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HIGHLIGHTS

o A hierarchical interaction model between an system operator and users is formulated.
o A reformulation-and-decomposition algorithm is proposed to address bilevel feasibility.

e Two demand response program settings are compared through computational experiments.

e The applicability of the proposed solution approach is presented.

o Results reveal the economic and operational benefits of demand response participation.
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Decentralized power grid systems present new challenges for independent system operators (ISOs) in balancing
electricity demand, ensuring grid stability, and optimizing operational costs. A bilevel optimization problem is
introduced to represent the hierarchical decision-making process between an ISO and multiple electricity users.
The ISO sets subsidy rates and real-time pricing (RTP) to influence user behavior while users optimize their
energy consumption and distributed energy resource (DER) operations. A reformulation-and-decomposition al-

gorithm is proposed to address bilevel feasibility issues and to improve computational efficiency. Computational
experiments compare two demand response programs (DRPs) settings on subsidy programs and RTP. The results
show that integrating RTP enhances bilevel feasibility, improves peak load reduction, and increases computa-
tional complexity. Budget allocation significantly impacts DRP effectiveness, with diminishing returns at higher
levels. The findings highlight the benefits of a mixed DRP approach for improving decentralized grid operations.

1. Introduction
1.1. Background

Electricity consumption has rapidly increased globally over the last
few decades. Globally, power grids are continuously evolving, tran-
sitioning from traditional static architectures to increasingly complex
networks. This transformation highlights the necessity of innovative
operational strategies that extend beyond the simple delivery of elec-
tricity to focus on efficiently managing energy resources and main-
taining grid stability [1-3]. Peak load management is one of the core
challenges in grid operations. When electricity demand exceeds the
grid’s capacity, it can result in transmission network overloads, outages,

and other critical issues. Developing effective strategies to reduce peak
loads and ensure grid stability is thus essential. The California duck
curve is a representative example of such challenges. In California, the
growing share of renewable energy sources, such as solar power, has
sharply decreased electricity demand during daylight hours. However,
as solar generation ceases in the evening, electricity demand spikes
significantly, resulting in wider operational fluctuations for the grid.
This phenomenon illustrates the unintended consequences of renewable
energy expansion and the new challenges to maintaining grid stability.
Consequently, modern research emphasizes the need for diversified
strategies that optimize grid operations, even if distributed energy re-
sources (DERs) are not exclusively based on renewable sources [4].
Adopting this perspective, this study models interactions between ISOs
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and multiple electricity users to propose methodologies aimed at
simultaneously reducing peak loads and enhancing grid stability.

An independent system operator (ISO) plays a pivotal role in grid
operations by ensuring grid stability and facilitating the efficient flow of
electricity. ISOs manage electricity transmission, coordinate market
transactions, and implement measures to maintain physical grid stabil-
ity. Key responsibilities include balancing power flows between gener-
ators and consumers, managing grid bottlenecks, and implementing
recovery plans during emergencies. On the other hand, electricity users
are integral components of the grid, consuming or generating electricity.
They can evolve beyond mere consumers into prosumers who produce
and sell surplus power. Some electricity users may transition into po-
tential microgrids, forming self-sufficient energy systems that contribute
to regional energy independence. Among these roles, ISOs use mecha-
nisms such as real-time pricing (RTP) and subsidy policies to guide user
behavior and maximize grid efficiency.

Modern electricity markets are categorized into various structures
based on trading mechanisms and energy management models. This
study highlights the significance of regional, decentralized electricity
markets, where multiple microgrids and prosumers aim for regional
energy independence and efficient DER utilization. In these markets,
individual microgrids and prosumers develop autonomous production
and consumption strategies, while ISOs coordinate their interactions to
ensure optimal distribution of local energy resources and to maintain
grid stability. This study proposes strategies to efficiently facilitate DER
installation and operation in such markets. Leveraging RTP, dynamic
pricing policies, and subsidy frameworks provides actionable insights
into influencing user behavior and promoting DER adoption.

Discussions on related issues are abundant in the literature [5-8].
Topics such as ISO-user interactions, the effectiveness of demand
response programs, optimal DER placement and operation, and the
application of bilevel optimization in hierarchical decision-making
structures are particularly prevalent. These discussions form a signifi-
cant theoretical and practical foundation for simultaneously addressing
grid stability and economic considerations. Details are elaborated in the
subsequent subsection.

1.2. Literature review

Recent advancements in energy management and multi-microgrid
systems highlight the critical role of bilevel optimization, demand
response programs, DERs, and ISO-user interactions. These studies aim
to address the complexities of modern power systems, integrating
technical innovations with economic and environmental considerations.
This section provides an overview of key contributions categorized by
their primary focus.

Bilevel optimization methodologies have been extensively applied to
address hierarchical decision-making in energy systems. These meth-
odologies provide solutions for complex energy management problems,
enabling effective coordination between different stakeholders. For
instance, Bahramara et al. [9] introduced a hierarchical framework for
active distribution grids, enabling value-based pricing of distributed
resources. Marvasti et al. [10] proposed a system-of-systems approach
for active distribution grids, leveraging bilevel optimization for eco-
nomic dispatch. Similarly, Rider et al. [11] developed a mixed-integer
linear programming model for optimal pricing and location of distrib-
uted generation in radial distribution systems. Mobarakeh et al. [12]
extended this concept to contract pricing of independent dispatchable
distributed generator (DG) units, employing a bilevel pricing strategy.
Liu et al. [13] presented a robust operation-based scheduling framework
for smart distribution networks, incorporating multiple microgrids
under uncertainty. Collectively, these studies demonstrate the flexibility
and scalability of bilevel optimization for modern power grids but often
overlook the practical implementation challenges in scenarios.

Demand response programs (DRPs) have emerged as a pivotal
strategy for balancing grid operations and enhancing user participation.
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These programs integrate dynamic pricing and load-shifting mecha-
nisms to align user consumption with grid requirements. Georgia et al.
[14] explored leader-follower strategies for energy management in
multi-microgrids, combining cooperative and competitive trading
mechanisms. Wang et al. [15] investigated hierarchical power sched-
uling for macrogrid and microgrid coordination, emphasizing multi-
level power scheduling under DRPs. Hamid and Shahram [16] pre-
sented a stochastic multi-objective framework for optimal energy
management in multi-microgrids, integrating DRPs with distributed
energy resources. Li et al. [17] developed a distributed control method
for high-penetration renewable energy in multi-microgrids, highlighting
the synergy between DRPs and DER integration. While DRPs effectively
balance supply and demand, their scalability and integration with
renewable sources remain ongoing challenges in implementation.

DER integration, coupled with storage systems, has become a
cornerstone of modern energy management. These systems enhance the
resilience and sustainability of energy systems by leveraging renewable
resources and energy storage technologies. Radhakrishnan and Srini-
vasan [18] proposed a multi-agent-based distributed energy manage-
ment scheme, optimizing wind and solar generation in smart grids.
Nikmehr and Ravadanegh [19] focused on optimal power dispatch in
multi-microgrids, incorporating solar, wind, and biomass resources.
Felipe and Tapas [20] developed a bilevel model for emissions reduction
policies in carbon-priced markets, utilizing wind and biomass DERs. Han
and Lee [21] introduced a two-stage stochastic programming model for
multi-microgrid design and operation, emphasizing renewable energy
sources. Hossein and Reza [22] presented novel technical indices for
designing and operating multi-microgrid distribution networks,
emphasizing their role in enhancing operational efficiency. However,
the integration of DERs with grid-scale energy storage systems continues
to face technical and economic barriers, particularly in terms of cost-
effectiveness and reliability.

ISO-user interactions form a critical component of energy manage-
ment, particularly in decentralized and peer-to-peer energy markets.
These interactions enable efficient coordination between grid operators
and users, fostering collaborative energy management strategies. Gre-
goratti and Matamoros [23] modeled distributed energy trading for
multi-microgrid scenarios, emphasizing decentralized market struc-
tures. Esther et al. [24] designed peer-to-peer energy markets within
urban microgrids, demonstrating the feasibility of local energy trans-
actions. Saad et al. [25] employed coalitional game theory to optimize
microgrid distribution networks, fostering cooperative strategies among
users. Wang et al. [26] proposed a peer-to-peer transaction method for
diversified prosumers in urban microgrids, highlighting the potential of
localized energy trading. While these studies illustrate the feasibility of
decentralized energy systems, challenges remain in standardizing
transaction protocols and in ensuring equitable resource allocation
across participants.

Despite these contributions, existing studies often lack comprehen-
sive frameworks for multi-follower decision-making in hierarchical
structures. Many focus narrowly on single-layer optimization or specific
DRP implementations, limiting their applicability to broader, real-world
contexts. In contrast, the study presented in Section 3 addresses these
limitations by developing a bilevel optimization model tailored for ISO-
user interactions, incorporating multi-follower decision-making and
RTP strategies, thereby bridging critical gaps in prior research.

1.3. Research gap and key contributions

While existing studies on demand response and DER coordination
have offered foundational insights, they often focus on single-user sce-
narios or isolated microgrid systems, overlooking the complexity of
multi-user interactions and hierarchical decision-making in realistic
power systems. While these models offer analytical simplicity, they
overlook the complexity of multi-user interactions and the hierarchical
decision-making structure present in real-world power systems.
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Additionally, the integration of RTP and installation subsidies has been
explored separately, with limited attention given to their combined ef-
fects under budget constraints. Furthermore, many bilevel optimization
approaches fail to scale efficiently when incorporating discrete user-
level decisions.

To address these limitations, this study addresses the following core
question: How can we design a bilevel demand response framework that
effectively combines RTP and installation subsidies while maintaining
computational scalability and behavioral realism in multi-user settings?
To this end, a comprehensive framework is proposed to capture the
operational, economic, and computational challenges involved in
coordinating multiple electricity users under a unified demand response
mechanism. The main contributions of this study are as follows: A
bilevel optimization model is formulated to describe the hierarchical
interaction between an ISO and multiple electricity users.

e A mixed-incentive scheme is introduced, combining RTP and budget-
limited subsidies to influence user participation and DER adoption.

e A scalable solution method is developed using reformulation based
on Karush-Kuhn-Tucker (KKT) conditions and generalized Benders
decomposition to address the resulting mixed-integer structure.

e Simulation experiments are conducted to evaluate the effects of the
incentive mechanisms on both user behavior and grid-level
outcomes.

These contributions collectively establish a modeling and algo-
rithmic framework that bridges the gap between theoretical bilevel
optimization and practical DR program design. In particular, the pro-
posed solution method improves scalability by decoupling ISO-level and
user-level decisions through a KKT-based reformulation, and efficiently
handles discrete installation decisions using generalized Benders
decomposition. This technical structure distinguishes it from conven-
tional bilevel methods that typically rely on full enumeration or heu-
ristic approximations. Moreover, the joint analysis of RTP and subsidy
mechanisms allows for a more accurate reflection of real-world incen-
tive environments, and the simulation results provide concrete guidance
on policy design under realistic budget constraints.

To further clarify the novelty and practical advantages of the pro-
posed approach, a comparison is provided with traditional bilevel
optimization techniques used in related studies. Traditional approaches,
particularly those based on single-level reformulations using KKT con-
ditions or complementarity constraints, often result in large-scale non-
convex programs that face difficulties when incorporating discrete
follower-level decisions. Such methods also suffer from infeasibility is-
sues, especially under budget-constrained bilevel formulations where
the leader’s feasible region is not guaranteed to align with the follower’s
optimal response. In contrast, the proposed algorithm adopts a hybrid
strategy that reformulates each follower’s problem under fixed discrete
decisions using KKT conditions and embeds these into a generalized
Benders decomposition framework. This two-level design separates best-
response computation from bilevel feasibility validation through
distinct subproblems, thereby enabling robust convergence. Further-
more, by using special ordered set type 1 (SOS1) constraints, the algo-
rithm avoids reliance on large big-M constants, thereby improving
numerical stability and model interpretability. These structural en-
hancements make the proposed algorithm well-suited for realistic DRP
design environments, where system-scale coordination, budget limita-
tions, and combinatorial user behavior must be simultaneously
addressed.

1.4. Paper organization

The remainder of the paper is organized as follows. Section 2 in-
troduces the research problem, detailing the nature of ISO-user in-
teractions and the role of demand response programs in improving grid
operations. Section 3 describes the bilevel optimization framework,
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presenting the mathematical formulations for ISO and user objectives. It
also describes the development of a computational algorithm to solve
the optimization problem efficiently in Section 4. Section 5 discusses the
experimental design, the performance metrics, and the results, demon-
strating the practical applicability and effectiveness of the framework.
Finally, conclusions are drawn, and areas for future work are recom-
mended in Section 5.

2. Problem description
2.1. Problem statement

The ISO serves as the central coordinator in the electricity grid,
facilitating efficient energy flow and maintaining system stability. As
depicted in Fig. 1, the ISO procures electricity from the main grid and
distributes it to multiple electricity users (or microgrids). Through RTP
and subsidy programs, the ISO balances its multi-objective framework
by influencing electricity users to achieve grid stability and cost opti-
mization goals. In the RTP program, the ISO predetermines real-time
retail electricity prices, enabling followers to observe price signals and
adjust their consumption patterns accordingly. Followers respond by
shifting their electricity usage to periods where the ISO assigns lower
prices to specific time slots, effectively aligning demand with grid sta-
bility objectives. The subsidy program supports the deployment of small-
scale DERs. The ISO provides financial incentives for DER adoption, and
users subsequently assess the economic feasibility of installing a set of
DERs. If a user decides to install DERs, the user—now operating as a
microgrid—can generate its own electricity, reducing reliance on the
main grid and participating in energy trading with the ISO.

The ISO’s multi-objective framework encompasses both operational
and economic goals. From an operational perspective, the primary
objective is to ensure grid stability by maintaining a balanced supply
and demand. Specifically, in this problem, grid stability is assessed by
observing fluctuations in peak load, where a lower recorded peak load is
considered indicative of higher system stability. By managing DRPs, the
ISO aims to mitigate extreme peak loads, thereby enhancing overall grid
reliability. Economically, the ISO aims to minimize system-wide costs,
including generation, transmission, and distribution expenses, while
also promoting the integration of renewable energy sources. The ISO
accounts for system-wide costs by structuring DRPs, which allocate
budgets for managing electricity consumption patterns across the power
grid system. These programs play a crucial role in optimizing cost effi-
ciency while ensuring a reliable power supply. Moreover, as a non-profit
entity, the ISO’s primary focus tends to align more closely with opera-
tional objectives rather than with direct cost minimization. While eco-
nomic considerations remain important, the ISO emphasizes grid
stability and reliability, as these factors are fundamental to its role in
maintaining an efficient and resilient electricity market.

To simplify the problem and to ensure practical applicability, this
study operates under the following assumptions. The ISO is responsible
for minimizing peak loads and for improving grid efficiency while
managing DRPs such as subsidies and RTP mechanisms. Microgrids
independently optimize their energy strategies but are influenced by the
ISO’s DRPs.

2.2. Distributed energy resources

In this problem, DERs are key components in decentralized power
grid systems, focusing on their integration within microgrids under
uncertain renewable energy conditions. The generation output of
renewable energy sources (RESs), such as photovoltaic panels (PV) and
wind turbines (WT), is inherently uncertain due to solar irradiation and
wind speed fluctuations. To address uncertainty on RES, this study relies
on pre-estimated data from prior research and forecasting methods to
compute generation profiles, ensuring a realistic assessment of available
renewable energy potential without explicitly modeling uncertainty
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Fig. 1. Hierarchical structure of ISO and multiple microgrids.

[27-30].

The production capacity of renewable energy resources is intrinsi-
cally linked to the availability of essential natural resources, including
but not limited to wind speed and solar irradiation [27]. This study le-
verages historical data to forecast the expected values of these param-
eters. Specifically, the anticipated power output from wind turbines is
estimated based on wind speed forecasts, which follow a standard
output curve defined as follows [28]:
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where v, v, and v,, denote the cut-in, rated, and cut-out speeds of the
wind turbine, respectively. P, represents the rated power of the WT, and
V! is forecasted wind speed at time ¢t. Similarly, the power output of each
photovoltaic module is estimated based on the expected solar radiation
using the following quadratic function [30]:

Pf V= APVStz + Bpys: + Cpy 2

where s; is the forecasted solar radiation at time t, and Apy, Bpy, and Cpy
are empirical coefficients derived from historical data. While these
models are used to generate input data for optimization, it is acknowl-
edged that the actual output of renewable DERs is subject to inherent
uncertainty. To simplify the optimization problem and ensure compu-
tational tractability, deterministic forecasts for renewable outputs are
adopted in this study, without explicitly modeling stochasticity. This
assumption may limit the robustness of the results under real-world
conditions, and the integration of stochastic or robust optimization is
identified as a valuable direction for future research.

In addition to RESs, fuel cells (FCs), microturbines (MTs), and energy
storage systems (ESSs) are considered in this study. Although these re-
sources are not directly dependent on RESs, they are crucial in

maintaining grid stability by providing dispatchable power sources that
enhance system flexibility in response to variable demand and inter-
mittent renewable generation. Therefore, their installation and opera-
tion are incorporated into the problem formulation as part of the overall
grid stability strategy.

Due to the small-scale nature of DERs, their deployment is treated as
an operational decision rather than as a strategic investment. The
introduced problem reflects DER systems’ flexible and modular char-
acteristics, where decisions regarding their operation and utilization are
made on a shorter time scale compared to decisions made in large-scale
power plants. The capital cost of DER installations is converted into
daily equivalent costs using the capital recovery factor (CRF), ensuring
consistency with the daily operational time horizon considered in this
study.

2.3. Demand response programs and an ISO’S economic measures

The ISO implements two types of DRPs: RTP and the subsidy
mechanism. The first DRP, RTP, allows the ISO to dynamically set retail
electricity prices within predefined upper and lower bounds for each
time slot. As an intermediary between the main grid and electricity
users, the ISO procures electricity from the main grid and redistributes it
based on user demand. The main grid’s electricity procurement cost
follows a predetermined system marginal price (SMP), while the RTP set
by the ISO determines the retail price for users. The price difference or
surplus resulting from the RTP mechanism is accounted for in the ISO’s
daily operational cost. The second DRP, the subsidy mechanism, pro-
vides financial support to electricity users by covering a portion of DER
installation costs. The ISO first determines the subsidy rate for each DER,
after which users assess the economic feasibility of DER adoption. As
previously discussed in Section 2.2, installation costs are incorporated
into the operational model using CRFs to ensure consistency with the
daily operational time horizon. If a user installs DERs and generates
surplus electricity, the ISO may purchase the excess energy at a price
aligned with the SMP. This mechanism allows microgrids to actively
participate in the energy market while ensuring a balance between
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supply and demand.

Specifically, the ISO’s total daily operational cost is formulated as the
sum of three primary components: (i) the price difference or surplus
resulting from RTP-based electricity pricing, (ii) the cost of purchasing
surplus electricity from DER-equipped users, and (iii) the total subsidy
allocation for DER installations. By structuring these demand response
programs, the ISO optimizes grid operations while maintaining cost ef-
ficiency and grid stability.

3. Multi-follower bilevel program model

In this section, the problem is formulated as a bilevel optimization
model, capturing the hierarchical relationship between the ISO and
microgrids. At the upper level, the ISO determines RTP and subsidy
allocation strategies to minimize peak loads and operational costs. At
the lower level, multiple electricity users or microgrids optimize their
energy consumption, DER operations, and energy trading strategies to
minimize their individual costs, guided by the ISO’s signals. The hier-
archical optimization structure effectively models the intricate trade-
offs and interactions between the ISO and microgrids.

3.1. Notations

Before presenting mathematical formulations, the notations used in
the bilevel optimization model including indices, parameters, and var-
iables, are introduced as follows. Indices represent key entities such as
electricity users, time slots, and DER units. Parameters specify fixed
values related to system constraints, costs, and efficiencies, while vari-
ables denote decision-making elements at both the ISO and microgrid
levels.

Index and Set.

i index for electricity user

t index for time slot

k index for DER unit

1 set of users

K set of DER units, K = {MT,FC, WT, PV, ESS}

Kpg set of DGs, Kpg = {MT,FC, WT,PV}

Kgrgs set of DGs related with RES, Kggs = {WT,PV}
Parameters.

ai'f capital recovery factors of DER unit k

" energy conversion efficiency of DG k € Kpg \Kres

qcha charging efficiency of ESS

qdis discharging efficiency of ESS

cprice electricity price at time t

o upper limit of real-tine pricing at time t

o lower limit of real-tine pricing at time t

[ operating cost of DER unit k

cpnain maintenance cost of DER unit k

Pit demand of electricity load of follower i at time ¢

T capital cost of DER unit k

B initial budget

Py maximum allowable power output of DER unit k

Py minimum allowable power output of DER unit k

APy ramp-up rate of DER unit k

APy ramp-down rate of DER unit k

PERES estimated energy potential of RES k for follower i at time t

ph maximum charging rate of ESS

pis minimum charging rate of ESS

E maximum state of charge of ESS

E minimum state of charge of ESS
Variables.

pir the amount of electricity purchased by user i from the ISO at time t

ot the amount of electricity sold by user i to the ISO at time t

g the amount of electricity generated by DG k of user i at time t

(continued on next column)
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(continued)
piha the amount of electricity charging into ESS of user i at time t
pilis the amount of electricity discharging from ESS of user i at time ¢
x§ub subsidy rate associated with DER unit k
X electricity price determined by the ISO at time t
Yik binary variable: 1 if user i installs DER k, otherwise 0

3.2. Leader’s optimization problem

The leader’s optimization problem focuses on the ISO’s multi-
objective optimization goals of enhancing power grid operational effi-
ciency and cost optimization. These objectives are addressed using the
e-constraint method, guiding the ISO in determining RTP and subsidy
levels to influence user behavior while balancing budget constraints and
grid stability requirements.

The ISO’s first objective in the bilevel optimization problem is to
minimize the peak load throughout the planning period, which in this
study is defined as one day. The leader’s objective function for the grid
stability requirements is formulated in Eq. (3), where the term }",; (pi —
p™) represents the total power transaction volume for all electricity
users at time t.

min-‘@:%{@@w —p3) } ©)

The second objective of the ISO, represented in Eq. (4), is to minimize
the total daily operational cost while ensuring that it does not exceed the
initial budget B. This formulation is also based on the e-constraint
method. The daily operational cost consists of the profit (or loss) from
power transactions and the total subsidies paid to users for DER in-
stallations. Eq. (5) describes the profit from power redistribution and
trading. The first term represents revenue (or loss) from the difference
between the wholesale price (SMP) and the retail price (RTP) set by the
ISO. The second term accounts for the cost of purchasing surplus power
from the users. Eq. (6) calculates the total subsidies provided to users
who install DERs.

sty {Zcﬁ“" + ;C‘;ﬁb} <B (4)

Vi vt

Cﬁmf _ (C[price _ X{tp)p:? + C][)rice out vl’ Vit (5)

it
C3® = o mx™yy, Yk €K ©)

The decision variables on RTP and subsidy rates are defined in Egs.

(7)-(8).

P <P <PVt )

0<x™ <1vkeK ®

3.3. Followers’ optimization problems

The followers’ problems represent the decision-making processes of
individual microgrids or electricity users. Each user optimizes their
energy usage, DER operations, and participation in energy trading based
on the pricing and subsidy signals provided by the ISO. The follower’s
objective is to minimize individual operational costs while adhering to
local constraints such as energy balance and DER capacity.

The objective function in Eq. (9) represents the cost function of the
followers. The associated variables include the cost function for power
transactions with the ISO, the operational cost functions for MT and FC,
the maintenance cost functions for PV and WT, the maintenance cost
function for energy storage systems, and the investment cost function for
DER units. These functions are presented in Egs. (10)-(14).
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vt

VkeK
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CeR = (¥ /ot )pse, Vk € K\Kges, Vt 11
CRER — mainp8eh 'k € Kprgs, Vt (12)
Cat® = e (™ +pi°) k = ESS, vt (13)
CR = o™ m (1 - x™)ya, Vk €K 14)

The power generation capabilities of dispatchable resources, such as
MT and FC, are contingent upon their installation within the microgrid.
These resources operate within defined capacity limits, with their output
constrained by the maximum P; and minimum P, allowable power
levels. In contrast, non-dispatchable resources, including PV and WT,
generate active power based on their estimated energy potential, PR,
which is forecasted from environmental conditions like solar irradiance
and wind speed. However, the availability of these renewable resources
does not guarantee consistent output, even when connected to the
microgrid. Furthermore, the rate at which power output can change is
regulated by ramp rate constraints, ensuring a smooth transition in
power generation. These constraints include the ramp-up AP, and ramp-
down AP, limits, which help maintain grid stability during dynamic
operational changes. The detailed constraints related to DGs are pre-
sented in Egs. (15)-(18).

Py <p% < Py, Vk € Kpg\Kggs, Vt (15)
Pie < PiiPyi, Yk € Kges, Vt (16)
Py < APy, Vk € Kng a7)
APy < pi — D1 < APy, Vk € Kpg, Vit = 2...24 (18)

The charging and discharging rates of ESS are restricted by their
respective maximum allowable rates, ensuring that the system operates
within safe and efficient limits. Furthermore, the energy level within the
ESS at any given time t must remain between its minimum capacity E
and maximum capacity E. These constraints ensure that the ESS operates
within its designed parameters. Additionally, since an ESS stores direct
current power, the system accounts for charging and discharging effi-
ciencies a"® and o, converting alternating current power into storable
energy. At time t, the power that can be charged or discharged is further
constrained by the upper bounds, P and P° is, respectively. The ESS
constraints are formulated in detail in Egs. (19)-(21), which incorporate
these operational boundaries.

0 < ph < P™yipes, Vi 19)
0< Pﬁis < I_Jdis}’i,Es& vt (20)
t . . p—
Eysss < ) (a™pi® —pi* /a®™) < Eygss, Vt 21)
a=1

Eq. (22) represents the constraint on energy balance. The total power
transacted with the ISO and the power generated by distributed gener-
ators must equal the energy demand and the charging or discharging
volume of follower i at time t. A critical aspect of the constraint is that at
any given time t, power transactions with the ISO must occur through
only one channel—purchasing or selling electricity, but not both
simultaneously. The same condition applies to charging and discharging
operations for ESS. While the restriction is automatically enforced by the
objective function’s coefficient settings during the follower’s
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optimization process, it is important to note that ignoring the follower’s
objective function could lead to a situation where both channels
simultaneously hold non-negative values.

Py =Py + > phet = pu+a™pit — apd, v (22)
vk

All continuous decision variables of the followers, such as pif, p3*,
P, p, and pds are constrained to be non-negative. However, certain
solutions obtained from the follower’s optimization problem may be
infeasible for the leader’s problem, even if the decision variables satisfy
the constraints. This discrepancy arises when the follower’s decision
variables conflict with constraints specific to the leader’s optimization
problem. In the proposed bilevel model, conflict arises when the fol-
lower’s response to DRPs exceeds the ISO’s constrained budget. Such a
conflict prevents the use of backward induction—a sequential solution
method for leader-follower models that involves determining the fol-
lower’s best response to the leader’s decision. Backward induction relies
on the assumption that the follower’s solution space is entirely
compatible with the leader’s constraints, which is not guaranteed in the
addressed problem. To address this challenge and to ensure a feasible
solution, the study adopts a bilevel programming approach. Specifically,
the bilevel program is transformed into an equivalent single-level opti-
mization problem, as suggested by Kovacs and Kovacs [31]. However,
the reformulation technique cannot be directly applied to the presented
bilevel program due to the inclusion of discrete decision variables in the
follower’s problem, which violates the assumptions of standard refor-
mulation techniques based on KKT conditions [32-34]. To overcome the
limitations, the next section introduces a reformulation-and-
decomposition algorithm. The solution approach separates the bilevel
program into a master problem and subproblems, ensuring compati-
bility between the leader’s and follower’s constraints while maintaining
computational tractability.

4. Reformulation-and-decomposition algorithm

This section introduces a solution approach to solving the bilevel
problem for multiple electricity users interacting with an ISO. The al-
gorithm leverages reformulation and decomposition techniques to
address the complexity introduced by multiple followers with diverse
decision variables and objectives. The proposed method ensures
computational efficiency and scalability by transforming the bilevel
problem into a single-level optimization problem and then breaking it
into smaller, tractable subproblems. The process accounts for both
continuous and discrete variables while maintaining the hierarchical
structure of leader-follower interactions, ensuring accurate and practical
solutions for grid operations.

4.1. Reformulation

To address the hierarchical nature of the bilevel optimization prob-
lem, the original model is reformulated into a single-level problem. This
reformulation replaces the follower’s problem with its KKT conditions,
allowing the ISO to incorporate the followers’ optimal responses in its
decision-making. However, KKT conditions are applicable only if the
follower’s problem is convex and satisfies strong duality [35,36]. In this
study, the presence of discrete decision variables in the follower’s
problem poses a challenge to directly applying KKT-based
reformulation.

To resolve this issue, each follower’s problem is decomposed into
manageable subproblems. Specifically, the discrete variables of the
followers yy are treated as constant during the reformulation procedure.
By fixing these variables, the follower’s problem is decomposed into
several subproblems, and each subproblem becomes a linear program,
enabling the use of KKT conditions to approximate the follower’s

optimal responses. The bilinear terms x; *pi and x{"®y; in the follower’s
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objective function are treated as linear term or constant because the
ISO’s decision variables are fixed as constants from the follower’s
perspective. The reformulation of decomposed subproblems ensures that
the problems remain both mathematically rigorous and computationally
tractable.

The reformulation is performed by substituting a decomposed sub-
problem for each follower i as defined in Egs. (9)-(21) with its corre-
sponding KKT conditions. As a result of substitution, the stationarity
conditions for each follower i are expressed in Egs. (23)-(32).

XP V0 — U = 0,vt (23)
— cPrice _ 20 _geut — 0, vt @24
oper gen main C20 C20 C201 Cléu C20 gen

Ci / o+ U UG F U — Uik TViE — Uik, = 0,k

€ Kggs, t = 1
(25)
oper / gen | _main , ,Cl4 , , Clél c16l | . Cléu _ . Cléu €20 _  gen

Ci / a G A U U — Wik t Uik — Uik TV T Uik

=0,k € Kggs, ¥t =2,...,23
(26)

coPer / & + ¢ fuGt — ull Ul v — il = 0,Vk € Kpgs, £ = 24

i i it
(27)

oper / gen | _main _,C13 , . Cl3u | ,Cl6l Cléu €20 gen _
¢ / a7 T = Uy U Uk — Uik TV — Ui = 0,k
c K\Kkgs, t= 1
(28)

oper / gen | main__, C13l |, Cl3u clel ci6l | . Cléu_; Cléu €20 gen
¢ / a6 — Uy TUG +<ui,k‘t+17ui.k.t Uik, *“i,k,tﬂ)*"i.z Wik

:0,VkEK\KRES,‘v’t:2,...,23

(29)
oper gen main C13l C13u C16l Cléu C20 gen
Ci /O’i F — Wy F UG U U v — g, = 0,vk
€ K\Kgs, t = 24 (30)
. nT
g Ul = 3 (- o) v -yl —ove (D)

main |, C17 nT ([ ci18l [, dis _ ,,C18u /, cha C19 _ dis _
Cess T Uiy +Za:t<ui.u /(l —Uig /(l )+vi.t _ui.t.s_07Vt (32)

where the notation u represents the non-negative dual variables asso-
ciated with inequality constraints in Egs. (15)-(21) and the non-negative
primal variables, while the notation v describes the unrestricted dual
variable corresponding to the equality constraint in Eq. (22).

Next, the complementary slackness conditions are formulated as
shown in Egs. (33)-(42). These conditions ensure that the primal and
dual solutions satisfy the equilibrium necessary for bilevel optimization,
providing a coherent framework for integrating follower decisions into
the leader’s problem. In contrast to traditional methods that rely on Big-
M formulation to linearize bilinear terms, this study employs SOS1
constraints to manage the discrete nature of the decision variables. SOS1
constraints are particularly advantageous as they explicitly enforce
sparsity, ensuring that only one variable in a predefined set can take a
nonzero value at any given time. This property simplifies the reformu-
lation process and eliminates the need for arbitrary scaling factors
inherent in Big-M formulation. The remaining conditions, such as primal
feasibility, are associated with Egs. (15)-(22). The dual feasibility con-
ditions are associated with the dual variables introduced in Egs. (23)-
(32).
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0< uf}mL(I_?kyik - pgi?t) < 0,Vk € Kpg\Kges, Vt (33)
0< ufgm(pf,ij fﬁ,y,;k) <0,k € Kpg\Kges, Vt (34)
0 < uf L (pfh — PESyix) < 0,k € Kuus, Vit 35)
0< ufgn(pfif‘l - Aﬁ,—_yi) <0,k € Kygs, £ =1 (36)

0 < ufl® L (AP — P +P 1) <0k € Ko, VE=2,...,24  (37)
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In the following subsections, the decomposition technique used to
apply the KKT conditions to each subproblem within the proposed so-
lution approach is described. It is important to distinguish between two
levels of decomposition: one applied to the follower’s problem in the
reformulation process and the other to the overall bilevel model. Spe-
cifically, the decomposition of the follower’s problem involves fixing
discrete variables to enable the application of strong duality, thereby
reformulating the lower-level problem. On the other hand, the decom-
position technique applied to the bilevel model is designed to control the
growth of variables and constraints as the problem size increases,
ensuring computational efficiency during the algorithmic search
process.

4.2. Generalized benders decomposition

In the previous subsection, the KKT conditions were introduced to
replace each decomposed subproblem by fixing discrete variables.
However, as the number of subproblems increases, as the number of
subproblems increases with the growth in discrete variable combina-
tions, the number of variables and constraints in the bilevel model
incorporating these KKT conditions increases exponentially. To address
this issue efficiently, a generalized Benders decomposition technique is
applied. For clarity, vector-based notations for the decision variables are
defined below before presenting the decomposition procedure.

T i is1T
x =[x x®] . p = [pi, oy bl P py°] and y = [ya]" 43)

The decomposition process divides the original bilevel model into a
master problem and subproblems. The master problem, denoted as MP,
incorporates the KKT conditions and optimality cuts for all subproblems
of each follower, as formulated in (44)—(51). In the master problem, p,
and y, are auxiliary decision variables for checking the feasibility of
followers’ responses and the optimality from KKT conditions. The
auxiliary decision variables p, are used to determine the followers’ best
response to the leader’s decision x. Each subproblem is enumerated with
the combination of the constant discrete variables y, and for follower i.
The KKT conditions in (51) impose constraints on the follower’s best
response for each subproblem defined by y,. Specifically, these condi-
tions ensure that the feasible solution p, and y,, are used in the master
problem to restrict the auxiliary decision variables p, and y, through
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optimality cuts associated with the follower’s objective function in (51).

min.  F(x,p,,¥,) : Eq.(3) (44)
s.t. G(x,p,,¥,) < 0 :Egs.(4) and (7)—(8) (45)
H(x,p,,¥,) = 0 : Egs.(5)-(6) (46)
8 (x,py.¥,) <0,Vi:Egs.(15)-(21) (47)
hi(x,po,¥,) = 0,Vi: Egs.(10)-(14) and (22) (48)
P, >0 (49)
Yo€B (50)

fi(x7P07y0) S-f_[;:(x7p57ys) T
VPsfi(xzpsvys) +V ,gi(x>P5~,ys) u+ vpshi(xvpsv.)'s) v=0
&(xp;,y,) <0

hi(xvps',.)'s) =0 Vyx €S
gi(xvpsfyx)Tu =0
u>0
p; 20
(51)

where F( ), G( o), and H( e) denote the objective function, inequality
constraints, and equality constraints of the ISO, respectively. The nota-
tions f;(e ), g;( ¢ ), and h;( e ) signify the objective function, inequality
constraints, and equality constraints of follower i, (respectively)

However, the set S of discrete variable combinations can grow
significantly depending on the problem instance, leading to an increase
in the model size. To address this, a Benders decomposition-based
approach is adopted, which iteratively explores solutions by starting
from a relaxed master problem (RMP), defined over a limited set Sy,
and progressively adds new discrete variable combinations for the fol-
lowers. These combinations are explored through a two-stage sub-
problem framework.

The first subproblem, denoted as SP1, determines the follower’s best
response corresponding to the leader’s decision x* given from RMP.
Specifically, SP1 is equivalent to the follower’s optimization problem
defined by the objective function in Eq. (9) and the associated con-
straints in Egs. (10)-(22). Let (py, ;) be the best solution for SP1. The
corresponding objective function value f;(x",pg, ¥, ) is set as ¢;. The
second subproblem, denoted SP2, explores a feasible solution from the
leader’s perspective while keeping x* fixed and ensuring that the fol-
lower’s best solution obtained from SP1 is satisfied. The SP2 formula-
tion is given by Egs. (44)-(50) along with Eq. (52). Eq. (52) integrates
the best objective value ; obtained from SP1, ensuring that the leader’s
decision-making process properly accounts for the follower’s optimal
behavior.

fi(x,po.¥,) <6}, Vi (52)

In this Benders decomposition-based technique, the RMP always
provides a relaxed solution, whereas SP2 searches for a feasible primal
solution or reports infeasibility. The iterative process continues until no
further discrete variable combinations y, need to be added to the master
problem. Specifically, if the solutions obtained from RMP and SP2
converge to the same result, the procedure terminates, yielding the best
solution. Alternatively, the procedure may terminate with an alternative
solution where the follower’s optimal response does not satisfy the
leader’s constraints. The latter case is further discussed in detail in the
computational experiments section. To systematically implement this
decomposition-based technique, the detailed algorithmic procedure is
outlined in the following section.
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4.3. Algorithm procedures

The flowchart of the proposed reformulation-decomposition algo-
rithm is illustrated in Fig. 2. The algorithm begins with an initialization
phase where key variables such as the lower bound LB and upper bound
UB are initialized to negative and positive infinity, respectively, and a
tolerance level of ¢ is set to ensure convergence. An empty set Sy (or Si)
is also initialized to store discrete variable combinations explored during
the iterations. Next, the current lower bound is updated based on the
relaxed solution of the RMP. Subsequently, the feasibility of the leader’s
best solution x* from RMP is verified with respect to the bilevel opti-
mization problem. This is done through solving two subproblems, SP1
and SP2, which ensure that the leader’s decisions are compatible with
the followers’ optimal responses. Specifically, SP1 evaluates the objec-
tive function value corresponding to the followers’ optimal response to
the leader’s decision x*. Meanwhile, SP2 provides a solution to the

/ Input parameters /

!

Initialization:
-SetLB « —0,UB « o, & « 1074, Sy « @, k=1

I

Updating LB:
- Solve RMP
- Set the best solution as (x*, pg, ¥o)
- Update LB with max{LB, F(x", pg, ¥o)}

;

Bilevel Feasibility:
- Solve all SP1 with given x*
- Set the best solutions as (py, ¥x)
- Set 0;(x") « fi(x", po, ¥o), Vi
- Solve SP2 with given x*and 6;(x")

No

Yes

Updating UB:
- Set the best solution as (py, yi)
- Update UB with min{UB, F (x*, p., Y1)}

Updating Bilevel Model:
- Add KKT conditions for (x, pg, ¥;) to RMP
- Add optimality cut related with f (x, pg, y)) to RMP
-Set Sy « S U{yphk—k+1

|
/ Return (X", pj, ¥5) /

Fig. 2. Flowchart of the reformulation-and-decomposition algorithm.
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original problem by incorporating the obtained follower’s objective
function value while keeping x* fixed, without imposing restrictions on
the follower’s decisions. If an alternative solution exists in SP2, it sat-
isfies feasibility and is used to update the primal bound. Next, the gap
between the dual bound and the primal bound is computed, and if the
convergence criterion is met, the best solution from either RMP or SP2 is
returned. If the convergence condition is not satisfied, the combination
of values of yf, is added to the set Sy (or S), and the corresponding KKT
conditions and optimality cut, as defined in Eq. (51), are incorporated
into RMP. However, if SP2 results in infeasibility, the combination of
values of y, obtained from SP1 is instead used to update the set Sy (or Sx)
and Eq. (51). This iterative procedure continues until either (i) the dual-
primal gap falls below the predefined tolerance ¢, or (ii) neither SP1 nor
SP2 identifies a new yj.

The proposed algorithm offers several key advantages in addressing
the challenges of solving bilevel optimization problems, particularly in
multi-follower scenarios. By leveraging SOS1 constraints, the algorithm
effectively incorporates discrete decision variables without the compu-
tational burden associated with Big-M relaxation. This approach en-
hances numerical stability and eliminates reliance on arbitrary scaling
factors, streamlining the solution process for problems involving mixed-
integer variables. Another key advantage of the algorithm is its scal-
ability. By decomposing the problem into a master problem and
manageable subproblems, the algorithm maintains computational effi-
ciency even as the number of followers and the complexity of decision
variables grow. This scalability is essential for real-world applications
where the number of stakeholders and grid components can be sub-
stantial. The algorithm preserves the hierarchical structure of leader-
follower interactions by carefully structuring the reformulation pro-
cess. By fixing discrete variables during the reformulation step, the al-
gorithm ensures compatibility with convex optimization techniques
while accurately modeling the interdependent decisions of the leader
and followers. This approach maintains the integrity of the bilevel
structure while enabling efficient computation.

5. Computational experiments

To demonstrate the applicability of the proposed reformulation-and-
decomposition algorithm, computational case studies are conducted on
the design of an upcoming microgrid as a pilot test. These experiments
first examine the effects of different DRP settings in the bilevel optimi-
zation problem along with the computational performance of the algo-
rithm. Next, the Pareto curve for the ISO’s objectives is analyzed to
assess the trade-off between the grid stability and the economic mea-
sures. Finally, managerial insights are provided regarding the imple-
mentation of the algorithm within the hierarchical structure of
interactions between the ISO and microgrids. This analysis demonstrates
the practical applicability of the proposed approach to real-world
microgrid planning.

5.1. Problem instance and experimental setting

Electricity demand for each user is generated based on a normal
distribution. The mean hourly electricity demand , is set according to
historical data from the literature, while the standard deviation o; is
defined as a fraction of y, where the variability factor is empirically set
to 0.15 to account for consumption variability. The resulting demand
values for multiple users follow:

pie ~ N(p, 02),00 =P o, (53)

where f is the variability factor ensuring diversity in electricity con-
sumption.

Table 1 presents the mean hourly electricity demand derived from
referenced datasets, along with the generated demand profiles for three
electricity users. The potentials of PV and WT, which electricity users
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Table 1
Time-series data of electricity prices, RES potentials, and electricity demand.
Time (kW) User 1 User 2 User 3 PV WT SMP
(hour) kw) kw) kW) kW) kW) (¢/kWh)
0 52 44.4 46.7 53.8 0 1.785 0.23
1 50 42.1 47.6 52.5 0 1.785 0.19
2 50 41.3 47.7 45.9 0 1.785 0.14
3 50 45.4 61.9 45.8 0 1.785 0.12
4 56 52.8 60.3 52.7 0 1.785 0.12
5 63 53.8 64.2 57.6 0 0.915 0.20
6 70 70.7 73.8 68.1 0 1.785 0.23
7 75 72.0 72.7 66.5 0.2 1.305 0.38
8 76 78.0 67.9 73.4 3.75 1.785 1.50
9 80 82.1 72.3 74.9 7.53 3.090 4.00
10 78 78.0 77.2 79.6 10.45 8.775 4.00
11 74 71.9 78.4 80.5 11.95 10.41 4.00
12 72 70.5 78.0 81.2 23.90 3.915 1.50
13 72 70.1 79.0 77.1 21.05 2.370 4.00
14 76 77.2 78.2 76.8 7.88 1.785 2.00
15 80 80.3 80.3 81.5 4.23 1.305 1.95
16 85 89.5 83.2 82.5 0.55 1.785 0.60
17 88 86.1 95.0 89.7 0 1.785 0.41
18 90 86.6 87.1 84.9 0 1.302 0.35
19 87 78.8 86.9 83.8 0 1.785 0.43
20 78 76.4 80.8 81.8 0 1.301 1.17
21 71 72.0 70.5 65.1 0 1.301 0.54
22 65 66.5 60.5 59.7 0 0.915 0.30
23 56 57.1 55.2 51.9 0 0.615 0.26

can assess for installation, are based on the data from the literature [37].
The potential of RES is assumed to be identical across all users when they
install PV or WT units. The SMPs represent the electricity price accessed
by the ISO. In this study, the price at which the ISO purchases surplus
electricity from users is set equal to the SMPs. The lower/upper limit for
the ISO’s RTP is set according to the minimum/maximum SMP values in
Table 1. Specifically, the lower limit is 0.5 times the minimum SMP,
while the upper limit is 1.5 times the maximum SMP. The maximum
budget allocated for supporting the DRPs is set to $100. To analyze the
impact of budget constraints on the proposed bilevel optimization
problem, the e-constraint method is applied. Accordingly, the budget B
varies from 0 to 100 in increments of 5 to assess the trade-off between
the grid stability and the economic measures.

Table 2 summarizes the capital, operational, and technical specifi-
cations of the DER units, with reference to established data sources
[37-40]. The table includes capital costs, operating costs, and mainte-
nance costs associated with each DER unit. The capital costs are con-
verted into daily equivalent values using CRFs, derived from annual
costs computed with a standard annuity formula using an interest rate of
6 % and economic lifetimes of 10 and 3 years for DG and ESS, respec-
tively. These values are adopted from Sufyan et al. [39], and the
resulting annual CRFs are divided by 365 to yield daily costs of
0.000372 and 0.001025. Operating costs reported in Table 2 inherently
reflect both fuel prices and fuel-to-electricity conversion efficiency of
the generation units (e.g., MT and FC), and therefore, explicit modeling
of thermal efficiency is not required. Maintenance costs are adopted
from Qi et al. [38] for most units, while the ESS maintenance cost is
referenced from Sufyan et al. [39], which incorporates battery degra-
dation modeling. Technical constraints include the minimum and

Table 2

Economic and technical parameters of the DER units.
DER unit MT FC PV WT ESS
Capital cost (K$/DER unit) [39,40] 27 60 75 32.25 33
Operating cost (¢/kWh) [39] 0.4 0.2 - - -
Maintenance cost (¢/kWh) [38,39] 0.12 0.04 0.11 0.08 0.02
Min power (kW) [37] 6 3 0 0 -30
Max power (kW) [37] 30 30 25 15 30
Ramp-up rate (kW) [39] 140 120 - - 20
Ramp-down rate (kW) [39] -30 —60 - - —60
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maximum power output of each unit. PV and WT have zero minimum
output, reflecting their dependency on solar irradiance and wind speed,
while MT and FC have nonzero minimum output due to dispatch re-
quirements [37]. Ramp-up and ramp-down rates are defined only for
dispatchable units (MT and FC) [39], while PV and WT do not require
such constraints. The ESS is modeled with a negative minimum power
value, indicating its discharge capacity. Additionally, the energy output
of PV and WT is bounded above by their resource-based generation
potential, and not by demand-based dispatch. Therefore, the maximum
power levels for these units represent generation ceilings rather than
adjustable dispatch values.

All computational experiments are carried out using the Gurobi
solver on a system with an Intel core i99-9900 CPU at 3.60 GHz and 32
GB RAM. The Gurobi solver version 12.0.0 is employed with its default
parameter settings. The proposed reformulation-and-decomposition al-
gorithm and all mathematical models are implemented in C#. For the
configuration of the reformulation-and-decomposition algorithm, the
tolerance ¢ is set to 104,

5.2. Case study on DRP settings

The first computational experiment deals with case studies
comparing two different DRP settings for the development of decen-
tralized power grid systems as follows:

(i) Case Study 1: subsidy-only DRP
(i) Case Study 2: mixed DRPs with RTP and subsidy

In this experiment, Case Study 1 serves as the benchmark scenario. In
the formulated bilevel optimization problem, the ISO determines DRP
parameters based on the anticipated responses of electricity users.
However, due to the hierarchical structure of the problem, bilevel
feasibility is not satisfied if the followers’ decisions violate the leader’s
budget constraints. This study explores whether a mixed DRP setting
improves the ability to find bilevel feasible solutions and examines its
effectiveness in enhancing the ISO’s primary objective of grid stabili-
zation. In Case Study 1, the RTP decision variables in the proposed al-
gorithm are fixed at the SMP values provided in Table 1. Consequently,
the RMP in Case Study 1, where only the subsidy program is applied, can
be formulated as a mixed-integer linear programming (MILP) model
through the linearization of discrete bilinear terms x,s(“"yik. Conversely,
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in Case Study 2, where both RTP and subsidy programs are utilized, the
RMP includes continuous bilinear terms x{pi", resulting in a non-
convex mixed-integer quadratically constrained quadratic program-
ming (MIQCQP) model. This structural difference in the optimization
problem highlights the computational complexity associated with inte-
grating RTP into the DRPs.

Table 3 presents the comparative results between Case Study 1 and
Case Study 2 for instances with three electricity users. Bold values
indicate cases where a bilevel feasible solution was not found, prompt-
ing an additional process in which the leader’s decision x was fixed at
the final solution of RMP, and then SP2 was solved without the budget
constraint. Due to the MILP formulation of RMP, Case Study 1 was
solved significantly faster than Case Study 2, which involved a non-
convex MIQCQP model. In several instances, Case Study 2 did not
converge within the five-hour time limit, as Gurobi attempted to obtain
a global optimum. Some instances resulted in infeasibility in both case
studies, meaning no bilevel feasible solution could be found. However,
for budget levels of 35 and 60, Case Study 2 successfully found bilevel
feasible solutions, whereas Case Study 1 did not, suggesting that the RTP
mechanism can mitigate violations of the ISO’s budget constraint caused
by the followers’ best responses. However, it is not easy to generalize
this finding based on only two instances. In terms of grid cost and peak
load minimization, Case Study 2 achieved the lowest overall system cost
and peak load compared to Case Study 1. However, this reduction came
at the expense of higher follower operational costs, indicating that the
mixed DRP setting shifts economic burdens onto electricity users.
Additionally, the proposed algorithm for Case Study 2 did not converge
within the five-hour limit for certain instances, highlighting the
computational challenge of solving a non-convex MIQCQP model due to
the bilinear terms introduced by RTP decisions.

5.3. Analysis of grid stabilization and budget usage

Figs. 3 and 4 illustrate the impact of budget allocation on peak load
reduction and budget usage in Case Study 1 and Case Study 2, respec-
tively. As the budget increases, peak load decreases significantly in both
cases, demonstrating the effectiveness of DRPs in managing demand. In
Case Study 1, notable reductions in peak load are observed when the
budget is set at 15 and 30, suggesting that these budget levels provide
the most cost-effective peak load reduction. However, budget usage is
not maximized in all instances, indicating that certain budget allocations

Table 3
Comparative results of Case Study 1 and Case Study 2.

B($) Case Study 1 Case Study 2

CPU F1(kWh) F5($) f($) £2($) f3 CPU F1(kWh) Fy($) A® £($) f3

(min.) $ (min.) $)
0 0.0 271.0 0.0 21.5 21.8 22.0 0.4 73.0 0.0 50.6 52.3 51.7
5 0.1 265.0 3.9 21.5 21.8 22.0 0.9 71.4 5.0 52.8 53.9 53.0
10 0.0 259.0 7.9 21.5 21.8 22.0 1.2 71.4 10.0 51.2 52.3 51.4
15 0.0 241.0 14.3 21.5 21.8 22.0 2.2 69.8 15.0 52.6 54.0 53.1
20 0.1 235.0 18.2 21.5 21.8 22.0 19.8 69.8 19.5 51.6 52.4 51.7
25 0.1 229.0 22.2 21.5 21.8 22.0 0.6 68.1 25.0 53.1 54.2 53.3
30 0.1 211.0 28.6 21.5 21.8 22.0 9.5 65.5 30.0 52.2 53.5 52.5
35 0.4 229.0 138.1 21.4 21.7 22.0 43.0 65.5 30.0 51.6 53.0 52.6
40 0.2 199.0 36.5 21.5 21.8 22.0 +5hs - - - - -
45 1.0 299.0 108.3 20.9 21.2 21.5 +5hs - - - - -
50 0.5 193.0 40.4 21.5 21.8 22.0 24.7 62.2 48.7 52.4 53.8 52.9
55 3.0 186.0 55.0 21.4 21.7 21.9 +5hs - - - - -
60 1.8 207.9 231.8 19.7 20.0 20.3 282.2 60.0 60.0 53.0 54.3 53.3
65 1.1 186.0 65.0 18.0 18.3 18.6 30.1 60.0 65.0 51.4 52.7 52.1
70 5.2 211.0 150.8 21.3 21.6 21.9 +5hs - - - - -
75 2.5 207.9 153.7 20.4 20.7 20.9 +5hs - - - - -
80 7.8 207.9 158.7 18.7 19.0 19.3 +5hs - - - - -
85 6.1 211.0 153.3 20.5 20.8 21.1 +5hs - - - - -
90 2.9 142.1 154.8 20.2 20.3 20.6 +5hs - - - - -
95 4.5 142.1 159.7 18.6 18.7 19.0 +5hs - - - - -
100 2.9 137.3 187.0 20.3 20.5 20.7 +5hs - - - - -

10



Y.-B. Woo and 1. Moon

Applied Energy 399 (2025) 126507

300.0 35.0
I—
250.0 \ 30.0
é 200.0 5
& 200 &
g 1500 3
= 150 &
i g
A~ 100.0 =
10.0
50.0 50
0.0 0.0
0 5 10 15 20 25 30
Initial budget. B ($)
Fig. 3. Peak load reduction and budget usage under Case Study 1.
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Fig. 4. Peak load reduction and budget usage under Case Study 2.

may not be fully utilized for subsidy distribution. In contrast, Case Study
2 consistently utilizes the allocated budget across most budget settings.
Despite this, evaluating the efficiency of budget usage in terms of peak
load reduction remains challenging, as the integration of RTP inherently
enhances demand-side response. The simultaneous implementation of
RTP and subsidies results in a more substantial reduction in peak load
compared to the subsidy-only scenario, making direct comparisons of
budget efficiency between the two cases non-trivial.

Notably, in Case Study 2, a temporary increase in peak load is
observed at certain budget levels (e.g., 35 or 60) despite the application
of RTP. This behavior can be attributed to the elasticity-driven con-
centration of user demand during low-RTP hours, which may inadver-
tently create new peaks if not offset by sufficient DER activation. When
the ISO sets low retail prices for specific time slots to shift demand, some
users may concentrate on their consumption within these intervals,
leading to secondary peaks. Additionally, limited DER generation ca-
pacity or unavailability during those time slots may restrict the system’s
ability to flatten the load curve effectively. This result highlights a non-
trivial effect of dynamic pricing mechanisms: while they improve overall
flexibility and reduce average costs, they may also introduce localized
fluctuations in peak demand under certain conditions. Such dynamics
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suggest that RTP policies must be carefully designed in conjunction with
DER planning and load diversity analysis to avoid unintended peak
rebounds.

Tables 4 and 5 present the optimal subsidy rates determined by the
ISO in Case Study 1 and Case Study 2 under different budget allocations.
The values represent the proportion of installation costs covered by
subsidies for each DER unit, including costs of the MT, FC, PV, WT, and
ESS. In Case Study 1, the allocation of subsidies varies significantly
across different DER types. While subsidies for FC and PV increase as the
budget rises, MT and WT receive limited or no subsidies under most

Table 4
Subsidy rates determined by the ISO under Case Study 1.

Subsidy rate  Initial budget B

0 5 10 15 20 25 30 35
ey 0% 41% 41% 0% 41% 41% 0% 41 %
b 0% 23% 47% 67% 67% 67% 67% 67%
x'f,‘{}’ 0% 0% 38 % 56 % 75 % 0% 90 % 90 %
e 0% 44% 87% 0% 0% 0% 0% 0%
P 0% 0% 30% 45% 60% 75% 90% 95%
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Table 5
Subsidy rates determined by the ISO under Case Study 2.

Subsidy rate  Initial budget B

0 5 10 15 20 25 30 35
xf\}[‘% 0% 0% 0 % 0% 0% 0 % 0% 0 %
xSF‘éb 0% 0% 1% 0% 0% 0 % 0% 1%
b 0% 0 % 0% 0% 0% 0 % 0% 0%
b 0% 77% 80% 76% 78% 76% 0% 0%
P 92% 96% 95% 9%6% 96% 9%6% 95% 96%

budget levels. An ESS begins receiving subsidies only when the budget
exceeds 10, with the subsidy rate reaching 95 % at the highest budget
level. In contrast, Case Study 2 exhibits a different subsidy distribution
pattern due to the presence of RTP. The ISO consistently prioritizes
subsidizing the ESS across all budget levels, maintaining a subsidy rate
of approximately 95 %, regardless of budget size. The WT also receives
relatively high levels of subsidy, particularly when the budget ranges
from 5 to 20, with values exceeding 75 %. However, for higher budgets
(30 and 35), the subsidy rate for WT drops to zero, indicating a shift in
prioritization. Meanwhile, the MT and PV consistently receive no sub-
sidy, and FC only receives marginal support at limited budget levels.
These results suggest that the RTP mechanism influences the ISO’s
strategy by concentrating subsidies on storage and, to some extent, re-
newables like WT under certain conditions, while reducing support for
dispatchable or high-cost generation units.

These results highlight how the introduction of RTP influences the
ISO’s subsidy allocation strategy. The ISO in Case Study 2 allocates
subsidies predominantly to ESS and renewable generation, whereas in
Case Study 1, a more varied subsidy distribution is observed. This sug-
gests that RTP not only impacts electricity pricing but also affects in-
vestment decisions related to DER deployment.

Table 6 presents the RTP decisions made by the ISO under Case Study
2 across different initial budget levels. The values in the table represent
the electricity price determined by the ISO for each hour in a twenty-
four-hour period, considering varying budget constraints. Several key
observations can be made from the results. First, for budget levels of
0 and 5, the RTP remains close to the predefined lower bound in most
hours, indicating that the ISO has limited flexibility in adjusting prices

Table 6
RTP decisions made by the ISO under Case Study 2 (¢/kWh).

Time Initial budget B
0 5 10 15 20 25 30 35

0 0.52 0.52 0.24 0.52 0.52 0.52 0.24 0.52
1 0.52 0.52 0.24 0.52 0.52 0.52 0.24 0.52
2 0.52 0.52 0.39 0.52 0.52 0.52 0.24 0.52
3 0.52 0.69 0.52 0.52 0.69 0.52 0.52 0.52
4 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
5 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
6 6.00 5.99 4.61 6.00 0.52 6.00 6.00 4.82
7 0.52 5.99 3.70 6.00 6.00 6.00 6.00 6.00
8 1.50 5.99 4.61 6.00 6.00 6.00 6.00 6.00
9 6.00 5.99 4.61 6.00 4.82 6.00 6.00 6.00
10 6.00 5.99 4.61 6.00 6.00 6.00 6.00 6.00
11 6.00 4.82 4.61 6.00 6.00 6.00 4.82 6.00
12 6.00 5.99 4.82 6.00 4.82 6.00 4.82 6.00
13 6.00 5.99 6.00 4.82 4.82 6.00 5.75 6.00
14 2.00 5.99 4.82 6.00 6.00 6.00 4.82 4.82
15 6.00 5.99 6.00 6.00 4.82 6.00 6.00 6.00
16 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
17 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
18 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
19 6.00 5.99 6.00 6.00 4.82 6.00 6.00 6.00
20 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
21 6.00 4.82 6.00 6.00 6.00 6.00 6.00 0.54
22 0.52 5.99 6.00 0.52 6.00 6.00 0.52 0.52
23 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
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due to financial constraints. As the budget increases, the ISO actively
utilizes higher RTP values, particularly during peak demand hours (e.g.,
6 a.m. to 8 p.m.), suggesting a strategic pricing adjustment to manage
grid stability. Notably, when the budget reaches 10 or higher, the RTP
values begin fluctuating more dynamically, reflecting the ISO’s ability to
fine-tune pricing mechanisms to influence electricity consumption pat-
terns effectively. Another critical trend is that the RTP consistently
reaches the predefined upper bound (six cents/kWh) during high-
demand periods, indicating that the ISO fully exploits its pricing flexi-
bility under larger budget allocations. This pricing strategy aligns with
the objective of peak load reduction by encouraging users to shift con-
sumption to lower-priced periods. However, during low-demand hours
(e.g., early morning and late night), RTP values remain near the lower
bound, minimizing unnecessary price surges while maintaining eco-
nomic efficiency.

These findings highlight the role of RTP in demand-side management
under a mixed DRP setting. The results indicate that increasing the
budget allows the ISO to exert greater control over electricity pricing,
thereby optimizing demand response effectiveness and improving grid
stability.

To complement the analysis of Table 6 and to clarify the behavioral
and cost implications of RTP, we provide additional visual and numer-
ical comparisons. Fig. 5 presents the hourly profiles of SMP and RTP
under a budget level of 20. While SMP remains relatively low and stable
throughout the day, RTP increases sharply during the daytime hours
from 8:00 to 20:00. This indicates that the ISO uses time-varying prices
to reduce demand during peak periods. The gap between SMP and RTP
represents the economic signal intended to guide user behavior.

Tables 7 and 8 present a side-by-side comparison of user-level out-
comes under two different demand response settings: one based on
subsidies only (Case Study 1), and the other combining RTP with tar-
geted subsidies (Case Study 2). In the subsidy-only case, users 1 and 2
adopt MT and FC, receiving subsidy rates of 41 % and 67 %, respec-
tively. These units generate significant amounts of electricity—408 kW-
hours and 531 kW-hours for User 1—but User 1 still purchases 704 kW-
hours from the grid, resulting in a daily purchase cost of 5.43 dollars.
Users 2 and 3, who follow similar installation decisions, purchase 1706
kW-hours and 1670 kW-hours, incurring costs of 21.76 and 22.03 dollars
per day.

In Case Study 2, users respond differently under the influence of RTP.
User 1 adds a WT, which receives a 78 % subsidy, reducing its net cost to
2.61 dollars. The user’s generation increases accordingly, while elec-
tricity purchased from the grid falls to 280.12 kW-hours. However, the
daily purchase cost rises to 13.32 dollars, reflecting the higher RTP
during certain hours. User 2 adds both WT and an ESS, receiving sub-
sidies of 78 % and 96 %, respectively. With these additions, User 2 re-
duces grid purchases to 275.35 kW-hours and lowers the purchase cost
to 12.28 dollars. The ESS actively contributes to cost control, charging
43.75 kW-hours and discharging 35.44 kW-hours. Although User 3
maintains the same DER installation in both cases, the daily purchase
cost increases from 22.03 to 26.25 dollars under RTP, despite a reduc-
tion in purchased electricity. This is due to the user’s exposure to
elevated RTP levels during peak periods.

Overall, these results show that users with flexible resources such as
ESS and WT can respond more effectively to RTP, both in terms of
reducing grid dependence and in managing daily costs. In contrast, users
without such flexibility may face higher expenses even when their total
electricity purchases are reduced. These findings highlight the impor-
tance of aligning pricing signals with user capability and DER avail-
ability, especially when RTP is used to support demand-side
coordination under limited budgets.

5.4. Performance tests

Table 9 presents the computational performance of the proposed
reformulation-and-decomposition algorithm under varying budget
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Fig. 5. SMP vs RTP over Time (Budget = 20).

levels. The table aggregates experimental results across different
numbers of electricity users (one to three) and reports the average values
for key performance indicators. The columns include the initial budget
B, the average total CPU time required to solve the problem, the number
of RMP steps, the average CPU time per RMP iteration, the number of
successful SP2 solutions, the number of infeasible SP2 instances, and the
average CPU time for solving SP2. The results indicate that computa-
tional performance varies significantly with the allocated budget.
Notably, at B = 10, the total CPU time is substantially higher than it is
when compared to solving times required for other budget levels, sug-
gesting that the algorithm encounters more complex bilevel interactions
that require additional iterations for convergence. The number of RMP
steps increases with budget, particularly beyond B = 20, which implies
that larger budgets allow the ISO to explore more complex DRP settings
before convergence. Similarly, the number of SP2 infeasibilities tends to
rise with budget, highlighting the challenge of ensuring bilevel feasi-
bility as the leader’s DRP decisions become more intricate.

Table 10 summarizes the computational performance of the pro-
posed algorithm under different numbers of electricity users. The re-
ported values are averaged over all budget settings to analyze how the
number of users affects computational complexity. The columns provide
the average total CPU time, the number of RMP steps, the average CPU
time per RMP iteration, the number of successful SP2 solutions, the
number of infeasible SP2 instances, and the average CPU time for
solving SP2. The findings reveal that as the number of users increases,
the computational burden of the algorithm grows significantly. When
the number of users increases from 1 to 3, the total CPU time exhibits a
sharp increase, indicating the increased complexity of solving bilevel
optimization problems with multiple followers. The number of RMP
steps and SP2 infeasibilities also increase, confirming that larger user
groups lead to more complex interactions that require additional itera-
tions for convergence. However, despite the increased computational
complexity, the proposed algorithm successfully identifies feasible so-
lutions in most budget settings, demonstrating its robustness in handling
multi-follower bilevel optimization problems.

It should also be noted that the experimental setup assumes a ho-
mogeneous user base with normally distributed demand profiles. While
this assumption facilitates tractable computation and controlled vali-
dation of the proposed bilevel structure, it may not fully capture the
diversity of user behaviors in real-world power systems. The current
setting was designed primarily to isolate and evaluate the structural
performance of the algorithm under exact bilevel modeling. Future
studies will aim to extend the model by incorporating clustered user
groups and empirical load data from residential, commercial, and in-
dustrial sectors to enhance behavioral realism and scalability
assessment.

Although the results reveal scalability limitations, particularly in
instances involving more than two users, the proposed algorithm retains
significant value as a benchmark tool for future method development.
Despite the increase in computational time with user count, it provides
exact solutions for small- to medium-scale bilevel instances that include
both discrete user decisions and bilinear leader-follower interactions.
While the current formulation does not enable practical solution times
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for large-scale systems, it establishes a foundational basis for evaluating
the performance of heuristic and approximation-based approaches.
Future bilevel methods aiming for scalability may benefit from using this
algorithm as a reference to assess optimality gaps, generate high-quality
initial solutions, or derive primal-dual bounds in complex grid decision
environments.

5.5. Managerial insights

The findings reveal key trade-offs between grid stability, financial
feasibility, and computational efficiency. In particular, combining RTP
with subsidy programs improves the likelihood of bilevel feasibility,
especially in scenarios involving diverse user behaviors and constrained
budgets. In contrast, subsidy-only programs often result in budget vio-
lations due to their limited flexibility in guiding user behavior. The re-
sults suggest that RTP provides a complementary mechanism for
managing demand-side decisions, helping the ISO accommodate diverse
user responses while staying within budget. This effect was especially
evident in certain budget scenarios, where the mixed DRP approach
successfully prevented infeasibilities that occurred under subsidy-only
settings.

From a computational perspective, the results reveal notable chal-
lenges in solving bilevel optimization problems involving mixed DRP
settings. The non-convex MIQCQP structure of Case Study 2 led to
significantly longer computational times, with some instances failing to
converge within the solver’s time limit. This increased complexity
highlights a fundamental trade-off: while mixed DRP settings enhance
feasibility and grid stability, they introduce additional computational
burdens. These results emphasize the need for computationally efficient
algorithms, especially as the number of participants and decision vari-
ables increases. Research into scalable reformulation techniques or
learning-based approximations could further reduce solution times
without compromising optimality. These findings suggest that a hybrid
scheme may support both DER adoption and behavioral flexibility,
particularly in contexts where static incentives alone are insufficient.
For example, tiered pricing schemes or time-of-use incentives aligned
with DER performance metrics could improve load diversity and grid
reliability.

The study also carries important policy implications for managing
decentralized power grids. The subsidy mechanism is effective in
incentivizing DER adoption, which contributes to long-term sustain-
ability by increasing renewable energy integration. However, the results
indicate that without an RTP component, users may not optimally adjust
their electricity consumption, potentially leading to inefficient grid
operations. A hybrid DRP structure that combines both financial in-
centives and market-driven pricing strategies is recommended to
improve demand-side management. Additionally, differentiated pricing
models based on user profiles and DER adoption status could enhance
the effectiveness of DRPs. By considering these strategic elements, pol-
icymakers can design more adaptive and resilient power grid systems.

Overall, the findings of this study reinforce the value of mixed DRP
settings in decentralized power grid management. While subsidy pro-
grams alone can drive DER adoption, the integration of RTP provides



Applied Energy 399 (2025) 126507

Y.-B. Woo and 1. Moon

€0°0 00°0CL | 7A 44 St'1 000 % 0 6T'1C od
200 00'¥SS 8G'6 00°0 000 %0 8G'6 LN
0 G291 000 00'96€ € 1LPsn
b'Ge SL'EY ev'l LLTE % 96 0z'ee Ssq
S0°0 ST'.S 19°C 90°0 688 % 8L PP 1T IM
€00 00°0CL | ZA44 SP'L 000 % 0 6C°1C od
200 Z8°'199 vC'Cl 99°C 000 % 0 896 LN
0 8CCI 00°0 GE'SLT T 19s)
S0°0 ST'.S 19°C 90°0 688 % 8L PP 1T IM
€00 00°0CL v.CcC SP'L 000 % 0 6C°1C od
200 €4'98S €6'1T SET 000 % 0 856 IIN
0 ceel 00°0 ¢1°08¢C T 1osn
(kep/$)
oNuaAdY (Aep/$) Um Um uoneILusn
sa[eS  1S0D aseydIng OSI 031 p[os paseyoing Areq pasreydsiq pasdreyd pajeIaun 150D 150D 150D junoury aey 150D
A1nosg Ad1n297q Ad191q AIdarg  Jo yMmy 12d 150D amod Iomod Iomod BN uneradQ dURUUTRIA Ap1sqng Ap1sqng rended  sydga  JIomorjog
*Z ApniS 9se) Jopun SaWodINo Js0d pue ‘@sn AL ‘uondope ¥Yadq
8 dIqeL
0 €0°CC 000 00°049T € 98]
0 94'1¢C 000 009041 T 19sn)
200 00°1€S ¥0'8 L0'T 1€Vl % L9 6T'1C od
200 0080t 6T'L y9'1 €6'€ % 1t 856 LN
0 ev's 000 0004 T Tesn)
(Kep/$)
anuoAvy (Kep/$) M (M topeIeURD
sa[eS 10D Iseyding OSI 01 p[os paseyoing Areq paseydsiq pasdreyd pajeIauan 150D 150D 150D junoury ey 150D
A1nsrg A1ndsrg A9 Amdsrg  Jo ymy 1ad 150D Iomod Iomod Jomod BN BuneradQ QOUBUSIUTRIA Apisqng Apisqng renden SYdd ~ Iemofioq

*I Apnig ase) Iopun saWodINo 3501 pue ‘sn AP ‘vondope Yaa

L3IqeL

14



Y.-B. Woo and 1. Moon

Table 9
Computational performance of the proposed algorithm
budget levels.

under varying initial

B($) Avg. RMP SP2

Total

cPU No. of Avg. No. of No. of Avg.

Steps CPU solved infeasible CPU
0 1.0 2.0 0.2 2.0 0.0 0.3
5 2.4 4.0 0.2 2.2 1.8 0.4
10 929.7 14.0 45.7 6.2 7.8 0.1
15 1.4 3.0 0.2 2.2 0.8 0.3
20 4.2 7.2 0.3 3.2 4.0 0.3
25 4.1 6.2 0.3 3.8 2.4 0.3
30 5.7 8.0 0.4 4.4 3.6 0.4
35 6.5 10.0 0.4 4.2 5.8 0.2
Table 10

Computational performance of the proposed algorithm under different numbers
of electricity users.

No. Avg. RMP SP2
f P

?Jsers cpu No. Avg. No. of No. of Avg.
of CPU solved infeasible CPU
Steps

1 0.3 5.7 0.1 5.7 0.0 0.0

2 19.4 12.6 1.2 4.9 7.7 0.1

3 37.7 12.8 29 3.8 9.0 0.2

greater flexibility in aligning electricity user behavior with grid stability
objectives. The proposed algorithm demonstrates strong potential for
integration into pilot-scale grid platforms where heterogeneous DER
participation is a design priority. Further work may also consider
embedding the algorithm into ISO planning tools for daily operational
scheduling.

Compared to conventional demand response programs that rely
solely on fixed installation subsidies, the proposed mixed incentive
mechanism that combines RTP with budget-limited subsidies offers
notable advantages in terms of efficiency and adaptability. The simu-
lation results indicate that this approach induces more differentiated
user responses and improves system-level outcomes, particularly when
users have diverse installation costs or consumption behaviors. RTP
provides dynamic economic signals that encourage flexible behavior,
while targeted subsidies help lower financial barriers to DER adoption.
However, the variability of price signals may introduce behavioral un-
certainty for some users, potentially affecting participation stability if
not supported by appropriate communication or guidance. This mixed
approach is particularly advantageous in contexts marked by high user
diversity and policy-driven DER targets. Conversely, in environments
requiring stable, predictable program structures, fixed subsidy models
may offer more practical benefits despite their lower responsiveness.

6. Conclusion

This study presented a bilevel optimization framework to model the
interactions between an ISO and multiple electricity users in a decen-
tralized power grid system. The proposed framework incorporates two
key DRPs of RTP and a subsidy mechanism, which together influence
user decisions on electricity consumption and DER adoption. To address
the inherent computational challenges of bilevel optimization, a
reformulation-and-decomposition algorithm was developed, ensuring
bilevel feasibility while maintaining computational tractability.

Through computational experiments, two DRP settings were
analyzed: (i) a subsidy-only program and (ii) a mixed DRP setting
combining RTP and subsidies. The results demonstrated that integrating
RTP with subsidies increases the likelihood of finding bilevel feasible
solutions by dynamically adjusting electricity prices to influence user
responses. Additionally, the mixed DRP setting resulted in more
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effective peak load reductions and improved grid stability compared to
the subsidy-only program. However, it also introduced additional
computational complexity due to the non-convex nature of the optimi-
zation problem. These findings highlight the trade-offs between feasi-
bility, grid stability, and computational efficiency in bilevel decision-
making processes.

This study has certain limitations that warrant further investigation.
The computational experiments were conducted on a finite set of test
instances with specific parameter values, meaning that broader gener-
alization requires additional validation on larger-scale power grid
models. Furthermore, the problem was analyzed within a single-day
operational horizon, whereas real-world grid management often re-
quires multi-period decision-making. Future studies should consider
multi-period bilevel optimization models that account for investment
decisions over extended planning horizons. Additionally, the develop-
ment of more advanced decomposition algorithms tailored to non-
convex bilevel models could further enhance solution scalability and
computational efficiency.

While large-scale extensions remain computationally intensive, the
current approach establishes a strong foundation, and the proposed
method offers a rigorous benchmark for future algorithmic de-
velopments. In particular, it provides a reliable reference point for
evaluating the performance and optimality of metaheuristic or learning-
based approaches aimed at solving large-scale bilevel problems that
involve both discrete follower decisions and bilinear interactions. The
exact solutions obtained from our framework can serve not only as
ground-truth baselines for small instances but also as a source of primal-
dual bounds or initial solutions in hybrid methods.

Overall, this research underscores the importance of integrating
multiple DRP mechanisms to achieve both economic and operational
efficiency in decentralized power grid management. The proposed al-
gorithm provides a practical approach to handling bilevel feasibility
constraints, enabling more adaptive and resilient grid operations. Future
research should continue refining bilevel optimization techniques to
address computational challenges and to enhance the applicability of
DRP strategies in real-world energy systems.
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