DDPG (TD3) algorithm, 

which incorporates several techniques to address this limitation. The 

TD3 algorithm solves the overestimation bias problem by adopting the 

concept of double Q-learning proposed by Ref. [50] during the critic net-

work update process. Specifically, it introduces two independent critic 

networks 𝑄 

 

′ , 𝑄 

 

′ , and when updating the target, the𝜃1 𝜃2
  algorithm selects

the minimum of the two estimated values. In addition, to prevent over-

fitting in the value estimation process, noise G is added to the original 

action. This technique helps ensure that similar actions yield similar 

value estimates in continuous action space environments. Accordingly, 

the update process used in the DDPG algorithm, as presented in Eq. (18), 

is replaced by that in Eq. (21).

Algorithm 1 DDPG algorithm.

Initialize actor network 𝜋𝜙  

, critic network 𝑄𝜃  

with random parameters 

𝜙, 𝜃 

Initialize actor target network 𝜋 𝜙′ , critic target network 𝑄𝜃  

′   with param

eters 𝜙 

′ ← 𝜙, 𝜃 

′ ← 𝜃. 
-

Initialize replay buffer B 

for episode 𝑒 = 1 to 𝐸 do
Initialize electricity price, renewable energy generation, total elec-

tricity consumption of vessels, and ESS storage 

for time step 𝑡 = 1 to 𝑇 do
Observe state 𝑠 𝑡 

Select action 𝑎 𝑡 = 𝜋𝜙 (𝑠 𝑡) +  

 

G with exploration noise G ∼ N (0, 𝜎). 
Execute action 𝑎 𝑡 

and get reward 𝑟𝑡  

, next state 𝑠 𝑡+1 

. 

Add transition (𝑠 𝑡 

, 𝑎 𝑡 

, 𝑟 𝑡 

, 𝑠 𝑡+1 

) to B. 
′Sample mini-batch (𝑠, 𝑎, 𝑟, 𝑠  

 ) from B with batch size 𝑁 .

Update critic network 𝜃 using Eq. (18). 

Update actor network 𝜙 using Eqs. (19) and (20). 
′Update actor target network 𝜙 = 𝜏𝜙 + (1 − 𝜏)𝜙 

′

′Update critic target networks 𝜃 = 𝜏𝜃 + (1 − 𝜏)𝜃 

′

end

end
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Fig. 3. Overview of the TD3 algorithm with reward shaping.

𝜃 𝑖 

← 𝜃 𝑖 

+ 𝛼 

∑ 

[(𝑟 + 𝛾𝑚𝑖𝑛 𝑖=1,2 

𝑄 𝜃 

′ 

𝑖
(𝑠 

′ , 𝜋 𝜙′ (𝑠 

′ ) + G) − 𝑄 𝜃 𝑖 

(𝑠, 𝑎))∇𝜃𝑖𝑄 𝜃𝑖 

(𝑠, 𝑎)]
(21)

In the DDPG algorithm, both the critic and actor networks are up-

dated at every time step. The actor network is updated based on the 

value estimates provided by the critic network, so if the critic network 

is inaccurate, the learning of the actor network also becomes unreli-

able. The TD3 algorithm addresses this issue by recognizing that such a 

process can lead to instability in learning and instead adopts a method 

where the actor network is updated after the critic network has been 

trained more stably. Specifically, the critic network is updated at every 

time step, while the actor network is updated at constant intervals.

4.4. Reward shaping technique

We propose a model that combines the TD3 algorithm with a reward 

shaping technique to achieve better performance. Reward shaping is a 

method used in RL to incorporate knowledge from an external policy 

when applying RL to a specific domain. Since its theoretical introduction 

by Ref. [51], this technique has been widely utilized in various fields, 

such as inventory management [52,53] and energy management [54]. 

Reward shaping changes the original reward function 𝑅 to a shaped 

reward function 𝑅 

′ by adding a shaping function 𝐹 . In this study, we use 

a myopic algorithm that maximizes the expected reward in the current 

step as a baseline policy, and the shaped reward function is defined as 

shown in Eq. (22). In Eq. (22), it is constructed by subtracting the profit 

obtained by myopic policy in time 𝑡 from that obtained by TD3 policy 

in time 𝑡. We provide a detailed explanation of the myopic algorithm in 

Appendix A.

𝑟′𝑡 = 𝜋 𝑡 − 𝜋 

𝑚𝑦𝑜𝑝𝑖𝑐
𝑡 (22)

This shaped reward can be interpreted as the relative reward of the 

TD3 policy compared to the myopic policy. In this study, the myopic 

policy used for reward shaping is executed in a separate environment, 

making it independent of the actions selected by the TD3 policy. Using 

such a shaped reward function offers two key advantages for the model. 

First, in line with the purpose of reward shaping mentioned earlier, our 

model learns a better policy by leveraging the knowledge from the my-

opic policy. We expect the myopic policy’s reward to serve as a minimum 

performance baseline for policy learning. Second, more importantly, the

shaped reward function offers a more accurate representation of the 

action’s value.

As mentioned in Section 4.1, the key principle of the actor-critic 

approach is to find an action that maximizes the expected cumulative 

reward for a given state. However, in this problem, the reward is in-

fluenced by external factors such as the wholesale electricity price and 

renewable energy generation, rather than the agent’s actions. Motivated 

by the above observation, we designed the reward shaping technique to 

remove the impact of external factors from the actual reward. In this con-

text, we use the myopic algorithm as a baseline because it provides the 

most direct estimate of the current state’s value. This idea is similar to 

the concept of advantage actor-critic (A2C) algorithms proposed by Ref. 

[55], where the advantage is calculated by subtracting the state value 

from the state-action value. While the A2C algorithm requires training 

an additional neural network to estimate the state value, the reward 

shaping technique proposed in this paper enables stable estimation of 

the state value using a myopic algorithm. The overview of the TD3 algo-

rithm with reward shaping is shown in Fig. 3, and the detailed learning 

procedure is presented in Algorithm 2.

5. Computational experiments

In this section, we conducted computational experiments to evaluate 

and analyze the performance of the proposed RL algorithms, DDPG, TD3, 

and TD3 with reward shaping (TD3-RS). The experiments consisted of 

three main parts. In Section 5.1, we compared the performance of the 

three proposed RL algorithms and validated the algorithms using a test 

dataset. In Section 5.2, we performed a sensitivity analysis on several 

environmental inputs. Finally, in Section 5.3, we analyzed the potential 

side effects that arise from the port’s pricing and energy management 

strategies.

We established the following common experimental settings across 

the three experiments. Based on the problem description outlined in 

Section 3.1, we implemented an environment for the dynamic pricing 

and energy management problem. The electricity wholesale price data 

used in the environment were obtained from the website of PJM, one of 

the regional transmission organizations in the United States, and real-

time hourly electricity pricing data were used. The renewable energy 

generation data were also generated based on PJM’s hourly renewable 

energy generation dataset, while the number of berthed vessels was de-

rived from data on container ships berthed at the Port of Los Angeles. 

The parameters for the upper and lower bounds of vessel fuel prices were
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Algorithm 2 TD3 algorithm with reward shaping.

Initialize actor network 𝜋𝜙  

, critic networks 𝑄𝜃 ,1  𝑄 𝜃2  

 

with random
 

parameters 𝜙, 𝜃1  

, 𝜃 2
Initialize actor target network 𝜋  

 

′ , critic target networks 𝑄 

 

′ , 𝑄 ′ with𝜙 𝜃1 𝜃2
 𝜙 

′
 𝜙  𝜃 

′ ′parameters ← , ←1  𝜃1 , 𝜃 ←2  𝜃2 .
Initialize replay buffer B 

Initialize policy update frequency 𝑑 

for episode 𝑒 = 1 to 𝐸 do
Initialize electricity price, renewable energy generation, total elec-

tricity consumption of vessels, and ESS storage for two environments: 

𝐸𝑛𝑣, 𝐸𝑛𝑣 2 

for time step 𝑡 = 1 to 𝑇 do
Observe state 𝑠 𝑡 

of 𝐸𝑛𝑣 1 

and select action 𝑎 𝑡 

= 𝜋 G with𝜙 (𝑠 𝑡 

) +  

exploration noise G ∼ N (0, 𝜎). 
Execute action 𝑎 in ge𝑡  𝐸𝑛𝑣 1 and t  

  

reward 𝑟 𝑡 

, next state 𝑠 𝑡+1 

. 
𝑚𝑦𝑜𝑝𝑖𝑐

Observe state 𝑠  𝑚𝑦𝑜𝑝𝑖𝑐
 of 𝐸𝑛𝑣 2 and select using𝑡  action 𝑎 𝑡  the 

myopic algorithm. 
𝑚𝑦𝑜𝑝𝑖𝑐

Execute action 𝑎  𝑚𝑦𝑜𝑝𝑖𝑐
 in 𝐸𝑛𝑣 2 and receive reward𝑡   𝑟 𝑡
 

′Shaped reward 𝑟 𝑚𝑦𝑜𝑝𝑖𝑐
= 𝑟 -𝑡 𝑡 𝑟 𝑡

′Add transition (𝑠 𝑡 

, 𝑎 𝑡 

, 𝑟𝑡 , 𝑠 𝑡+1 

) to B. 
′Sample mini-batch (𝑠, 𝑎, 𝑟, 𝑠  

 ) from B with batch size 𝑁 .

Update critic networks by Eq. (21) with policy noise G̃ ∼
𝑐𝑙𝑖𝑝(N (0, 𝜎̃ ), −𝑤, 𝑤) 

if 𝑡 mod 𝑑 = 0 then
Update actor network by policy gradient: ∇𝜙 𝐽 (𝜙) =
𝑁 

−1 

∑ 

∇𝑎 𝑄 𝜃1  

(𝑠, 𝑎)∇𝜙  

𝜋𝜙 (𝑠)
Update actor target network 𝜙′ 

 = 𝜏𝜙 + (1 − 𝜏)𝜙 

′

′Update critic target networks 𝜃  

𝑖 = 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′𝑖
end 

end 

end

estimated using data from the website of Oilmonster, which provides 

information on regional bunker prices. Parameters related to the ESS 

were set based on data from the website of Hyosung Heavy Industries, 

an energy solution company in South Korea. Most experiments were 

conducted using an AMD Ryzen 5 7600X 6-Core Processor with Python 

version 3.12, and the myopic algorithm was solved with FICO Xpress 

version 8.14.

5.1. Performance evaluation of the proposed RL algorithms

In this subsection, we compared the performance of the three RL al-

gorithms with that of the time-segmented heuristic algorithm described 

in Appendix B. Although we assumed that vessel fuel prices follow a 

uniform distribution, we additionally conducted experiments under the 

assumption that the prices follow a truncated normal distribution, aim-

ing to demonstrate the robustness of the algorithm to the underlying 

price distribution. Because the cumulative distribution function of the 

truncated normal distribution does not have a closed-form expression, 

we used the Abramowitz & Stegun approximation [56] to represent 

Constraint (A.2) in the myopic algorithm. In these experiments, each 

episode had a length of 50 days, corresponding to 1200 time steps, and 

the model was trained over 5000 episodes. During the training process, 

the performance of the model was evaluated in a separate evaluation en-

vironment every 10 episodes, and this performance was used as a metric 

for evaluation. We determined hyperparameters for the RL algorithms 

through experiments as provided in Table 2, and these were identically 

applied to all three algorithms.

Fig. 4 (a) shows the learning curves of the three RL algorithms and 

the result of the heuristic algorithm, under the assumption that ves-

sel fuel prices follow a uniform distribution. The X-axis represents the 

number of episodes during the training, while the Y-axis indicates the 

average reward per time step. The DDPG algorithm, depicted by the

Table 2 

Hyperparameters of the RL algorithms.

Hyperparameter Value

Capacity of the experience replay buffer 1,000,000

Size of the sampled mini-batch 256

Discount factor 𝛾 0.99

Soft update parameter 𝜏 0.005

Learning rate of actor and critic networks 0.0001

Exploration noise parameter 𝜎 0.2

Policy noise parameter 𝜎̃ 0.1

Policy noise parameter 𝑤 0.1

Frequency of policy updates 𝑑 2

green graph, showed the lowest performance, even below that of the 

heuristic algorithm. Although it achieved a high reward around the 

1000th episode, the reward decreased as training progressed and finally 

converged to a lower reward, which indicated instability in the learn-

ing process. With the TD3 algorithm, represented by the blue graph, 

the learning process was relatively stable, and it converged after 4000 

episodes. The average reward after convergence was $149.08, slightly 

higher than the average reward of the heuristic algorithm, which was 

$145.26. The result of the TD3-RS is shown by the red graph, and it 

converged quickly and stably within 2000 episodes. It achieved the 

highest performance and the average reward after convergence was 

$151.69, approximately $6.43 higher than that of the heuristic algo-

rithm. Even though this difference may seem to be trivial, considering 

that this value represents the reward per time step (one h), it becomes 

a significant amount when extended to a day and a year. Fig. 4 (b) 

presents the results obtained under the truncated normal distribution as-

sumption. Consistent with the previous experiment, TD3-RS algorithm 

demonstrated the best performance among the evaluated algorithms. 

The computational times of training 5000 episodes for DDPG and TD3 

algorithms were approximately 10 h and 11 h, respectively. Although 

there may have been concerns about the computational time required 

for the TD3-RS algorithm due to the process of solving NLP problems, 

the problem solved by the myopic algorithm was a small-size problem 

that could be solved very quickly using a solver, resulting in a total 

computational time of 13 h.

We also conducted a sensitivity analysis of hyperparameters for the 

three RL algorithms. For each algorithm, the learning process was per-

formed under different values of the standard deviation of the policy 

noise (0.1, 0.2, 0.3) and the capacity of the replay buffer (100,000, 

500,000, 1000,000). Fig. 5 illustrates the average reward per time step 

after convergence for each experimental setting. The DDPG algorithm 

exhibited consistently lower performance than the other algorithms 

across all settings and was especially sensitive to changes in the replay 

buffer capacity. The TD3 algorithm achieved performance close to that 

of the TD3-RS algorithm in certain settings, specifically when the policy 

noise standard deviation was set to 0.2 and the replay buffer capacity to 

10,00,000. However, it showed high sensitivity to both hyperparameters 

overall. In contrast, we observed that the TD3-RS algorithm maintained 

high performance across changes in both hyperparameters, indicating 

its robustness to hyperparameter settings.

RL models trained with the training dataset may suffer from an over-

fitting problem, so we conducted validation experiments using a test 

dataset. We also verified the economic impact of the ESS through these 

experiments. While the ESS can benefit from fluctuations in wholesale 

prices, it also has drawbacks due to charging and discharging electricity 

losses. We executed experiments on a scenario where the port deter-

mines pricing and supplies SSE to vessels without using an ESS, and 

compared the results with those obtained from the RL algorithms. We 

classified the test dataset into four cases based on the mean and variance 

of wholesale electricity prices, and validated the algorithms for each 

case. The four cases were as follows: HH case, HL case, LH case, and 

LL case, respectively representing high mean and high variance; high 

mean and low variance; low mean and high variance; and low mean and
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Fig. 4. Performance comparison of algorithms during the training process.

Fig. 5. Sensitivity analysis of hyperparameters.

low variance in wholesale electricity prices. The test data for each case 

had a length of 30 days (720 time steps), and the means and standard 

deviations of electricity prices within each case are specified in Table 3.

We repeated each validation experiment 10 times for all RL algo-

rithms and cases. The average reward per time step and the difference 

from the results of the scenario without an ESS are presented in Table 4. 

The validation experiment results showed that, similar to the findings

of the previous experiment, the TD3-RS algorithm achieved the highest 

performance in all cases. In particular, the results of the TD3-RS algo-

rithm were considerably higher than those of the scenario without the 

ESS for all cases, implying the economic benefits of an ESS. In comparing 

the results of the TD3-RS algorithm across different cases, the algorithm 

demonstrated relatively better performance in cases with high variance 

in wholesale electricity prices (HH, LH cases) compared to those with
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Table 3 

Means and standard deviations of 

wholesale electricity prices.

Case Mean Std

HH case 42.38 38.93

HL case 41.96 19.26

LH case 27.29 27.57

LL case 28.44 13.51

low variance (HL, LL cases). These results suggest that the algorithm 

takes advantage of purchasing electricity at low prices and storing it 

for sale when prices are high. In HH and LH cases, the significant gap 

between high and low wholesale prices enables the port to take full ad-

vantage of these benefits, while such benefits are less pronounced in HL 

and LL cases.

Fig. 6 depicts the changes in wholesale electricity prices over time, 

while Fig. 7 illustrates the changes in ESS storage levels when using 

the TD3-RS algorithm. In Fig. 6, the wholesale prices in all four cases 

commonly exhibit a pattern of being low during early morning hours, 

increasing until evening, and then decreasing again. Due to this pattern, 

the storage levels in Fig. 7 tend to increase during early morning hours 

and decrease during the daytime when wholesale prices increase. These 

results align with our intuition regarding the ideal ESS storage levels. 

They also support the results of the validation experiments. In Fig. 6, the 

high variance cases, such as the HH case (red graph) and the LH case 

(green graph), show large differences between the peaks and valleys of 

wholesale prices. Conversely, the low variance cases, such as the HL case 

(blue graph) and the LL case (yellow graph), have smaller differences. 

As a result, in Fig. 7, ESS storage levels in the low variance cases are 

generally lower than those in the high variance cases.

Fig. 7 not only depicts the trends in ESS storage levels but also pro-

vides insights into the appropriate storage capacity for the ESS. The ESS 

is a facility with high initial costs and its storage capacity has a signif-

icant impact on overall costs. Thus, it is a critical decision factor when 

installing an ESS at a port. In this experiment, the ESS storage capacity

Table 4 

Validation results: means and differences from the scenario without ESS.

Case Without ESS DDPG TD3 TD3-RS

Mean Difference Mean Difference Mean Difference

HH case 140.35 140.83 0.34 % 157.41 12.16 % 159.35 13.54 %

HL case 100.59 93.59 −6.96 % 107.57 6.94 % 109.12 8.48 %

LH case 193.08 197.61 2.35 % 209.66 8.59 % 212.56 10.09 %

LL case 148.87 144.42 −2.99 % 158.23 6.29 % 161.03 8.17 %

was set to 50 MWh. However, if the storage levels resulting from the 

application of the algorithm are lower than this value, it is proper to 

select a lower initial storage capacity.

5.2. Sensitivity analysis

We conducted a sensitivity analysis on three factors: the electricity 

consumption of vessels, the distribution of vessel fuel prices, and the 

emission weight parameter. These factors either influence the demand 

for SSE or directly affect the reward function, thereby impacting the 

port’s decision-making process. We trained the TD3-RS algorithm under 

varying values of each factor and compared the results. Each experiment 

illustrates how different operating conditions affect the port’s decisions 

and overall profit.

We compared the average reward for different mean values of ves-

sel’s electricity consumption per unit time, specifically 0.75, 1.0, 1.25, 

and 1.5. The results are illustrated in Fig. 8. We observed that as the 

vessel’s electricity consumption increased, the average reward also in-

creased. This is reasonable, given that the increase in the overall use of 

electricity by vessels directly translates into increased SSE demand. In 

addition, the results showed that the marginal increase in reward grad-

ually decreased. It could be interpreted as being due to constraints such 

as the ESS capacity and the upper limit on SSE sales.

In the sensitivity analysis on the standard deviation of vessel fuel 

prices, we conducted experiments using truncated normal distributions 

with standard deviations of 1, 3, and 5, as well as a uniform distribution. 

The uniform distribution has a larger standard deviation than the trun-

cated normal distributions. As shown in Fig. 9, the port’s profit decreased 

as the standard deviation of fuel prices increased. Because the port does 

not have information on each vessel’s fuel price, higher variability in-

creases environmental uncertainty, ultimately leading to a decrease in 

profit.

All of the above experiments were conducted with the objective of 

maximizing the port’s economic profit. However, in reality, ports oper-

ate SSE not only for economic gains but also to achieve environmental 

benefits. Specifically, this trend has grown with the rise of carbon credit 

trading, and many studies related to supply chain issues have incorpo-

Fig. 6. Wholesale electricity price over time for each case.
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Fig. 7. ESS storage level over time for each case.

Fig. 8. Sensitivity analysis on mean of vessel electricity consumption.

Fig. 9. Sensitivity analysis on standard deviation of vessel fuel price.

rated emission factors, such as carbon taxes and carbon credit trading 

[57,58]. In this section, we incorporated an emission factor into the ex-

isting reward function, using a revised reward function that reflects both 

economic and environmental benefits. The revised reward function is 

defined as follows:

𝑟 𝑡 

= 𝜋 𝑡 

+ 𝜌 ⋅ 𝑑 𝑡 

⋅ benefit 

𝑒𝑛𝑣 (23)

where 𝜌 represents the weight assigned to the port’s environmental ben-

efits, 𝑑 𝑡 

is the sales volume of SSE, and 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 

𝑒𝑛𝑣 means the social and 

environmental benefits per unit of SSE sold. Based on the previous study 

[21], we set 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡 

𝑒𝑛𝑣 = 22 ($∕𝑀𝑊 ℎ). The value of 𝜌 varies depending 

on the port’s emphasis on environmental factors, as well as on additional

Fig. 10. Sensitivity analysis on emission weight 𝜌.

benefits from SSE sales through carbon credit trading, the regulatory 

intensity imposed by the government, and other factors.

We carried out experiments for 𝜌 = 0, 0.25, 0.5, 0.75, and 1.0, and the 

results are presented in Fig. 10. It should be noted that the average re-

ward shown in Fig. 10 does not include environmental benefits. The 

results showed that the port’s profit decreased as 𝜌 increased. This can 

be explained by the port’s incentive to increase SSE sales, even at the 

cost of higher electricity purchases and storage levels.

Fig. 11 shows the average ESS storage level for each value of 𝜌, sup-
porting the result of Fig. 10. Except for the interval where 𝜌 increases 

from 0.75 to 1.0, the average ESS storage level increased as the value of 

𝜌 increased. This aligns with the expectation that a higher 𝜌 would make 

the port store larger amounts in the ESS to sell SSE even when future 

wholesale prices are high. However, contrary to expectations, when 𝜌 

increased from 0.75 to 1.0, the average storage level remained almost 

the same. It was due to the limitations imposed by the storage capacity 

of the ESS and the upper bound on the amount of electricity that could 

be purchased from the main grid per unit time. If the port was already 

fully utilizing the ESS when 𝜌 was 0.75, an increase in 𝜌 beyond this 

value would not significantly affect the port’s policy. If the ESS capacity 

and the electricity purchase limit had been set higher, the average stor-

age level would have continued to increase. These results imply that a 

port’s emission weight also should be considered when determining the 

initial design of the ESS.

5.3. Analysis of side effects

In this subsection, we analyzed the potential side effects of the port’s 

decisions on dynamic pricing and energy management for operating SSE.
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Fig. 11. Average ESS storage level with different emission weights.

While we have mainly focused on maximizing the port’s profit, it is also 

important to consider how these decisions might impact stakeholders 

and what socio-environmental outcomes they might evoke. Ideally, the 

proposed algorithm helps with efficient energy management, so other 

stakeholders, such as shipping companies would benefit from it. We ex-

amined the side effects from three perspectives: the utilization of SSE, 

the costs incurred by vessels berthed at the port, and the profit of the 

entire system. Vessel costs refer to the sum of costs associated with us-

ing SSE and the fuel costs used for electricity generation. For analysis, 

we also conducted experiments on a scenario where the port did not 

decide the pricing for SSE, and vessels used SSE at the wholesale elec-

tricity price, which is referred to as a “scenario without pricing.” The 

scenario without pricing is a common situation observed at many ports, 

and comparing our model with it clearly highlights the benefits of port 

microgrids. We compared the side effects of using the TD3-RS algorithm 

with those of the scenario without pricing.

Fig. 12 shows how the SSE utilization rate changes with varying val-

ues of 𝜌. Note that, in the scenario without pricing, the utilization rate 

remains constant regardless of changes in 𝜌 because the port does not 

set prices. The results demonstrated that utilization rate when using the 

TD3-RS algorithm was higher than that of the scenario without pricing, 

even when 𝜌 = 0. It indicated that the port could increase SSE utiliza-

tion through the advantage of the ESS, even when making decisions 

only for its own economic benefit. This analysis of side effects can also 

provide insights for governments and institutions implementing regula-

tions or incentive policies. For example, based on these results, if the

Fig. 12. Utilization rate of SSE with different emission weights.

government aims to increase the SSE utilization rate to 80 %, it would 

need to intensify regulations or provide incentives to raise the port’s 

emission weight to above 0.5.

Fig. 13 presents the results of the cost analysis for berthed vessels. 

As 𝜌 increased, the costs for vessels decreased because the port lowered 

prices to increase the environmental benefits as 𝜌 increased. However, 

these costs are substantially higher than the vessel costs in the scenario 

without pricing. This indicates that the port’s pricing strategy leads to 

increased costs for vessels even when the emission weight is high due to 

policies from institutions or the government. On the other hand, Fig. 14 

represents the profit of the entire system, calculated by subtracting the 

vessels’ costs from the port’s economic profit. The results show that the 

entire system profit is highest when using the TD3-RS algorithm and sig-

nificantly higher compared to the scenario without pricing. This reveals 

that while the port’s pricing strategy increases vessel costs, it is benefi-

cial from the perspective of the entire system. Accordingly, if the port 

provides appropriate incentives for vessels to use SSE, the port’s pricing 

and energy management strategy can benefit both the port and shipping 

companies. Moreover, the profit of the entire system increases as the 

emission weight rises from 0 to 0.25, but once it exceeds a certain level, 

it begins to decrease. This means that excessively strict regulations or 

incentives may reduce the overall system’s profit, so it is important to 

consider this when establishing appropriate policies.

5.4. Managerial insights

Based on the results of the above experiments, we provide managerial 

insights not only for ports that are operating or planning to adopt SSE

Fig. 13. Average cost of berthed vessels with different emission weights.

Fig. 14. Profit of the entire system with different emission weights.
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but also for governments and institutions implementing regulatory or 

incentive policies.

1. The characteristics of electricity prices vary depending on the

structure and policies of the national or regional electricity mar-

ket. Through the experiments outlined in Section 5.1, we con-

firmed that the economic benefits of ESS are greater when there 

is high volatility in wholesale electricity prices. Therefore, consid-

ering the initial cost of ESS, we recommend that ports in regions 

with high electricity price volatility use ESS for operating SSE.

2. Determining the appropriate storage capacity when installing an

ESS at a port reduces unnecessary costs and enables an efficient 

microgrid design. In Sections 5.1 and 5.2, we analyzed ESS storage 

levels based on the characteristics of wholesale electricity prices 

and emission factors, respectively. When price volatility is high 

and emission weight is large, the benefits of energy storage are 

substantial, making it advisable to choose greater storage capacity. 

Conversely, in cases of low price volatility and a smaller emission 

weight, an ESS with smaller capacity is recommended.

3. The experimental results in Section 5.3 show that while regula-

tions or incentives for ports certainly increase the SSE utilization 

rate, they have limitations in reducing costs for vessels. Although 

ports could lower vessel costs by providing incentives for using 

SSE, institutions or governments cannot enforce it directly. A rea-

sonable approach would be for institutions or governments to 

implement appropriate regulations on ports to maximize the profit 

of the entire system, while introducing incentive policies for ves-

sels to use SSE. This would result in greater benefits for both 

vessels and ports compared to the scenario without pricing.

6. Conclusions

As the maritime industry moves toward reducing emissions, SSE tech-

nology has emerged as a key solution for port decarbonization. Although 

governments and organizations worldwide are promoting SSE adoption 

through regulations and incentive policies, the utilization rate remains 

low due to high initial and operational costs. To solve this fundamen-

tal problem, a profitable model for SSE operation is required, and we 

focused on the economic benefits generated by integrating SSE with 

port microgrids. In this study, we proposed a dynamic pricing and en-

ergy management strategy to maximize the profitability of the port’s 

SSE operation. To the best of our knowledge, this is the first research 

to address dynamic pricing and energy management from a retailer’s 

perspective in a real-time electricity market without the unrealistic as-

sumption of predicting electricity prices. To address this challenging 

problem, we adopted an actor-critic RL approach and applied reward 

shaping to improve the model’s performance and stability.

We used three RL algorithms, DDPG, TD3, and TD3-RS, and demon-

strated through computational experiments that our proposed TD3-RS 

algorithm outperforms the others. In particular, we evaluated the algo-

rithms’ performance in different cases based on the characteristics of 

wholesale electricity prices. The results showed that the utility of an 

ESS is higher when electricity prices are low and volatile, while the ad-

vantage of using an ESS is limited in the opposite case. The proposed 

algorithm also exhibited strong performance with a revised reward func-

tion that incorporates the emission factor, demonstrating its robustness. 

Additional experiments suggest that strategies for maximizing a port’s 

profits have the potential to increase the utilization of SSE and enhance 

the overall benefits of the system, leading to positive side effects.

The primary cause of the currently low SSE utilization rate is the 

low installation rate of SSE systems in ports and vessels. The installation 

rate at ports could be increased by proposing a profitable model and 

algorithms for operating SSE. Additionally, the findings of this study 

provide insights for regulatory and incentive policy decisions related to

SSE adoption. At the regional level, public benefits such as higher SSE 

utilization or higher overall system profits can be achieved by properly 

adjusting the intensity of policies according to local electricity prices, 

consumption patterns, and other regional factors. At the international 

level, macro-level policies such as carbon trading and carbon taxation 

should be designed in alignment with regional regulations and incentive 

schemes. Moreover, the RL algorithm for dynamic pricing and energy 

management proposed in this study is expected to be applied to other 

domains in the real-time electricity market. The proposed model can 

be applied to EV charging station operations, which share structural 

similarities with SSE operations, by adjusting the demand model to re-

flect consumer behavior. It can also be applied to energy management 

in smart grids or smart buildings by reformulating the problem as a 

single-action decision framework focused on cost minimization.

We present several limitations of this study and propose directions 

for future research. First, this study focuses only on the electricity 

demand from container vessels using SSE. However, such an energy 

management strategy could lead to unintended effects, such as energy 

shortages for other electricity consumers within the port. This study can 

be extended to a comprehensive energy management system by incorpo-

rating other sources of electricity demand, such as reefer containers and 

port equipment like cranes. Second, while this study addresses the gen-

eral situation of SSE operations, there are additional factors to consider 

for real-world application. In some countries, SSE prices are fixed in ad-

vance, and the electricity market is not liberalized, making it challenging 

to earn a profit through operating SSE. In such cases, the algorithm pro-

posed in this study can be further extended to focus on reducing energy 

costs. Finally, this study focuses on the operational aspect, so the initial 

cost of the ESS was not considered. Future research from a strategic per-

spective is needed to analyze economic feasibility by taking into account 

initial investment costs, operational costs, and revenues. Expanding this 

research to incorporate such factors would enhance the adoption of SSE 

operations in real-world settings.
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Appendix A. Myopic algorithm

We introduce the myopic algorithm as a baseline policy for reward 

shaping. The myopic algorithm is a highly shortsighted approach that 

makes decisions only to maximize the expected reward of the current 

step. In the actual research problem, there is uncertainty in renewable 

energy generation and vessel demand; however, in this algorithm, we 

implement myopic decisions under a deterministic case. To formalize the 

myopic decision-making process, we define the following optimization 

problem, which takes the form of a nonlinear programming (NLP) prob-

lem. Consequently, the myopic algorithm solves this problem at each 

time step 𝑡.
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max 𝑝𝑡𝑑𝑡 − 𝑐 𝑡𝑒 𝑡 

(A.1)

s.t. 𝑑 𝑡 ≤ 𝐷 𝑡𝑃 𝑟𝑜𝑏(𝑓 𝑛,𝑡 

≥ 𝑝 𝑡 

) (A.2)

𝑑 𝑡 

≤ 𝛾 

𝑑𝑖𝑠𝑐ℎ 𝐼 𝑡 + 𝛾 

𝑐ℎ 𝛾 

𝑑𝑖𝑠𝑐ℎ (𝑒 𝑡 + 𝑟 𝑡 

) (A.3)

𝑑 𝑡 

≤ 𝑑 

𝑚𝑎𝑥 (A.4)

𝑒 𝑡 

≤ 𝑒 

𝑚𝑎𝑥 (A.5)

𝑙 ≤ 𝑝 𝑡 

≤ 𝑢 (A.6)

𝑒 𝑡 

≥ 0 (A.7)

𝑑 𝑡 ≥ 0 (A.8)

The objective function (A.1) is identical to Eq. (1). Constraints (A.2) 

through (A.4) and Constraints (A.5) through (A.8) are derived from 

Constraints (7)–(9) and Constraints (12)–(13), respectively. In partic-

ular, because the port cannot observe 𝑓 𝑛,𝑡 and thus does not know 𝜆 𝑛,𝑡 

, 

Constraint (7) is reformulated as Constraint (A.2) based on the avail-

able information: the total electricity demand 𝐷 𝑡 

and the distribution 

of 𝑓 𝑛,𝑡 

. Under the assumption that the fuel cost follows a uniform dis-

tribution with a lower bound 𝑙 and an upper bound 𝑢, it is represented 

as 𝑑 𝑡 ≤ 𝐷 𝑡 

(𝑢 − 𝑝 𝑡)∕(𝑢 − 𝑙) using the cumulative distribution function of

the uniform distribution. Constraint (A.3) corresponds to Constraint (8) 

without the term 𝜖, because the estimation error 𝜖 in renewable energy 

generation is also unobservable.

Appendix B. Time-segmented heuristic algorithm

To provide a benchmark for the proposed RL algorithms, we designed 

a simple rule-based heuristic algorithm named time-segmented heuris-

tic. It is motivated by the daily pattern in real-time electricity prices. We 

divide a day into four time segments and define a purchasing rule for 

electricity in each segment. This algorithm is based on the intuitive prin-

ciple of purchasing electricity during off-peak periods with lower prices 

and selling it during peak periods when the prices are higher. The SSE 

price is determined directly based on the result of the myopic algorithm. 

The four time segments and corresponding purchasing strategies are as 

follows:

• Off-peak period (0:00–6:00): Wholesale electricity prices are low.

The port purchases electricity in advance for sale during the peak 

period, and the surplus is stored in the ESS.

• Pre-peak period (6:00–16:00): Wholesale electricity prices gradually

increase. Because the energy stored in the ESS is reserved for use 

during the upcoming peak period, the port adopts a myopic decision-

making approach without using the stored energy.

Algorithm 3 Time-segmented heuristic algorithm.

Input: wholesale price 𝑐𝑡 , ESS storage level 𝐼 𝑡 

, estimated renewable

energy generation 𝑟𝑡  

, total electricity consumption 𝐷𝑡  

, current time 𝑇
Output: purchasing amount 𝑒𝑡  

, SSE price 𝑝𝑡  

if 𝑇 ∈ off-peak period then
Derive (𝑒 𝑡 

, 𝑝𝑡 ) using myopic algorithm with 𝐼 𝑡 

← 0 

if 𝑐 𝑡 

≤ 𝜂 

𝑐ℎ 𝜂 

𝑑𝑖𝑠𝑐ℎ 𝑙 then
𝑒 ← min[𝑒𝑚𝑎𝑥 , 2𝑒 , 𝐼𝑚𝑎𝑥 

       − (𝐼 

 

+ 𝑟 

 

− 𝐷 

 

𝑃 𝑟𝑜𝑏(𝑓 ≥𝑡 𝑡 𝑡 𝑡 𝑡 𝑛,𝑡  𝑝 𝑡 

))]
end

end 

if 𝑇 ∈ pre-peak period then
Derive (𝑒 𝑡 

, 𝑝𝑡  

) by myopic algorithm with 𝐼 ←𝑡  0
end 

if 𝑇 ∈ peak period then
𝑝𝑒𝑎𝑘

Let 𝜏  

 be𝑡  the number of remaining time steps in the peak period 

𝑝𝑒𝑎𝑘
Derive (𝑒 , myopic𝑡  𝑝𝑡 ) by   

 

algorithm with 𝐼 ←𝑡  𝐼 

 𝑡∕𝜏𝑡
end 

if 𝑇 ∈ post-peak period then
Derive (𝑒 𝑡 

, 𝑝𝑡  

) using myopic algorithm

end

• Peak period (16:00–22:00): Wholesale electricity prices remain rel-

atively high on average. A myopic decision is made based on the 

amount of energy stored in the ESS during the off-peak period, with 

the aim of using the stored energy efficiently.

• Post-peak period (22:00–24:00): Wholesale electricity prices grad-

ually decrease. This period aims to consume any remaining stored 

energy that was not used during the peak period, using a myopic 

policy that considers the ESS storage level.

Algorithm 3 shows the detailed procedure of the heuristic algorithm. 

Data availability

The authors do not have permission to share data. 
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