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ABSTRACT
Last-mile delivery, the final stage of the delivery process before a
package arrives at a customer’s address, has emerged as an impor-
tant business opportunity for inland transportation. As people’s
perception of last-mile delivery has changed, more customers are
using premium delivery services to get the delivery at a spe-
cific time rather than just pursuing free shipping. In order to
satisfy the new trend of logistics, we propose a delivery sys-
tem in which several drones and trucks work together to pro-
vide service to customers within given time windows. In addi-
tion, pair constraints, which considered a truck and a drone as
a pair, are relaxed to determine more flexible delivery plans.
A three-stage savings-based heuristic procedure was also devel-
oped based on the concept of savings to determine the opera-
tions of trucks and drones in real-world settings. We found that
the drone efficiently responds to urgent delivery requests from
customers and that a delivery system that utilises both trucks and
drones provides substantial benefits.
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1. Introduction

The spread of COVID-19 has led to an explosive surge in demand for e-commerce. People
are accustomed to the convenience of e-commerce andhave begun to dependon last-mile
delivery to stock up on necessities. Last-mile delivery is the last stage of the delivery process
when goods are transported from a distribution hub to the final delivery destination. It is
the most inefficient and time-consuming part of the logistics setup because the final leg
of delivery typically involves numerous destinations with smaller payload sizes. However,
it is very crucial, as last-mile delivery is the key to customers’ overall satisfaction. The need
for faster andmore economical last-mile delivery is under pressure. This social and environ-
mental transformationhas accelerated logistics companies toexpand their delivery services
and pursue innovation.

Although some research (e.g. Haas and Friedrich 2021; Lamb, Wirasinghe, and
Waters 2022; Liu et al. 2023; Montecinos et al. 2021; Wang et al. 2016) proposed innovative
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delivery services, last-mile delivery is still not realised to full efficiency due to a lack of
economies of scale and the complexity of the concept. For innovation in last-mile delivery,
the emerging technology of unmanned aerial vehicles, also known as drones, has offered
a new potential for optimal operation in logistics. Pugliese, Guerriero, and Macrina (2020)
analysed the drawbacks and the benefits of using drones in the delivery process. Compared
to trucks, which are the most traditional means of transportation, drones have attractive
advantages, such as their ability to avoid traffic congestion and their ability to fly and
deliver to areas where roads do not exist, such as islands and mountainous areas (Wang
and Sheu 2019). Another advantage of using drones is their autonomous swarm operation
capability, which enables the system to executemultiple tasks simultaneously at a low cost
(Park, Nielsen, and Moon 2020). Although drones offer significant benefits, they also have
some operational constraints due to their shortcomings. For example, the delivery capacity
of drones is technically restricted to just one or a few parcels, and their delivery range is
significantly limited, as drones rely on relatively small batteries. Traditional vehicles can
make up for the shortcomings of drone operation. The complementary nature of the two
vehicles (trucks and drones) has been the driving force behind a novel delivery method
called coordinated logistics with a truck and a drone (Carlsson and Song 2018).

In addition to the collaboration of trucks and drones, another significant trend change in
delivery is worthmentioning. In the past, customersmostlywanted free deliverywhen they
ordered goods from suppliers or retailers. Recently, more and more customers have been
willing to pay a premium if they can receive goods in a faster way. Moreover, the delivery
demand for city express service has increased in keeping pace with the economic growth
(Chen, Chou, and Hung 2019). Improving the customer experience level has become a
consensus among logistic companies (Liu et al. 2021), so they are providing various types
of delivery services to deal with trend changes. For example, logistics companies such as
CoupangandMarket Kurly inKorea areofferingamazing services that deliver until dawn the
nextday. Therefore, timewindowconstraints arenecessary inorder to support routingdeci-
sions that take into account special requests regarding delivery time. By setting the time
window of customers requesting expedited delivery to the beginning of the planning hori-
zon, delivery to these customers is given a high priority. To pursue efficient delivery while
meeting these customers’ special rush needs,wedeveloped a vehicle routingproblemwith
timewindows anddrones (VRPTW-D), inwhich the service rendered at each customer starts
within the associated time interval. In this step, we attempted to model a delivery system
in which drones are attached to trucks and dispatched to deliver a single package while
the truck continues to serve other customers. After the drone delivers its payload, it should
return to the truck or the depot for battery replacement and then prepare packages for the
next delivery.

The contributionsof ourwork aremanifold. First,we studiednewvariants of theVRP, that
is, the VRPTW-D. To the best of our knowledge, the VRPTW-D is themost generalisedmath-
ematical model that takes into account both time windows and drones. Specifically, pair
constraints, which consider a truck and a drone as a pair, are relaxed because considering a
truck and a drone as a set provides limited delivery routes andmay not achieve global opti-
mality. Therefore, theVRPTW-Ddefined in this study allows thedrone to return to adifferent
truck than the one from which it launched. Second, finding the optimal solution through
a mixed-integer linear programming (MILP) formulation in a reasonable time is only pos-
sible on a small scale. However, instances encountered in real-world settings are usually
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complicated and large-scale, which means that efficient heuristic algorithm development
is required in practice. To address larger instances of the VRPTW-Defficiently, wedeveloped
a three-stage savings-based heuristic (TSH) algorithm that utilises the nature of the routing
problem. Finally, we performed a sensitivity analysis of the relevant drone parameters in
order to provide insights from the perspective of management. We showed that applying
drones can reduce operating costs, highlighting the advantages of usingdrones in last-mile
delivery.

The remainder of this paper is organised as follows. Research on drones actively under-
way in academia is summarised in Section2. Theproblemdescription and themathematical
model of theVRPTW-Dareproposed in Section3. In Section4,wepropose the TSHandanal-
yse how it effectively exploits the problem structure of the VRPTW-D. The computational
experiments and their results are summarised in Section 5. Finally, Section 6 concludes this
study.

2. Literature review

Drone research is emerging as a new field of studywithin routing problems. Related studies
in this field havemostly been published recently, and significant advances have beenmade
for different variants of coordinated logistics with a truck and a drone. Research related
to drone-aided routing is thoroughly surveyed in Macrina et al. (2020), including a travel-
ling salesman problemwith drones (TSP-D), a vehicle routing problemwith drones (VRP-D),
drone delivery problems, and carrier-vehicle setups. In addition, academic contributions to
drone routing problems are well analysed in Rojas Viloria et al. (2021). Moshref-Javadi and
Winkenbach (2021) also provided a comprehensive review of the extant research on drone
logistics. Readers interested in this field are encouraged to read Rojas Viloria et al. (2021),
Moshref-Javadi andWinkenbach (2021), andMacrina et al. (2020). Here, only works that are
deeply related to this study are summarised.

Murray and Chu (2015) offers seminal work in this field of study. They developed
MILP formulations for two delivery-by-drone problems, the flying sidekick TSP (FSTSP) and
the parallel drone scheduling TSP. They also developed two simple heuristic algorithms.
Starting with their research, studies in the field began in earnest. Agatz, Bouman, and
Schmidt (2018) studied TSP-D with the objective of minimising the logistics cost. In this
problem, a key difference to the FSTSP is that the truck can wait for the drone in the
same position from which the drone was launched. Moreover, they provided a theoretical
bound on themaximum attainable gains that could be achieved by using the two different
vehicles simultaneously. They constructed an integer programming model and devel-
oped a route-first, cluster-second heuristic algorithm. Bouman, Agatz, and Schmidt (2018)
provided an exact algorithm for the TSP-D based on dynamic programming. They showed
that restricting truckmovementwhile drones are ondeliverymissions significantly reduced
the computation time with relatively little impact on the overall solution quality. They also
highlighted that their approach was able to solve large problems that the integer pro-
gramming presented by Agatz, Bouman, and Schmidt (2018) could not handle. Yurek and
Cenk Ozmutlu (2018) proposed an iterative algorithm by decomposing the TSP-D into two
stages. They solved a MILP model in order to determine the drone route by fixing the
truck route, and then the assignment decisions were made. They verified the proposed
algorithm’s efficiency by solving the problem with a setup of 12 customers in a reasonable
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time,whereas existing studies optimally solvedproblemswith amaximumof 10 customers.
Poikonen, Golden, and Wasil (2019) presented four heuristics to solve the TSP-D based on
thebranch-and-bound scheme. Their algorithms could solve the instancesof apractical size
in a reasonable amount of computing time. Murray and Raj (2020) extended the FSTSP to
the version of the problem that assigned one truck and multiple heterogeneous drones to
deliver parcels. They proposed a three-phase heuristic to solve the 100-customer instances.
Luo et al. (2021) developed a multi-visit TSP-D and showed great potential to reduce costs
when drones can visit multiple locations, deliver a higher payload, and travel a longer
distance. Zhao et al. (2022) proposed robust TSP-D considering the risk of synchronisation
failure associated with uncertain travel time and extended route-first cluster-secondmeth-
ods to solve their robust model of TSP-D. Their approach reduced the synchronisation risk
a lot while increasing the expected makespan slightly.

Researchonvariants of the TSP-Dhasbeenactively conducted. Carlsson andSong (2018)
worked on another variant of the TSP-D called the Horsefly Routing Problem. In this prob-
lem, compared to the TSP-D, a truck can collaborate with one or more drones. They used
a continuous approximation (CA) technique to determine the best set of parameters that
resulted in the minimum completion time of all truck-drone deliveries in the Euclidean
plane. One of their key findings was that the benefit of using a drone along with a truck is
proportional to the square root of the relative velocity between the truck and the drone. Ha
et al. (2018) proposed a new variant of the TSP-D to minimise operational costs, including
costs incurredby transportation andwaiting time. They alsoproposed the advancedheuris-
tic adapted from the algorithm proposed byMurray and Chu (2015) and high-performance
greedy randomised adaptive search procedure (GRASP). Kim and Moon (2018) developed
the travelling salesman problem with a drone station. A drone station is a facility in which
drones are deployed and easily installed in any place. They proved that their model can
be divided into the models for the travelling salesman problem and the parallel machine
schedulingproblemunder special conditions. Theyproved thatdecompositionapproaches
effectively deal with the complexity of their problem. Ha et al. (2020) recently proposed
a hybrid genetic search with dynamic population management and adaptive diversity
control to solve TSP-D in which the objective is to either minimise the total operational
cost or minimise the completion time for the truck and drone. Their algorithm outper-
formed existing solution approaches in terms of solution quality and foundmany new best
solutions.

Wang, Poikonen, and Golden (2017) introduced the VRP-D as a generalisation of the
TSP-D and derived worst-case bounds for the ratios of the total delivery times with or
without drones. The worst-case results depended on the number of drones per truck
and the speed of the drones relative to the speed of the truck. Poikonen, Wang, and
Golden (2017) extended the results of Wang, Poikonen, and Golden (2017) by relaxing
the assumptions about the limited battery life, different distance metrics, and operational
expendituresof deployingdrones and trucks, respectively.WangandSheu (2019)proposed
an arc-based integer programming model for the VRP-D and reformulated it as a path-
based model. One of the features of the model was that a backup drone could be utilised
because they assumed a service hub. Thus, there was no need to consider synchronisation
between the two vehicles. They developed a branch-and-price algorithm that included a
pulse algorithm. Sacramento, Pisinger, and Ropke (2019) defined a problem similar to the
FSTSP, which featured the capacitatedmultiple-truck casewith themaximumduration and
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minimising operational cost as the objective function. They proposed the adaptive large
neighbourhood search (ALNS) procedure and several problem-specific destroy-and-repair
methods in order to solve large instances. They performed a detailed sensitivity analysis
on several drone parameters of interest and investigated how beneficial the inclusion of
the drone-delivery option was. Schermer, Moeini, and Wendt (2019) proposed an exten-
sion of the VRP-D in which a drone could be retrieved at some discrete points located
on each arc. They also developed a hybrid algorithm based on Variable neighbourhood
search (VNS) and Tabu search (TS), in order to solve large-scale instances. Schermer, Moeini,
and Wendt (2019) proposed a matheuristic by exploiting the structure of the VRP-D. As
part of the matheuristic, they introduced the drone assignment and scheduling problem
that found an optimal assignment and schedule of drones to minimise the makespan.
Kitjacharoenchai, Min, and Lee (2020) proposed a two-echelon vehicle routing problem
with drones, which extended the FSTSP by allowing multiple trucks and drones to make
deliveries while taking into account the capacities and two efficient heuristic algorithms to
solve the problem.

Recently, new variants of problems are continuously developed. Panadero et al. (2020)
considered the stochastic team orienteering problem that takes surveillance observations
of target locations, in which travel times follow generic probability distributions. They
also developed a novel simulation-optimisation algorithm based on simple heuristics to
find near-optimal solutions. Nguyen et al. (2021) newly developed min-cost Parallel Drone
Scheduling Vehicle Routing Problem and proposed Ruin and Recreate algorithm. They vali-
dated theirmodel and algorithmwith intensive experiments and found26newbest-known
solutions. Campbell et al. (2021) studied length-constrained K-drones arc routing problem,
a continuous optimisation problem where homogeneous drones work together. In their
problem, drones can fly directly between any twopointswithout following the edges of the
graph. They developed a mathematical formulation and two solution methods, a branch-
and-cut algorithm and a matheuristic. Nadizadeh, Sabzevari Zadeh, and Bashiri (2023)
proposed an extension of the line-haul feeder location-routing problem, where large vehi-
cles are synchronised with small vehicles throughout the delivery process. They studied
truck-motorcycle collaboration, but their methodology could be extended to truck-drone
collaboration. Wang et al. (2022) explored the Piggyback Transportation Problem, inspired
by Amazon’s last-mile concept, the flying warehouse. They proved several properties of
their problem and provided a simple and efficient heuristic solution procedure. Raeesi and
Zografos (2020) developed the electric VRPTW that considered two synchronised levels for
the electric vehicles that perform the delivery missions and for the other type of vehicles
that are responsible for swapping the depleted batteries caused by the running of electric
vehicles on-the-fly.

The existing study that seems most closely related to our study is Pugliese and Guer-
riero (2017). They introduced the vehicle drone routing problem with time windows and
provided the mathematical model of the proposed problem. They used a commercial
solver to reach a solution for randomly generated instances with five or ten customers and
did not provide a methodology to address the high complexity of the problem. Pugliese,
Macrina, and Guerriero (2020) extended the work of Pugliese and Guerriero (2017) and
solved instances with up to 15 customers. In addition, a heuristic based on a two-phase
strategy and a multi-start framework is developed. Another study that considered both
drones and time constraints can be found in Ham (2018). Ham (2018) studied a multi-truck
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and multi-drone scheduling problem constrained by time windows, drop-off/pickup syn-
chronisation, and multi-visits. This problem is uniquely modelled as an unrelated parallel
machine scheduling problem with a sequence-dependent setup. A constraint program-
ming (CP) approach is proposed, and CP formulations are further improved by using vari-
able ordering heuristics. Recently, Coindreau, Gallay, and Zufferey (2021) also developed a
minimum-cost vehicle routing problem with time windows and drones. They analysed the
benefits and cost structures of the coordinated logistics concept. However, a maximum of
one drone can be embedded into a truck in their model. Kuo et al. (2022) also developed a
model for the vehicle routingproblemwithdrones considering the customer timewindows
and a simple variable neighbourhood search algorithm.

The differences between similar studies are summarised in Table 1. Previous studies that
did not develop a solution approachweremarked asNo in the last column.Ourmodel is the
most generalised as it considers all practical constraints listed in the table. A distinguishing
feature of this study, with respect to recent literature, is that pair constraints are relaxed. In
particular, unlike previous studies that considered time windows and drones, it is possible
for adrone to landonanother truck than the truck it originally launched from. Therefore, our
model is not aimed at local cooperation in the way that drones are assigned to each truck
but is geared instead toward global cooperation for all vehicles. In Wang and Sheu (2019),
drones can land in places other than the truck they launched from, but it is hard to say that
pair constraints are relaxed completely. In their model, drones should land at a service hub
to travel with another truck. Thanks to service hubs, the synchronisation between the two
types of transportation is not considered. On the other hand, in our model, the drone can
land on another truck without special-purpose facilities, and the two types of transporta-
tion achieve perfect coordination. In this regard, our study allows formore efficient delivery
routes and provides the most generalised model for the VRPTW-D. Further discussion on
the originality from a modelling perspective is described in Section 3.2.

3. Problem description andmathematical model

The VRPTW-Ddetermines the cooperative delivery route of the two types of vehicles, trucks
and drones. The delivery plan should ensure the maximum duration constraints that each
drone can travel and synchronisation requirements between a truck and a drone. During
delivery, a truck can launch a drone when serving a customer, and the drone performs a
delivery for another customer and returns to the vehicle at a different location. Sometimes,
it can be efficient for a drone to complete a delivery and return to the same location. Our
model allows this type of delivery route only at the depot. At a customer node, it may be
impossible for a truck to remain stationary for long periods of time. Therefore, we assumed
that a drone would return to a different customer node from which it departed.

Optimizing delivery routes for coordinated logistics brings newmodelling mechanisms
between routes of the two echelons. Thus far, the methods generally used for designing
routes of two-echelon networks are the two-echelon vehicle routing problem (2E-VRP) and
the truck and trailer routing problem (TTRP). The 2E-VRP optimises how goods are first
transported from a central depot to satellite facilities by large vehicles and then delivered
to customers by small vehicles (Perboli, Tadei, and Vigo 2011). The TTRP optimises deliv-
ery routes of customers served by trucks and trailers (Chao 2002). In the TTRP, the truck
detaches the trailer and parks it at the root customer of the subtour in order to attach the
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Table 1. Summary of the routing problems with drones in the literature.

Reference
Objective
function

Time
windows

Drone
capacity

Truck
capacity Synchronisation

Pair
constraints

Solution
approach

Murray and Chu (2015) makespan No No No Yes Yes heuristic
Carlsson and Song (2018) makespan No No No Yes Yes CA
Pugliese and Guerriero (2017) makespan Yes No Yes Yes Yes No
Poikonen, Wang, and Golden (2017) makespan No No Yes Yes Yes No
Wang, Poikonen, and Golden (2017) makespan No No Yes Yes Yes No
Bouman, Agatz, and Schmidt (2018) makespan No No No Yes Yes DP
Ha et al. (2018) costs No Yes No Yes Yes GRASP
Ham (2018) makespan Yes No No No Yes CP
Yurek and Cenk Ozmutlu (2018) makespan No No No Yes Yes iterative algorithm
Kim and Moon (2018) makespan No Yes No No Yes decomposition
Poikonen, Golden, and Wasil (2019) costs No No No Yes Yes exact/heuristic
Sacramento, Pisinger, and Ropke (2019) makespan No Yes Yes No Yes ALNS
Schermer, Moeini, and Wendt (2019) makespan No No Yes Yes Yes VNS+TS
Schermer, Moeini, and Wendt (2019) makespan No No No Yes Yes matheuristic
Wang and Sheu (2019) costs No Yes Yes Yes No exact
Liu et al. (2020) costs No Yes Yes Yes Yes heuristic
Murray and Raj (2020) makespan No Yes No Yes Yes heuristic
Coindreau, Gallay, and Zufferey (2021) costs Yes Yes No Yes Yes ALNS
Luo et al. (2021) makespan No Yes No Yes Yes TS
Kuo et al. (2022) costs Yes Yes Yes Yes Yes VNS
This study costs Yes Yes Yes Yes No heuristic
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Figure 1. Overview and originality of the VRPTW-D.

trailer again after serving the customers on the subtour. So, in these variants of the prob-
lem, a subtour starts at a node that is a satellite facility or root customer and finishes at the
same node. On the other hand, in routing problems with drones, a subtour can be finished
at a node different from the node from which the subtour started.

Figure 1 presents an overview of the VRPTW-D and highlights the originality of the prob-
lem. Unlike the TSP-D and the VRP-D, the VRPTW-D considers the use ofmultiple trucks and
drones. As multiple drones take over some delivery missions, the truck route has been sim-
plified, and theoverall delivery planhasbecomecost-efficient. In addition, thedrone,which
made its direct delivery to the isolated customer, Customer 9, significantly shortened the
truck’s route. For illustrative purposes, we will temporarily refer to demands for which the
due date of the given time window is at the beginning of the planning horizon as urgent
parcels. In the VRPTW-D, the routes of trucks were changed from VRP-D tomeet the urgent
delivery needs of Customer 6, whose location was far from the warehouse. It should be
noted that in our system, the drone that completed its delivery to Customer 6 can return to
a different truck than the one it started from. Delivery routes can be flexibly planned while
relaxing restrictions on the combination of drones and trucks.

To formulate the VRPTW-D, the following assumptions are made regarding the
behaviour of the drones and the cooperation between trucks and drones. First, a drone can
visit onlyonecustomerper flight, but the truckmayvisitmultiple customerswhile thedrone
is in flight. This assumption is necessary because of the physical limitations of the drone.
Drones still lack delivery coverage and transport capacity compared to conventional vehi-
cles. Therefore, this assumption is a practical constraint required for the actual application
of drones. Indeed, most of the outstanding papers in this field also use similar assumptions
(Agatz, Bouman, and Schmidt 2018; Murray and Chu 2015; Pugliese, Macrina, and Guer-
riero 2020; Schermer, Moeini, and Wendt 2019). Second, picking up parcels or replacing
batteries in drones is only possible at customer locations or depots; that is, drones cannot
leave any other deliveries when the truck is in motion. Third, the set-up time for preparing
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the drone for newdrone delivery is negligible. This is because drone-deliverable parcels are
easy for drivers to handle and because delivery preparation time can be reduced by replac-
ing drone batteries rather than by charging them. Fourth, each truck can carry enough
batteries to charge drones, and the batteries do not affect the capacity of the truck. The
remaining assumptions are the same as the assumptions required to define the general
VRPTW.

The VRPTW-D is an extension of the VRPTW and minimises the total costs of providing
transport services by determining optimal customer assignments for drones working in
tandem with trucks. The overall routing costs involved fixed vehicle utilisation costs and
variable logistics costs. As mentioned in Sacramento, Pisinger, and Ropke (2019), advances
in technology relatively reduce the importance of fixed costs. Therefore, the objective of
the VRPTW-D is to find the shortest tour, in terms of the total cost incurred by total travel
time required, to serve all customer locations by either the truck or the drone.

3.1. Mathematical formulation

The VRPTW-D is formulated over a complete graph G = (N,A), where N = {0, . . . , n+ 1}
is the node set and A is the arc set. Although only a single depot location exists, for the
convenience of mathematical formulation, we assign it to two unique node numbers. That
is, vehicles depart from thedepot at node 0 and return to thedepot at noden+ 1. Thus,C =
N \ {0, n+ 1}becomes the set of customernodes. To further facilitate thenetwork structure
of the problem, letN+ = {0} ∪ C = {0, . . . , n} represent the set of nodes fromwhich a truck
or adronemaydepart, and letN− = C ∪ {n+ 1} = {1, . . . , n+ 1} represent the set of nodes
towhich a vehiclemay return. The quantity of demand that has to be delivered to customer
i ∈ C is given by qi ≥ 0.

The truck, which is a ground vehicle, g ∈ GV = {1, . . . , |GV| = m}, is assumed to be
homogeneous,meaning that |GV| vehicles have the same transport speed, capacity,QGV ≥
0, and identical cost efficiency. A truck moving from node i to j incurs travel time, tij ≥ 0,
and travel cost, cij ≥ 0. Each truck can carry up to ζ drones. The drone, d ∈ D = {1, . . . , |D|}
is also assumed to be homogeneous and α times faster and more cost-efficient than the
truck. Thus, a dronemoving fromnode i to j incurs travel time τij = tij/α ≥ 0 and travel cost
ρij = cij/α ≥ 0. The reason for this is that the drone is not affected by any traffic congestion
and can use shortcuts. Hence, faster delivery could potentially bemade by drones. Cost effi-
ciency comes from reduced labor costs fromunmanned operations and the nature of using
electricity. Alongwith the advantages of drone operation, the physical limitations of drones
should also be considered. Each drone has a shipping range limited to a maximum travel
time, τ , and a relatively low capacity, QGV > QD ≥ 0. CDr := {ni ∈ N | qi < QD} denotes the
subset of customers who can be serviced by a drone.

The time dimension has been incorporated in the VRPTW-D in the form of customer-
imposed time window constraints. Each customer, i, has a time window, [ei, li]. Time win-
dow constraints are assumed to be hard constraints and restrict the start of service at a
customer point to begin at ei, or later than ei and to begin earlier than li, or at li. The
vehicle may arrive before the time windows open, but the customer cannot be serviced
until the time windows open. The vehicle is not allowed to arrive after the time window
has closed. The service time for trucks and drones required by the customer, i, is si. To
simplify notation, zero demands and zero service times are defined for the depot (i.e.



10 D. KIM ET AL.

q0 = q(n+1) = s0 = s(n+1) = 0). Furthermore, a time window is associated with them (i.e.
[e0, l0] = [e(n+1), l(n+1)], where e0 and l0 are the earliest possible departure time from the
depot and the latest possible arrival time at the depot, respectively). Given that the travel
timematrix satisfies the triangle inequality, feasible solutions exist only if e0 ≤ mini∈N−{li −
τ0i}, and l0 ≥ maxi∈N−{max{e0 + τ0i, ei} + si + τi,n+1}. The following decision variables are
used for modelling the VRPTW-D. A description for each of the decision variables follows:

xgij =
{
1, if truck g ∈ GV travels arc (i, j) ∈ A

0, otherwise
(1)

ydij =
{
1, if drone d ∈ D travels arc (i, j) ∈ A independently

0, otherwise
(2)

zgdij =
{
1, if truck g ∈ GV carries drone d ∈ D and travels arc (i, j) ∈ A

0, otherwise
(3)

ogi =
{
1, if a drone delivers goods from truck g ∈ GV to customer i ∈ C

0, otherwise
(4)

Sgi : Start time of service at node i ∈ Nwhen serviced by truck g ∈ GV (5)

Sdi : Start time of service at node i ∈ Nwhen serviced by drone d ∈ D (6)

Based on the sets, parameters, and decision variables defined above, the mathematical
model of the VRPTW-D is developed. The VRPTW-D can be formulated as the following net-
work flow model with time window and capacity constraints. The MILP formulation of the
VRPTW-D is proposed, where Equation (1) is the objective function and the constraints are
given by Constraints (2)–(21).

min
∑

(i,j)∈A

∑
g∈GV

cijx
g
ij +

∑
(i,j)∈A

∑
d∈D

ρijy
d
ij (1)

s.t.
∑
g∈GV

∑
i∈N+ ,i �=j

xgij +
∑
d∈D

∑
i∈N+ ,i �=j

ydij ≥ 1, ∀ j ∈ C (2)

∑
j∈N−

xg0j = 1, ∀ g ∈ GV (3)

∑
j∈N−

⎛
⎝yd0j +

∑
g∈GV

zgd0j

⎞
⎠ = 1, ∀ d ∈ D (4)

∑
i∈N+

xgi,n+1 = 1, ∀ g ∈ GV (5)

∑
i∈N+

⎛
⎝ydi,n+1 +

∑
g∈GV

zgdi,n+1

⎞
⎠ = 1, ∀ d ∈ D (6)

∑
i∈N+ ,i �=j

xgij =
∑

k∈N− ,j �=k
xgjk , ∀ j ∈ C, ∀ g ∈ GV (7)
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∑
i∈N+ ,i �=j

⎛
⎝ydij +

∑
g∈GV

zgdij

⎞
⎠ = ∑

k∈N− ,k �=j

⎛
⎝ydjk +

∑
g∈GV

zgdjk

⎞
⎠ , ∀ j ∈ C, ∀ d ∈ D (8)

∑
d∈D

zgdij ≤ ζxgij , ∀ (i, j) ∈ A, ∀ g ∈ GV (9)

∑
d∈D

ydij ≤
∑
g∈GV

∑
h∈N+

(xghi + xghj)+
∑
g∈GV

∑
k∈N−

(xgik + xgjk), ∀ (i, j) ∈ A (10)

∑
i∈N+

τijy
d
ij +

∑
k∈N−

τjky
d
jk ≤ τ , ∀ j ∈ C, ∀ d ∈ D (11)

Sgi + si + tij − Sgj ≤ (1− xgij )MGVij, ∀ (i, j) ∈ A, ∀ g ∈ GV (12)

Sdi + si + τij − Sdj ≤ (1− ydij )MDij, ∀ (i, j) ∈ A, ∀ d ∈ D (13)

Sdi + si + tij − Sgj ≤ (1− zgdij )MGVij, ∀ (i, j) ∈ A, ∀ g ∈ GV , ∀ d ∈ D (14)

ei ≤ Sgi ≤ li, ∀ i ∈ N, ∀ g ∈ GV (15)

ei ≤ Sdi ≤ li, ∀ i ∈ N, ∀ d ∈ D (16)∑
i∈N+

qjy
d
ij ≤ QD, ∀ j ∈ C, ∀ d ∈ D (17)

∑
h∈N+

xghi +
∑
d∈D

ydij ≥ 2ogj , ∀ i ∈ N+, ∀ j ∈ C, ∀ g ∈ GV (18)

∑
j∈N−

qj

⎛
⎝∑

i∈N+
xgij + ogj

⎞
⎠ ≤ QGV , ∀ g ∈ GV (19)

xgij , y
d
ij , z

gd
ij ∈ B, ∀ (i, j) ∈ A, ∀ g ∈ GV , ∀ d ∈ D (20)

ogi ∈ B, Sgi , S
d
i ∈ R

+, ∀ i ∈ N, ∀ g ∈ GV , ∀ d ∈ D (21)

Objective function (1) aims at minimising the total route cost based on total travel time.
Constraint (2) ensures that each customer is assigned to routes. In other words, all trans-
portation requests must be satisfied. Constraints (3)–(6) ensure that the trucks and drones
that leave the depot should return to the depot. Constraints (3) and (4) force all trucks and
drones to move from node 0, the depot, to perform delivery missions, and Constraints (5)
and (6) ensure that all trucks and drones return to the depot. Unused vehicles go directly
from the depot at Node 0 to the depot at Node n+ 1. Constraints (7) and (8) are path-
flow constraints for trucks and drones, respectively. Constraints (8) controls the flow of
drones considering the case where the dronemoves with the truck and the case where the
drone delivers independently. Constraints (9) limits the number of drones a truck can carry.
Constraints (10) allows the drone to deliver to only one customer during a single flight. Con-
straints (11) guarantees the feasibility of drone flying duration. Next, Constraints (12)–(16)
guarantee the schedule feasibility with respect to time windows. Constraints (12) and (13)
calculate start times of service when trucks and drones deliver independently, and Con-
straints (14) synchronise departure times when moving together. The values of Sgi and
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Sdi are meaningless whenever customer i is not visited by truck g and drone d, respec-
tively. To get better lower bounds and accelerate problem-solving, MGVij, (i, j) ∈ A and
MDij, (i, j) ∈ A are set to li + si + tij − ej and li + si + τij − ej, respectively. It is also possi-
ble to simply apply large constants,MGVij = MDij = max(i,j)∈A{li + si + tij − ej}. In addition,
Constraints (12)–(14) act as sub-tour elimination constraints. Constraints (15) and (16)
adjust the arrival times of a truck and a drone, respectively, to ensure that services can
be started within a given time window. Constraints (17)–(19) are capacity constraints
related to the weight that can be carried in each type of vehicle. Constraints (17) prevents
drones from delivering to customers whose quantity of demand exceeds the transport
capacity of drones. Specifically, Constraints (18) is a linking constraint on which truck the
drone replenishes supplies, and Constraints (19) limits the transport capacity of the truck.
Finally, the arc-flow variables are subject to binary requirements that can be expressed
as in Constraints (20), and the other decision variables are subject to nonnegative integer
requirements that can be expressed as in Constraints (21).

3.2. Discussion of VRPTW-D

The VRPTW-D isNP−hard in the strong sense. This is because if drones are not available,
then the VRPTW-D is equivalent to the VRPTW, which is a well-knownNP−hard combina-
torial optimisation problem. Several other features of the model warrant some discussion
in order to indicate the practicality for which the VRPTW-D differs from the related models
found in the existing literature.

A recently developed VRP considering the drone is particularly concernedwithminimis-
ing thedelivery completion time.Many studies evaluate theperformanceby comparing the
completion time of the truck-and-drone delivery system with the classical delivery system.
In this study, however, the use of completion time as a performance measure may distort
the original intention. This is because the newly considered time window constraints sig-
nificantly affect the complete time of delivery. If there is a customer who wishes to receive
a late delivery, the delivery completion timewill be large regardless of other customers and
previous delivery schedules. The VRPTW-D can provide ameaningless solution if the objec-
tive function is not set properly. Therefore, setting the minimisation of total travel time or
distance as the objective function in the VRPTW-D is necessary in terms of the validity of the
model, as well as in terms of economic perspectives.

Figure 2 illustrates another rationale for setting total travel time as the objective func-
tion. It is better to use more drones in the decision of cooperative delivery with the aim
of minimising delivery completion time. Under the assumption that drones take less travel
time than trucks, the drone route in an optimal solution serves to improve the objective
value. This can be easily proved by applying the triangular inequality inductively. However,
the situation is different for cooperative delivery in terms of minimising total travel time or
distance. This is because each time a drone is assigned to a new shipment, a newly gen-
erated path of a truck adversely affects the objective function. Therefore, in order to
determine the route that minimises total travel time or distance, the delivery mission must
be distributed more carefully between trucks and drones.

We assign a single depot to two unique node numbers for the convenience of mathe-
matical formulation. This very conventional way of formulation also plays an important role
in planning cooperative delivery. Since the unused truck is considered to bemoving to two
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Figure 2. Difference between total travel time and completion time as an objective function.

different depot nodes, the drone can be used for additional deliveries. In other words, the
drone can deliver directly to nearby customers around the depot. A drone’s direct deliv-
ery eliminates inefficient truck routes and significantly improves objective functions by
performing deliveries to remote isolated customers.

Another unique feature of the model is that the decision variables are defined in a dif-
ferent manner from previous studies. Conventionally, the physical limitations of drones
are implicitly included in the structure of decision variables. In contrast to this, we utilised
the general form of arc-flow decision variables. Similar approaches can also be found
in Wang and Sheu (2019). These types of decision variables are easy to generalise in
the model if the flight limitation and the number of drones assigned to each truck are
relaxed. Additionally, the number of variables regarding the drone operations required
for modelling the VRPTW-D can be reduced. Whereas existing studies required deci-
sion variables of n3 to determine drone operations, only those of n2 are required in this
approach.

Finally, we will discuss the originality that makes this study different from other TSP-
D and VRP-D studies. Research that considers cooperation between drones and trucks
has not long been in the limelight. It has been mainstream up until recently to research
and analyse the tractable model using strong assumptions. Our study considers addi-
tional flexibility in the delivery route of drones. Drones can return to a different truck
than the one from which they originally started delivering. Such a setup raises the need
for new solution approaches. Given that the VRPTW-D is a problem in which new con-
straints are considered from the cost minimisation perspective, not from the popular
makespan perspective, it is meaningful to develop an intuitive solution approach as an ini-
tial attempt. Therefore, in Section 4,wedeveloped a simple andefficient heuristic algorithm
that can solve VRPTW-D considering not only intra-route but also inter-route cooperative
delivery.

4. Solution approach for the VRPTW-D

Given the intrinsic complexity of theVRPTW-D, it is difficult to find anoptimal solutionof the
VRPTW-D for practical-sized instances in a way that solves a mathematical model directly.
Therefore, the development of heuristics would be of interest for practical applications. For
solving the VRPTW-D, we use an advanced RFCS heuristic approach (e.g. Beasley 1983),
where an initial solution is obtained by solving the VRPTW, and the solution is improved
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using the developed heuristic algorithms. More precisely, we adapt the parallel Clarke-
Wright-savingsheuristic (e.g. Clarke andWright 1964) as an improvementprocedure. Agatz,
Bouman, and Schmidt (2018) also developed the RFCS heuristics based on local search
and dynamic programming to solve the TSP-D. However, their algorithm can be applied
to cases in which only one truck is utilised, so it is not suitable for solving the VRPTW-D.
Moreover, existing solution approaches, including the one developed by Agatz, Bouman,
and Schmidt (2018), do not take into account the delivery route in which the drone lands
on a different truck than the truck from which it originally launched. This study proposes
the TSH that adds new procedures to overcome prior limitations to solving the VRPTW-
D. In Section 4.1, we explain the procedure that is used to generate an initial solution.
Sections 4.2 and 4.3 are devoted to the presentation of the drone assignment algorithm
and the route combination algorithm, respectively. Potential benefits and further remarks
on the TSH are summarised in Section 4.4.

4.1. Finding an initial VRPTW tour

As the first step of the TSH, we seek a solution for the VRPTW that does not take drones
into account. Naturally, the solution of the VRPTW can be that of the VRPTW-D. Over
the past 40 years, the VRPTW has been an area of research that has attracted numerous
researchers. Numerous exact algorithms, which can be classified into the following three
families, branch-and-price, branch-and-cut, and reduced set partitioning, were designed
for the VRPTW, producing a significant improvement on the size of the instances that can
be solved to optimality. Despite decades of intensive study, only relatively small instances
involving around 100 customers could be solved optimally. The scale of the problems
encountered in the industrial field was sometimes too large to be handled by a mathe-
matical approach. Therefore, to generate the initial solution, the ruin and recreate (R&R)
algorithm, inspired by the work of Schrimpf et al. (2000), was used. The R&R algorithm is a
generalisationof simulated annealing and is very similar to the largeneighbourhood search
heuristic. According to Bräysy and Gendreau (2005), the methods of Schrimpf et al. (2000)
are the best ones with respect to solution quality.

The ruin procedure disintegrates the solution by removing customers in the route and
generates a partial solution containing the remaining jobs. At this step, the randomly
selected customer and the nearest neighbours are excluded from the route. Based on the
partial solution, all jobs are re-integrated again, yielding a new solution in the recreation
procedure. If the new solution is better than the old solution, it is accepted as the new best
solution,whereuponanew ruin-and-recreate iteration starts. These steps are repeateduntil
a certain termination criterion ismet. Details of the implementation are referred to Schrimpf
et al. (2000). If the number of available trucks is tightly given, the initial solution can be gen-
erated by temporarily considering a few spare trucks. After generating the initial solutions
of the VRPTW using the R&R algorithm, improved solutions can be explored through the
developed heuristics described in Sections 4.2 and 4.3.

4.2. Drone assignment algorithm

In this procedure, the VRPTW-D solution is constructed by distributing some of the deliv-
eries to the drone. The basic idea of the heuristic is to find a delivery mission that would
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Figure 3. Example of running an algorithm that assigns a drone.

reduce total travel time when assigned to a drone. A pseudo code of the heuristic that
distributes the delivery mission to the drones is summarised in Algorithm 1. To simplify
notation, we renamed the nodes included in the truck tour, Rg, in consecutive order (i.e.
Rg = (rg0, . . . , r

g
i , . . . , r

g
|Vg|−1) where Vg is the set of nodes that truck g visits and rg0 = rg|Vg|−1

refers to the depot). The overbar symbol for decision variables (e.g. S
g
rgi
and yd

rgi ,r
g
j
) denotes

the value of those decision variables given through the initial solution or previous steps in
the algorithm.NF(r

g
i , γ ) is a set of nodes towhich a drone can deliver even if a drone return-

ing to rgi changes its returningnode to γ . On theother hand,NI(r
g
i , γ ) is a set of nodeswhere

the assigned drone delivery is no longer possible. For the unlabelled nodes that have the
same earliest arrival time, the algorithm chooses the node in the truck route with a lower
index number first.

This algorithm performs inter-route improvements. In other words, the algorithm finds
the drone’s return point among all unlabelled nodes, not just within the same truck route.
Figure3 shows the illustrative exampleof running thedevelopedalgorithm. In this iteration,
Node 6 is selected. After checking whether the drone can deliver to the node, candidate
nodes to return to are searched in consideration of the physical limitations of the drone.
One of the candidate nodes is Node 5, which is included in the delivery route of another
truck. Based on the calculated savings, a decision is made on whether to allocate drones.
The drone departs from Node 7, delivers to Node 6, and returns to Node 5, not to Node 8,
where the truck that the drone had departed from is located. In each iteration, nodes are
labelled sequentially one by one, and only nodes that are visited later than the just-labelled
node are updated. Therefore, a drone assignment algorithm canbe run inO(n2) time.While
Algorithm 1 is running, the order in which the nodes are visited remains unchanged, and
the feasibility of the solution is always guaranteed.
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Algorithm 1: Heuristic algorithm for assigning drones
Input :

VRPTW solution :

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(r10, . . . , r
1
i , . . . , r

1
|V1|−1),

...
(rg0 , . . . , r

g
i , . . . , r

g
|Vg|−1),

...
(rm0 , . . . , r

m
i , . . . , r

m
|Vm|−1)

Sets of ‘‘unlabelled’’, ‘‘depot’’, ‘‘truck’’ and ‘‘drone’’ :
�
,�,NT ,ND = ∅

Initialization
Initialize labels for all customer nodes as ‘‘unlabeled’’ and the depot nodes as ‘‘depot’’.
� = {r11, . . . , rgi , . . . , rg|Vg|−2, . . . , rm|Vm|−2},
� = {r10, r1|V1|−1 · · · , r

g
0 , r

g
|Vi|−1, . . . , r

m
0 , r

m
|Vm|−1}

Set the number of drones available on each node, δrgi ∈N = ζ

Calculate the amount of time the truck can wait for the drone on each route to maintain the
feasibility of the solution,wg

rgi
= minj>i lrgj

− S
g
rgj
− srgj

while
� �= ∅ do

Select rgi ∈
�
with the fastest arrival time.

if qrgi
≤ QD & maxj∈Rg δj −minj∈Rg δj ≤ ζ then

Find the nearest precedent ‘‘truck’’ node from rgi , p
g
i

Define a set of candidate nodes for drones to return,
CNrgi
= {γ |τpgi ,rgi + τrgi ,γ

≤ τ , S
g
pgi
+ τpgi ,r

g
i
+ τrgi ,γ

≤ S
g
γ + wg

rgi
}

Define the following sets for the drone path that returned to node rgi .
NF(r

g
i , γ ∈ CNrgi

) = {v|∑d∈D y
d
v,rgi
= 1,

∑
d∈D y

d
vp ,v = 1, τvp ,v + τv,γ ≤ τ }

NI(r
g
i , γ ∈ CNrgi

) = {v|∑d∈D y
d
v,rgi
= 1,

∑
d∈D y

d
vp ,v = 1, τvp ,v + τv,γ > τ }

Calculate possible savings,
savings(rgi , γ ∈ CNrgi

) = cpsgi ,r
g
i
+ crgi ,r

g
i+1
− cpsgi ,r

g
i
− ρpsgi ,r

g
i
− ρrgi ,γ

+∑
v∈NF(r

g
i ,γ )(ρv,rgi

−
ρv,γ )−∑

v∈NI(r
g
i ,γ ) savings(v, r

g
i )

where pgi is the nearest precedent ‘‘truck" node from rgi in the same route.
ifmaxγ∈CN

r
g
i
savings(rgi , γ ∈ CNrgi

) ≤ 0 then

Label node rgi as ‘‘truck",
�← � \ {rgi },NT ← NT ∪ {rgi }

else
Select the node γ with the largest savings. Node γ is chosen as return node for a
drone and label node rgi as ‘drone’.�← � \ {rgi },ND ← ND \ {v ∈ NI(r

g
i , γ )} ∪ {rgi },NT ← NT ∪ {v ∈ NI(r

g
i , γ )}

end if
else

�← � \ {rgi },NT ← NT ∪ {rgi }
end if
Update the number of drones available and the values of decision variables of all nodes.

end while
return VRPTW-D solution, (R,T)
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4.3. Route combination algorithm

This section describes how to adjust the number of vehicles used effectively. This proce-
dure is unnecessary for the TSP-D, which considers only one truck. However, it is crucial
in order to utilise the proper number of trucks for the VRPTW-D. The number of trucks
used was initially determined by solving the classical VRPTW. If the number of trucks is
kept the same as in the initial solution and then cooperative delivery routes with the
drone are planned, trucks may be overused. An optimal or near-optimal delivery route
can only be planned when a reasonable number of trucks is used. Therefore, a new proce-
dure, a route combination algorithm, is proposed to determine the appropriate number of
trucks used.

A simple heuristic was applied because time window constraints and the synchroni-
sation between two vehicles significantly limited the possibility that the routes could be
combined. Using complex algorithms did not result in significantly more route combina-
tions. A route combination algorithm is based on an extension of the Clarke and Wright
savingsheuristic (Clarke andWright 1964), oneof themostwell-knownheuristics for solving
the VRP. The algorithm checks the feasibility of the new route generated by combining the
two routes by connecting the last customer on one route to the first customer on another
route. The algorithm calculates the savings of two associated routeswhen the new solution
is feasible and then greedily combines two routes when the saving is positive. A route com-
bination terminates when two routes can no longer be combined and can be run in O(m2)

time.

4.4. Remarks for the TSH

Solution quality and computation time are usually the two most obvious criteria used to
assess the quality of an algorithm. These indicators are discussed in Section 5. Here we dis-
cuss other criteria that are also recognised as important when evaluating newly developed
heuristics.

A heuristic algorithm needs to be simple in that it is easy to figure out and implement
and should not be too sensitive to the parameters. Usually, an algorithm that is controlled
by a few parameters is preferred. The TSH is an intuitive algorithm that applies the savings
approach in Clarke and Wright (1964) to drone delivery. No parameter tuning is required,
and no random choice is made while the algorithms in Sections 4.2 and 4.3 are running.
While simplicity can lead to adverse effects on solution quality, the TSH algorithm strikes
a reasonable balance between the performance criteria, as shown in the computational
results in Section 5.

Since research in this field is still evolving, and no standardised problems have yet
been defined, it becomes necessary, in order to handle various objectives and additional
constraints, to develop heuristics that are sufficiently flexible. The TSH is easily able to
incorporate additional constraints that may arise in practical applications. By modifying
the process of calculating the savings and redefining the candidate sets, we can success-
fully reassign the drone’s delivery mission to fit the goal of the new problem. In addition,
full feasibility is guaranteed at all steps while the heuristic is running. Artificial construc-
tions like penalty terms in the objective function are not considered at all. This property has
significant implications for commercial applications.
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The output of the TSH relies on the initial VRPTW solution. Using the optimal solution
of the VRPTW as the initial solution generally finds a good final solution. However, a good
initial solution may not lead to a near-optimal or optimal solution of the VRPTW-D. Truck
routes that are toowell designedhinder further allocation of drones andmiss opportunities
to find the optimal coordinated delivery routes for trucks and drones. Therefore, the use of
the optimal solution of the VRPTW is very costly in terms of computation time but has little
corresponding advantage.

5. Computational experiments

We carried out computational experiments on both small- and large-sized instances, and
the computational results are provided in this section. Section 5.1 describes how the
experiment was conducted and what data set was used. In Section 5.2, we discuss the per-
formance of two solution approaches, the MILP introduced in Section 3.1 and the heuristic
proposed in Section 4. The economic superiority of the coordinated delivery system com-
pared to the truck-only delivery system is presented in Section 5.3. Afterward, we provide
some sensitivity analysis on relevant drone parameters.

5.1. Description of experiments

We utilised Solomon benchmark instances to verify the performance of the developed
heuristic, the TSH. Solomon (1987) introduced VRPTW benchmark instances involving
100 customers that have since been accepted as standard benchmark problems by most
researchersworking on related issues. Six sets of problems are generated, and the instances
differ in geographical data, the tightness and positioning of the time windows, and several
other factors that affect routing and scheduling. Problem sets include problems in which
customers are located randomly (the R-problems), or in clusters (the C-problems). Problem
sets also include a mixture of two geographic features (the RC-problems). Each problem
consists of 100 customers, yet smaller problems can be created by considering only the first
n customers. Cost and travel timewill be calculated with one decimal point and truncation,
a technique commonly used in this field. To check the results intuitively, the cost factor of
the truck is assumed to be one. That is, the travel time and the cost incurred are expressed
as the same value. The parameters cij and tij are calculated as the following equation,

cij = tij = 	10
√

(xi − xj)2 + (yi − yj)2

10

where (xi, yi) and (xj, yj)denote the coordinates for customers i and j, respectively. The units
of all parameters used in the following experiments, including travel times and costs, follow
the same scale in the benchmark instance.

The VRPTW-D as MILP was solved with FICO Xpress version 8.5, and the TSH was imple-
mented in JAVA SE 8. A pilot test was conducted to find the appropriate parameters and
option settings to solve VRPTW-D. Computational experiments were conducted with an
AMDRyzen 7 2700X Eight-core 3.7GHz processor with 16GB RAM in theMicrosoftWindows
10 operating system. All numerical results in the following sections were rounded to the
second decimal place.
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Table 2. Results on 10-customer Solomon instances: summary.

Class NP Solved Obj-M Time-M Obj-H Time-H 	∗10
R1 12 12 189.29 243.43 207.26 0.84 9.49%
R2 11 11 177.05 53.10 177.74 0.78 0.39%
RC1 8 8 166.98 99.38 170.91 0.97 2.35%
RC2 8 8 159.18 92.88 162.25 0.79 1.93%
C1 9 9 55.42 61.69 55.54 0.71 0.22%
C2 8 8 120.39 22.16 122.23 0.75 1.53%

5.2. Comparing the TSH to themathematical model

In this section, we describe the computational experiments on small-sized instances and
show their numerical results. To assess the solution quality of the TSH,we compared heuris-
tic solution values to the optimal solution values obtained by solving the mathematical
model for 10-customer and 15-customer instances. The default parameter settings of the
computational experiments are as follows. We assumed that the drone is twice as fast and
cost-efficient as the truck (i.e. α = 2). One truck can carry up to two drones waiting for
delivery. The capacity of the drone is set to 20. For reference, the capacities of the trucks
provided by the Solomonbenchmark are 200, 700, or 1,000 depending on the type of prob-
lem. The maximum travel time of the drone is set to 45. The sensitivity analysis of drones
set to various speeds and maximum travel times can be found in Section 5.5.

Pugliese, Macrina, and Guerriero (2020) reported that using three drones per truck does
not lead to a further reduction in the cost. Therefore, up to two drones per truck were con-
sidered in this experiment.When solving the VRPTW-D as aMILP, we limited the computing
timeof the solver to 1,800 seconds. Originally, the number of trucks availablewas 25, as pro-
vided by the Solomonbenchmark. However, in order to find the optimal solutionwithin the
time limit, the number of trucks available was set to four, the maximum number of trucks
used when instances are solved with the VRPTW. The comparative evaluation between the
two approaches in large-sized instances is meaningless because the solver often provides
an absurd solutionwithin a limited running time. Table 2 reports the class name, (Class), the
number of instances in each problem class, (NP), the number of instances solved optimally,
(Solved), the average objective function value of the solution found by MILP, (Obj-M), the
average computing time taken to find a solution with MILP in seconds, (Time-M), the aver-
age objective function value of the solution found by TSH, (Obj-H), the average computing
time taken to find a solution with TSH in seconds, (Time-H), and the average gap between
two solutions in percentages, (	∗10). We compute the optimality gap as,

	∗10 =
obj. value (heuristic)− OPT(MILP)

OPT(MILP)

where obj. value (heuristic) represents objective function value of heuristic solution and
OPT(MILP) is optimal solution value of an instance.

The computing times for theTSHare faster than the timeneeded to solve the integerpro-
gramming model by a commercial solver. The TSH quickly obtained a solution, with costs
lying within 3 percent of those of the optimal solutions except for the R1 class. In the R1-
class instances, there was a case where the number of trucks used was drastically reduced
from four to one. TSH could not find an efficient solution for this case. The solution quality
of the TSH can be verified through a small gap for all tested instances. Further experiments
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Table 3. Results on 15-customer Solomon instances: summary.

Class NP Solved Obj-M Time-M Obj-H Time-H 	15 	∗15
R1 12 3 301.28 1,507.87 292.97 25.24 −2.76% 7.85%
R2 11 1 300.26 1,680.28 254.7 11.65 −15.17% 3.23%
RC1 8 3 202.47 1,469.60 205.14 26.01 1.32% 3.71%
RC2 8 2 204.84 1,523.70 194.09 10.66 −5.25% 2.25%
C1 9 6 136.93 697.67 139.92 10.34 2.18% 5.56%
C2 8 7 162.84 724.94 157.98 10.86 −2.98% 0.00%

were conducted to clearly prove the performance of the TSH. The number of trucks avail-
ablewas set to four in the followingexperiments. Thedescriptions in each column in Table 3
are similar to those in Table 2. We compute the average gap between the two solutions in
percentages as the following.

	15 = obj. value (heuristic) − obj. value (MILP)

obj. value (MILP)

	∗15 =
obj. value (heuristic) − OPT(MILP)

OPT(MILP)

Table 3 shows that heuristic solutions are usually much better than the solutions that
commercial solver provides within given computing time limits. 	∗15 was computed only
with instances of finding the optimal solution. In particular, TSH found all optimal solutions
for the C2-class instances solved by the commercial solver. The time efficiency of the TSH is
validated clearly in the larger instance. Even though the optimal solutions for most of the
15-customer instances are unknown, it is safe to say that the TSH can provide fine solutions
in a short time. To sum up, the TSH provides a good solution for small-sized instances, and
as the instance grows in size, it overwhelms the performance of the commercial solver.

5.3. Comparing a coordinated delivery system to truck-only delivery

We conducted a comparative analysis from an economic point of view to see the effi-
ciency of coordinated delivery of trucks and drones. We compared the solutions found by
solving the VRPTW-D and the classical VRPTW. First, an experiment was conducted on 10-
customer instances to compare the optimal solutions of the two problems. Table 4 reports
the class name, (Class), the number of instances in each problem class, (NP), the objec-
tive value of VRPTW, (Truck-only), average number of trucks used in the solutions of the
VRPTW, (NT0), the objective value of VRPTW-D in situations in which only one drone can be
accommodated per truck, (1 dr/tr), average number of trucks used in the solutions of the
VRPTW-D considering one drone/truck, (NT1), the gap in percentage between the objective
value of VRPTW-D considering one drone/truck and the VRPTW solution (	1), the objective
value of VRPTW-D in situations in which each truck can accommodate up to two drones, (2
drs/tr), average number of trucks used in the solutions of the VRPTW-D considering two
drones/truck, (NT2), and the gap in percentage between the objective value of VRPTW-
D considering two drones/truck and the VRPTW solution (	2). The gaps are calculated as
follows.

	1,	2 = OPT(VRPTW)− OPT(VRPTW− D)

OPT(VRPTW)
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Table 4. Cost-efficiency analysis of 10-customer Solomon instances.

Class NP Truck-only NT0 1 dr/tr NT1 	1 2 drs/tr NT2 	2

R1 12 223.23 2.75 192.89 1.17 13.59% 189.29 1 15.20%
R2 11 193.65 1.45 177.72 1 8.23% 177.05 1 8.57%
RC1 8 172.54 2 167.37 1.875 3.00% 166.98 1.875 3.22%
RC2 8 162.86 1.75 159.19 1.625 2.26% 159.18 1.625 2.26%
C1 9 57.49 1 55.42 1 3.59% 55.42 1 3.59%
C2 8 146.81 1.5 120.39 1 18.00% 120.39 1 18.00%

Figure 4. Comparison of the optimal solutions solved with the VRPTW and the VRPTW-D for Instance
C201.

Table 4 shows that the objective values of the VRPTW-D were much lower than those of
the VRPTW, which justifies the mixed use of trucks and drones. Computational results also
show the difference in the performance of the coordinated delivery system according to
the geographical distribution of customers. In general, the cost efficiency of drone delivery
increases when customers are distant from each other. For example, one customer is far
from the remaining clustered customers in 10-customer instancesof ProblemC2. Therefore,
significant cost savings could be achieved by delivering the drone directly to the customer,
as shown in Figure 4.

In addition to our objective function, we could see that the number of trucks used was
reduced. This is a natural result of pursuing an optimal route from the perspective of min-
imising total travel time. Figure 5 shows how the number of trucks used reduces as the use
of drones increases. In the optimal solution of R101 foundwith the VRPTW, four trucks were
required, but in the optimal solution foundwith the VRPTW-D considering onedrone/truck,
two trucks were used. Furthermore, in the optimal solution found with the VRPTW-D con-
sidering two drones/truck, only one truck was used. The fixed cost of trucks and the labor
cost of men to drive the trucks are very costly compared to the fixed and operating costs of
drones. Therefore, reducing the number of trucks is a very significant secondary result from
an economic point of view. If the objective function was to minimise the completion time
of delivery, a solution exploiting all available resources would be found.

We also conducted an economic analysis for large-sized instances. The optimal solution
of the VRPTW-D for large-sized instances is unknown, so the experiment was conducted
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Figure 5. Comparison of the optimal solutions solved with the VRPTW and the VRPTW-D for Instance
R101.

Table 5. Cost-efficiency analysis of large-sized Solomon instances.

Class NP NC Truck-only 1 dr/tr 	1 2 drs/tr 	2

R1 12 25 463.37 453.50 2.13% 453.26 2.18%
50 766.13 749.91 2.12% 745.20 2.73%
100 1173.74 1148.43 2.16% 1137.42 3.09%

R2 11 25 376.20 376.27 1.55% 376.20 1.55%
50 615.41 614.26 0.19% 610.08 0.87%
100 872.53 856.8 1.80% 848.09 2.80%

RC1 8 25 350.24 344.24 1.71% 343.51 1.92%
50 730.31 716.56 1.88% 714.44 2.17%
100 1334.48 1325.08 0.71% 1318.35 1.21%

RC2 8 25 319.28 311.44 2.45% 309.72 2.99%
50 571.63 571.56 0.01% 568.33 0.58%
100 1000.68 989.04 1.04% 987.49 1.32%

C1 9 25 190.59 189.68 0.48% 189.59 0.52%
50 361.69 361.28 0.11% 360.99 0.19%
100 826.70 825.49 0.15% 825.21 0.18%

C2 8 25 214.45 213.70 0.35% 213.14 0.61%
50 357.50 356.08 0.40% 355.99 0.42%
100 587.37 582.83 0.77% 582.83 0.77%

using the TSH. The TSH seems to be appropriate to analyse large-sized instances, as demon-
strated in the previous section. The experimental results in Table 5 present the guaranteed
minimum economic effect, not the ideal cost reduction. The descriptions in each column
in Table 5 are the same as in Table 4. The effect of cost reduction was less than that of the
previous experiment. The main reason for this was the comparison between the optimal
solution for the VRPTW and the heuristic solution for the VRPTW-D. Aside from this, one
potential reason for the difference may be that in large instances, the average distance
between customer locations is smaller, resulting in less benefit fromallocating deliverymis-
sions to drones. Also, since the number of drones was limited, they might not have been
able to adequately cover the increased number of customers. Nonetheless, the economic
superiority of coordinated delivery was still evident. Therefore, successful implementation
of the coordinated delivery could bring about cost efficiency.

5.4. Impact of timewindow constraints and pair constraints

First, we analysed the effect of the width of the time window constraints on the deliv-
ery schedule and total cost. All instances within the same type have the same customer
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Table 6. Impact of time window constraints.

Class Narrow Obj-N Wide Obj-W 	tw

R1 1,5,9,10 204.24 2,3,4,6,7,8,11,12 187.22 8.33%
R2 1,5,9 188.88 2,3,4,6,7,8,10,11 173.54 8.12%
RC1 1,6,7 171.60 2,3,4,5,8 164.83 3.95%
RC2 1,6,7 167.03 2,3,4,5,8 154.48 7.52%
C1 1,5,6,7,8,9 55.80 2,3,4 54.67 2.03%
C2 1,5,6,7,8 122.92 2,3,4 116.17 5.49%

coordinates and have different time windows of customers. Some have very narrow and
tight time windows, while others have time windows that are hardly constraining. We
divided instances of the Solomonbenchmark into two sets and compared the optimal solu-
tions of each set. We defined instances in which more than half of the customers in each
instance had a time window longer than 40 percent of the planning horizon as instances
withwide timewindows. In order to remove the external influence andproperly analyse the
impact of the time window constraints, we experimented with instances of 10 customers
forwhich theoptimal solutionwas found. The valuesof theparameterswere set the sameas
those of the experiments in Section 5.3, and only one drone per truck performed the deliv-
ery mission. Table 6 reports the class name, (Class), the name of instances that have narrow
time windows in each problem class, (Narrow), the average objective value of instances
that have narrow time windows, (Obj-N), the name of instances that have wide time win-
dows in each problem class, (Wide), the average objective value of instances that havewide
time windows, (Obj-W), and the gap in percentage between the average objective value of
instances that have narrow time windows and those that have wide time windows (	tw).
We compute the average gap between the two solutions in percentages as the following.

	tw = OPT(Narrow)− OPT(Wide)
OPT(Narrow)

As can be seen in Table 6, the time window constraint affects route planning. However,
the impact of timewindow constraints is not as clear as the difference between the VRP and
the VRPTW, as drones can be used to satisfy customers’ demands for delivery flexibly. Thus,
these results highlight the potential of drones in last-mile delivery, which must satisfy the
various types of services requested by customers.

Regarding relaxing pair constraints, various experiments using the Solomon benchmark
did not find cases in which the drone landed with another truck. The failure to observe
cases where the drone moves to another truck is not only a problem with the dataset but
also a feature of the solution for the routing problem. To optimise the route, customers
in proximity are generally delivered by the same truck within physical constraints. There-
fore, truck routes are generally far from each other, and the truck from which the drone
departed is usually the closest to the drone. Considering constraints such as timewindows,
synchronisation, and the number of drones that can ride on each truck, it is most reason-
able for a drone to return to the truck from which it launched. We observed that relaxing
the constraints on the pair between the truck and the drone did not result in a signifi-
cant improvement in the delivery routes and demonstrated that the assumptions and the
approachesmade inmost previous studies were reasonable in their ownway. However, we
surmise that our modelling approach will be more effective in an advanced model where
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Table 7. Results of sensitivity analysis for different drone speeds.

Class NP α = 1 α = 2 α = 3 α = 4

R1 12 1181.60 1137.42 1089.72 879.85
R2 11 875.53 848.09 819.69 804.72
RC1 8 1344.74 1318.35 1285.61 804.38
RC2 8 1008.30 987.49 961.48 949.86
C1 9 826.70 825.21 813.22 802.90
C2 8 587.38 582.83 563.90 545.35

Table 8. Results of sensitivity analysis for different delivery ranges.

Class NP τ = 10 τ = 30 τ = 50

R1 12 1156.01 1139.36 1137.42
R2 11 848.09 848.09 848.09
RC1 8 1330.86 1318.35 1318.35
RC2 8 993.01 984.94 984.94
C1 9 825.21 825.21 825.21
C2 8 582.83 582.83 582.83

drones can deliver multiple nodes in a single flight or where synchronisation with trucks is
easy.

5.5. Sensitivity analysis with the drone features

In this section, we carried out a sensitivity analysis when some fundamental parameters
were varied. In addition to setting the features we wanted to analyse, we set the other
parameters to the same values as in previous experiments. First, we examined the impact of
the speed of the drone on the performance of a coordinated delivery system. We assumed
that a drone is twice as fast and cost-efficient as a truck. In the following experiments, the
relative drone speeds and cost efficiency metrics were changed from one to four. Table 7
shows that cost savings increase with the relative speed of the drone. A drone can deliver
only to nodes that are close to the truck route when the speed of the drone is low. A drone
travelling at a higher speed can cover more distance and deliver to nodes farther away. As
the use of drones increases, it is possible to eliminate the inefficient routes of trucks that
were dictated by time window constraints.

We also investigated the impact of the delivery range of drones on system performance.
To this point, the maximum travel time of drones was set to 45. In the following experi-
ments, we varied themaximum travel time of the drone between 10 and 50. Table 8 shows
that the cost savings of a coordinated delivery system increased with the flying duration of
the drone. The increased flying duration of the drone increased cost savings because deliv-
eries made by drones replaced inefficient truck routes. However, flying duration did not
bring about as dramatic an effect as did increasing the speed of the drone. The reason for
this is that increasing the speed of the drone in ourmodel included the effect of expanding
the delivery range of the drone.

Lastly, we carried out the following experiments, changing the delivery capacity of the
drone from a relatively small capacity to a capacity that could cover all customers. Table 9
shows that the cost savings of a coordinated delivery system increase with the transport
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Table 9. Results of sensitivity analysis for different capacities of drones.

Class NP QD = 10 QD = 20 QD = 30 QD = maxi∈N qi
R1 12 1158.45 1137.42 1132.25 1130.92
R2 11 863.48 848.09 845.20 844.91
RC1 8 1332.38 1318.35 1316.08 1315.46
RC2 8 1001.08 984.94 983.38 981.13
C1 9 826.01 825.21 824.81 824.81
C2 8 582.92 582.83 582.83 582.15

capacity of the drone. As the transport capacity of drones increases, more cost-effective
routes can be designed.

We conclude the discussion of computational results with some insights into the char-
acteristics of a coordinated delivery system. As expected, we saw cost savings increase as
the physical limitations of the drone were relaxed. In particular, the effect of drone speed
on the efficiency of the coordinated delivery system was very strong. The limited shipping
range and capacity of drones can be supplemented with the help of trucks. Even though
the performances of these features were improved, there was no dramatic change in cost
optimisation. On the other hand, flight speed and cost efficiency are advantages of drones
that cannot be replaced by trucks. In a delivery system where only drones are available, all
features of droneswill be significant. However, in a coordinated delivery systemwith trucks
and drones, it is important to strengthen the advantages of drones rather than overcome
their disadvantages.

6. Conclusions

Drones have emerged as attractive options to supplement traditional delivery vehicles.
Research on how to integrate drones into logistics and how to prove the effectiveness of
drone delivery is constantly being conducted. In this study, we defined a new variant of
the VRP, a vehicle routing problem with time windows and drones in which several trucks
and drones worked together to provide service to customers within given time windows.
A drone can move with a truck, take off from the truck to serve customers, and land on
the same or a different truck from which it took off. The VRPTW-D was formulated based
on a MILP, and we discussed the characteristics of the newly developed problem. The VRP
considering drones has been optimally solved only on a very small scale. Therefore, we
presented a three-stage savings-based heuristic, a simple yet time-efficient heuristic frame-
work for solving large-sized instances of the VRPTW-D. The three levels of the TSH consisted
of generating an initial solution, assigning a drone to delivery, and combining procedures
to reduce the number of trucks used. Competitive results were obtainedwithout exploiting
sophisticated mathematical programming, decomposition algorithms, or metaheuristics.
Heuristic solutions are often better than those obtained by the solver and not far from the
optimal solution, though obtained in a shorter time.

We presented the results and analysis of our computational experiments. Results
showed that the coordinated delivery system has significant economic benefits over the
truck-only system. One of the weak points in our analysis is the fact that we used a sim-
ple heuristic algorithm rather than an exact algorithm, but future studies may explore
the theoretical bound of the VRPTW-D and propose state-of-the-art techniques that find
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optimal solutions for large-sized instances. The development of more efficient heuristic
approaches, including metaheuristics and machine learning algorithms, is also expected.
In addition to developing solution approaches, our research leads to other opportunities
for future research. For example, our model can be extended to include the use of hetero-
geneous drones, multi-visits of drones, and more real-world considerations. If the physical
limitations on the flight of drones are overcome so that multiple nodes can be delivered in
one flight, our modelling approach that relaxes pair constraints will yield more significant
results. Therefore, we believe that our modelling and algorithmic contributions can be a
means to overcome the limits of drone-aided routing and accelerate the commercialisation
of coordinated logistics with trucks and drones.
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