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ABSTRACT
Efficient and low-carbon berth allocation and quay crane scheduling are crucial for enhancing the
competitiveness and sustainability of container ports. This study addresses the berth allocation and
quay crane assignment and scheduling problem (BACASP) by incorporating carbon emission costs
and uncertainties in vessel arrival times and quay crane processing times. A novel hierarchical rein-
forcement learning (HRL)-based scheduling framework is proposed, employing three cooperative
agents to support real-time berth allocation and quay crane scheduling in dynamic environments.
The upper-level agent determines whether to release waiting vessels, while two lower-level agents
allocate berth locations and assign quay cranes. Numerical experiments demonstrate the effec-
tiveness of the HRL framework compared to a mixed integer programming (MIP) approach with
perfect information, highlighting its capability to achieve near-optimal solutions under sequentially
observed information. The study also investigates the impact of uncertainty on operational and
carbon emission costs, providing practical managerial insights for port operators. These findings
underscore the potential of leveraging well-structured HRL frameworks to address complex and
dynamic port operation problems.

ARTICLE HISTORY
Received 27 January 2025
Accepted 22 July 2025

KEYWORDS
Berth allocation and quay
crane assignment and
scheduling problem;
hierarchical reinforcement
learning; carbon emissions;
real-time decision-making;
maritime industry

1. Introduction

Nowadays, a considerable portion of global trade is trans-
ported via maritime transportation. The trade volume
carried through maritime shipping increased by 2 per-
cent in 2024 and is projected to grow steadily at an
annual rate of 2.4 percent over the next five years (UNC-
TAD 2024). Furthermore, UNCTAD (2024) also antic-
ipated that the growth rate of the cargo volume trans-
ported via containers would be even higher. As a result,
the significance of efficient container port operations is
being highlighted.

A berth is where a vessel stays while its contain-
ers are loaded or unloaded, and a quay crane (QC) is
the equipment that performs these operations, as illus-
trated in Figure 1. Vessels are berthed parallel to the
quay, and QCs move along the quay to perform con-
tainer operations. In Figure 1, each rectangle enclosing
a vessel indicates the space and time it occupies at the
allocated berths. As shown in the bottom-right corner,
the berthing period, indicated by the horizontal length,
is calculated based on the container workload and the
number of deployed QCs for each vessel. Given that
QCs cannot move across each other, their schedules,
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represented by black arrows, are visualised without
overlaps.

A port manager constructs a baseline schedule for the
given planning horizon (e.g. 168 h) based on available
information, such as each vessel’s expected arrival times
and expected workload. The baseline schedule includes
the berth-vessel assignments and the scheduling of each
QC for container operations, as shown in Figure 1. This
schedule determines the dwelling times of vessels, which
significantly impacts not only the productivity of the
port but also berth operations at the subsequent ports
where the vessels are scheduled to arrive. It also has a
considerable impact on yard operations, including con-
tainer storage and the scheduling of internal and external
trucks. For example, based on the vessels’ berthing loca-
tion, the storage location of containers within the yard is
determined, and the schedules for vehicles transporting
the containers are constructed according to the vessels’
berthing and departure times. Therefore, establishing an
effective baseline schedule for berths andQCs is a critical
decision in port operations.

However, unexpected weather changes, variations in
workload, and other uncertainties make it difficult to
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Figure 1. Continuous layout of a container terminal with five berths and eight QCs.

implement the baseline schedule as planned. As a result,
the port manager must take corrective actions, such
as adjusting the berthing location of delayed vessels or
deploying more QCs than the initial plan. Figure 2 shows
a real-world example of berth allocation andQC schedule
adjustments at BusanPort in SouthKorea. In Figure 2, the
vertical axis represents the berths, while the horizontal
axis represents the time horizon. The light gray rectangles
indicate vessels, and the assigned QCs for each vessel are
shown in dark gray. For each QC, the number in the top-
left corner indicates the start time of operations, while the
number in the top-right corner represents the completion
time. The time difference between the baseline schedule
and the modified schedule is 4 hours. It can be observed
that both the berthing locations and assigned QCs for
Vessel 7 and Vessel 12 have been changed. For Vessel 10,
the overall schedule has been delayed due to the depar-
ture delay of Vessel 9. Such schedule changes can occur
as little as one hour before a vessel is berthed or even
less. In this context, inadequate schedule adjustments
can lead to increased vessel dwelling times or inefficient
QC operations, which in turn increase the port’s oper-
ating costs and carbon emissions from both vessels and
QCs. If vessels depart the port later than their preferred
departure times, penalty costs are incurred. Therefore,
making appropriate real-time decisions regarding berth

allocation and QC scheduling in response to uncertainty
is an essential capability for port operators.

The problem of determining the berthing locations of
vessels is known as the berth allocation problem (BAP),
and the problem of determining which vessel each QC
will handle in specific time slots is referred to as the QC
scheduling problem (QCSP). As the decisions made in
each problem significantly impact the outcomes of the
other, their integrated optimisation problem, known as
the berth allocation and QC assignment and scheduling
problem (BACASP), has beenwidely studied in recent lit-
erature. Our study also aims to propose a new approach
for solving the BACASP, taking into account several con-
siderations outlined below.

Because the berth allocation and QC scheduling are
the starting point for all container operations in ports,
their appropriate implementation is essential for port
efficiency and serves as a key factor of container termi-
nals’ competitiveness (Bierwirth and Meisel 2015; Yang,
Wang, and Li 2012). However, as mentioned above, the
inherent uncertainty in the maritime logistics industry
makes it challenging (Rodrigues and Agra 2022; Tan and
He 2021; Tasoglu and Yildiz 2019). Due to various types
of uncertainty, schedules of berths and QCs often require
real-time adjustments. Consequently, it is necessary to
develop proactive or reactive approaches to determine
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Figure 2. A real-world example of baseline and modified schedules.

schedules of berths and QCs that consider those uncer-
tainties.

Another important issue in port operations is sustain-
ability. Because the maritime logistics industry accounts
for approximately 3 percent of global greenhouse gas
(GHG) emissions (UNCTAD 2023), many interna-
tional organisations and individual ports are striving to
reduce GHG emissions from port operations and vessels.
For example, the International Maritime Organization
(IMO) adopted a long-term strategy for reducing GHG
emissions from international shipping and related activi-
ties (InternationalMaritimeOrganization 2018). To align
with this international trend, port operators can replace
the power sources of cargo-handling equipment with
eco-friendly sources or implement incentive programs to
encourage vessels to reduce GHG emissions. In addition,
advancement in operational strategies to achieve both the
maximisation of port productivity and the minimisation
of GHG emissions is essential.

Although effectivelymanaging uncertainty and reduc-
ing GHG emissions are both critical objectives in port
operations, these two aspects have rarely been considered

simultaneously in existing BACASP literature. Conse-
quently, little attention has been given to analysing how
uncertainty in port environments impacts operational
decision-making, especially when GHG emissions are
considered. To fill this research gap, we introduce a
new dynamic problem that enables real-time decision-
making in the BACASP context. Furthermore, we incor-
porate the carbon emission costs into the objective func-
tion, aiming to produce optimal decisions that minimise
the total cost, encompassing both operational expenses
and environmental impacts. To solve this challenging
problem, we develop a novel reinforcement learning
(RL) algorithm tailored to uncertain and dynamically
changing port environments. We also validate its practi-
cal applicability through numerical experiments. Finally,
leveraging our proposed approach, we provide valu-
able managerial insights to port operators responsi-
ble for operational decision-making, aiming to enhance
ports’ competitiveness in the evolving maritime logistics
industry. More detailed explanations of our contribu-
tions to existing literature are discussed at the end of
Section 2.
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The remainder of this paper is organised as follows.
Section 2 summarises previous studies related to this
study and our contributions to the literature. Section 3
presents a problem description of the BACASP. We first
explain the deterministic BACASP considering carbon
emission costs and its mathematical model. Then, a real-
time decision-making problem is described, in which
several problem settings of the deterministic problem
are modified. In Section 4, a novel RL-based approach
to solve the real-time decision-making problem is pro-
posed. Section 5 includes the results of numerical experi-
ments, and concluding remarks are provided in Section 6.

2. Literature review

In this section, we review two distinct bodies of literature
relevant to our study. The first focuses on studies address-
ing the BACASP, particularly under the considerations of
uncertainty or carbon emissions. The second investigates
RL approaches for tackling complex decision-making
problems in manufacturing and logistics environments.
Finally, contributions of this study to the existing litera-
ture will be provided.

Because the BAP and QCSP are NP-hard (Xu and
Lee 2018; Zhu and Lim 2006), many studies have pro-
posed efficient solution methods to address the BACASP,
which integrate two computationally challenging opti-
misation problems. Among these, we briefly introduce
studies that consider uncertainty or incorporate carbon
emissions into their analysis. Although the berth alloca-
tion and QC assignment problem (BACAP) is a simpler
version of the BACASP (Zheng et al. 2019), it is still a
challenging problem, and therefore, it is included in the
studies reviewed in this section.

The most commonly considered sources of uncer-
tainty are the arrival times of vessels and the processing
times of QCs. Xiang, Liu, and Miao (2018) considered
uncertainties in vessel arrival times and QC process-
ing times simultaneously in the BACASP. The arrival of
unscheduled vessels and breakdown of QCs are also con-
sidered, and they utilised a rolling horizon optimisation
algorithm to handle the computational complexity of the
BACASP. In Tasoglu and Yildiz (2019), only QC process-
ing times are considered as the source of uncertainty.
They utilised the simulation model to handle complex
constraints for QC movements and uncertainty in QC
handling times. More recently, the main research stream
in addressing the BACAP and BACASP under uncertain
vessel arrival times or QC processing times has focussed
on proposing mixed integer program (MIP)-based prob-
lem formulations and on developing efficient algorithms
to solve them. Although uncertainty was not consid-
ered in Agra and Oliveira (2018), they proposed a new

formulation for the deterministic BACASP, which can
serve as a good starting point for developingMIPmodels
that incorporate uncertainty. Furthermore, a rolling hori-
zon heuristic algorithmwas employed to solve large-scale
instances. Based on this deterministic model, Rodrigues
and Agra (2021) proposed a new robust formulation and
decomposition algorithm that can address uncertainty in
vessel arrival times. In Chargui et al. (2023), a robust
BACASPmodel and a decomposition algorithm for solv-
ing it were also proposed. The key difference from the
Rodrigues and Agra (2021) lies in the consideration of
both uncertainties in vessel arrival times andQCprocess-
ing times, as well as in the incorporation of energy price
variations. Similarly, Zhen, Zhuge, Wang et al. (2022)
developed a two-stage stochastic programming model
that integrates berth and yard space allocation under
uncertain vessel arrival times and handling workloads.
They also proposed a new decomposition algorithm to
solve the model efficiently. While their work focuses on
yard allocation rather than QC assignment, both the
modelling and solution approaches are closely aligned
with the BACAP and BACASP. Zhen, Sun et al. (2021)
and Ji, Huang, and Samson (2022) also formulated the
BACASP as a scenario-based stochastic model to incor-
porate uncertainty in vessel arrival times. The former
developed a column generation-based solution method,
and the latter employed an enhanced non-dominated
sorting genetic algorithm II to solve the proposed prob-
lems. In Xiang and Liu (2021), an almost robust model
for the BACAP and a decomposition method are pro-
posed to address uncertainty in vessel arrival times.
In C. Wang, Liu et al. (2024), a distributionally robust
optimisation (DRO) model was proposed to overcome
the drawbacks of stochastic programming and robust
optimisation methods for the BACAP under uncertain
vessel arrival times. Following this line of research, C.
Wang, Wang et al. (2025) developed a two-stage DRO
approach, which demonstrated improved computational
performance compared to the previous study.

However, many of the solution methods proposed
in the aforementioned studies are generally effective in
uncertain but static port environments. They are lim-
ited in their ability to support real-time decision-making
in highly dynamic port environments. For instance,
scenario-based two-stage stochastic models, in which
baseline schedules for berths and QCs are determined in
the first stage andmodified in the second, assume that all
uncertainties in the planning horizon are realised simul-
taneously rather than sequentially. Other two-stagemod-
els, where berthing positions of vessels are decided in the
first stage andQC schedules are determined in the second
stage, also have limitations in that the berthing posi-
tions cannot be modified even when changes in vessel
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arrival times are observed. Furthermore, many papers
have adopted rolling horizon heuristic algorithms to
address large-scale instances, but these approaches result
in a smaller number of vessels or shorter time periods
being considered at a single decision point. Therefore, as
demonstrated in Zhen, He et al. (2024), which proposed
a multi-stage stochastic integer programming model for
berth planning under uncertain vessel arrival and ser-
vice times, it is important to develop practical decision-
making frameworks that account for the sequential real-
isation of uncertainty throughout the planning horizon.

Carbon emissions, which have become increasingly
important in the maritime logistics industry, have also
been considered in numerous studies addressing optimi-
sation problems in port operations (Jauhar et al. 2023;
Jiang et al. 2024; Karakas, Kirmizi, and Kocaoglu 2021;
Peng, Dong et al. 2021; Peng, Wang et al. 2016; Venturini
et al. 2017). Among them, several studies addressed the
QC assignment problem (QCAP) or QCSP with consid-
erations of carbon emissions by QCs (Kenan, Jebali, and
Diabat 2022; Liu andGe 2018). Carbon emissions are also
considered in the BACAP literature, where QC opera-
tions are the primary sources of emissions. Wang, Wang,
and Meng (2018) incorporated several carbon emission
taxation policies into the BACAP and investigated their
impact on the problem. Similarly, T. Wang et al. (2020)
proposed a bi-objective model considering carbon emis-
sion taxation and developed an efficient algorithm to
solve it. They also evaluated the trade-off between ser-
vice efficiency and carbon emissions. In Yu et al. (2023),
the BACAP was formulated in conjunction with the ves-
sel speed optimisation problem, taking into account the
adoption of green technologies aimed at reducing ves-
sel emissions. In addition, Wang, Hu, and Zhen (2024)
addressed the BACAP considering the assignment of on-
shore power supply, a technology for reducing carbon
emissions of ports and vessels.

However, uncertainty in port operations was not
incorporated into thosemodels. To the best of our knowl-
edge, only a few studies, such as Chargui et al. (2023),
Chargui, Zouadi, and Sreedharan (2023), and Zhen, Sun
et al. (2021), have simultaneously considered both car-
bon emissions and uncertainty in the context of the
BACAP or BACASP. This highlights the need for further
development ofmathematical models that integrate these
two critical factors within the context of the BACASP.
It enables exploring how uncertainty affects low-carbon
berth allocation and QC scheduling, providing valuable
insights into more sustainable and optimised port opera-
tions. One point to consider is that, because carbon taxes
have not yet been directly imposed on ports, it remains
unclear which emission sources they are responsible for.

In this study, because berthing and waiting times of ves-
sels are also determined by port operators, we consider
the carbon emission costs from vessels in the berths and
roadstead as part of the ports’ emission costs, as inKenan,
Jebali, and Diabat (2022).

Incorporating uncertainty, particularly in vessel arrival
times and QC processing times, along with carbon
emissions resulting from port operations, makes the
BACASP an even more challenging problem in terms of
computational complexity. Furthermore, as in T. Wang
et al. (2020), constraints for complex QCmovements and
their interference effects must be included to measure
the amount of carbon emissions fromQCs accurately. To
address these challenges, we propose a novel RL-based
scheduling framework capable of providing real-time
decision-making in dynamic and complex port environ-
ments. It can leverage historical data to train the agent to
optimise the objective over the entire planning horizon
while accounting for the sequential realisation of uncer-
tainty. According to Filom, Amiri, and Razavi (2022),
several studies have utilised RL algorithms to address
optimisation problems in port operations. However, to
the best of our knowledge, they have not been explored
in the BACASP literature, where multiple decisions must
be made jointly. In contrast, RL using multiple collab-
orative agents has been frequently applied to complex
decision-making problems in the logistics and produc-
tion domains. We briefly introduce studies related to
the solution method proposed in our study in the next
paragraph.

To handle complex real-time decision-making prob-
lems, several studies have employed multiple coopera-
tive agents. In H. Wang et al. (2021), a dual Q-learning
method was proposed to address assembly job shop
scheduling problems. Their top-level Q-learning agent
chooses one of the jobs in a global job buffer; then the job
is automatically assigned to amachinewith theminimum
loading. Next, the bottom-level agent determines the pri-
ority of jobs assigned to each machine. Ma et al. (2021)
also employed two RL agents for dynamic pickup and
delivery problems: the upper-level agent decides whether
to release accumulated orders for processing, while the
lower-level agent determines the sequence in which each
vehicle processes these released orders. In Liu, Piplani,
and Toro (2022), two cooperative agents were trained
to allocate arriving jobs to machines and to determine
the sequence of jobs to be processed by each machine
in flexible job shop scheduling problems (FJSPs). Addi-
tionally, Zhang et al. (2024) developed a collaborative
agent RL for FJSPs, where the job agent selects one of the
candidate operations, and the machine agent determines
whichmachine will execute the selected operation. In Lei
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et al. (2023), three RL agents were trained within a hier-
archical structure. First, the upper-level agent determines
whether to release the cached jobs to the lower-level
agents. Next, the first lower-level agent, referred to as the
job agent, selects one of the released jobs, while the sec-
ond lower-level agent, referred to as the machine agent,
assigns each job to one of the compatible machines. The
BACASP requires more complex decision-making struc-
tures compared to the problems addressed in the pre-
vious studies explained above. Therefore, we construct
a well-designed hierarchical RL (HRL)-based schedul-
ing framework in which three agents cooperate to make
major decisions, while several detailed decisions are
made based on predefined rules. Its detailed explanation
will be presented in Section 4.

Finally, our contributions to the existing literature can
be summarised as follows:

• We introduce a new real-time BACASP, in which
schedules of berths and QCs are sequentially deter-
mined based on realised information to manage
uncertainty in port environments. By addressing
this problem, port operators can determine feasible
schedules at each period that minimise the expected
total cost incurred over the entire planning horizon.
Furthermore, we incorporate carbon emission costs
into the proposed problem to explore the relation-
ship between uncertainty and carbon emission costs,
which are critical factors in port operations.

• We develop a novel HRL-based scheduling frame-
work, which consists of three cooperative RL agents,
capable of supporting real-time berth allocation and
QC scheduling. The effectiveness of the proposed
framework is demonstrated through comparisons
with an exact algorithm. Additionally, its practical
applicability is verified in the aspect of consistency and
computation time.

• Managerial insights for practitioners involved in port
operations are provided through numerical experi-
ments. These insights enable ports to enhance their
sustainability and competitiveness by utilising the pro-
posed HRL-based scheduling framework.

3. Problem description andmathematical
model

3.1. Deterministic BACASP

In this subsection, we present a problem description for
the deterministic BACASP in a static manner. In the
deterministic BACASP, the arrival times of all vessels and
completion times of all QCs are known to a decision-
maker a priori, and they remain unchanged. Based on the

known information, berthing locations of waiting ves-
sels and a set of specific QCs to serve each vessel are
determined in an integrated manner. We use a contin-
uous layout, where berths are divided into smaller units
called berth sections, and a single vessel can be moored
across multiple consecutive berth sections, as shown in
Figure 1. QC schedules are time-invariant, meaning that
QCs assigned to a vessel cannot be reassigned to another
vessel until the assigned vessel departs, and an idle QC
cannot be assigned to a vessel currently being served by
other QCs. All QCs move along a straight line and each
QCoperates within a specified rangewithout intersecting
with one another as described inChung andChan (2013).
Furthermore, we assume that there is QC interference. It
means that as the number ofQCsworking on a single ves-
sel increases, the productivity of each QC decreases due
to interference among QCs.

The objective is tominimise the total costs that include
operational costs and carbon emission costs. The oper-
ational costs include the earliness income and tardiness
penalty for vessel departure times, as well as the QC
operating costs. The carbon emission costs occur from
three sources of emissions: waiting vessels, berthing ves-
sels, and operating QCs. We assume that the carbon
emission costs are proportional to vessels’ waiting time,
berthing time, and QC operation time. This assump-
tion aligns with the scenario in which a carbon tax
is imposed on the carbon emissions generated by ves-
sels and QCs consuming their fuel. Based on Agra and
Oliveira (2018), Rodrigues and Agra (2021), and T.Wang
et al. (2020), we construct a mathematical model of the
deterministic problem described above. We provide it in
Appendix 1.

3.2. Real-time decision-making problem

Due to highly uncertain arrival times of vessels and
completion times of QC operations, schedules calculated
from the deterministic model cannot be directly imple-
mented in real-world situations. Therefore, a dynamic
scheduling framework that can sequentially generate the
best schedule under the realised information must be
developed. To achieve this, we modify the problem set-
ting from the deterministic BACASP as follows. We first
assume that uncertainty exists in vessels’ arrival time and
completion time of QC operations. More specifically, the
arrival time of vessel k,Ak, and the departure delay of ves-
sel k caused by the delay in QC operations, Dk, are no
longer known in advance. Therefore, the decision-maker
utilises only the realised observations, including infor-
mation related to vessels that have already arrived and
QCs that have already completed their tasks. Based on
the observations, the decision-maker selects one of the
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waiting vessels in the roadstead, determines its berthing
location, and assigns idle QCs to perform its container
operations.

Because the allocation of berth sections and QCs
at each decision point significantly impacts subsequent
decisions, the decision-maker has to minimise not only
the immediate costs but also the total costs incurred
over the entire planning horizon. To this end, we pro-
pose a sequential decision-making framework based on
reinforcement learning (RL). In the proposed frame-
work, the decision-maker dynamically performs berth
allocation and QC scheduling in real time, without rely-
ing on a predefined baseline schedule. In each time
period, the decision-maker determines whether to allo-
cate new berths and assign new QCs to a single vessel.
A more detailed explanation of the sequential decision-
making process in the real-time BACASP is provided in
Section 4.

4. RL-based decision-making framework for the
BACASP

To address the real-time decision-making problem
explained in Section 3.2, we propose a new RL-based
scheduling framework in this section. Recently, a vast
amount of data has been accumulated in the maritime
logistics industry, andmany studies have been conducted
to utilise this historical data in addressing inefficiencies
caused by uncertainty. In the context of the BACASP, we
also recognise the potential of utilising historical data
to effectively address issues stemming from uncertainty.
Due to the inherent unpredictability of vessel arrival
times and QC processing times, the need for real-time
berth allocation and QC scheduling is becoming increas-
ingly prevalent. Once we train the RL agents in a virtual
port environment simulated using historical data, the RL
agents can generate decisions within a significantly short
amount of time based on realised information. More-
over, even when incorporating complex constraints, such
as those related to QC movement, the RL agents can
still be trained within a reasonable computation time.
Therefore, an RL-based decision-making framework can
support real-time decision-making aimed at minimising
the expected cost in highly uncertain and dynamic real-
world port environments. These considerations moti-
vated us to develop a new RL-based solution approach
for the BACASP.

4.1. HRL-based scheduling framework

In the BACASP, multiple decisions must be made in
an integrated manner. However, making multiple deci-
sions is quite difficult for a single agent. Therefore, we

employ multiple agents, consisting of one upper-level
agent and two lower-level agents, that take actions in a
hierarchical structure. As described in Section 2, such
decision-making structures are commonly found in pre-
vious studies that utilised RL to address complex real-
time decision-making problems in the logistics and pro-
duction environments.While not employingmultiple RL
agents, similar hierarchical decision-making structures
have been applied to complex optimisation problems in
the maritime logistics domain (Yu et al. 2023; Zhen,
Zhuge, Zhang et al. 2024). For example, Zhen, Zhuge,
Zhang et al. (2024) developed a two-level optimisation
model, where the upper-level model determines the lay-
out of emission control areas (ECAs), and the lower-
level model solves the vessel routing problem given the
ECA width and sulfur content limits. These prior studies
motivate the design of our hierarchical decision-making
framework based on RL.

Figure 3 shows the hierarchical structure of our three
RL agents. The port environment is a discrete-time simu-
lation framework constructed with berth sections, QCs,
and vessels as the main entities of interaction. It main-
tains and updates the current state of each entity, which
includes the state representations used in the MDP for-
mulations of the RL agents described in Sections 4.2
and 4.3. For instance, the vessel entity is characterised
by various attributes such as its arrival time, workload,
berthing time, and the assigned QCs and berth sections.
The port environment updates these attributes in each
time period considering the actions taken by RL agents.
Additionally, it computes costs based on the updated
attributes and uses them to generate rewards for the RL
agents.

The cooperation among the three RL agents in the
port environment can be explained as follows. First, the
upper-level agent decides whether to release one of the
vessels waiting for berthing. Suppose the upper-level
agent does not release any vessels, as described by arrow
1. In that case, the two lower-level agents, the QC sched-
uler and the berth scheduler, do nothing, and only the
port operations that are currently in progress continue
to be executed. Otherwise, when the upper-level agent
decides to release one of the waiting vessels, a vessel to be
berthed is selected based on a predefined rule.We employ
the first-in-first-out (FIFO) rule in this study. When pre-
ferred berthing locations are not considered, releasing a
later-arriving vessel before an earlier one may be per-
ceived as unfair and may cause dissatisfaction for the
earlier vessel. For such a decision to be justifiable from
the perspective of port operational efficiency, the later-
arriving vessel must fit into the available berth space,
while the earlier-arriving vessel does not. Nonetheless,
our preliminary numerical experiments indicated that
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Figure 3. HRL-based scheduling framework.

such situations occurred only rarely. Therefore, we con-
clude that the FIFO rule remains a reasonable and fair
policy for both vessels and port operators. After the vessel
to be released is selected, the QC scheduler determines
how many QCs to assign to it, as shown in arrow 3.
The berth scheduler selects the berthing location of the
vessel as described in arrow 4. Because the number of
berth sections considered in the BACASP is usually in
the range of dozens, it is challenging to match each berth
section to an action of the berth scheduler. To address this
issue, we define its action as selecting one of the berths
rather than a berth section. Once a berth is selected by
the berth scheduler, the first feasible berth section within
the selected berth is set as the starting berthing loca-
tion of the released vessel. Finally, specific QCs that can
move to the determined berthing location are deployed
in ascending order of their identifiers (IDs). All these
processes are implemented by updating the attributes of
the vessel, QC, and berth section entities within the port
environment.

Note that the decisionsmade by each agent are written
inside boxes, while the operations automatically executed
according to predefined rules are written inside paren-
theses in Figure 3. These operations could also be exe-
cuted by the QC scheduler or berth scheduler; however,
because it complicates their action space, we use the pre-
defined rules instead to enhance the performance of the
proposed framework. By repeating the explained process
in each time period until all vessels are handledwithin the
planning horizon, the complex decision-making in the
BACASP can be accomplished through the cooperation
of three agents. We formulate this as a Markov decision
process (MDP) for each agent, and these are explained in
the following subsection.

4.2. Upper-level agent

4.2.1. MDP formulation
According to the workflow described in the previ-
ous section, the MDP of the upper-level agent can be
formulated as follows. The state of the upper-level agent,
sut , includes the proportion of empty berth sections, the
proportion of idle QCs, the number of waiting vessels,
and properties of the earliest-arrived vessel in the road-
stead. These properties consist of its length, the number
of containers to be processed, and the remaining time
until its requested departure time. We selectively use
these abstracted information of the port environment as
state variables to ensure a fixed state dimension while
improving the performance of the training algorithm.
The action aut is determining whether to release one
of the waiting vessels. The notation aut = 1 corresponds
to releasing, while aut = 0 indicates not releasing. The
reward rut is the negative value of the sum of the carbon
emission costs and operating costs incurred during the
current period by all vessels and QCs staying in the port.
Using this reward function, the upper-level agent can be
trained to achieve our ultimate goal: minimising the sum
of operational and carbon emission costs incurred over
the entire planning horizon.

4.2.2. Training algorithm
To train the upper-level agent, we use the double deep
Q-network (DDQN) algorithm proposed by Van Has-
selt, Guez, and Silver (2016). Q-function is parameterised
using the multilayer perceptron (MLP), in which φu and
φ̄u are parameters of the Q-network and the target Q-
network, respectively. At each time period t, we store
the transition data (sut , a

u
t , r

u
t , s

u
t+1) in the replay bufferD.
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Note that even if aut = 1, when no feasible actions for the
lower-level agents exist, it is masked by aut = 0. In the
kth update, the transition data (s, a, r, s′) ∼ U(D) are uni-
formly sampled, and the Q-network is updated via the
stochastic gradient descent (SGD) with the following loss
function:

L(φu
k ) = E(s,a,r,s′)∼U(D)

[(
r + γQ(s′, argmax

a′

+ Q(s′, a′;φu
k ); φ̄

u
k )− Q(s, a;φu

k )

)]
(1)

where γ is the discount factor. The target network
is updated every Eu training episodes by copying the
parameters of the original Q-network.

4.3. Lower-level agents

4.3.1. MDP formulation of the QC scheduler
When the upper-level agent releases one of the waiting
vessels, the QC scheduler takes an action and receives
a reward. Its state sqt contains the number of contain-
ers to be processed in the released vessel and the time
remaining until the requested departure time of the ves-
sel. Furthermore, the state variables of the upper-level
agent are also included. The action aqt is determining
the number of QCs to be deployed for the selected ves-
sel. Because the maximum number of QCs that can be
assigned to a single vessel simultaneously isNQC, we let
aqt ∈ {1, . . . ,NQC}. The reward rqt is the negative value of
the estimated sum of carbon emission costs and operat-
ing costs incurred by the released vessel andQCsworking
on it. We used the estimated costs, assuming no uncer-
tainty in Dk, because the actual carbon emissions can be
calculated after the vessel leaves the port and the QCs
complete their work.

4.3.2. MDP formulation of the berth scheduler
After the QC scheduler takes an action, the berth sched-
uler also takes its action and gets a reward. The state of
the berth scheduler sbt consists of the number of idle QCs
in each berth section and the number of QCs that will
be deployed. Its action abt is to determine the berth to
be assigned to the released vessel. For the berth sched-
uler, because which vessel to be berthed and the number
of QCs to be deployed have already been determined by
the upper-level agent and the QC scheduler, its action
does not affect the immediate costs. However, its action
ultimately affects which specific QCs will be deployed.
Therefore, we design the reward function for the berth
scheduler to leave as many feasible QCs as possible for
the next vessel rather than directly minimising costs.
To achieve this, we use a binary matrix F representing

the feasibility of each QC being deployed to each berth
section, where Fi,j = 1 if QC i can be deployed to berth
section j. We define the reward rbt as the difference
between the total sums of the elements in the matrix F
before and after the action of the berth scheduler.

4.3.3. Training algorithm for the lower-level agents
Unlike the upper-level agent, the lower-level agents take
their actions and receive rewards in their respective envi-
ronments that are more sensitive to the actions of other
agents. Therefore, we employ the proximal policy opti-
misation (PPO) proposed by Schulman et al. (2017). It is
one of the most widely used policy gradient algorithms,
ensuring more stable learning for our lower-level agents
in their non-stationary environments. Lei et al. (2023)
proposed the multi-PPO algorithm, where two lower-
level agents share a single state value function. How-
ever, in our numerical experiments, we observed that
this approach is not effective for our problem. Therefore,
we allow the two lower-level agents to have independent
value functions. Policy π and value function v of each
lower-level agent are also parameterised using the MLPs.
We denote θq and φq as the parameters of the policy and
value networks for the QC scheduler, and θb and φb as
those for the berth scheduler.

Because each lower-level agent has a discrete action
space, the number of output nodes in the policy net-
work is equal to the size of each agent’s action space, and
each node outputs the logit of the corresponding action.
Then, the logits of infeasible actions are masked by−∞,
and action probabilities are calculated using the softmax
function. Unlike the upper-level agent, the lower-level
agents do not use the transition data for their training
if either of them has no feasible actions. As a result, the
number of transition data used in a single episode is equal
to the number of vessels arriving within the planning
horizon. In this case, the amount of batch data for train-
ing the agents using the PPO algorithm is insufficient.
To address this issue, we gather data from a consider-
able number of El episodes and perform a batch update.
Finally, the policy and value networks of the QC sched-
uler and berth scheduler are updated using individual
loss functions. The loss functions for the QC scheduler
are computed using Equations (2) and (3) with ε, γ , and
λ as the hyperparameters of the PPO algorithm.

Lpolicy(θq) = Êt

[
min(pqt (θ

q)Âq
t , clip(p

q
t (θ

q), 1− ε,

1+ ε)Âq
t

]
(2)

Lvalue(φq) = Êt

⎡
⎣( T∑

t′=t
γ t′rqt′ − vφq(sqt )

)2⎤⎦ , (3)
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where Âq
t and pqt (θq) represent its advantage function

and probability ratio, respectively.We present themusing
Equations (4) to (6). Here, θqold indicates the parameters
of the policy network before the update.

Âq
t = δ

q
t + (γ λ)δ

q
t+1 + · · · + (γ λ)T−t+1δqT−1 (4)

δ
q
t = rqt + γ vφq(sqt+1)− vφq(sqt ) (5)

pqt (θ
q) = πθq(a

q
t | sqt )

πθ
q
old

(aqt | sqt )
(6)

The loss functions for the berth scheduler can be calcu-
lated using Equations (7) to (11). We omit the detailed
explanation for them because they share the same struc-
ture as those of the QC scheduler.

Lpolicy(θb) = Êt

[
min(pbt (θ

b)Âb
t , clip(p

b
t (θ

q), 1− ε,

1+ ε)Âb
t

]
(7)

Lvalue(φb) = Êt

⎡
⎣( T∑

t′=t
γ t′rbt′ − vφb(sbt )

)2⎤⎦ (8)

Âb
t = δbt + (γ λ)δbt+1 + · · · + (γ λ)T−t+1δbT−1 (9)

δbt = rbt + γ vφb(sbt+1)− vφb(sbt ) (10)

pbt (θ
b) = πθb(a

b
t |sbt )

πθbold
(abt | sbt )

(11)

The overall process in which the upper-level agent,
the QC scheduler, and the berth scheduler are trained
using their respective training algorithms is presented in
Algorithm 1.

5. Numerical experiments

Using the proposed HRL-based scheduling framework,
we conduct numerical experiments to answer the follow-
ing research questions:

(i) Can the proposed framework generate effective
berth and QC schedules with limited observations
in the port environment?

(ii) Is the utilised training algorithm practically appli-
cable to support real-time decision-making in real-
world port environments?

(iii) How does the level of uncertainty affect decision-
making in the BACASP?

In Section 5.1, we aim to verify the effectiveness
of the proposed HRL algorithm by comparing it with
the MIP approach. Furthermore, we conduct ablation

studies to evaluate the effectiveness of several tech-
niques used in the HRL algorithm, as well as the effec-
tiveness of the upper-level and lower-level agents. In
Section 5.2, we repeatedly train the agents using the
HRL algorithm to verify whether it yields consistent out-
comes acrossmultiple seeds. Computation time for train-
ing agents and their implementation is also measured.
In Section 5.3, we analyse the impact of uncertainty on
the HRL-based scheduling framework. Several system
metrics and the behaviour of the HRL agents are evalu-
ated under different levels of uncertainty for each uncer-
tainty source. Finally, we provide managerial insights
based on the results of the numerical experiments in
Section 5.4.

All experiments were conducted using AMD Ryzen
5 7600X CPU and 32 GB of RAM. We implemented
the HRL algorithm with Python 3.10 and Pytorch 2.4.0,
and the MIP approach was implemented using FICO
Xpress 9.2. We used one of the container terminals at
Busan Port as the physical model of our port environ-
ment, which includes 15 QCs and five berths. Five berths
correspond to 50 berth sections, and one time period
corresponds to one hour. Historical real-world data on
each vessel’s arrival time, requested departure time,
length, and the number of containers to be processed
were provided by the same container terminal at Busan
Port.

We constrained the HRL agents to take actions only at
discrete time intervals of one hour. In other words, the
HRL algorithm was implemented within the port envi-
ronment modelled as a discrete-time simulation. Conse-
quently, both the MIP approach and the HRL algorithm
make decisions under identical temporal conditions, and
their objective function values are directly comparable.
It is worth noting that, although the HRL algorithm was
implemented in a discrete-time setting during both the
training and evaluation phases, it is inherently capable of
supporting real-time decision-making in practice. This
capability will be demonstrated in Section 5.2.

To provide the HRL agents with diverse training
episodes, we generate the actual vessel arrival times in
the port environment by adding noise to the historical
vessel arrival times in the data. Additionally, we generate
the actual vessel departure time by adding noise to the
estimated departure time calculated based on the number
of QCs to be deployed, determined by the QC scheduler.
This is an alternative method used due to a lack of data
to generate noise for QC processing times. For these pro-
cesses, we first calculate the proportions of vessels whose
actual arrival and departure times differ from their esti-
mated times in the historical data. Next, we add each type
of noise to the arrival or departure times of vessels based
on the calculated proportions.
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Algorithm 1HRL algorithm for the BACASP
1: Initialize the network parameters φu and φ̄u, and replay memory D for the upper level agent
2: Initialize the network parameters θq, φq, θb, and φb for the lower-level agents
3: Set θqold ← θq, θbold ← θb

4: for episode= 1, . . . ,C do
5: set t = 0
6: while all vessels are served do
7: Obtain sut
8: Determine whether to release a vessel or not, where
9: aut = argmaxa Q(sut , a;φu)

10: if aut = 1 then
11: One of the waiting vessels is selected based on the predefined rule
12: Obtain sqt
13: Determine the number of QCs to be deployed for the selected vessel,
14: where aqt = πθ

q
old

(sqt )

15: Obtain sbt
16: Determine which berth to allocate the selected vessel, where
17: abt = πθbold

(sbt )
18: if either of the two lower-level agents has no feasible action then
19: The action of the upper-level agent is masked by aut = 0
20: Proceed with the port operations without new berth and QC
21: allocation
22: Get reward rut
23: else
24: Specific berth sections and QCs are deployed based on the predefined
25: rules
26: Get rewards rut , r

q
t , and rbt

27: Store the transition data (sqt , a
q
t , r

q
t ) in the QC scheduler’s rollout

28: buffer
29: Store the transition data (sbt , a

b
t , r

b
t ) in the berth scheduler’s rollout

30: buffer
31: end if
32: else
33: Proceed with the port operations without new berth and QC allocation
34: Get reward rut
35: end if
36: Compute sut+1
37: Store transition data (sut , a

u
t , r

u
t , s

u
t+1) in the upper-level agent’s replay

38: memory D
39: Update φu to minimize the loss function presented in Equation (1)
40: Set t = t + 1
41: end while
42: Set φ̄u← φu every Eu episodes
43: Update φq, θq, φb, and θb every El episodes to minimize the loss functions
44: presented in Equations (2), (3), (7) and (8), respectively
45: Set θqold ← θq and θbold ← θb every El episodes
46: Clear the lower-level agents’ rollout buffers every El episodes
47: end for
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Table 1. Cost coefficients.

Parameter Value ($/h)

w 800
τ 300
cW 5, 400
cB 5, 400
cQ 3, 300
pQ 100

We assume that a single QC can process 25 containers
per hour. The maximum number of QCs that can work
on a single vessel simultaneously is set to four, following
the settings in Agra and Oliveira (2018) and Rodrigues
and Agra (2021). This setting is also consistent with his-
torical QC scheduling data from Busan Port. Further-
more, we assume that five QCs can move between berth
sections 0 and 19, another five QCs can move between
berth sections 10 and 39, and the remaining five QCs
can move between berth sections 30 and 49. We set the
value of the QC interference parameter α̃ to 0.9, refer-
enced from T. Wang et al. (2020) and Wang, Hu, and
Zhen (2024). This value implies that if three QCs are
deployed, they can handle approximately 2.67 times the
amount of work that a single QC can handle. We assume
that the QCs are electrically powered, and adopt the QC
operating cost and energy consumption rate provided in
Kenan, Jebali, and Diabat (2022), T. Wang et al. (2020),
andWang,Wang, andMeng (2018).More specifically, the
QC operating cost of a single QC is $100 per hour. Each
QC consumes 200 kWh of electricity during one hour of
operation, and the carbon emission factor for electric-
powered QCs is 1.1 kg/kWh. Given that a carbon tax of
$15 is imposed per kilogram of carbon emissions, the
resulting carbon emission cost from operating a single
QC for one hour is $3,300.

Following Kenan, Jebali, and Diabat (2022), the
penalty cost for delayed vessels is set to $800 per hour,
while the earliness income for early departures is set
to $300 per hour. It is assumed that vessels use aux-
iliary engines powered by liquefied natural gas (LNG)
while they are either berthed or waiting. In this con-
text, it is assumed that each vessel consumes 2,000 kWh
of electricity per hour, based on the data provided by
Stolz et al. (2021). The carbon emission factor for LNG
is 0.18 kg/kWh. Accordingly, the carbon emission cost
incurred by a waiting or berthed vessel is calculated to
be $5,400 per hour. All coefficients related to operational
and carbon emission costs are summarised in Table 1,
with detailed definitions provided in Appendix 1. Note
that all costs in this section will be represented as neg-
ative values because the upper-level agent and the QC
scheduler receive the negative values of the costs as their
rewards.

5.1. Performance evaluation of the proposed
HRL-based framework

Because the complicated decision-making in the BAC-
ASP is achieved through the sequential cooperation of
multiple agents in our scheduling framework, its opti-
mality cannot be guaranteed. Therefore, we evaluate its
performance by comparing it with the results obtained
from an exact algorithm, namely the MIP approach,
under a perfect information setting. In theMIP approach,
we assume that all uncertainties are perfectly known in
advance. Based on this assumption, we solve the deter-
ministic BACASP and obtain lower bounds on the total
costs achieved by the HRL algorithm. Note that the MIP
approach is employed not to demonstrate the superiority
of the proposedHRL algorithmover traditionalmethods,
but rather to serve as an exact algorithm for obtaining the
optimal benchmark.

The procedure of the performance evaluation can be
explained as follows. First, we train the HRL agents in
the port environment simulated using one week of his-
torical vessel data. Note that while the time horizon of a
single episode corresponds to one week, the HRL agents
are trained using numerous episodes, each with different
realizations of uncertainty. As mentioned above, uncer-
tainties in vessel arrival times and QC processing times
are incorporated into each episode by adding normally
distributed noises to a subset of vessels. Next, we generate
a single episode and incorporate the realised uncertainty
into the parameters of the deterministic MIP model pre-
sented in Appendix 1. We solve it to obtain the optimal
objective value, which serves as a lower bound for the
total cost under the selected episode. However, one draw-
back of the MIP approach is that it requires an excessive
amount of computation time to find the optimal solution
for large-scale instances. Although recent advancements
in MIP approaches enable decision-making with shorter
time intervals and longer planning horizons, it remains
challenging to obtain optimal solutions using exact algo-
rithms in the context of the BACASP. To address this
issue, we divide the generated episode into smaller seg-
ments so that the commercial solver can find the optimal
solution for each segment in a reasonable computation
time. A more detailed explanation of how we divide the
episode is provided in Appendix 2. In the evaluation,
all HRL agents use deterministic policies based on their
trained policy networks.

Table 2 shows the total costs in a single episode
obtained from the MIP approach and several variations
of the HRL algorithm. A total of 20 instances are used
to validate the effectiveness of the HRL algorithm under
diverse scenarios. Instances 1 through 5 are constructed
based on real-world historical data and are intended to



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 10039

Table 2. Comparison between the MIP approach and HRL algorithms.

MIP-PI HRL-QF-IR HRL-QF-SR HRL-BF

Instance objLa objFb obj gapLc gapFd obj gapLc gapFd obj gapLc gapFd

1 8.29 8.29 8.30 0.12% 0.12% 9.52 14.84% 14.84% 10.74 29.55% 29.55%
2 6.37 6.37 6.58 3.30% 3.30% 6.66 4.55% 4.55% 9.27 45.53% 45.53%
3 7.66 7.66 7.66 0.00% 0.00% 8.00 4.44% 4.44% 10.61 38.51% 38.51%
4 3.93 3.93 4.08 3.82% 3.82% 4.07 3.56% 3.56% 4.57 16.28% 16.28%
5 5.71 5.71 5.87 0.03% 0.03% 5.80 1.58% 1.58% 6.21 8.76% 8.76%
6 7.67 7.77 7.91 3.13% 1.80% 8.66 12.91% 11.45% 10.55 37.55% 35.78%
7 5.55 5.61 5.67 2.12% 1.07% 5.92 6.67% 5.53% 8.35 50.45% 48.84%
8 7.44 7.52 7.46 0.27% −0.80% 7.91 6.32% 5.19% 10.11 35.89% 34.41%
9 4.04 4.07 4.23 4.70% 3.93% 4.26 5.45% 4.67% 4.21 4.21% 3.33%
10 6.14 6.14 6.25 1.79% 1.79% 6.15 0.16% 0.16% 6.72 9.45% 9.45%
11 8.23 8.35 8.46 2.79% 1.32% 9.97 21.14% 19.40% 10.83 31.59% 29.70%
12 6.23 6.23 6.38 2.41% 2.41% 6.88 10.43% 10.43% 9.17 47.19% 47.19%
13 7.48 7.48 7.48 0.00% 0.00% 8.38 12.32% 12.32% 10.41 39.17% 39.17%
14 4.05 4.07 4.16 2.72% 2.21% 4.16 2.72% 2.21% 4.40 8.64% 8.11%
15 5.81 5.81 5.96 2.58% 2.58% 6.13 5.51% 5.51% 6.52 12.20% 12.20%
16 7.72 7.78 8.00 3.63% 2.83% 9.33 20.85% 19.92% 10.60 37.31% 36.25%
17 5.59 5.65 5.81 3.94% 2.83% 6.16 10.20% 9.03% 8.59 53.67% 52.03%
18 7.40 7.52 7.46 0.81% −0.80% 8.50 14.86% 13.03% 10.50 41.89% 39.63%
19 3.99 4.01 4.16 4.26% 3.74% 4.16 4.26% 3.74% 4.30 7.77% 7.23%
20 6.18 6.24 6.31 2.10% 1.12% 6.42 3.88% 2.88% 7.05 14.08% 12.98%
Average gap 2.23% 1.67% 8.33% 7.72% 28.48% 27.75%
a objL : the best lower bound obtained within 30,000 s.
b objF : the objective value of the best feasible solution obtained within 30,000 s.
c gapL : (total cost under the HRL algorithm – objL)×100/objL .
d gapF : (total cost under the HRL algorithm – objF )×100/objF .

represent typical operating conditions. From these, we
generate Instances 6 through 10 by increasing the levels
of uncertainties in vessel arrival times andQC processing
times. This implies that the HRL agents make decisions
under vessel arrival and departure times that signifi-
cantly differ from those encountered during the train-
ing phase. Instances 11 through 15 are constructed by
reducing the intervals between vessel arrivals in Instances
1 through 5, creating more congested scenarios with
a higher number of waiting vessels and more vessels
berthed simultaneously. Instances 16 through 20 are gen-
erated by increasing the level of uncertainty based on
these congested scenarios. Each instance consists of 5 ves-
sels, and their lengths range from 4 to 8 berth sections.
Each vessel’s workload ranges from 124 to 1,589 contain-
ers, with an average of 573 containers. The noises added
to vessel arrival times are drawn fromN (0, 0.3952), while
the noises for vessel departure times are drawn from
N (0, 0.9552). The generated noises are then rounded up
if positive and rounded down if negative before being
added to the original times. In Instances 1 through 5 and
11 through 15, the uncertainty level, defined as the prob-
ability that a vessel’s arrival or departure time is changed,
is set to 0.395 for arrival times and 0.300 for departure
times. In Instances 6 through 10 and 16 through 20, these
levels are modified to 0.9 to simulate highly uncertain
conditions. All vessel characteristics, distributions, and
probabilities were extracted and estimated based on one
year of historical vessel arrival and departure data from
Busan Port.

MIP-PI indicates theMIP approachwith perfect infor-
mation. Because there exist instances for which the opti-
mal solution could not be obtained even after a long
computation time, we report both the best lower bound
and the best feasible solution obtained from the MIP
approach using Xpress, within a time limit of 30,000 s.
The results of the HRL algorithms are then compared
with these two values, and the corresponding gaps are
calculated and reported. HRL-QF-IR refers to the HRL
algorithm we ultimately proposed in Section 4, where
the QC scheduler and the berth scheduler have indepen-
dent reward functions. HRL-QF-SR indicates the same
algorithm; however, the berth scheduler and QC sched-
uler share the same reward. Hence, the reward functions
of both lower-level agents are set to the estimated costs in
HRL-QF-SR. Lastly, HRL-BF refers to theHRL algorithm
where the berth scheduler first assigns a berth, and then
theQC scheduler determinesQCs to be deployed accord-
ingly. The reward function is the same as that used in
HRL-QF-IR.

From Table 2, we could ascertain that the proposed
HRL algorithm gives sufficiently effective berth and QC
schedules. It achieves an average gap of 1.67% com-
pared to the best feasible solutions and 2.23% compared
to the best lower bounds, which are remarkable results
given that decisions are made in real time based on lim-
ited but certain observations. This means that although
the HRL agents address uncertainty through sequential
cooperation, they can stillmake decisions that are not sig-
nificantly different from the integrated decision-making
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Figure 4. Illustrative example of berth allocation and QC scheduling decisions obtained from MIP-PI and HRL-QF-IR. (a) Berth and QC
schedules obtained fromMIP-PI. (b) Berth and QC schedules obtained from HRL-QF-IR.

under fully known uncertainties. Even in instances with
higher levels of uncertainty than those in the training
data or in more congested vessel traffic scenarios, the
performance of the HRL algorithm does not deterio-
rate. Furthermore, the berth allocation and QC schedule
determined by MIP-PI and HRL-QF-IR are illustrated
in Figure 4. The vertical axis represents QC IDs, and
the horizontal axis denotes time periods. Each coloured
rectangle corresponds to a vessel and is positioned over
the QCs assigned to it. The numbers at the top-left and
bottom-left corners of each rectangle indicate the start-
ing and ending berth sections allocated to the vessel,
respectively. Although HRL-QF-IR determined different
berthing locations for the vessels compared to MIP-PI, it
adopted the same berthing times and number of assigned
QCs as the optimal solution, thereby achieving the min-
imum total cost.

By comparingHRL-BF andHRL-QF-IR, we can verify
that the order of decision-making of the two lower-level
agents is a crucial factor in the HRL-based scheduling

framework. This is because the number of QCs assigned
to vessels and the resulting departure times aremore crit-
ical to operational and carbon emission costs than are
the locations where the vessels are berthed. In fact, we
frequently observed cases where a vessel was handled
inefficiently due to the limited number of QCs that could
move to the assigned berth sections when we used HRL-
BF. Therefore, determining the number of QCs for the
selected vessel first, followed by deciding on the feasible
berthing location, is an appropriate strategy for minimis-
ing the total cost. In addition, we examined the validity
of the reward function for the berth scheduler through
a comparison between HRL-QF-SR and HRL-QF-IR.
In most instances, HRL-QF-IR outperformed HRL-QF-
SR. This implies that the reward function explained in
Section 4.3.2 successfully guided the berth scheduler to
allocate a berth in a way that leaves as many QCs as
possible for the next arriving vessel.

We also conduct an ablation study on the agents at
each hierarchical level. Table 3 shows the result, where
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Table 3. Ablation study for the HRL agents.

Upper-level agent+ Lower-level agents Random release+ Lower level agents Upper-level agent+ Random assignment

Case Mean Var Gap Mean Var Gap Mean Var Gap

1 8.32 0.13 – 8.76 0.25 5.29% 10.23 1.18 22.96%
2 6.50 0.12 – 6.96 0.23 7.08% 7.86 0.62 20.92%
3 7.65 0.12 – 7.99 0.18 4.44% 9.48 0.89 23.92%
4 4.08 0.09 – 4.44 0.15 8.82% 4.66 0.27 14.22%
5 5.87 0.10 – 6.22 0.17 5.63% 7.03 0.67 19.61%
Average 0.11 – 0.20 6.25% 0.73 20.33%

each case indicates a set of 1,000 test episodes gener-
ated by adding noise to the vessel arrival and depar-
ture times in each instance of Table 2. Random release
refers to releasing a vessel with a probability of 1

2 with-
out using the upper-level agent, and random assignment
refers to randomly selecting the number of QCs and
berthing location instead of using the lower-level agents.
For each scheduling framework, the mean and variance
of the total cost over 1,000 episodes are presented. Val-
ues in the third column of each framework indicate the
gap in total cost compared to that of using all three
agents. By comparing the gap, we can ascertain that the
agents at both hierarchical levels are effective in min-
imising total costs. In particular, the lower-level agents
play a crucial role in enhancing the performance of the
HRL algorithm. Furthermore, a comparison of the vari-
ance shows that the cooperation of all three agents can
effectively address the uncertainty, resulting in consistent
performance.

Lastly, in order to assess the impact of considering
uncertainty in berth allocation and QC scheduling, we
compare the decisions made by two HRL agents: one
trained on deterministic episodes and the other trained
on episodes incorporating uncertainty. Figure 5 presents
box plots of the total cost achieved by these two HRL
agents. Figure 5(a) shows the total cost over 1,000 eval-
uation episodes with the same vessel arrival rate as the
historical data, while Figure 5(b) shows the total cost over
1,000 evaluation episodeswith a higher vessel arrival rate,
representing more congested scenarios. The HRL agent
trained on episodes incorporating uncertainty achieves a
lower total cost compared to the agent trained on deter-
ministic episodes, and this difference becomes more pro-
nounced in congested scenarios. The average total cost
increases by approximately 3% in the normal scenar-
ios and by about 12% in the congested scenarios. These
results indicate that uncertainty has a significant impact
on optimal berth allocation and QC scheduling, and
that ignoring uncertainty in decision-making can lead to
substantially higher costs, especially in more congested
scenarios.

5.2. Validation of the practical applicability of the
HRL algorithm

In a typical port operation, baseline schedules for berths
and QCs are determined over multiple days (e.g. one
week) based on the estimated vessel arrival times. When
unexpected changes occur in vessel arrival or departure
times, the baseline schedule is adjusted by a port man-
ager. Our HRL-based scheduling framework can accom-
modate such practical situations in the following man-
ner: Prior to the start of port operations, HRL agents
are trained using training episodes generated based on
one week of data, which includes information of vessels
scheduled to arrive within the planning horizon. Due to
the limited generalisation capability of the HRL agents,
this training approach is employed instead of utilising
training episodes with diverse vessel data configurations.
Its practical feasibility will be verified later. Next, the
trained agents at each level make decisions based on
realised vessel arrival and departure times. Because they
make feasible decisions using already observed infor-
mation, modifications to berth and QC schedules are
not required. In addition, because the training episodes
incorporate uncertainties in vessel arrival times and QC
processing times, the trained agents, as demonstrated
in Section 5.1, can effectively address changes in vessel
arrival times orQCprocessing timeswithin the one-week
planning horizon.

However, several additional aspects need to be ver-
ified for the practical implementation of the proposed
algorithm. The first aspect is the computation time
required for training and implementation. Table 4 shows
the training and implementation times for the HRL
algorithm at each random seed. Because we determined
that 30,000 episodes are sufficient to converge the HRL
agents, we measured the computation time required for
this number of training episodes. As presented in the
table, training the threeHRL agents with 30,000 episodes,
each having a one-week time horizon, required less than
6,000 s in all training sessions. It also took less than
0.1 s to execute a single episode once the HRL agents
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Figure 5. Box plots of total cost by HRL agents trained with and without uncertainty. (a) Normal scenarios. (b) Congested scenarios.

Table 4. Computation times of the HRL algorithm.

Seed
Training time for
30,000 episodes

Implementation time for
a single episode

1 5,797 s < 0.1 s
2 5,710 s < 0.1 s
3 5,738 s < 0.1 s
4 5.694 s < 0.1 s
5 5,710 s < 0.1 s

were trained. Therefore, we can conclude that the pro-
posed framework is practical in terms of the computation
time.

In addition, if the agents produce different results
each time they are trained, the decisions made by a
trained HRL agent cannot be trusted in real-world sce-
narios. Therefore, it is necessary to verify whether it
produces consistent results across different training runs.
To achieve this, we compare the learning curves and total
cost distributions of theHRL agents trained on five differ-
ent random seeds. Learning curves of each training run
are presented in Figure 6, where each point represents
the average total cost over the most recent 100 training
episodes. First, we observed that the initial weights of
policy networks significantly impact the performance of
the HRL algorithm in initial training episodes. Although
there are cases where the learning curve temporarily
drops, as observed in seed 1, the curves eventually con-
verge to nearly identical total costs across all training
runs.

Furthermore, Figure 7 depicts distributions of the total
costs in the last 1,000 training episodes across five ran-
dom seeds. As in the learning curves, we could observe
that all trained agents hold policy networks that yield
almost the same total costs. In conclusion, the proposed
HRL algorithm produces consistent results across mul-
tiple training runs, making it appropriate for practical
application in real-world port operations.

Figure 6. Learning curves of theupper-level agent trainedonfive
random seeds.

Figure 7. Distributions of total costs across five random seeds.

5.3. Analysis of the impact of uncertainty on the
BACASP

In this subsection, we aim to analyse how the systemmet-
rics, including the operational and carbon emission costs,
varywith uncertainty levels. In addition, we examine how
the HRL agents respond to uncertainty. Note that the
level of uncertainty is defined as the proportion of vessels
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Figure 8. Total costs by uncertainty level.

Figure 9. Operational and carbon emission costs by uncertainty level.

whose actual arrival or departure times differ from their
estimated times. In all experiments in this subsection,
the uncertainty level of only one source of uncertainty is
controlled at a time.

Figure 8 shows the impact of uncertainty levels on the
total cost, and Figure 9 illustrates the impact of uncer-
tainty levels on each cost component. Each point in Fig-
ures 8 and 9 indicates the average cost in 1,000 evaluation
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Figure 10. Box plots of total cost by uncertainty levels. (a) Vessel arrival time. (b) QC processing time.

episodes. The orange lines represent costs across the pro-
portion of vessels whose actual arrival times differ from
their scheduled arrival times, while the blue lines repre-
sent costs across the proportion of vessels whose actual
departure times differ from their scheduled departure
times due to changes in QC processing times.

As shown in Figure 8, the total cost tends to increase
as more vessels arrive or depart at times different from
their scheduled arrival or departure times. A noteworthy
observation is that uncertainty in vessel arrival times sig-
nificantly impacts the mean total cost more than uncer-
tainty in QC processing times. We analysed that this is
due to the difference in the trends of the carbon emission
cost by berthing vessels, which exhibits the largest vari-
ation among the cost components. As illustrated at the
top of Figure 9, the emission cost from berthing vessels
increases with higher uncertainty levels of vessel arrival
times, whereas the opposite trend is observed in QC pro-
cessing times. While other cost components also display
their own trends, the magnitudes are smaller compared
to the emission cost incurred by berthing vessels, result-
ing in limited contributions to the variation in the total
cost.

In Figure 10, box plots of total cost distributions for
1,000 evaluation episodes across different uncertainty
levels of each source are presented. Figure 10(a,b) show
the correlation between the total cost distribution and
the uncertainty levels of vessel arrival times and QC
processing times, respectively. When the uncertainty in
vessel arrival times increases, the variance remains nearly
unchanged. However, it gradually increases as the uncer-
tainty in QC processing times grows. From this result,
we can conclude that, unlike the mean of the total cost,
its variance is more significantly influenced by the uncer-
tainty in QC processing times.

To understand how the behaviour of the upper-level
agent changes with different levels of uncertainty, we

Figure 11. Average number of time periods with one or more
waiting vessels for each uncertainty level.

analyse the number of time periods during which one or
more vessels are waiting. Figure 11 illustrates the aver-
age number of time periods with waiting vessels per
episode over 1,000 evaluation episodes. We observe a
slight increase in the average number of periods during
which vessels are waiting as the uncertainty of QC pro-
cessing times rises. This means that as the uncertainty
level of QC processing times increases, the upper-level
agent postpones releasing vessels more frequently. The
increase in the uncertainty ofQCprocessing timesmakes
QC scheduling more challenging, and postponing the
release of vessels can be an effective action in such sit-
uations. Therefore, the upper-level agent is appropriately
responding to the uncertainty of QC processing times.
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Figure 12. Average utilisation of QCs and berth sections by uncertainty levels.

Next, Figure 12 depicts violin plots for the average util-
isation of QCs and berth sections per episode over 1,000
evaluation episodes. As illustrated in Figure 12(a,b),
the uncertainty of vessel arrival times has a negligi-
ble effect on the distributions of the average utilisa-
tion of QCs and berth sections. In contrast, the uncer-
tainty of QC processing times considerably affects them,
as shown in Figure 12(c,d). As the uncertainty of QC
processing time increases, the variation in the average
utilisation increases, with a greater magnitude of the
change observed in the utilisation of QCs. However, the
increased uncertainty does not result in a significant
increase in the utilisation of QCs or berth sections that
could cause deterioration in the performance of the HRL
agents.

Lastly, we analyse how the QC scheduler responds
to the uncertainty. Figures 13 and 14 illustrates the fre-
quency of actions taken by the QC scheduler. First, we
can identify that the QC scheduler assigns the maximum

Figure 13. Execution rate of actions by the QC scheduler across
all uncertainty levels.
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Figure 14. Frequency of actions taken by the QC scheduler under different uncertainty levels.

number of four QCs to approximately 80 percent of
vessels, as shown in Figure 13. However, its policy
slightly changes as the uncertainty level increases, and
the tendency of these changes differs depending on the
source of uncertainty, as illustrated in Figure 14. The
QC scheduler tends to assign fewer QCs on average
when the uncertainty of vessel arrival times increases,
whereas it assigns four QCs more frequently as the
uncertainty of QC processing times increases. Although
the degree of change is quite small, the QC scheduler
gradually adjusts its behaviour to respond to increas-
ing uncertainty. In particular, we infer that this repre-
sents a cooperative strategy to address increased uncer-
tainty in QC processing times, where the upper-level
agent delays the release of vessels more frequently, allow-
ing the QC scheduler to assign more QCs to a single
vessel.

5.4. Managerial insights

Based on the numerical experiments explained above,
we offer several managerial insights for practitioners
engaged in real-time port operations.

• The proposed HRL-based scheduling framework
demonstrated remarkable performance in real-time
decision-making based on observed information
within highly dynamic and uncertain port environ-
ments. Its consistency overmultiple training iterations
was guaranteed, ensuring it can be applied to real-
world port environments without repetitive training.
To train the HRL agents for a one-week planning
horizon, approximately 30,000 training episodes are
required to achieve their convergence. The training
time for 30,000 episodes and implementation time
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after the training were verified to be sufficiently short
for practical application. Lastly, we recommend con-
structing training episodes by adding noise to the esti-
mated arrival and departure times of vessels expected
to arrive within the planning horizon.

• When the proposed HRL-based scheduling frame-
work is utilised, if the carbon tax is imposed on port
operations, the largest proportion of the total cost
comes from carbon emission costs generated by QC
operations and berthing vessels. Consequently, strate-
gies to reduce carbon emissions from QCs and ves-
sels, such as the use of eco-friendly fuels for them,
are required not only for sustainable port operations
but also for minimising port costs. Furthermore, an
increase in uncertainty of vessel arrival times or QC
processing times leads to an increase in the total cost.
In particular, according to Figure 9, the cost increase
caused by the uncertainty of vessel arrival times is
primarily due to the rise in carbon emission costs
from berthing vessels. Therefore, if such situations
are expected, ports should implement policies such as
encouraging berthing vessels to use less power.

• Uncertainties of vessel arrival times and QC pro-
cessing times were found to have different types of
impacts on system metrics resulting from the pro-
posed HRL-based scheduling framework. The aver-
age total cost was more significantly affected by the
uncertainty of vessel arrival times, whereas the vari-
ance of total costs was more heavily influenced by
the uncertainty of QC processing times. As a result,
reducing both types of uncertainty is recommended
not only to lower costs but also to ensure stable and
predictable costs when utilising our framework. In
addition, while the increase in uncertainty of QC pro-
cessing times was found to raise the variance of the
utilisation of QCs and berths, it did not lead to an
unmanageable increase in their maximum utilisation.
Therefore, if our framework can be applied, construct-
ing additional berths orQCs in the port tomitigate the
inefficiencies caused by uncertainty is not necessary.

6. Conclusions

The performance of berth allocation and QC schedul-
ing, which are fundamental components of port opera-
tions, is a critical determinant of port competitiveness.
Recently, effective management of uncertain factors such
as vessel arrival times and QC operation times has been
focussed. Additionally, reducing carbon emissions in
line with international trends is also required. However,
the BACASP literature lacks studies that simultaneously
incorporate uncertainty and carbon emissions into their
models. To fill this research gap, we proposed a novel

HRL-based scheduling framework to support real-time
berth allocation and QC scheduling with consideration
of carbon emissions.

Given the complexity of decision-making in the
BACASP, three cooperative agents were employed: the
upper-level agent determines whether to release wait-
ing vessels in the roadstead, the QC scheduler decides
the number of QCs to be deployed for each vessel, and
the berth scheduler allocates berth sections for each ves-
sel. Comparisons between the proposed HRL algorithm
and the MIP approach with perfect information demon-
strated the effectiveness of the proposed algorithm. In
addition, we ascertained that the computation time for
training and implementation is sufficiently short, indicat-
ing that the HRL-based scheduling framework is appro-
priate for real-time decision-making in port environ-
ments. The consistency of the HRL algorithm was also
verified by comparing results from repetitive training
of the agents. Finally, based on numerical experiments,
managerial insights for port operators were provided
to enhance sustainability and competitiveness. Through
this study, we demonstrated the potential of utilising a
well-structured RL framework to address complex port
operation problems, including the BACASP.
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Appendices

Appendix 1. Deterministic BACASPmodel

We first present notations used in the mathematical model as
follows.

Indices and sets

B Set of berth sections, n ∈ B = {1, . . . , J}
Q Set of QCs, g ∈ Q = {1, . . . ,Q}
V Set of vessels, k ∈ V = {1, . . . ,V}
T Set of time periods, j ∈ T = {1, . . . ,M}
NQC Set of the number ofQCs that can be assigned to a sin-

gle vessel simultaneously, q ∈ NQC = {1, . . . ,NQC}

Parameters

Ak Arrival time of vessel k
Dk Requested departure time of vessel k
Dk Departure delay of vessel k caused by the delay in QC

operations
Hk Length of vessel k, expressed in terms of the number

of berth sections
Wk Number of containers to be processed in vessel k
p Processing rate of each QC
Sg Starting berth section where QC g can operate
Eg Ending berth section where QC g can operate
α̃ QC interference exponent
w Penalty cost incurred for each unit of tardiness in the

departure time of a vessel
τ Reward granted for each unit of earliness in the

departure time of a vessel
cW Carbon emission cost incurred for each unit of time

a vessel is waiting
cB Carbon emission cost incurred for each unit of time

a vessel is berthing
cQ Carbon emission cost incurred for each unit of time

a QC operates
pQ Operating cost incurred for each unit of time a QC

operates

Decision variables

xkl Binary variable taking value one if vessel l berths after
vessel k had departed

ykl Binary variable taking value one if vessel l berths
below the berthing position of vessel k

bk Integer variable that indicates the first berthing posi-
tion of vessel k

tk Integer variable that indicates the berthing time of
vessel k

ck Integer variable that indicates the departure time of
vessel k

ρk Integer variable that indicates tardiness in the depar-
ture time of vessel k

ek Integer variable that indicates earliness in the depar-
ture time of vessel k

zgkj Binary variable taking value one if crane g is assigned
to vessel k in period j

πkn Binary variable taking value one if the first berthing
position of vessel k is n

σkn Binary variable taking value one if the berth section
n is assigned to vessel k

αkj Binary variable taking value one if the berthing time
of vessel k is j

βkj Binary variable taking value one if vessel k is berthing
at time period j

γkj Binary variable taking value one if the departure time
of vessel k is j+ 1

ηqkj Binary variable taking value one if qQCs are assigned
to vessel k at time period j

lgk Auxiliary variable to linearise constraints for the
time-invariant QC scheduling

ζk Auxiliary variable used to capture delays in QC pro-
cessing time through workload adjustment

With notations described above, we propose the following inte-
ger program for the deterministic BACASP considering carbon
emissions.

min
∑
k∈V

{
cW(tk − Ak)+ cB(ck − tk)+ wρk − τek

}

+
∑
j∈T

∑
k∈V

∑
g∈Q

(cQ + pQ)zgkj (A1)

s.t. xlk + xkl + ylk + ykl ≥ 1, k, l ∈ V , k < l (A2)

xlk + xkl ≤ 1, k, l ∈ V , k < l (A3)

ylk + ykl ≤ 1, k, l ∈ V , k < l (A4)

bk ≤ J −Hk, k ∈ V (A5)

tk ≥ Ak, k ∈ V (A6)∑
k∈V

zgkj ≤ 1, j ∈ T , g ∈ Q (A7)

tk ≤ jzgkj + (1− zgkj)M, j ∈ T , k ∈ V , g ∈ Q
(A8)

ck ≥ (j+ 1)zgkj, j ∈ T , k ∈ V , g ∈ Q (A9)∑
g∈Q

zgkj =
∑

q∈NQC

qηqkj, j ∈ T , k ∈ V (A10)

ζk ≥
∑

q∈NQC

qα̃ηqkj, j ∈ T , k ∈ V (A11)

∑
j∈T

∑
q∈NQC

ηqkjqα̃p ≥Wk + ζkpDk, k ∈ V (A12)

∑
k∈V

∑
q∈NQC

ηqkj ≤ Q, j ∈ T (A13)

∑
q∈NQC

ηqkj ≤ 1, j ∈ T , k ∈ V (A14)

bk +Hk ≤ Egzgkj + (1− zgkj)J, j ∈ T , k ∈ V , g ∈ Q

(A15)

bk ≥ Sgzgkj, j ∈ T , k ∈ V , g ∈ Q (A16)

zgkj + zg′lj ≤ 2− ykl, j ∈ T , k, l ∈ V , g, g′ ∈ Q, g′ < g
(A17)
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∑
g∈Q

zgkj ≤ NQC, j ∈ T , k ∈ V (A18)

∑
j∈T

zgkj ≤ Mlgk, k ∈ V , g ∈ Q (A19)

∑
j∈T

zgkj ≤ ck − tk, k ∈ V , g ∈ Q (A20)

∑
j∈T

zgkj ≥ ck − tk −M(1− lgk), k ∈ V , g ∈ Q (A21)

ρk − ek ≥ ck − Dk, k ∈ V (A22)

bk =
∑
n∈B

nπkn, k ∈ V (A23)

∑
n∈B

σkn = Hk, k ∈ V (A24)

∑
n∈B

πkn = 1, k ∈ V (A25)

πkn ≥ σkn − σk,n−1, k ∈ V , n ∈ B, n > 1 (A26)

πk1 ≥ σk1, k ∈ V (A27)

πkn ≤ σkn, k ∈ V , n ∈ B (A28)

πkn ≤ 1− σk,n−1, k ∈ V , n ∈ B, n > 1 (A29)

ykl +
J∑

m=max{n−Hl+1,0}
πkm + πln ≤ 2, k, l ∈ V , k 	= l, n ∈ B

(A30)

zgkj ≤
Eg−Hk∑
n=Sg

πkn, j ∈ T , k ∈ V , g ∈ Q (A31)

tk =
∑
j∈T

jαkj, k ∈ V (A32)

ck ≥ (j+ 1)βkj, j ∈ T , k ∈ V (A33)

zgkj ≤ βkj, j ∈ T , k ∈ V , g ∈ Q (A34)∑
j∈T

αkj = 1, k ∈ V (A35)

αkj ≥ βkj − βk,j−1, j ∈ T , j > 1, k ∈ V (A36)

αk1 ≥ βk1, k ∈ V (A37)

αkj ≤ βkj, j ∈ T , k ∈ V (A38)

αkj ≤ 1− βk,j−1, j ∈ T , j > 1, k ∈ V (A39)

xkl + βki + βlj ≤ 2, i, j ∈ T , i ≥ j− 1, k, l ∈ V , k 	= l
(A40)

γkj ≥ βkj − βk,j+1, j ∈ T , j < M, k ∈ V (A41)

γk1 ≥ βkM , k ∈ V (A42)

γkj ≤ βkj, j ∈ T , k ∈ V (A43)

γkj ≤ 1− βk,j+1, j ∈ T , j < M, k ∈ V (A44)∑
j∈T

γkj = 1, k ∈ V (A45)

ck =
∑
j∈T

(j+ 1)γkj, k ∈ V (A46)

ck ≥ tk +
∑
j∈T

βkj, k ∈ V , g ∈ Q (A47)

xkl, ykl ∈ {0, 1}, k, l ∈ V , k 	= l (A48)

zgkj ∈ {0, 1}, j ∈ T , k ∈ V , g ∈ Q (A49)

bk, tk, ck ∈ Z
+, k ∈ V (A50)

πkn, σkn ∈ {0, 1}, k ∈ V , n ∈ B (A51)

αk,j,βk,j, γk,j ∈ {0, 1}, j ∈ T , k ∈ V (A52)

ρk, ek, ζk ∈ Z
+
0 , k ∈ V (A53)

ηqkj ∈ {0, 1}, j ∈ T , k ∈ V , q ∈ NQC (A54)

lgk ∈ {0, 1}, k ∈ V , g ∈ Q (A55)

The objective function (A1) includes the operational costs and
the carbon emission costs under the unitary carbon emission
taxation rate. Constraints (A10) to (A14) are formulated to rep-
resent the QC interference. In particular, (A12) and (A11) are
used to represent vessel departure delay by adjusting the work-
load. Constraints (A19) to (A21) ensure that QC schedules
remain time-invariant. Constraint (A22) indicates that the tar-
diness and earliness of a vessel’s departure time are determined
based on the actual departure time and the requested depar-
ture time of the vessel. The remaining constraints pertain to
the general continuous-layout BACASP formulation proposed
by previous studies. We omit a more detailed explanation for
them because it can be found in Agra and Oliveira (2018) and
Rodrigues and Agra (2021).

Appendix 2. Data segmentation for theMIP
approach

As described in Section 5.1, we divide an episode, which is
composed of data on vessels arriving at the port over a one-
week period, into smaller segments to solve the MIP model in
a reasonable computation time. Each segment consists of five
vessels, while the number of QCs and berth sections remains
the same as in the original episode. Figure A1 shows the outline
of the data segmentation for the performance evaluation.
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Figure A1. Instance generation for the performance evaluation of the HRL algorithm.
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