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ABSTRACT
The increasing complexity of customer demands has led to the implementation of flexible job-shop
scheduling and automated material handling systems across manufacturing sectors. In particular,
advances in robotic technology havemade autonomousmobile robots (AMRs) essential formaterial
handling tasks within these sectors. The capability of free movement, path planning, and load-
ing multiple work-in-processes (WIPs) can significantly enhance the efficiency of material handling
operations. However, the full flexibility of AMRs cannot be utilised when their decisions regarding
the sequence of loading and unloading multiple WIPs are made by specific rule-based operations,
resulting in inefficiencies in the throughput of WIPs in manufacturing environments. To address
this inefficiency, we introduce a hierarchical reinforcement learning algorithm to optimise material
handling with AMRs, thereby maximising the throughput of WIPs. In this approach, a graph atten-
tion network (GAT) serves as an encoder for the hierarchical reinforcement learning (HRL) input,
effectively capturing the complex relationships between different nodes. Computational experi-
ments demonstrate that our approach enhances the efficiency of thematerial handling systemmore
effectively than existing rule-based methods.

ARTICLE HISTORY
Received 6 August 2024
Accepted 18 January 2025

KEYWORDS
Autonomous mobile robot;
automated material handling
system; hierarchical
reinforcement learning;
graph attention network;
smart logistics

SUSTAINABLE
DEVELOPMENT GOALS
SDG 9; Industry; innovation
andinfrastructure

1. Introduction

Autonomous mobile robots (AMRs) are emerging as
pivotal factors in driving significant changes across
various industries, especially in the realm of automa-
tion. AMRs proficiently handle and transport work-in-
processes (WIPs) between different production and stor-
age areas. This capability substantially reduces the man-
ual labour and time associated with material handling,
thereby promoting operational continuity. The ability
of AMRs to autonomously navigate makes them highly
adaptable to various modern manufacturing environ-
ments. Their flexibility is increasingly crucial as customer
demands grow more diverse and complex, leading to the
adoption of flexible job-shop scheduling systems inmany
manufacturing environments. These systems organise
groups of machines or workstations for similar produc-
tion processes, offering benefits like easy modifications
and expanded capacity. However, the flexible job-shop
scheduling system complicates production planning and
material handling management. In such environments,
the versatility of AMRs in handling WIPs is vital for
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08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea

enhancing production efficiency. They enable just-in-
time movement of WIPs, ensuring adherence to pro-
duction schedules. Consequently, AMRs are increasingly
becoming a critical component in modern factories that
manufacture a diverse range of products in limited quan-
tities, emphasising their significant role in contemporary
manufacturing practices.

Unlike automated guided vehicles (AGVs) or over-
head hoist transport (OHT) vehicles that move on fixed
tracks or predetermined paths, marked by elements like
radio frequency identification (RFID) tags or ceiling-
mounted rails, AMRs navigate autonomously through
their environment, offering significant flexibility. This
means that AMRs provide a more advanced solution for
a material handling system compared to traditional sys-
tems, as they can freely move without being confined to
specific routes. Equipped with sensors, 3D cameras, and
advanced laser scanning technologies, AMRs are highly
efficient in complex environments. They are designed
to handle unexpected obstacles smoothly by employ-
ing smart navigation strategies. For instance, when they
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come across something in their way, they can slow down,
pause, or find another path, using collision avoidance
techniques. This ability gives AMR greater operational
flexibility compared to AGVs or OHTs, which are limited
to their fixed paths.

Another key advantage of AMRs is the ease they offer
in scaling up operations. Increasing the number of AMRs
in a facility is relatively straightforward, as they do not
require the installation of specialised travel routes or
depend on predefined paths. This scalability is a major
benefit, especially in dynamic and evolving manufactur-
ing settings. To summarise, the benefits of AMRs include
their autonomous navigation capabilities, their adapt-
ability to complex environments, their effective obstacle
management, and the ease they offer in expanding their
numbers in a facility. These advantages make AMRs a
valuable asset in modern manufacturing and logistics
operations, offering a significant improvement overmore
traditional material handling systems like AGVs and
OHT vehicles. The benefits of AMRs can be summarised
as follows:

• AMRs’ ability to navigate and dynamically reroute
makes them versatile and adaptable to changes in the
work environment.

• The number of AMRs can be easily scaled up or
down to align with the fluctuating material handling
demands of various periods.

• AMRs offer easy material handling redeployment,
regardless of changes in production lines or work
spaces.

While AMRs provide superior operational flexibil-
ity compared to AGVs or OHT vehicles, they introduce
higher complexity when optimising a system to operate
efficiently in terms of throughput maximisation. There-
fore, in practical applications, material handling with
AMRs is often operated by rule-based heuristics. For
instance, when considering an AMR with a load capac-
ity of three, the following operational logic could be
considered:

(1) If the task of transporting WIP from specific equip-
ment to other equipment arises, an idle AMR is
assigned, and the AMR moves to load the WIP.

(2) The AMR loads additional WIPs while moving to
the nearest production equipment until it reaches its
maximum load capacity of three.

(3) Once the AMR has accumulated three WIPs, it
transports them to their respective destinations. The
transportation order of these WIPs can be deter-
mined based on either the longest queue time or the
minimum travel distance.

The above operation method, while intuitive and
having low computational requirements, has a signifi-
cant limitation: It fails to fully leverage the flexibility
of AMRs, particularly in establishing flexible movement
routes and in loading multiple WIPs simultaneously. To
fully utilise the capability of AMRs, decisions regard-
ing the handling of WIPs should be made adaptively,
rather than by relying on simplistic rule-based heuris-
tics. This is the case because, multiple decision-making
options arise at each juncture, such as the decision
about whether to add additional loads immediately or
to wait until current WIPs are transported. While seg-
menting the logic into more specific rules could be con-
sidered, such an approach would likely be ad-hoc and
unable to adapt to the system’s dynamically changing
conditions.

To overcome the limitations of such operation meth-
ods, the focus is on enhancing the efficiency of AMR
operations within manufacturing environments. The
goal is to maximise the material handling performance
of AMRs through the application of hierarchical rein-
forcement learning (HRL). Unlike simplistic, rule-based
heuristics, our proposed HRL enables AMRs to ana-
lyze and learn from their environment, making real-time
decisions that adapt to changing conditions and demands
from the data. This not only improves efficiency but also
increases the overall effectiveness of AMRs in diverse and
dynamic manufacturing settings.

In this study, the production schedule is determined
by a higher control system and then passed on to the
next level of the control system for implementation. That
is, our focus is on optimising the movement of WIP
through the AMR control system. For a detailed explana-
tion, please refer to Figure 1, which illustrates howAMRs
are operated within a centralised system in a manufac-
turing environment. Once the manufacturing execution
system (MES) establishes the production schedule, it is
relayed to thematerial control system (MCS). Themobile
robot control system (MRCS) then receives movement
orders for WIPs from the MCS. At this point, the MRCS
decides which tasks will be allocated to which AMRs and
determines the path each AMRwill take. Specifically, our
study focuses on how the MRCS can efficiently manage
material handling within a manufacturing setting. The
main contributions of this study can be summarised as
follows:

• The problem definition was extended beyond the
dynamic pickup and delivery problem to a novel form
that considers the dynamic nature of automatedmate-
rial handling systems. A Markov decision process was
formulated to address such dynamic scenarios and to
make sequential decisions efficiently. This approach
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Figure 1. Schematic illustration of the system hierarchy for the material handling system of autonomous mobile robots.

enables us to allocate various AMRs while planning
rational paths in real-time.

• A hierarchical deep reinforcement learning frame-
work has been introduced as a solution for the mate-
rial handling system. Utilising a hierarchical frame-
work, two agents were introduced: a higher-level agent
responsible for AMR allocation and a lower-level
agent in charge of planning the paths for these allo-
cated AMRs. Through this framework, we enable the
accomplishment of the ultimate goal, which is max-
imising the throughput of AMRs.

• Through numerical experiments, the practical appli-
cability of the proposed method was demonstrated.
Furthermore, by comparing it with well-established
techniques, we showed that our approach outperforms
existing methods in terms of effectiveness and effi-
ciency.

The remainder of this paper is structured as follows:
Section 2 provides an overview of relevant literature.
Section 3 details the problem description and the rein-
forcement framework employed in this study. Section 4
presents the results of our computational experiments.
Finally, Section 5 concludes the paper by summarising
the key findings of this research.

2. Literature review

In this section, two problems related to the study
are introduced: dynamic flexible job-shop scheduling
problems (DFJSPs) and dynamic pickup and deliv-
ery problems (DPDPs). We present a suitable problem

formulation and corresponding solution method for the
AMR control system and highlight relevant studies.

Flexible job-shop scheduling problems (FJSPs) allow
a job or operation to be processed by any machine in
a given set of machines (Chaudhry and Khan 2016;
Thörnblad et al. 2015). FJSPs can be divided into two
subproblems, which are the assignment of operations to
machines and the scheduling of themachines (Chaudhry
and Khan 2016; Rossi and Dini 2007). During the assign-
ment problem, each operation is assigned to one of the
available machines. During the scheduling problem, the
sequence of the operations assigned to each machine has
to be determined. In dynamic FJSPs (DFJSPs), dynamic
events such as random job arrivals and machine break-
downs can occur. Shen and Yao (2015) considered both
dynamic job arrivals and machine breakdowns, and
Shahgholi Zadeh, Katebi, and Doniavi (2019) considered
the DFJSP with variable processing times. Baykasoğlu,
Madenoğlu, and Hamzadayı (2020) compared the event-
driven and the periodical rescheduling strategies under
the dynamic environment with job cancellations, appear-
ance of urgent jobs, and sequence-dependent setup times.
In addition, various dynamic rescheduling frameworks
have been proposed to deal with the dynamic events
(Chien and Lan 2021; Fang et al. 2019; Fekih et al. 2020;
Liu, Piplani, and Toro 2022).

The AMR control system can be formulated as a
DFJSP because WIPs dynamically arrive, and they have
to be assigned to AMRs in real time. Improvements of
the system can be made by proposing a DFJSP incor-
porating transportation time and capacity of AMRs, as
in Ren et al. (2022). However, such approaches can not
fully capture the advantage of AMRs, which lie in their
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ability to have flexible and unrestricted paths compared
to AGVs and OHT vehicles. Therefore, in the next para-
graph, we introduce another framework (i.e. DPDPs)
that is considered more appropriate for this study. Addi-
tional papers that investigated AMR control systems
from a scheduling perspective can be found in Fragapane
et al. (2021).

In pickup and delivery problems (PDPs), transporta-
tion requests are satisfied using a fleet of vehicles that
traverse routes constructed by a decision maker (Savels-
bergh and Sol 1995). Given a set of pickup and deliv-
ery locations, every transportation request with a sin-
gle origin and destination is also given before the con-
struction of vehicle routes in static PDPs. However, in
DPDPs, transportation requests can dynamically arrive
(Berbeglia, Cordeau, and Laporte 2010). That is, while
vehicles are handling previously generated transporta-
tion requests on predetermined routes, new transporta-
tion requests can be generated. Therefore, the decision
maker has to dynamically design a pickup and deliv-
ery plan based on the observed transportation requests.
Extensive literature exists that studies DPDPs in vari-
ous types of dynamic events. Several papers introduced
the problem in which requests are served by crowd-
sourced drivers (Arslan et al. 2019; Behrendt, Savels-
bergh, and Wang 2023; Simoni and Winkenbach 2023;
Tao, Zhuo, and Lai 2023). In these studies, not only
are delivery requests dynamically observed, but crowd-
sourced drivers dynamically announce their availability.
In addition, most of them considered time windows for
the requests or the drivers. Some studies have explored
DPDPs in the transportation services industry, as it can
be characterised by a range of dynamic events. In Ferrucci
and Bock (2014), dynamic traffic congestion and vehicle
slowdowns are considered. Ulmer et al. (2021) studied
the dynamic problem in which the time that the pre-
ordered food can begin its delivery process is also dynam-
ically realised. Their approach incorporates probabilistic
information, which means that the probability distribu-
tions of time and locations for transportation requests
are known in advance. There are also several studies that
applied PDPs to manufacturing environments (Jun, Lee,
and Yih 2021; Zou, Pan, and Wang 2021).

Transportation requests for WIPs are dynamically
observed in the AMR control system. Although the num-
ber of AMRs is predetermined and remains constant,
the sequence of assigned transportation requests of each
AMR can be adjusted flexibly. Notably, AMRs have the
capability to take over tasks already assigned to other
AMRs and also to pass on their own tasks to differ-
ent AMRs. By analyzing these characteristics of the sys-
tem and by exploring the two aforementioned groups
of previous studies, we concluded that DPDPs offer a

more suitable framework for addressing the complex-
ities inherent in the AMR control system. Distinctive
characteristics of the problem proposed in this study, as
compared to the previous studies, can be summarised as
follows:

(1) Transportation requests with a single pickup or
delivery node can be generated repetitively.

(2) Pickup and delivery node sets are not distinctly
defined (they are the same).

(3) Except for the currently processing transportation
requests, the real-time reordering of requests already
assigned to each vehicle is allowed (both inner and
outer).

(4) There are five states of vehicles (AMRs): idle, retriev-
ing, loading, transporting, and unloading.

Addressing the complexities and dynamic nature
of pickup and delivery environments, numerous stud-
ies have leveraged reinforcement learning (RL) algo-
rithms for DFJSPs and DPDPs (Chien and Lan 2021;
Li et al. 2022; Liu, Piplani, and Toro 2022; Luo 2020;
Zong et al. 2022). Additionally, various studies have
actively explored the use of encoder and decoder struc-
tures, including the use of self-attention mechanisms,
to solve complex combinatorial optimisation problems
such as routing (Kool, Van Hoof, and Welling 2018; Xin
et al. 2020). Further, research has been conducted on
solving these problems by representing them as graphs.
Veličković et al. (2017), for instance, introduced the
graph attention network (GAT), which combines self-
attention with graph structures and demonstrated supe-
rior performance. However, in the AMR control systems,
the management of job assignment and AMR move-
ments does not immediately yield observable results.
This means that the rewards for RL agents are not given
right after they execute actions. For instance, when the
objective is to minimise overall tardiness, the tardiness
resulting from a job assignment becomes evident only
upon the completion of the assigned job. To deal with
the delayed reward issue in RL, Han et al. (2022) pro-
posed an off-policy RL framework with a newly designed
Q-function. By Kulkarni et al. (2016), it has been recog-
nised that the hierarchical RL (HRL) framework can
effectively address the issues from delayed and sparse
reward in large-scale problems. In their framework, a
top-level module and a lower-level module work at dif-
ferent time scales. The top-level agent provides a goal
for the lower-level agent, and then the lower-level agent
selects actions to reach the given goal. Our proposed
approach is also developed within the context of the
HRL framework, aligning with the many studies apply-
ing HRL to DPDPs or to DFJSPs. Although our focus
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is on DPDPs, we introduce studies that employed HRL
algorithms for both DPDPs and DFJSPs, contributing
to a comprehensive understanding of HRL in the rel-
evant domains. Ma et al. (2021) proposed an HRL
framework to solve large-scale DPDPs. Their upper-
level agent determines whether to release a subprob-
lem with accumulated transportation requests in each
period. And a lower-level agent assigns transportation
requests to vehicles and arranges the route of each vehi-
cle for the given subproblems, which are static versions
of DPDPs. Liu, Piplani, and Toro (2022) proposed hier-
archical and distributed architecture for DFJSPs. Their
routing agent dynamically assigns jobs to any one of
available machines. Then a sequencing agent corre-
sponding to each machine decides the order in which
jobs will be processed. This does not constitute a multi-
agent setting, because the sequencing agents share net-
work parameters. Lei et al. (2023) also employed HRL
to solve large-scale DFJSPs. As in Ma et al. (2021), their
higher-level agent decides whether to reschedule or not
when a new job arrives. They constructed their lower-
level agent by integrating the routing and sequencing
agents as in Liu, Piplani, and Toro (2022). After reviewing
the studies above, we concluded that the HRL frame-
work is suitable for sequentially making two critical
decisions, which are the assignment and the routing,
in the large-scale AMR control system with a delayed
reward.

In summary, the AMR control problem in the manu-
facturing environment can be formulated as DFJSPs or
DPDPs. Extensive research considers various dynamic
events and constraints in the DFJSPs and DPDPs lit-
erature. Because DPDPs can incorporate the flexibility
and unrestricted paths of AMRs while DFJSPs can not,
we focus on DPDPs. To deal with large-scale and com-
plex environments with the delayed reward issue, our
solution approach is based on the HRL framework. Our
work contributes to the existing literature by proposing a
novel DPDP formulation and a carefully designed solu-
tion approach to address the complex characteristics of
the AMR control system.

3. Problem formulation

3.1. Problem description

In this section, we describe the problem associated with
using AMRs for transporting WIPs in manufacturing
systems. The aim of this study is to develop the opera-
tional logic forAMRswithin a centralised control system.
This system is designed to dispatch WIPs to AMRs for
transportation between production equipment in a job-
shop manufacturing environment. With the production

schedule established by a higher control system, the focus
of the MRCS is on maximising the throughput of WIP
transportation through real-time movement commands.
Our scope is, therefore, confined to managing these real-
timeWIP transfer commands and to directly controlling
the sequences of AMRs.

We design our system around a decision-making
cycle measured in seconds, meaning the control system
updates its operational decisions within a few seconds
using real-time data to determine the next actions of
AMRs. Furthermore, we assume that AMRs operate on
a grid-based map. This approach contrasts with the pre-
defined movement paths of AGVs and OHT vehicle sys-
tems, which typically use a graph consisting of nodes
and arcs. The choice of grid-based operations was made
to better exploit the capabilities of AMRs in generat-
ing flexible paths, thereby providing a more adaptable
and dynamic solution for navigating the complexities
of a job-shop manufacturing environment. That is, our
study aims to demonstrate how such a system can be sig-
nificantly enhanced by our proposed HRL approach in
real-world manufacturing settings.

To fully utilise the flexibility of AMRs, we consider
operations involving multiple sources and destinations.
This means that AMRs can load and unloadWIPs at var-
ious locations, without necessarily reaching their max-
imum load capacity. For example, an AMR can pick
up new WIPs without needing to unload all previ-
ously acquired ones. An AMR with a loading capac-
ity of one WIP adheres to the following sequence for
its status updates. Upon receiving a new WIP transfer
command, the MRCS assigns the task to a suitable idle
AMR, selecting it based on factors such as proximity
and estimated travel time. The selected AMR’s status
then changes to retrieving, and it heads to the starting
point of the WIP. Upon arrival, the status switches to
loading, and the loading process begins. Once loaded,
the status updates to transporting, and the AMR trans-
ports the WIP to its intended destination. There, the
status changes to unloading for the unloading process.
After completing these stages, the AMR’s status reverts to
idle.

Let us consider the case where an AMR’s load capac-
ity is two. Assume that the AMR has been assigned to
Job 1, which arrived first, and that loading has been com-
pleted. When the new Job 2 arrives, the AMR may have
several options available. The AMR can either load Job
2 after completing the transport of the currently loaded
WIP to the destination, or it may load Job 2 immedi-
ately, interrupting the transport of the currently loaded
WIP. Figure 2 illustrates how the AMR operates in the
latter case. The situationwill bemore complex if the load-
ing capacity of the AMR exceeds two and the decision



5676 K. PARK ET AL.

Figure 2. AMR status changes in response to job arrivals during operations when the load capacity is two.

is made as part of a system involving multiple AMRs
operating simultaneously.

Let us consider a scenario in which an AMR arrives
at the designated equipment. If all WIPs from this
equipment are destined for the same location, load-
ing the AMR to its full capacity before transporta-
tion might be more efficient. However, if the WIPs
from the same equipment have different destinations,
the traveling salesman problem can be used to deter-
mine the most efficient sequence of stops, thereby opti-
mising the AMR’s loading capacity. A potential draw-
back of this approach is the possibility of extended
idle periods for an AMR while waiting for tasks to
be completed on a single piece of equipment, which
could diminish overall efficiency, especially when mul-
tiple AMRs are involved. In situations in which an AMR
is tasked with loading from multiple equipment sources
and with delivering to various destinations, the sce-
nario resembles a pickup and delivery problem. How-
ever, this approach might not exploit the full flexibility
of AMRs. Moreover, some WIPs could lead to situa-
tions in which they remain undelivered for an extended
period. To overcome these challenges, we propose a
data-driven real-time decision-making approach that
aims to maximise the AMR’s flexibility. This approach
involves intelligently deciding when to load or unload
additional WIPs, even if the AMR’s capacity is not
fully utilised. We illustrate the job assignment pro-
cess for AMRs in a manufacturing environment in the
Appendix 2.

3.2. Hierarchical framework

In this paper, we present a decision-making framework
that dispatches the most suitable AMR at the moment
a task is issued and conducts path planning for each
robot based on this dispatch. Decision-making on a per-
second basis is facilitated by conceptualising a decision
horizon, denoted as T. At each decision point within this
horizon, either the dispatching of robots or the deter-
mination of path planning for a robot is executed. To
address these challenges, we propose a hierarchical rein-
forcement learning framework, comprising higher-level
and lower-level agents, as depicted in Figure 3. As men-
tioned in Figure 1,MRCS, which receives instructions for
delivery tasks from MCS, efficiently manages the tasks
of each AMR. MRCS communicates wirelessly with all
AMRs and can adjust plans in real-time. In this frame-
work, the higher-level agent determines which AMR to
dispatch by analyzing information from both the WIP
buffer and the MRCS. If the higher-level agent deter-
mines that it is not optimal to dispatch any AMR, or if
all AMRs have reached their full capacity, the WIP will
not be assigned and will remain in the WIP buffer, wait-
ing for one timestep.Once dispatched, theAMRproceeds
toward its assigned task, during which it communicates
its status to the MRCS. The MRCS then relays updated
information back to the AMR, which interacts with the
lower-level agent to adjust its path planning dynami-
cally. Through this interaction, centralised management
of path planning for all AMRs is effectively achieved.
The lower-level agent, informed by the dispatch status of
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Figure 3. Illustration of hierarchical reinforcement learning framework.

WIPs for the robots from the higher-level agent, decides
on dynamic and flexible path planning in a pickup and
delivery environment at every moment.

In utilising AMRs, two of the most crucial challenges
are dispatching and path planning. By considering not
only the immediate operational status but also the overall
context of the system, our proposed hierarchical frame-
work enables decision-making that is aimed at max-
imising overall return. This separation of responsibili-
ties allows the overall system return to be maximised
by focussing on long-term task assignment through the
higher-level agent and immediate operational efficiency
through the lower-level agent. The higher-level agent
ensures that AMRs are assigned in a way that minimises
overall workload imbalance and analyzes the current sit-
uation, thereby preventing likely points of congestion
before they occur. Meanwhile, the lower-level agent’s
real-time path planning ensures that the tasks are exe-
cuted as efficiently as possible, considering immediate
constraints such as AMR availability, current workload,
and proximity to WIPs. This dual approach not only
reduces idle time but also enables an efficient distribu-
tion of workload across all AMRs, ultimately maximising
the throughput ofWIPs andminimising the total delivery
time.

The efficacy of this hierarchical framework is fur-
ther enhanced by the integration of real-time data ana-
lytics, which play a crucial role in both the decision-
making processes of the higher-level and lower-level
agents. This integration allows for a more responsive
and adaptive system, capable of adjusting to changes in
the manufacturing environment, such as variations in

WIP demand, equipment capacity, and congestion in
vehicle operations. The higher-level agent continuously
analyzes trends and patterns from historical and real-
time data, enabling it to make more informed decisions
about robot dispatch. The higher-level agent continu-
ously monitors real-time data from the MRCS and the
WIP buffer, analyzing the current situation to prevent
congestion and enhance efficiency.Meanwhile, the lower-
level agent focuses on the immediate execution of tasks,
utilising the latest data to navigate and adapt to the
dynamic environment. It employs advanced algorithms
for path optimisation, considering factors such as the
planned route and remaining capacity of each robot. This
level of detailed management enables each robot to oper-
ate with enhanced efficiency, thereby contributing to a
more streamlined and agile production process.

3.3. State encoding based on graph attention
network

In this section, we introduce theGAT for encoding inputs
used in HRL. Given the graph-structured nature of the
problem, the approach combines raw state features with
those processed by the GAT, as depicted in Figure 4. This
concatenated representation serves as input for the HRL
framework. To effectively train the GATwith dimensions
suitable for its structure, we expand the dimensions to
higher-level features using Equation (1):

hkt = MLP(vkt ) =Wvkt + b (1)

where vkt represents the state information of each robot k
at each step t, vkt ∈ R

l and hkt ∈ R
p with p> l. Here, W
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Figure 4. Illustration of graph attention network based hierarchical reinforcement learning framework.

represents the weight matrix and b represents the bias
vector. This transformation enables the network to map
the input features to a higher-dimensional space, thereby
capturingmore intricate representations and interactions
among the nodes.

The influence each node receives from its adjacent
nodes is represented by the attention coefficient ekj. Based
on Veličković et al. (2017) and Shao et al. (2021) studies,
the GAT structure is illustrated in Figure 4. The attention
coefficient ekj is given by Equation (2):

ekj = att(Whkt ,Whjt) (2)

where the self-attention mechanism att is introduced. To
ensure that the scalar value derived from this equation
is influenced only by adjacent nodes, we use the softmax
function as shown in Equation (3):

akj = softmax(ekj) =
exp(ekj)∑
j∈Lk

exp(ekj)
(3)

where Lk denotes the set of neighbouring nodes acces-
sible from node k. The softmax function normalises the
attention coefficients across all neighbouring nodes. This
normalisation step is crucial for stabilising the training
process and for ensuring that the attention mechanism is
focussed on the most relevant neighbours.

Next, for normalisation during training, we imple-
ment Equation (4):

h̃kt = ReLU

⎛
⎝∑

j∈Lk

akjWhjt

⎞
⎠ (4)

To ensure stability during the training process, we extend
hkt using a multi-head attentionmechanism. By parallelly
concatenating M independent attention mechanisms in
parallel, Equation (5) is derived.

h̃kt = ‖Mm=1 ReLU
⎛
⎝∑

j∈Lk

αmkjW
mhjt

⎞
⎠ (5)

Through this approach, we obtain stabilised results for
input values in higher dimensions. In this experiment, we
used two convolutional layers with four attention heads
each.

3.4. Higher-level agent

As introduced in Figure 1, theMRCS receivesWIP infor-
mation from the higher control system. The timestep
in a finite horizon is set to be t (t ∈ {1, . . . ,T}), with
each interval set to one second. As depicted in Figure 3,
upon receivingWIP data from the MCS, the higher-level
agent decides which AMR to assign the WIP to, based
on the outcomes of its training. At each timestep, it is
assumed that a maximum of one WIP can be assigned
to a robot. At timestep t, the higher-level agent selects
the most suitable AMR for the given WIP. This infor-
mation is then transmitted to the mobile robot control
system’s environment, where it interacts with the lower-
level agent, and the interaction results are conveyed to
the next timestep, t+ 1. At timestep t+ 1, if all robots
are in loading or unloading, or exceed their maximum
capacity C, an action of None is inevitably enforced by
action masking, even if there is a WIP to be assigned.
Additionally, the agent may also choose not to take any
action, despite the availability of AMRs to assign, in order
to preserve the solution for finding a better outcome. A
Markov decision process (MDP) for implementing the
dispatching procedure is formulated as follows.

State: In the MDP formulation for the higher-level
agent, each state is represented as Ut . At each timestep,
the state, representing the status of the robot, is expressed
as Ut = {v1t , v2t , . . . , vkt } = {(c1t , p1t , d1t , o1t ), (c2t , p2t , d2t , o2t ),
. . . , (ckt , p

k
t , d

k
t , o

k
t )} where k represents the number of
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robots, with k being an element of the set {1, . . . ,K}. This
state includes information such as the current load, ct ,
the type of current task, pt , the total distance of the route
that the robot belongs to, dt , and the categorised distance
to the earliest destination, ot , for each robot, vk at each
step t. All these features are concatenated with the output
features of the GAT, resulting in st = (h̃t ,Ut)

Action: The action at consists of assigning a WIP to
a mobile robot or taking no action at all. Therefore, the
number of actions at is |K| + 1, and in each timestep,
only one robot is selected.

Reward: While the overall objective of the agents, as
previously mentioned, is to maximise the throughput of
WIPs, for the effective learning of each agent, we propose
a new immediate reward structure. To achieve the higher-
level agent’s goal of efficient AMR assignment, we have
set the reward as follows:

rHt = −λt · α − ψt · β + δt · η
Whereλt is the standard deviation of the number of robot
queues at timestep t, ψt is the standard deviation of the
estimated distance of robots at timestep t, and δt is the
number of assigned WIPs at timestep t. The parameters
α, β , and η were utilised in this study, with their optimal
values being established through extensive experimental
work with respect to the environment.

The Q-learning technique, a prominent method in
reinforcement learning, updates theQ-value for a specific
state-action pair, as shown in Equation (6).

Q(st , at)← Q(st , at)+ α[rt + γ max
a′

Q(st+1, a′)− Q(st , at)]

(6)

Nonetheless, there are challenges in updating theQ-table,
especially when dealing with high-dimensional state
inputs or action spaces. As noted in Mnih et al. (2015),
deep Q-networks are efficient in addressing problems
with complex state and action spaces. By approximating
the Q function as Q(s, a, θ) ≈ Qπ(s, a) with the parame-
ter θ , the estimation of the value function becomes more
efficient.

L(θ) = E

[(
Rt+1 + γ max

a′
Q(st+1, a′; θ ′)− Q(st , at ; θ)

)2
]

(7)

Through stochastic gradient descent, it is feasible to opti-
mise the parameter θ tominimise the loss function in the
equation.

3.5. Lower-level agent

The lower-level agent, based on the AMR assignment
results received from the preceding higher-level agent,

conveys decisions on how to conduct path planning
for each AMR within the mobile robot control system.
According toAhamed et al. (2021), computing path plan-
ning for the total number of AMRs, denoted as |K|,
significantly increases computational complexity, render-
ing it impractical. Therefore, in this study, path planning
consists of a total of five actions: four path improvement
actions considering the environment, and one action of
inaction. The MDP formulation for the lower-level agent
is as follows.

State: The state of the lower-level agent, denoted as
lt = (Ut ,Et), is composed of two types of state informa-
tion. The first state, Ut , is inherited from the state of the
higher-level agent and consists of information about the
robot. The second state, Et , combines information about
the robot and the state of the equipment, which are the
destinations for transporting WIPs, expressed as Et =
{e1t , e2t , . . . , emt } = {(b1t , i1t ), (b2t , i2t ), . . . , (bmt , imt )}. This is
concatenated with the coordinates of the equipment,
denoted as bt , and the number of robots designated to
visit each equipment, represented as it for each equip-
ment em at each step t. All these features are concatenated.

Action: Considering the dynamic and potentially
expanding number of robots, it becomes evident that
optimising the next destination node for each robot’s
visit poses a significant computational challenge. Given
this context, in this paper we introduce a heuristic-based
methodology for action selection. This approach not only
maintains computational efficiency but also effectively
enhances path planning strategies. The action framework
includes five distinct types: inner relocate, inner exchange,
inter exchange, inter relocate, and the option of selecting
no action.

In the application of these actions aimed at refining
solutions, it’s essential to follow the specific constraints
and characteristics inherent in the dynamic pickup and
delivery problem. Adhering to these constraints, as out-
lined below, is vital for maintaining the integrity and
feasibility of the proposed solutions.

(1) The pickup sequence must always precede the deliv-
ery sequence for the same task.

(2) The updated delivery task cannot be processed
before the currently ongoing task.

(3) If a task has already been picked up, it cannot be
transferred to another robot.

(4) Tasks cannot be transferred in a way that exceeds the
robot’s capacity.

In contrast to the higher-level agent, where the assign-
ment of an AMR as an action directly impacts the
environment, the lower-level agent is tasked with deter-
mining the appropriate path improvement methodology.
Consequently, the implementation of the selected action
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in the lower-level agent’s context varies based on the
specifics of the four distinct action types: inner relo-
cate, inner exchange, inter relocate, and inter exchange.
These actions provide the lower-level agent with differ-
ent strategies to either relocate or exchange tasks within
or between robots, ensuring adaptive and efficient task
planning. Further explanations of each action type can
be found in Appendix 1.

Reward: The ultimate goal of the lower-level agent is
to efficiently plan the paths of robots, thereby minimis-
ing the total path length required for AMR deliveries.
To minimise the AMR paths while enabling the agent to
effectively learn from the immediate outcomes of actions,
we have constructed the reward as the difference between
the current timestep t and the previous timestep t−1,
defined as rLt = Zt−1 − Zt , where Zt =∑

k∈K dkt .
Based on the hierarchical framework and MDP

setting previously presented, we have illustrated the
HRL algorithm for the material handling system in
Algorithm 1. We have introduced both a higher-level
agent (AH) and a lower-level agent (AL) that operate
based on the necessary parameters, with both agents
employing the Deep Q-Network (DQN) algorithm in
their functioning. Note that at each moment of action
selection, there exists an action mask procedure for pre-
venting the selection of infeasible actions, which is imple-
mented individually for each agent in lines 10 and 14.
Each agent undergoes iterative updates, and the opera-
tional outcomes of the higher-level agent are employed
as input observations for the lower-level agent.

4. Computational experiments

4.1. Experiment settings

The experimental environment for testing the problem
structure described in the previous Section 3 is as follows.
In each episode, the experiment randomly generates the
initial positions of the AMRs on the grid, and the occur-
rence of WIPs is uniformly distributed across all equip-
ment. To reflect realistic conditions at the equipment,
if more than ten WIPs occur at a specific equipment at
the current system time, they are uniformly generated at
other equipment. Experiments on the environment were
performed using the dataset listed in Table 1. The experi-
mentwas conducted on a Python 3.8with anAMDRyzen
5 5600G processor with 16GB RAM. The parameters of
the model and their respective values are presented in
Table 2.

4.2. Training performance and comparative
analysis

4.2.1. Training convergence
The convergence of our proposed HRL algorithm is
demonstrated through the training results on a 10×

Algorithm 1 Hierarchical Reinforcement Learning
Algorithm for Material Handling System
Input: Initial parameters for agents (θ1, θ2), experi-
ence replay buffers (D1, D2), environment details, action
masks.
Output: Learned policies (AH , AL), final parameters (θ1,
θ2), cumulative rewards.

1: Initialize the higher-level agent AH with experience
replay memory D1 and parameters θ1.

2: Initialize the lower-level agent AL with experience
replay memory D2 and parameters θ2.

3: for i = 1 to Nepisodes do
4: Reset the material handling environment and
5: obtain initial observation o.
6: for t = 1 to T do
7: Map the input to high dimensions and pass it
8: through the GAT network to obtain a new
9: input feature ht .
10: Concatenate ht andUt to form a new state st .
11: Select an AMR selection action aHt using AH
12: based on observation st and an action mask
13: considering the state of AMR.
14: Apply action aHt , observe new state st+1,
15: reward rHt .
16: Store transition (st , aHt , rHt , st+1) in replay
17: buffer D1.
18: Set observation for lower-level agent lt based
19: on st+1.
20: Select a path planning action aLt using AL
21: based on lt and the action mask.
22: Apply action aLt , observe the new state lt+1,
23: and reward rLt .
24: Store transition (lt , aLt , rLt , lt+1) in replay
25: buffer D2.
26: Update observation for higher-level agent.
27: Update AH and AL using Adam optimiser
28: with parameters θ1 and θ2, respectively.
29: end for
30: if i % 10== 0 then
31: Update target networks of AH and AL.
32: end if
33: end for

10 grid with ten AMRs and four pieces of equipment.
Figure 5(a,b) show the training curves for the higher-level
and lower-level agents, respectively, while Figure 5(c) dis-
plays the results graph for the completed WIPs, which
represents the ultimate goal of our system. Figure 5(d)
illustrates the average travel distance of the robots.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 5681

Table 1. Definition of parameters.

Parameter settings for the simulator Value

Number of equipment (m) 4, 10, 30
Number of AMRs (k) 8, 20, 30, 50
Maximum capacity of AMR (C) 4
Maximum robot queue 10
MaximumWIP queue 10
Size of grid (height equals width) (size) 10, 20, 30

Table 2. Parameter settings for the training.

Parameter Value

Number of training episode 10,000
Number of timesteps in one episode 200, 300
Replay memory size 1,000,000
Minibatch size 256
Learning rate 0.0001
Discount factor 0.8
Optimiser Adam

Next, a sensitivity analysis of the experimental results
was conducted. Figure 6 shows the boxplots of the num-
ber of completed WIPs and the average travel distance
of robots under different WIP arrival distributions. The
mean values are indicated by circles. Experiments were
conducted for scenarios following Uniform, Poisson, and
Normal distributions. It was observed that as the proba-
bility ofWIP generation or the mean value of the Poisson
and Normal distribution increased, both the number of
completed WIPs and the travel distance increased. How-
ever, it is noteworthy that the increase inWIP generation
probability did not result in a proportional increase in
these values due to the occurrence of congestion.

4.2.2. Comparative analysis with existing
benchmarks
In this paper, we have developed various benchmark
algorithms for comparative experiments, referencing and
adapting from previous studies. For the purpose of com-
parison with our model, we present the following dis-
patching rules based on reinforcement learning algo-
rithms and heuristic methods:

(a) IH rule
First, the heuristic denoted as IH is based on the
work of Ahamed et al. (2021), and it operates as
follows:
Step 1: Calculate the distance from the pickup equip-
ment of the registered WIP in the system to all
AMRs. For assigned robots, the total path of the
robot is considered as the distance. For AMRs with-
out assigned WIPs, the distance is calculated as the
distance between the AMR and the equipment.
Step 2: For the robot with the smallest distance, if it
already has an assignment, the newWIP is added at

the end of its current sequence. If not, a newWIP is
assigned to it.
Step 3: Perform the intra-relocate action for the
sequence of the assigned AMR, as proposed in this
paper.
Step 4: If the robot with the smallest distance is not
in a state to be assigned, assign the WIP to the robot
with the next smallest distance.

(b) Dispatching rules
To demonstrate the effectiveness and practical appli-
cability of our proposed HRL algorithm, we con-
ducted a comparison experiment with existing dis-
patching rules developed for solving combinatorial
optimisation problems similar to the one addressed
in our study. These dispatching rules include FIFO,
2-OPTheuristic, closest selection (CS), least remain-
ing processing time (LRT), and nearest neighbour
(NN).

(c) Dispatching rule selectionwith reinforcement learn-
ing (DSRL)
The DSRL method combines various dispatching
approaches to derive rational solutions. Thismethod
has been applied not only in recent reinforcement
learning literature but also in various combinatorial
optimisation fields. This paper is based on several
prior studies, including the studies by Luo (2020)
and by Lei et al. (2023). The MDP for DSRL is
defined as follows:
State: The state information must encompass all
details relevant to the assignment and path planning
ofAMRs. Therefore, it is identical to the state lt of the
lower-level agent, which includes information about
both the AMRs and the equipment.
Action: The action consists of the top three perform-
ing dispatching rules, namely IH, CS+2-OPT, and
CS+NN.
Reward: The reward is a concatenation of the
rewards from the higher-level and lower-level agents,
composed of the sum of rHt and rLt .

The benchmark algorithms mentioned above under-
went a thorough comparative assessment with our pro-
posed model, as presented in Table 3. All values listed
in the table represent the average of 20 experiments,
conducted to reflect the generality across various envi-
ronments with instances randomly generated. In this
experiment, four different cases are presented along with
the respective experimental results. First, S1 presents
an environment with a 10x10 grid where there are
eight AMRs and four equipment. Next, S2 features a
20x20 grid with 20 AMRs and ten equipment, while S3
introduces a larger 30x30 grid with 30 AMRs and 30
equipment. For S4, an even larger-scale environment is
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Figure 5. Training curves of the HRL algorithm. (a) Cumulative rewards of the higher-level agent during the training phase. (b) Cumula-
tive rewards of the lower-level agent during the trainingphase. (c) Number of completedWIPs throughout the trainingphase. (d) Average
travel distance of the robots.

Figure 6. Comparison of completed WIPs and travel distances under different arrival probabilities. (a) Number of completed WIPs and
(b) Average travel distance.

considered with a 30x30 grid, 50 AMRs, and 30 equip-
ment. Note that, to ensure clarity in the experimen-
tal results, the timestep in S3 and S4 was extended to
300.

As demonstrated in Table 3, our proposed HRL
algorithm outperforms all known algorithms and those
developed from previous studies. Given that our research

required rapid decision-making within a short time
frame, we aimed for decision-making within approxi-
mately 10 seconds in smaller problem sizes like S1 and
S2. Regardless of the problem size, the performance of
our proposed algorithm not only surpassed other algo-
rithms in all cases but also showed a significantly larger
gap compared to existing heuristics as the problem size
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Table 3. Comparison of HRL algorithm with baseline approaches.

Case HRL DSRL IH CS+FIFO CS+2-OPT CS+NN LRT+2-OPT LRT+NN
S1 Obj. 94.5 79.0 79.5 65.2 81.0 77.4 75.2 57.2

Gap 0.0% 16.4% 15.8% 30.9% 14.3% 18.0% 20.4% 39.4%
Time (s) 1.23 1.03 1.08 1.04 0.88 0.93 0.98 0.94

S2 Obj. 111.4 96.7 90.2 78.5 94.3 89.5 92.5 88.4
Gap 0.0% 13.2% 19.0% 29.5% 15.4% 19.7% 17.0% 20.6%

Time (s) 10.67 9.87 1.83 1.76 1.57 1.67 1.43 1.56
S3 Obj. 182.3 153.3 151.0 114.8 164.8 161.0 163.7 151.8

Gap 0.0% 15.9% 17.2% 37.0% 9.6% 11.7% 10.2% 16.7%
Time (s) 22.42 14.09 10.83 9.84 10.72 10.56 11.64 10.13

S4 Obj. 221.3 161.5 156.6 123.1 175.8 145.4 174.4 149.7
Gap 0.0% 27.0% 29.2% 44.4% 20.5% 34.3% 21.2% 32.4%

Time (s) 32.47 28.08 23.56 24.13 24.61 23.82 25.34 21.73

Figure 7. Effectiveness of HRL algorithm on workload and delivery management. (a) AMR task allocation and performance and (b)
Impact of WIP arrival distributions.

increased, while addressing the tasks within a practically
feasible time frame.

The effectiveness of the HRL algorithm was explored
by conducting additional experiments that evaluated per-
formance in terms of workload distribution and WIP
delivery time. Figure 7(a) illustrates how our HRL-
based policy influenced task allocation across all AMRs,
highlighting that while the proportion of idle tasks
varied, the assignment of tasks and travel distances
were evenly distributed across the robots. This bal-
anced assignment is particularly important in minimis-
ing bottlenecks and in ensuring that no single AMR is
overburdened.

Figure 7(b), depicts the results under different WIP
arrival distributions: Uniform, Poisson, and Normal,
providing insights into both the workload balance and
the average delivery time. Notably, our HRL algorithm
consistently maintained an even workload distribu-
tion across these varied settings and reduced the aver-
age delivery time for WIPs compared to the best-
performing heuristic (CS+2-OPT). These results empha-
sise the robustness and adaptability of the proposed
HRL approach, highlighting its superior capability in

efficiently managing AMR resources even in dynamically
changing environments.

Confirming the generality of our HRL algorithm in
different environments, we varied the positions of the
equipment generatingWIPs, as depicted in Figure 8. The
configurations labelled as Pattern 1 to 4 represent differ-
ent setups: equipment arranged along the diagonal and
opposite diagonal of the grid, as well as in square and
diamond formations. In the figure, solid lines and dotted
lines illustrate the distribution of the completed number
of WIPs for the HRL and benchmark methods, respec-
tively. The results show that the HRL’s outcomes exhibit
consistent distributions, indicating that it derived stable
policies while also demonstrating superior performance,
whereas the benchmark showed varying distributions.
These results demonstrate that our HRL algorithm con-
sistently provided effective policy solutions, regardless of
changes in equipment layout. However, questions may
arise regarding the individual utility of each agent. To
validate this query, the following subsection will outline
our numerical experiment conducted to determine the
effectiveness of each agent by fixing one and varying the
other.
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Table 4. Effectiveness of the higher-level agent.

S1 S2 S3

Method Aver. Gap Time(s) Aver. Gap Time(s) Aver. Gap Time(s)

CS+ Random insertion 59.3 37.3% 0.98 67.4 38.9% 1.47 96.2 45.4% 9.84
CS+ Lower-level agent 79.1 16.3% 1.26 99.7 9.67% 9.21 130.6 25.9% 14.26
Our (Higher+ Lower-level agent) 94.5 0.0% 1.13 111.4 0.0% 10.67 182.3 0.0% 22.42

Figure 8. Generality ofHRL algorithmacross different equipment
layout patterns.

4.2.3. Evaluating the effectiveness of the higher-level
agent
To demonstrate the performance of the higher-level
agent, we compared our proposed model, which utilises
both higher-level and lower-level agents, with two other
algorithms that do not. For comparison, the CS heuris-
tic was used, as it was identified as the best-performing
robot selection rule in the previous comparative anal-
ysis. We compared this with two algorithms: one that
randomly updates the path after selecting AMRs using
the CS heuristic and another that utilises the results of
the lower-level agent. As evident in Table 4, although
our proposed model took the longest time, it showed
the best performance, indicating the effectiveness of the
higher-level agent in efficiently assigning robots. This
result demonstrates that our model is effectively learn-
ing through the assignment of robots by the higher-level
agent.

4.2.4. Assessing the impact of the lower-level agent
In assessing the impact of the lower-level agent, our
approach involved conducting comparisons with two
alternative algorithms, excluding the use of the lower-
level agent. The 2-OPT heuristic, which showed supe-
rior performance in our previous path planning experi-
ment, was implemented in these comparison algorithms.
As shown in Table 5, the lower-level agent also exhib-
ited outstanding performance. While the performance

gap was not as significant as that observed with the
higher-level agent, the lower-level agent nonetheless con-
tributed notably to path improvement, highlighting its
effectiveness in enhancing the overall system’s efficiency.

4.3. Managerial insights

We recommend the following instructions for practition-
ers in logistics automation and warehouse management
who are seeking to apply the HRL-based algorithm effec-
tively. These insights are derived from extensive numer-
ical experiments conducted to validate the proposed
model:

• The proposed HRL algorithm demonstrated remark-
able scalability, making it applicable across a range of
environments, from small warehouses to large distri-
bution centres. Whether managing 10 AMRs or 50,
our model consistently performed well, showcasing
its ability to efficiently manage resources regardless of
the scale. This adaptability makes the HRL approach
suitable for industries aiming to automate processes
without facing scalability issues. It assures warehouse
managers that the model can grow along with their
operational needs, providing consistent optimisation
as more AMRs and equipment are introduced.

• The hierarchical decision-making framework in the
HRL algorithm effectively addresses the complexi-
ties of task assignment and workload balancing. The
experimental results indicated that themodel can allo-
cate tasks in a way that balances workloads across
all AMRs, can reduce idle times, and can ensure effi-
cient use of resources. This leads to smoother opera-
tions and increased throughput, particularly in high-
demand situations. Managers can use these insights to
avoid resource bottlenecks and to ensuremore stream-
lined and efficient operations, which is especially crit-
ical in environments with frequent task requests and
high movement levels.

• One of the key strengths of the HRL algorithm is its
ability to adapt to varying WIP arrival patterns and
different layout configurations. Whether dealing with
Uniform, Poisson, or Normal WIP arrival distribu-
tions, the model maintained consistent performance,
effectively balancing workloads andminimising travel
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Table 5. Effectiveness of the lower-level agent.

S1 S2 S3

Method Aver. Gap Time(s) Aver. Gap Time(s) Aver. Gap Time(s)

Random selection+ 2-OPT 71.7 24.1% 0.93 86.3 21.8% 1.56 119.7 32.1% 9.88
Higher-level agent+ 2-OPT 88.7 6.1% 1.07 103.3 6.4% 8.87 152.8 13.3% 12.06
Our (Higher+ Lower-level agent) 94.5 0.0% 1.13 111.4 0.0% 10.67 182.3 0.0% 22.42

distances. This flexibility makes it highly practical for
dynamic environments where operational conditions,
such asWIP demand or equipment layout, change fre-
quently. Managers benefit from a system that requires
minimal reconfiguration while adapting smoothly to
operational changes, reducing downtime and ensur-
ing continuous performance.

5. Conclusions

The integration of AMRs in manufacturing systems
greatly improvesmaterial handling efficiency by dynami-
cally assigning tasks and enabling flexible path planning,
along with the loading of multiple WIPs. In this paper,
we have proposed a novel hierarchical reinforcement
learning framework for the material handling system in
a dynamic manufacturing environment. We enhanced
learning efficiency and performance by utilising a graph
attention network as an encoder for the input states
of our agent. To address the complexities of this sys-
tem, our approach introduces a hierarchical structure: a
higher-level agent responsible for assigning robots and a
lower-level agent dedicated to planning the paths of these
assigned robots. In response to the evolved challenges
from the dynamic pickup anddelivery problem, a suitable
MDP was formulated for each agent. Through numerical
experiments, we have demonstrated that the interaction
between the higher-level and lower-level agents in this
hierarchical structure enables us to achieve our goal of
maximising the throughput of WIPs in the system.

Our proposed HRL algorithm is particularly well-
suited to environments in which an equipment serves as
both a pickup and a delivery node, and in which WIPs
are dynamically transported via AMRs. Such an environ-
ment, as presented in this study, represents the challenges
faced in modern manufacturing settings, particularly in
smart logistics and other highly flexible, dynamic logis-
tics industries. We anticipate that our model will be par-
ticularly effective in real-time decision-making scenarios
within these industries, offering a significant advance-
ment in the way material handling tasks are approached
and executed. Through this paper, we demonstrate not
only the feasibility but also the effectiveness of applying
the advanced reinforcement learningmethod to complex,
real-world problems in the manufacturing environment.

The successful implementation of our HRL framework
sets a new benchmark in operational efficiency, paving
the way for future innovations in intelligent and adaptive
manufacturing systems.
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Appendix 1. Description of actions for the
Lower-Level Agent

Inner Relocate Algorithm

(1) Robot Selection: Select the robot with the largest total
sequence length.

(2) Sequence Rearrangement: Relocate one of the sequences
that the robot is scheduled to visit to a later order in the
remaining sequence.

(3) Path Length Evaluation: After each relocation, check for a
decrease in the original path length and ensure compliance
with the precedence conditions.

(4) Path Confirmation: If conditions aremet, establish the new
path after relocation. Otherwise, revert to the original path
and continue the rearrangement process until the end of
the robot’s sequence.

The Inner Relocate Algorithm is designed to optimise the
path of an individual robot by reordering the tasks assigned
to it. This action begins by selecting the robot with the largest
total sequence length, as this robot is likely to have the greatest
opportunity for optimisation. The process then involves relo-
cating one of the sequences currently assigned to that robot
to a different, later position within the remaining sequence.
This relocation is evaluated to check whether it reduces the
overall path length while ensuring compliance with the prece-
dence conditions, that is, while maintaining the correct order
of pickup and delivery tasks for WIPs. If these conditions
are satisfied, the new path is adopted; otherwise, the original
sequence is restored, and the rearrangement process continues.
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This action is particularly valuable for smoothing intra-robot
and for operations and reducing travel redundancy.

Inner Exchange Algorithm

(1) Robot Selection: Select the robot with the largest total
sequence length.

(2) Sequence Exchange: Exchange one of the sequences that
the robot is scheduled to visit with another sequence in
the remaining list.

(3) Path Length Evaluation: After each exchange, check
whether there is a decrease in the original path length and
ensure that previously mentioned precedence conditions
are met.

(4) Path Confirmation: If the conditions are satisfied, fix the
result of this exchange as the new path. If not, revert to the
original path and repeat the exchange process until the end
of the robot’s sequence.

The Inner Exchange Algorithm targets further optimisa-
tion within a robot’s assigned sequence. Similar to the Inner
Relocate Algorithm, it begins by selecting the robot with the
largest total sequence length. Instead of relocating a sequence,
this action involves exchanging two sequences within the same
robot’s path. Each exchange is tested for its effectiveness in
reducing the total path length and is confirmed only if it also
maintains precedence conditions. By attempting to exchange
tasks rather than just relocating them, this algorithm introduces
amore dynamic level of reorganisation, potentially allowing for
shorter paths while also reducing overall task clustering that
may lead to inefficiencies.

Inter Relocate Algorithm

(1) Robot Selection : Select Robot1 as the robot with the largest
total sequence length and Robot2 as the robot with the
smallest total sequence length from the state information.

(2) Sequence Rearrangement : Identify the last WIP in
Robot1’s sequence that is not currently being carried and
append it to the end of Robot2’s sequence.

(3) Optimisation Process : Apply Inner relocate algorithm to
Robot2. Compare the total route length with the original
route.

(4) Iterative Process : Continue the process, moving backward
from the end of Robot1’s sequence, until a reduction in the
total route is achieved.

The Inter Relocate Algorithm focuses on balancing work-
loads between multiple robots. This algorithm begins by
selecting two robots: Robot1, which has the largest sequence
length, and Robot2, which has the smallest. The goal is to
move some tasks from the heavily loaded Robot1 to Robot2,
thereby reducing overall imbalance. The last WIP in Robot1’s
sequence, which is not yet being carried, is appended to the
end of Robot2’s sequence. Following this, the Inner Relocate
Algorithm is applied to Robot2 to optimise the new sequence
configuration. This iterative process continues, working back-
ward through Robot1’s sequence until a reduction in the total
route length is achieved. The purpose of this action is to ensure
more evenly distributed workloads among the robots, thereby
reducing the chance of any single robot being overwhelmed
while others remain underutilised.

Inter Exchange Algorithm

(1) Robot Selection : Select Robot1 with the longest total
sequence length and Robot2 with the second longest,
based on state information.

(2) Sequence Rearrangement : Identify the last non-carrying
WIP in Robot1’s sequence and move it to the end of
Robot2’s sequence.

(3) Sequence Rearrangement2 : Similarly, find the last non-
carryingWIP in Robot2’s sequence andmove it to the end
of Robot1’s sequence.

(4) Optimisation Process : Apply Inner relocate algorithm to
both robots. Compare the total route length with the orig-
inal route.

(5) Iterative Process : Iterate this process for both Robot1 and
Robot2, starting from the end of their sequences to the first
sequence, until a reduction in the overall route is observed.

The Inter Exchange Algorithm also addresses workload bal-
ancing between robots but with a different approach com-
pared to the Inter Relocate Algorithm. It selects Robot1 and
Robot2, both having relatively long sequence lengths based
on current state information. The algorithm identifies the last
non-carrying WIP in each of the robots’ sequences and swaps
them, moving the WIP from Robot1’s to Robot2’s sequence
and vice versa. After this swap, the Inner Relocate Algorithm is
applied to both robots to attempt further optimisation of each
robot’s new sequence. This process continues iteratively, swap-
ping sequences from the end to the beginning, until there is a
noticeable improvement in the overall path length. This action
aims to not only balance workloads between robots but also to
enhance the overall efficiency of their routes, preventing any
robot from being overburdened while also ensuring effective
use of the available AMRs.

Appendix 2. Description of job assignment
process for AMRs

A.1 Virtual environment

The aim of our study is to develop a decision support system
for an automated material handling system using hierarchical
reinforcement learning. This system is specifically designed for
a manufacturing process in which AMRs transport WIPs from
one equipment source to the next. The environment was pro-
grammed in Python, and it is based on the premise that AMRs
navigate using a gridmap. Although AMRs are capable of mov-
ing a network of nodes and arcs, we adopted a grid map to
facilitate their movement. This choice was made to more accu-
rately represent the AMRs’ unique characteristics, including
their directional flexibility, which is a notable advantage over
other material handling systems like OHT vehicles or AGVs.
In this grid map, certain equipment is positioned as either a
from point, where WIP is generated, or a to point, where WIP
is received.

A.2 Dynamic job assignment for AMRs

We illustrate the job assignment process for AMRs in a man-
ufacturing environment using Figure A9, which represents a
decision-making snapshot. In this scenario, AMRs 1 to 4 are
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Figure A9. Illustration of a scenario for job assignment with AMRs.

idle and without any loaded WIPs, making them available for
new assignments. WithWIPs waiting at equipment (EQ) 1 and
2, these AMRs are needed for loading tasks. Here, AMRs 1 and
2 are selected for assignment. Meanwhile, AMR 6, although
already carrying two WIPs, has a maximum capacity of four
and can therefore take on additional loads. In contrast, AMR 5
is at full capacity and cannot load more WIPs. Despite being
in transit, AMR 6 is identified by the control system as the
best choice for loading additional WIPs from EQ 4, leading
to its assignment for further loading. Therefore, this dynam-
ically shifts AMR 6 from its existing transporting action to
a retrieving action. This example shows the versatility of the
AMR system; not only idle AMRs but also those engaged in
retrieval, loading, transporting, or unloading can be considered
for new tasks.

A.3 Interpreting learned rules fromRL agents

To better understand the behaviour of the RL agents, we anal-
ysed their converged policies through a Gantt chart illustrating
the deliveries executed by the AMRs, as show in Figure A10.
Specific segments of these charts were selected to highlight
notable patterns observed in the experimental results.

As depicted in theGantt chart, the typical delivery sequence,
such as those seen at the initial stages for AMR 5 and AMR 6,
follows a predictable flow: Retrieval → Loading → Trans-
porting→ Unloading. However, there are instances where the
decision-making process becomes more adaptive and respon-
sive to changes in real time. For example, AMR 8 modifies
its retrieval process at an early stage, and AMR 3 shift from
retrieval to transportation in the middle of the process.

These dynamic behaviours are attributable to the lower-
level agent’s ability to evaluate real-time environmental fac-
tors, such as the proximity of the subsequent delivery task,
current AMR capacity, and relative distance to other entities
in the environment. This continuous assessment enables the
agent to dynamically implement an optimised strategy, thereby
contributing to increased system efficiency.

Appendix 3. Integer programming for
dispatching and path planning of AMRs

The integer programming model for dispatching and path
planning of AMR considers a dynamic pickup and delivery
problem with simultaneous pickup and delivery nodes. We
present the following IPmodel, adapted from themethodology
described in Miyamoto and Inoue (2016).

In the referenced study, constants were classified into the
physical domain and the task domain for clarity and organi-
sation. Following this approach, we define the physical domain
constants in our study as follows: E represents the set of equip-
ment, K represents the set of robots, S denotes a set of nodes, A
represents the set of edges, andAs is the set of adjacent nodes of
s ∈ S. For the task domain constants, P is the set of all points,
PA is the set of pickup points for already picked-up tasks, PE
is the set of points for equipment, and PK is the set of points
for robots. Additionally, PN represents the set of pickup-and-
delivery points excluding PA, PDEL is the set of delivery points,
andPPICK is the set of pickup points. The current load of vehicle
k and the buffer of machine e after a pickup or delivery at point
i ∈ PN are denoted as cki and cei , respectively, with initial values
ck0k and ce0e. The functions f and g map the initial positions of
robots and equipment to nodes and associate PD points with
equipment, respectively. TE represents the set of machines in
the task domain (qe ∈ TE), and TR represents the set of robots
in the task domain, where τk ∈ TR. Furthermore, np represents
a pickup point, and the robot assigned to handle np is denoted
as kn. Similarly, nd represents a delivery point, whilewi denotes
the quantity of material picked up or delivered at point i. For a
detailed description of the mathematical formulation, readers
may refer to the aforementioned paper.

The decision variables are defined as follows: The binary
variable xijk is equal to 1 if robot k directly visits PD point j after
PD point i, otherwise 0. The binary variable yije equals to 1 if
the loading or unloading operation at PD point j occurs imme-
diately after that of PD point i at equipment e, otherwise 0. The
binary variable zskt is equal to 1 if robot k is positioned at node
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Figure A10. AMR task schedule with status.

s at time t, otherwise 0. The continuous variable arri represents
the time at which a robot arrives at PD point i.

min
∑

s∈S,k∈K,t∈T

∣∣zskt − zsk(t+1)
∣∣ (A1)

s.t.
∑
j∈PN

xτkjk = 1 (k ∈ K) (A2)

∑
i∈PK

xihk =
∑
j∈PK

xhjk = 0 (h ∈ PN , k ∈ K) (A3)

∑
j∈PK ,k∈K

xijk =
∑

j∈PK ,k∈K
xjik = 1 (i ∈ PK) (A4)

∑
j∈PK

xnpjk =
∑
j∈PK

xjndk (np ∈ PPICK \ PA, k ∈ K)

(A5)∑
i∈PK

xindkn = 1 (np ∈ PA) (A6)

ckτk = ck0k ∧ ceqe = ce0e (k ∈ K, e ∈ E) (A7)

xijk = 1 =⇒ cki + wj = ckj (i ∈ PK , j ∈ PN , k ∈ K)
(A8)

yije = 1 =⇒ cei − wj = cej (i ∈ PE, j ∈ PN , e ∈ E)
(A9)∑

i∈PK
xijk = 1 =⇒ ckj ≤ C (j ∈ PN , k ∈ K) (A10)

∑
j∈PE

yqeje =
∑
i∈PE

yiqee = 1 (e ∈ E, qe ∈ TE) (A11)

∑
i∈PE

yihe −
∑
j∈PE

yhje = 0 (h ∈ PN , e ∈ E) (A12)

∑
j∈PE ,e∈E

yjie =
∑

j∈PE ,e∈E
yije = 1 (i ∈ PE) (A13)

∑
j∈PE

yijfi =
∑
j∈PE

yjifi = 1 (i ∈ PN) (A14)

arrτk = 0 ∧ arrqe = 0 (k ∈ K, e ∈ E) (A15)
xijk = 1 =⇒ arri < arrj (i ∈ PK , j ∈ PN , k ∈ K)

(A16)

yije = 1 =⇒ arri < arrj (i ∈ PE, j ∈ PN , e ∈ E)
(A17)

fi = fj =⇒ arri �= arrj (i, j ∈ PN , i �= j) (A18)∑
s∈S

zskt = 1 (k ∈ K, t ∈ T) (A19)

∑
k∈K

zskt ≤ 1 (s ∈ S, t ∈ T) (A20)

zgkk0 = 1 (s ∈ S, k ∈ K) (A21)

zskt ≤
∑
s2∈As

zs2k(t+1) (s ∈ S, k ∈ K, t ∈ T \ Tmax)

(A22)

zs1k1tzs2k2t + zs1k2(t+1)zs2k1(t+1) ≤ 1

(s1 ∈ S, s2 ∈ As1 , k1, k2 ∈ K, k1
�= k2, t ∈ T \ Tmax) (A23)

arrj = t =⇒
∑
i∈PK

xijk ≤ zgjkt (j ∈ PN , k ∈ K, t ∈ T)

(A24)

Constraints (A2)–(A6) address the path planning of robots,
ensuring that the variable xijk directs each robot k to start at
its initial point τk, visit all assigned points, and allocate all the
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tasks. Constraints (A5) and (A6) guarantee that tasks are trans-
ported by the same robot. Constraints (A7)–(A10) enforce that
the capacities of robots and equipment, as defined by the envi-
ronment, are satisfied. Constraints (A11)–(A14) ensure that the
variable yije is determined to define the sequence of loading and
unloading operations occurring at the equipment, ensuring all

tasks are processed. Constraints (A15)–(A18) impose time con-
ditions that must be satisfied by arr, ensuring proper sequenc-
ing and scheduling of tasks. Constraints (A19)–(A24) pertain
to collision avoidance in a bidirectional graph, ensuring that
no more than one robot occupies a single node at any given
time.
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