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H I G H L I G H T S

• A hierarchical interaction model between an system operator and users is formulated.
• A reformulation-and-decomposition algorithm is proposed to address bilevel feasibility.
• Two demand response program settings are compared through computational experiments.
• The applicability of the proposed solution approach is presented.
• Results reveal the economic and operational benefits of demand response participation.
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A B S T R A C T

Decentralized power grid systems present new challenges for independent system operators (ISOs) in balancing 
electricity demand, ensuring grid stability, and optimizing operational costs. A bilevel optimization problem is 
introduced to represent the hierarchical decision-making process between an ISO and multiple electricity users. 
The ISO sets subsidy rates and real-time pricing (RTP) to influence user behavior while users optimize their 
energy consumption and distributed energy resource (DER) operations. A reformulation-and-decomposition al
gorithm is proposed to address bilevel feasibility issues and to improve computational efficiency. Computational 
experiments compare two demand response programs (DRPs) settings on subsidy programs and RTP. The results 
show that integrating RTP enhances bilevel feasibility, improves peak load reduction, and increases computa
tional complexity. Budget allocation significantly impacts DRP effectiveness, with diminishing returns at higher 
levels. The findings highlight the benefits of a mixed DRP approach for improving decentralized grid operations.

1. Introduction

1.1. Background

Electricity consumption has rapidly increased globally over the last 
few decades. Globally, power grids are continuously evolving, tran
sitioning from traditional static architectures to increasingly complex 
networks. This transformation highlights the necessity of innovative 
operational strategies that extend beyond the simple delivery of elec
tricity to focus on efficiently managing energy resources and main
taining grid stability [1–3]. Peak load management is one of the core 
challenges in grid operations. When electricity demand exceeds the 
grid’s capacity, it can result in transmission network overloads, outages, 

and other critical issues. Developing effective strategies to reduce peak 
loads and ensure grid stability is thus essential. The California duck 
curve is a representative example of such challenges. In California, the 
growing share of renewable energy sources, such as solar power, has 
sharply decreased electricity demand during daylight hours. However, 
as solar generation ceases in the evening, electricity demand spikes 
significantly, resulting in wider operational fluctuations for the grid. 
This phenomenon illustrates the unintended consequences of renewable 
energy expansion and the new challenges to maintaining grid stability. 
Consequently, modern research emphasizes the need for diversified 
strategies that optimize grid operations, even if distributed energy re
sources (DERs) are not exclusively based on renewable sources [4]. 
Adopting this perspective, this study models interactions between ISOs 
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and multiple electricity users to propose methodologies aimed at 
simultaneously reducing peak loads and enhancing grid stability.

An independent system operator (ISO) plays a pivotal role in grid 
operations by ensuring grid stability and facilitating the efficient flow of 
electricity. ISOs manage electricity transmission, coordinate market 
transactions, and implement measures to maintain physical grid stabil
ity. Key responsibilities include balancing power flows between gener
ators and consumers, managing grid bottlenecks, and implementing 
recovery plans during emergencies. On the other hand, electricity users 
are integral components of the grid, consuming or generating electricity. 
They can evolve beyond mere consumers into prosumers who produce 
and sell surplus power. Some electricity users may transition into po
tential microgrids, forming self-sufficient energy systems that contribute 
to regional energy independence. Among these roles, ISOs use mecha
nisms such as real-time pricing (RTP) and subsidy policies to guide user 
behavior and maximize grid efficiency.

Modern electricity markets are categorized into various structures 
based on trading mechanisms and energy management models. This 
study highlights the significance of regional, decentralized electricity 
markets, where multiple microgrids and prosumers aim for regional 
energy independence and efficient DER utilization. In these markets, 
individual microgrids and prosumers develop autonomous production 
and consumption strategies, while ISOs coordinate their interactions to 
ensure optimal distribution of local energy resources and to maintain 
grid stability. This study proposes strategies to efficiently facilitate DER 
installation and operation in such markets. Leveraging RTP, dynamic 
pricing policies, and subsidy frameworks provides actionable insights 
into influencing user behavior and promoting DER adoption.

Discussions on related issues are abundant in the literature [5–8]. 
Topics such as ISO-user interactions, the effectiveness of demand 
response programs, optimal DER placement and operation, and the 
application of bilevel optimization in hierarchical decision-making 
structures are particularly prevalent. These discussions form a signifi
cant theoretical and practical foundation for simultaneously addressing 
grid stability and economic considerations. Details are elaborated in the 
subsequent subsection.

1.2. Literature review

Recent advancements in energy management and multi-microgrid 
systems highlight the critical role of bilevel optimization, demand 
response programs, DERs, and ISO-user interactions. These studies aim 
to address the complexities of modern power systems, integrating 
technical innovations with economic and environmental considerations. 
This section provides an overview of key contributions categorized by 
their primary focus.

Bilevel optimization methodologies have been extensively applied to 
address hierarchical decision-making in energy systems. These meth
odologies provide solutions for complex energy management problems, 
enabling effective coordination between different stakeholders. For 
instance, Bahramara et al. [9] introduced a hierarchical framework for 
active distribution grids, enabling value-based pricing of distributed 
resources. Marvasti et al. [10] proposed a system-of-systems approach 
for active distribution grids, leveraging bilevel optimization for eco
nomic dispatch. Similarly, Rider et al. [11] developed a mixed-integer 
linear programming model for optimal pricing and location of distrib
uted generation in radial distribution systems. Mobarakeh et al. [12] 
extended this concept to contract pricing of independent dispatchable 
distributed generator (DG) units, employing a bilevel pricing strategy. 
Liu et al. [13] presented a robust operation-based scheduling framework 
for smart distribution networks, incorporating multiple microgrids 
under uncertainty. Collectively, these studies demonstrate the flexibility 
and scalability of bilevel optimization for modern power grids but often 
overlook the practical implementation challenges in scenarios.

Demand response programs (DRPs) have emerged as a pivotal 
strategy for balancing grid operations and enhancing user participation. 

These programs integrate dynamic pricing and load-shifting mecha
nisms to align user consumption with grid requirements. Georgia et al. 
[14] explored leader-follower strategies for energy management in 
multi-microgrids, combining cooperative and competitive trading 
mechanisms. Wang et al. [15] investigated hierarchical power sched
uling for macrogrid and microgrid coordination, emphasizing multi- 
level power scheduling under DRPs. Hamid and Shahram [16] pre
sented a stochastic multi-objective framework for optimal energy 
management in multi-microgrids, integrating DRPs with distributed 
energy resources. Li et al. [17] developed a distributed control method 
for high-penetration renewable energy in multi-microgrids, highlighting 
the synergy between DRPs and DER integration. While DRPs effectively 
balance supply and demand, their scalability and integration with 
renewable sources remain ongoing challenges in implementation.

DER integration, coupled with storage systems, has become a 
cornerstone of modern energy management. These systems enhance the 
resilience and sustainability of energy systems by leveraging renewable 
resources and energy storage technologies. Radhakrishnan and Srini
vasan [18] proposed a multi-agent-based distributed energy manage
ment scheme, optimizing wind and solar generation in smart grids. 
Nikmehr and Ravadanegh [19] focused on optimal power dispatch in 
multi-microgrids, incorporating solar, wind, and biomass resources. 
Felipe and Tapas [20] developed a bilevel model for emissions reduction 
policies in carbon-priced markets, utilizing wind and biomass DERs. Han 
and Lee [21] introduced a two-stage stochastic programming model for 
multi-microgrid design and operation, emphasizing renewable energy 
sources. Hossein and Reza [22] presented novel technical indices for 
designing and operating multi-microgrid distribution networks, 
emphasizing their role in enhancing operational efficiency. However, 
the integration of DERs with grid-scale energy storage systems continues 
to face technical and economic barriers, particularly in terms of cost- 
effectiveness and reliability.

ISO-user interactions form a critical component of energy manage
ment, particularly in decentralized and peer-to-peer energy markets. 
These interactions enable efficient coordination between grid operators 
and users, fostering collaborative energy management strategies. Gre
goratti and Matamoros [23] modeled distributed energy trading for 
multi-microgrid scenarios, emphasizing decentralized market struc
tures. Esther et al. [24] designed peer-to-peer energy markets within 
urban microgrids, demonstrating the feasibility of local energy trans
actions. Saad et al. [25] employed coalitional game theory to optimize 
microgrid distribution networks, fostering cooperative strategies among 
users. Wang et al. [26] proposed a peer-to-peer transaction method for 
diversified prosumers in urban microgrids, highlighting the potential of 
localized energy trading. While these studies illustrate the feasibility of 
decentralized energy systems, challenges remain in standardizing 
transaction protocols and in ensuring equitable resource allocation 
across participants.

Despite these contributions, existing studies often lack comprehen
sive frameworks for multi-follower decision-making in hierarchical 
structures. Many focus narrowly on single-layer optimization or specific 
DRP implementations, limiting their applicability to broader, real-world 
contexts. In contrast, the study presented in Section 3 addresses these 
limitations by developing a bilevel optimization model tailored for ISO- 
user interactions, incorporating multi-follower decision-making and 
RTP strategies, thereby bridging critical gaps in prior research.

1.3. Research gap and key contributions

While existing studies on demand response and DER coordination 
have offered foundational insights, they often focus on single-user sce
narios or isolated microgrid systems, overlooking the complexity of 
multi-user interactions and hierarchical decision-making in realistic 
power systems. While these models offer analytical simplicity, they 
overlook the complexity of multi-user interactions and the hierarchical 
decision-making structure present in real-world power systems. 
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Additionally, the integration of RTP and installation subsidies has been 
explored separately, with limited attention given to their combined ef
fects under budget constraints. Furthermore, many bilevel optimization 
approaches fail to scale efficiently when incorporating discrete user- 
level decisions.

To address these limitations, this study addresses the following core 
question: How can we design a bilevel demand response framework that 
effectively combines RTP and installation subsidies while maintaining 
computational scalability and behavioral realism in multi-user settings? 
To this end, a comprehensive framework is proposed to capture the 
operational, economic, and computational challenges involved in 
coordinating multiple electricity users under a unified demand response 
mechanism. The main contributions of this study are as follows: A 
bilevel optimization model is formulated to describe the hierarchical 
interaction between an ISO and multiple electricity users. 

• A mixed-incentive scheme is introduced, combining RTP and budget- 
limited subsidies to influence user participation and DER adoption.

• A scalable solution method is developed using reformulation based 
on Karush–Kuhn–Tucker (KKT) conditions and generalized Benders 
decomposition to address the resulting mixed-integer structure.

• Simulation experiments are conducted to evaluate the effects of the 
incentive mechanisms on both user behavior and grid-level 
outcomes.

These contributions collectively establish a modeling and algo
rithmic framework that bridges the gap between theoretical bilevel 
optimization and practical DR program design. In particular, the pro
posed solution method improves scalability by decoupling ISO-level and 
user-level decisions through a KKT-based reformulation, and efficiently 
handles discrete installation decisions using generalized Benders 
decomposition. This technical structure distinguishes it from conven
tional bilevel methods that typically rely on full enumeration or heu
ristic approximations. Moreover, the joint analysis of RTP and subsidy 
mechanisms allows for a more accurate reflection of real-world incen
tive environments, and the simulation results provide concrete guidance 
on policy design under realistic budget constraints.

To further clarify the novelty and practical advantages of the pro
posed approach, a comparison is provided with traditional bilevel 
optimization techniques used in related studies. Traditional approaches, 
particularly those based on single-level reformulations using KKT con
ditions or complementarity constraints, often result in large-scale non- 
convex programs that face difficulties when incorporating discrete 
follower-level decisions. Such methods also suffer from infeasibility is
sues, especially under budget-constrained bilevel formulations where 
the leader’s feasible region is not guaranteed to align with the follower’s 
optimal response. In contrast, the proposed algorithm adopts a hybrid 
strategy that reformulates each follower’s problem under fixed discrete 
decisions using KKT conditions and embeds these into a generalized 
Benders decomposition framework. This two-level design separates best- 
response computation from bilevel feasibility validation through 
distinct subproblems, thereby enabling robust convergence. Further
more, by using special ordered set type 1 (SOS1) constraints, the algo
rithm avoids reliance on large big-M constants, thereby improving 
numerical stability and model interpretability. These structural en
hancements make the proposed algorithm well-suited for realistic DRP 
design environments, where system-scale coordination, budget limita
tions, and combinatorial user behavior must be simultaneously 
addressed.

1.4. Paper organization

The remainder of the paper is organized as follows. Section 2 in
troduces the research problem, detailing the nature of ISO-user in
teractions and the role of demand response programs in improving grid 
operations. Section 3 describes the bilevel optimization framework, 

presenting the mathematical formulations for ISO and user objectives. It 
also describes the development of a computational algorithm to solve 
the optimization problem efficiently in Section 4. Section 5 discusses the 
experimental design, the performance metrics, and the results, demon
strating the practical applicability and effectiveness of the framework. 
Finally, conclusions are drawn, and areas for future work are recom
mended in Section 5.

2. Problem description

2.1. Problem statement

The ISO serves as the central coordinator in the electricity grid, 
facilitating efficient energy flow and maintaining system stability. As 
depicted in Fig. 1, the ISO procures electricity from the main grid and 
distributes it to multiple electricity users (or microgrids). Through RTP 
and subsidy programs, the ISO balances its multi-objective framework 
by influencing electricity users to achieve grid stability and cost opti
mization goals. In the RTP program, the ISO predetermines real-time 
retail electricity prices, enabling followers to observe price signals and 
adjust their consumption patterns accordingly. Followers respond by 
shifting their electricity usage to periods where the ISO assigns lower 
prices to specific time slots, effectively aligning demand with grid sta
bility objectives. The subsidy program supports the deployment of small- 
scale DERs. The ISO provides financial incentives for DER adoption, and 
users subsequently assess the economic feasibility of installing a set of 
DERs. If a user decides to install DERs, the user—now operating as a 
microgrid—can generate its own electricity, reducing reliance on the 
main grid and participating in energy trading with the ISO.

The ISO’s multi-objective framework encompasses both operational 
and economic goals. From an operational perspective, the primary 
objective is to ensure grid stability by maintaining a balanced supply 
and demand. Specifically, in this problem, grid stability is assessed by 
observing fluctuations in peak load, where a lower recorded peak load is 
considered indicative of higher system stability. By managing DRPs, the 
ISO aims to mitigate extreme peak loads, thereby enhancing overall grid 
reliability. Economically, the ISO aims to minimize system-wide costs, 
including generation, transmission, and distribution expenses, while 
also promoting the integration of renewable energy sources. The ISO 
accounts for system-wide costs by structuring DRPs, which allocate 
budgets for managing electricity consumption patterns across the power 
grid system. These programs play a crucial role in optimizing cost effi
ciency while ensuring a reliable power supply. Moreover, as a non-profit 
entity, the ISO’s primary focus tends to align more closely with opera
tional objectives rather than with direct cost minimization. While eco
nomic considerations remain important, the ISO emphasizes grid 
stability and reliability, as these factors are fundamental to its role in 
maintaining an efficient and resilient electricity market.

To simplify the problem and to ensure practical applicability, this 
study operates under the following assumptions. The ISO is responsible 
for minimizing peak loads and for improving grid efficiency while 
managing DRPs such as subsidies and RTP mechanisms. Microgrids 
independently optimize their energy strategies but are influenced by the 
ISO’s DRPs.

2.2. Distributed energy resources

In this problem, DERs are key components in decentralized power 
grid systems, focusing on their integration within microgrids under 
uncertain renewable energy conditions. The generation output of 
renewable energy sources (RESs), such as photovoltaic panels (PV) and 
wind turbines (WT), is inherently uncertain due to solar irradiation and 
wind speed fluctuations. To address uncertainty on RES, this study relies 
on pre-estimated data from prior research and forecasting methods to 
compute generation profiles, ensuring a realistic assessment of available 
renewable energy potential without explicitly modeling uncertainty 
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[27–30].
The production capacity of renewable energy resources is intrinsi

cally linked to the availability of essential natural resources, including 
but not limited to wind speed and solar irradiation [27]. This study le
verages historical data to forecast the expected values of these param
eters. Specifically, the anticipated power output from wind turbines is 
estimated based on wind speed forecasts, which follow a standard 
output curve defined as follows [28]: 

PWT
t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ vt ≤ vci

Pr

(
vt − vci

vr − vci

)

, vci ≤ vt ≤ vr

Pr, vr ≤ vt ≤ vco

0, vco ≤ vt ≤ vci

(1) 

where vci, vr, and vco denote the cut-in, rated, and cut-out speeds of the 
wind turbine, respectively. Pr represents the rated power of the WT, and 
vt is forecasted wind speed at time t. Similarly, the power output of each 
photovoltaic module is estimated based on the expected solar radiation 
using the following quadratic function [30]: 

PPV
t = APVs2

t +BPVst +CPV (2) 

where st is the forecasted solar radiation at time t, and APV , BPV , and CPV 
are empirical coefficients derived from historical data. While these 
models are used to generate input data for optimization, it is acknowl
edged that the actual output of renewable DERs is subject to inherent 
uncertainty. To simplify the optimization problem and ensure compu
tational tractability, deterministic forecasts for renewable outputs are 
adopted in this study, without explicitly modeling stochasticity. This 
assumption may limit the robustness of the results under real-world 
conditions, and the integration of stochastic or robust optimization is 
identified as a valuable direction for future research.

In addition to RESs, fuel cells (FCs), microturbines (MTs), and energy 
storage systems (ESSs) are considered in this study. Although these re
sources are not directly dependent on RESs, they are crucial in 

maintaining grid stability by providing dispatchable power sources that 
enhance system flexibility in response to variable demand and inter
mittent renewable generation. Therefore, their installation and opera
tion are incorporated into the problem formulation as part of the overall 
grid stability strategy.

Due to the small-scale nature of DERs, their deployment is treated as 
an operational decision rather than as a strategic investment. The 
introduced problem reflects DER systems’ flexible and modular char
acteristics, where decisions regarding their operation and utilization are 
made on a shorter time scale compared to decisions made in large-scale 
power plants. The capital cost of DER installations is converted into 
daily equivalent costs using the capital recovery factor (CRF), ensuring 
consistency with the daily operational time horizon considered in this 
study.

2.3. Demand response programs and an ISO’S economic measures

The ISO implements two types of DRPs: RTP and the subsidy 
mechanism. The first DRP, RTP, allows the ISO to dynamically set retail 
electricity prices within predefined upper and lower bounds for each 
time slot. As an intermediary between the main grid and electricity 
users, the ISO procures electricity from the main grid and redistributes it 
based on user demand. The main grid’s electricity procurement cost 
follows a predetermined system marginal price (SMP), while the RTP set 
by the ISO determines the retail price for users. The price difference or 
surplus resulting from the RTP mechanism is accounted for in the ISO’s 
daily operational cost. The second DRP, the subsidy mechanism, pro
vides financial support to electricity users by covering a portion of DER 
installation costs. The ISO first determines the subsidy rate for each DER, 
after which users assess the economic feasibility of DER adoption. As 
previously discussed in Section 2.2, installation costs are incorporated 
into the operational model using CRFs to ensure consistency with the 
daily operational time horizon. If a user installs DERs and generates 
surplus electricity, the ISO may purchase the excess energy at a price 
aligned with the SMP. This mechanism allows microgrids to actively 
participate in the energy market while ensuring a balance between 

Fig. 1. Hierarchical structure of ISO and multiple microgrids.
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supply and demand.
Specifically, the ISO’s total daily operational cost is formulated as the 

sum of three primary components: (i) the price difference or surplus 
resulting from RTP-based electricity pricing, (ii) the cost of purchasing 
surplus electricity from DER-equipped users, and (iii) the total subsidy 
allocation for DER installations. By structuring these demand response 
programs, the ISO optimizes grid operations while maintaining cost ef
ficiency and grid stability.

3. Multi-follower bilevel program model

In this section, the problem is formulated as a bilevel optimization 
model, capturing the hierarchical relationship between the ISO and 
microgrids. At the upper level, the ISO determines RTP and subsidy 
allocation strategies to minimize peak loads and operational costs. At 
the lower level, multiple electricity users or microgrids optimize their 
energy consumption, DER operations, and energy trading strategies to 
minimize their individual costs, guided by the ISO’s signals. The hier
archical optimization structure effectively models the intricate trade- 
offs and interactions between the ISO and microgrids.

3.1. Notations

Before presenting mathematical formulations, the notations used in 
the bilevel optimization model including indices, parameters, and var
iables, are introduced as follows. Indices represent key entities such as 
electricity users, time slots, and DER units. Parameters specify fixed 
values related to system constraints, costs, and efficiencies, while vari
ables denote decision-making elements at both the ISO and microgrid 
levels.

Index and Set.
i index for electricity user
t index for time slot
k index for DER unit
I set of users
K set of DER units, K = {MT, FC,WT,PV,ESS}
KDG set of DGs, KDG = {MT, FC,WT,PV}
KRES set of DGs related with RES, KRES = {WT,PV}

Parameters.
αcrf

k capital recovery factors of DER unit k
αgen

k energy conversion efficiency of DG k ∈ KDG\KRES

αcha charging efficiency of ESS
αdis discharging efficiency of ESS
cprice

t electricity price at time t
crtp

t upper limit of real‑tine pricing at time t
crtp

t lower limit of real‑tine pricing at time t
coper

k operating cost of DER unit k
cmain

k maintenance cost of DER unit k
pit demand of electricity load of follower i at time t
πk capital cost of DER unit k
B initial budget
Pk maximum allowable power output of DER unit k
Pk minimum allowable power output of DER unit k
ΔPk ramp-up rate of DER unit k
ΔPk ramp-down rate of DER unit k
PRES

ikt estimated energy potential of RES k for follower i at time t

Pcha maximum charging rate of ESS

Pdis minimum charging rate of ESS
E maximum state of charge of ESS
E minimum state of charge of ESS

Variables.
pin

it the amount of electricity purchased by user i from the ISO at time t
pout

it the amount of electricity sold by user i to the ISO at time t
pgen

ikt the amount of electricity generated by DG k of user i at time t
(continued on next column)

(continued )

pcha
it the amount of electricity charging into ESS of user i at time t

pdis
it the amount of electricity discharging from ESS of user i at time t

xsub
k subsidy rate associated with DER unit k

xrtp
t electricity price determined by the ISO at time t

yik binary variable: 1 if user i installs DER k, otherwise 0

3.2. Leader’s optimization problem

The leader’s optimization problem focuses on the ISO’s multi- 
objective optimization goals of enhancing power grid operational effi
ciency and cost optimization. These objectives are addressed using the 
ε-constraint method, guiding the ISO in determining RTP and subsidy 
levels to influence user behavior while balancing budget constraints and 
grid stability requirements.

The ISO’s first objective in the bilevel optimization problem is to 
minimize the peak load throughout the planning period, which in this 
study is defined as one day. The leader’s objective function for the grid 
stability requirements is formulated in Eq. (3), where the term 

∑
∀i
(
pin

it −

pout
it
)

represents the total power transaction volume for all electricity 
users at time t. 

min.max
∀t∈T

{
∑

∀i

(
pin

it − pout
it
)
}

(3) 

The second objective of the ISO, represented in Eq. (4), is to minimize 
the total daily operational cost while ensuring that it does not exceed the 
initial budget B. This formulation is also based on the ε-constraint 
method. The daily operational cost consists of the profit (or loss) from 
power transactions and the total subsidies paid to users for DER in
stallations. Eq. (5) describes the profit from power redistribution and 
trading. The first term represents revenue (or loss) from the difference 
between the wholesale price (SMP) and the retail price (RTP) set by the 
ISO. The second term accounts for the cost of purchasing surplus power 
from the users. Eq. (6) calculates the total subsidies provided to users 
who install DERs. 

s.t.
∑

∀i

[
∑

∀t
Cprof

it +
∑

∀k
Csub

ik

]

≤ B (4) 

Cprof
it =

(
cprice

t − xrtp
t
)
pin

it + cprice
t pout

it , ∀i,∀t (5) 

Csub
ik = αcrf

k πkxsub
k yik, ∀k ∈ K (6) 

The decision variables on RTP and subsidy rates are defined in Eqs. 
(7)–(8). 

crtp
t ≤ xrtp

t ≤ crtp
t ∀t (7) 

0 ≤ xsub
k ≤ 1∀k ∈ K (8) 

3.3. Followers’ optimization problems

The followers’ problems represent the decision-making processes of 
individual microgrids or electricity users. Each user optimizes their 
energy usage, DER operations, and participation in energy trading based 
on the pricing and subsidy signals provided by the ISO. The follower’s 
objective is to minimize individual operational costs while adhering to 
local constraints such as energy balance and DER capacity.

The objective function in Eq. (9) represents the cost function of the 
followers. The associated variables include the cost function for power 
transactions with the ISO, the operational cost functions for MT and FC, 
the maintenance cost functions for PV and WT, the maintenance cost 
function for energy storage systems, and the investment cost function for 
DER units. These functions are presented in Eqs. (10)–(14). 
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min.
∑

∀t

(

Cexch
it +

∑

∀k∈K

CDER
ikt

)

+Cinv
ik (9) 

s.t.Cexch
it = xrtp

t pin
it − cprice

t pout
it , ∀t (10) 

CDER
ikt =

(
coper

k

/
αgen

k

)
pgen

ikt ,∀k ∈ K\KRES,∀t (11) 

CDER
ikt = cmain

k pgen
ikt ,∀k ∈ KRES,∀t (12) 

CDER
ikt = cmain

ESS
(
pcha

it + pdis
it
)
, k = ESS, ∀t (13) 

Cinv
ik = αCRF

k πk
(
1 − xsub

k
)
yik,∀k ∈ K (14) 

The power generation capabilities of dispatchable resources, such as 
MT and FC, are contingent upon their installation within the microgrid. 
These resources operate within defined capacity limits, with their output 
constrained by the maximum Pk and minimum Pk allowable power 
levels. In contrast, non-dispatchable resources, including PV and WT, 
generate active power based on their estimated energy potential, PRES

ikt , 
which is forecasted from environmental conditions like solar irradiance 
and wind speed. However, the availability of these renewable resources 
does not guarantee consistent output, even when connected to the 
microgrid. Furthermore, the rate at which power output can change is 
regulated by ramp rate constraints, ensuring a smooth transition in 
power generation. These constraints include the ramp-up ΔPk and ramp- 
down ΔPk limits, which help maintain grid stability during dynamic 
operational changes. The detailed constraints related to DGs are pre
sented in Eqs. (15)–(18). 

Pkyik ≤ pgen
ikt ≤ Pkyik, ∀k ∈ KDG\KRES,∀t (15) 

pgen
ikt ≤ PRES

ikt yik, ∀k ∈ KRES,∀t (16) 

pgen
i,k,1 ≤ ΔPkyik, ∀k ∈ KDG (17) 

ΔPkyik ≤ pgen
ikt − pgen

i,k,t− 1 ≤ ΔPkyik, ∀k ∈ KDG,∀t = 2…24 (18) 

The charging and discharging rates of ESS are restricted by their 
respective maximum allowable rates, ensuring that the system operates 
within safe and efficient limits. Furthermore, the energy level within the 
ESS at any given time t must remain between its minimum capacity E 
and maximum capacity E. These constraints ensure that the ESS operates 
within its designed parameters. Additionally, since an ESS stores direct 
current power, the system accounts for charging and discharging effi
ciencies αcha and αdis, converting alternating current power into storable 
energy. At time t, the power that can be charged or discharged is further 
constrained by the upper bounds, Pcha and Pdis, respectively. The ESS 
constraints are formulated in detail in Eqs. (19)–(21), which incorporate 
these operational boundaries. 

0 ≤ pcha
it ≤ Pchayi,ESS,∀t (19) 

0 ≤ pdis
it ≤ Pdisyi,ESS,∀t (20) 

EyESS ≤
∑t

a=1

(
αchapcha

ia − pdis
ia
/

αdis) ≤ EyESS,∀t (21) 

Eq. (22) represents the constraint on energy balance. The total power 
transacted with the ISO and the power generated by distributed gener
ators must equal the energy demand and the charging or discharging 
volume of follower i at time t. A critical aspect of the constraint is that at 
any given time t, power transactions with the ISO must occur through 
only one channel—purchasing or selling electricity, but not both 
simultaneously. The same condition applies to charging and discharging 
operations for ESS. While the restriction is automatically enforced by the 
objective function’s coefficient settings during the follower’s 

optimization process, it is important to note that ignoring the follower’s 
objective function could lead to a situation where both channels 
simultaneously hold non-negative values. 

pin
it − pout

it +
∑

∀k
pgen

ikt = pit +αchapcha
it − αdispdis

it ,∀t (22) 

All continuous decision variables of the followers, such as pin
it , pout

it , 
pgen

ikt , pcha
it , and pdis

it are constrained to be non-negative. However, certain 
solutions obtained from the follower’s optimization problem may be 
infeasible for the leader’s problem, even if the decision variables satisfy 
the constraints. This discrepancy arises when the follower’s decision 
variables conflict with constraints specific to the leader’s optimization 
problem. In the proposed bilevel model, conflict arises when the fol
lower’s response to DRPs exceeds the ISO’s constrained budget. Such a 
conflict prevents the use of backward induction—a sequential solution 
method for leader-follower models that involves determining the fol
lower’s best response to the leader’s decision. Backward induction relies 
on the assumption that the follower’s solution space is entirely 
compatible with the leader’s constraints, which is not guaranteed in the 
addressed problem. To address this challenge and to ensure a feasible 
solution, the study adopts a bilevel programming approach. Specifically, 
the bilevel program is transformed into an equivalent single-level opti
mization problem, as suggested by Kovács and Kovács [31]. However, 
the reformulation technique cannot be directly applied to the presented 
bilevel program due to the inclusion of discrete decision variables in the 
follower’s problem, which violates the assumptions of standard refor
mulation techniques based on KKT conditions [32–34]. To overcome the 
limitations, the next section introduces a reformulation-and- 
decomposition algorithm. The solution approach separates the bilevel 
program into a master problem and subproblems, ensuring compati
bility between the leader’s and follower’s constraints while maintaining 
computational tractability.

4. Reformulation-and-decomposition algorithm

This section introduces a solution approach to solving the bilevel 
problem for multiple electricity users interacting with an ISO. The al
gorithm leverages reformulation and decomposition techniques to 
address the complexity introduced by multiple followers with diverse 
decision variables and objectives. The proposed method ensures 
computational efficiency and scalability by transforming the bilevel 
problem into a single-level optimization problem and then breaking it 
into smaller, tractable subproblems. The process accounts for both 
continuous and discrete variables while maintaining the hierarchical 
structure of leader-follower interactions, ensuring accurate and practical 
solutions for grid operations.

4.1. Reformulation

To address the hierarchical nature of the bilevel optimization prob
lem, the original model is reformulated into a single-level problem. This 
reformulation replaces the follower’s problem with its KKT conditions, 
allowing the ISO to incorporate the followers’ optimal responses in its 
decision-making. However, KKT conditions are applicable only if the 
follower’s problem is convex and satisfies strong duality [35,36]. In this 
study, the presence of discrete decision variables in the follower’s 
problem poses a challenge to directly applying KKT-based 
reformulation.

To resolve this issue, each follower’s problem is decomposed into 
manageable subproblems. Specifically, the discrete variables of the 
followers yik are treated as constant during the reformulation procedure. 
By fixing these variables, the follower’s problem is decomposed into 
several subproblems, and each subproblem becomes a linear program, 
enabling the use of KKT conditions to approximate the follower’s 
optimal responses. The bilinear terms xrtp

t pin
it and xsub

k yk in the follower’s 
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objective function are treated as linear term or constant because the 
ISO’s decision variables are fixed as constants from the follower’s 
perspective. The reformulation of decomposed subproblems ensures that 
the problems remain both mathematically rigorous and computationally 
tractable.

The reformulation is performed by substituting a decomposed sub
problem for each follower i as defined in Eqs. (9)–(21) with its corre
sponding KKT conditions. As a result of substitution, the stationarity 
conditions for each follower i are expressed in Eqs. (23)–(32). 

xrtp
t + vC20

i,t − uin
i,t = 0,∀t (23) 

− cprice
t − vC20

i,t − uout
i,t = 0, ∀t (24) 

coper
i

/
αgen

i + cmain
i + uC20

i,k,t + uC20
i,k + uC20l

i,k,t+1 − uC16u
i,k,t+1 + vC20

i,t − ugen
i,k,t = 0,∀k

∈ KRES, t = 1
(25) 

coper
i

/
αgen

i + cmain
i + uC14

i,k,t + uC16l
i,k,t+1 − uC16l

i,k,t + uC16u
i,k,t − uC16u

i,k,t+1 + vC20
i,t − ugen

i,k,t

= 0, ∀k ∈ KRES,∀t = 2,…,23
(26) 

coper
i

/
αgen

i + cmain
i + uC14

i,k,t − uC16l
i,t + uC16u

i,t + vC20
i,t − ugen

i,k,t = 0,∀k ∈ KRES, t = 24

(27) 

coper
i

/
αgen

i + cmain
i − uC13l

i,k,t + uC13u
i,k,t + uC16l

i,k,t+1 − uC16u
i,k,t+1 + vC20

i,t − ugen
i,k,t = 0, ∀k

∈ K\KRES, t = 1
(28) 

coper
i

/
αgen

i +cmain
i − uC13l

i,k,t +uC13u
i,k,t +

(
uC16l

i,k,t+1 − uC16l
i,k,t +uC16u

i,k,t − uC16u
i,k,t+1

)
+vC20

i,t − ugen
i,k,t

=0,∀k∈K\KRES,∀t=2,…,23
(29) 

coper
i

/
αgen

i + cmain
i − uC13l

i,k,t + uC13u
i,k,t − uC16l

i,t + uC16u
i,t + vC20

i,t − ugen
i,k,t = 0, ∀k

∈ K\KRES, t = 24 (30) 

cmain
ESS + uC17

i,t −
∑nT

a=t

(
αchauC19u

i,a − αchauC19l
i,a

)
− vC20

i,t − ucha
i,t = 0,∀t (31) 

cmain
ESS + uC17

i,t +
∑nT

a=t

(
uC18l

i,a

/
αdis − uC18u

i,a

/
αcha

)
+ vC19

i,t − udis
i,t,s = 0,∀t (32) 

where the notation u represents the non-negative dual variables asso
ciated with inequality constraints in Eqs. (15)–(21) and the non-negative 
primal variables, while the notation v describes the unrestricted dual 
variable corresponding to the equality constraint in Eq. (22).

Next, the complementary slackness conditions are formulated as 
shown in Eqs. (33)–(42). These conditions ensure that the primal and 
dual solutions satisfy the equilibrium necessary for bilevel optimization, 
providing a coherent framework for integrating follower decisions into 
the leader’s problem. In contrast to traditional methods that rely on Big- 
M formulation to linearize bilinear terms, this study employs SOS1 
constraints to manage the discrete nature of the decision variables. SOS1 
constraints are particularly advantageous as they explicitly enforce 
sparsity, ensuring that only one variable in a predefined set can take a 
nonzero value at any given time. This property simplifies the reformu
lation process and eliminates the need for arbitrary scaling factors 
inherent in Big-M formulation. The remaining conditions, such as primal 
feasibility, are associated with Eqs. (15)–(22). The dual feasibility con
ditions are associated with the dual variables introduced in Eqs. (23)– 
(32). 

0 ≤ uC13l
i,t ⊥

(
Pkyi,k − pgen

i,k,t

)
≤ 0,∀k ∈ KDG\KRES, ∀t (33) 

0 ≤ uC13u
i,t ⊥

(
pgen

i,k,t − Pkyi,k

)
≤ 0, ∀k ∈ KDG\KRES,∀t (34) 

0 ≤ uC14
i,t ⊥

(
pgen

i,k,t − PRES
i,k,t yi,k

)
≤ 0,∀k ∈ KRES, ∀t (35) 

0 ≤ uC15
i,t ⊥

(
pgen

i,k,1 − ΔPiyi

)
≤ 0, ∀k ∈ KRES, t = 1 (36) 

0 ≤ uC16l
i,t ⊥

(
ΔPkyi,k − pgen

i,k,t + pgen
i,k,t− 1

)
≤ 0, ∀k ∈ KDG,∀t = 2,…,24 (37) 

0 ≤ uC16u
i,t ⊥

(
pgen

i,k,t − pgen
i,k,t− 1 − ∇Pkyi,k

)
≤ 0,∀k ∈ KDG, ∀t = 2,…,24 (38) 

0 ≤ uC17
i,t ⊥

(
pcha

i,t − Pchayi,ESS

)
≤ 0, ∀t (39) 

0 ≤ uC18
i,t ⊥

(
pdis

i,t − Pdisyi,ESS

)
≤ 0, ∀t (40) 

0 ≤ uC19l
i,a ⊥EyESS −

∑t

a=1

(
αchapcha

i,a − pdis
i,a

/
αdis
)
≤ 0, ∀t (41) 

0 ≤ uC19u
i,a ⊥

∑t

a=1

(
αchapcha

i,a − pdis
i,a

/
αdis
)
− EyESS ≤ 0, ∀t (42) 

In the following subsections, the decomposition technique used to 
apply the KKT conditions to each subproblem within the proposed so
lution approach is described. It is important to distinguish between two 
levels of decomposition: one applied to the follower’s problem in the 
reformulation process and the other to the overall bilevel model. Spe
cifically, the decomposition of the follower’s problem involves fixing 
discrete variables to enable the application of strong duality, thereby 
reformulating the lower-level problem. On the other hand, the decom
position technique applied to the bilevel model is designed to control the 
growth of variables and constraints as the problem size increases, 
ensuring computational efficiency during the algorithmic search 
process.

4.2. Generalized benders decomposition

In the previous subsection, the KKT conditions were introduced to 
replace each decomposed subproblem by fixing discrete variables. 
However, as the number of subproblems increases, as the number of 
subproblems increases with the growth in discrete variable combina
tions, the number of variables and constraints in the bilevel model 
incorporating these KKT conditions increases exponentially. To address 
this issue efficiently, a generalized Benders decomposition technique is 
applied. For clarity, vector-based notations for the decision variables are 
defined below before presenting the decomposition procedure. 

x =
[
xsub

k , xrtp
t
]T
, p =

[
pin

it , p
out
it , pgen

ikt , p
cha
it , pdis

it
]T
, and y = [yik]

T (43) 

The decomposition process divides the original bilevel model into a 
master problem and subproblems. The master problem, denoted as MP, 
incorporates the KKT conditions and optimality cuts for all subproblems 
of each follower, as formulated in (44)–(51). In the master problem, p0 
and y0 are auxiliary decision variables for checking the feasibility of 
followers’ responses and the optimality from KKT conditions. The 
auxiliary decision variables ps are used to determine the followers’ best 
response to the leader’s decision x. Each subproblem is enumerated with 
the combination of the constant discrete variables ys and for follower i. 
The KKT conditions in (51) impose constraints on the follower’s best 
response for each subproblem defined by ys. Specifically, these condi
tions ensure that the feasible solution ps and ys, are used in the master 
problem to restrict the auxiliary decision variables p0 and y0 through 
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optimality cuts associated with the follower’s objective function in (51). 

min. F
(
x, p0, y0

)
: Eq.(3) (44) 

s.t. G
(
x, p0, y0

)
≤ 0 : Eqs.(4) and (7)–(8) (45) 

H
(
x, p0, y0

)
= 0 : Eqs.(5)–(6) (46) 

gi
(
x, p0, y0

)
≤ 0, ∀i : Eqs.(15)–(21) (47) 

hi
(
x, p0, y0

)
= 0, ∀i : Eqs.(10)–(14) and (22) (48) 

p0 ≥ 0 (49) 

y0 ∈ B (50) 

fi
(
x, p0, y0

)
≤ fi(x, ps, ys)

∇ps fi(x, ps, ys) + ∇ps gi(x, ps, ys)
Tu +∇ps hi(x, ps, ys)

Tv = 0
gi(x, ps, ys) ≤ 0
hi(x, ps, ys) = 0

gi(x, ps, ys)
Tu = 0

u ≥ 0
ps ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

∀ys ∈ S

(51) 

where F( • ), G( • ), and H( • ) denote the objective function, inequality 
constraints, and equality constraints of the ISO, respectively. The nota
tions fi( • ), gi( • ), and hi( • ) signify the objective function, inequality 
constraints, and equality constraints of follower i, (respectively)

However, the set S of discrete variable combinations can grow 
significantly depending on the problem instance, leading to an increase 
in the model size. To address this, a Benders decomposition-based 
approach is adopted, which iteratively explores solutions by starting 
from a relaxed master problem (RMP), defined over a limited set S0, 
and progressively adds new discrete variable combinations for the fol
lowers. These combinations are explored through a two-stage sub
problem framework.

The first subproblem, denoted as SP1, determines the follower’s best 
response corresponding to the leader’s decision x* given from RMP. 
Specifically, SP1 is equivalent to the follower’s optimization problem 
defined by the objective function in Eq. (9) and the associated con
straints in Eqs. (10)–(22). Let (p*

0, y*
0) be the best solution for SP1. The 

corresponding objective function value fi
(
x*, p*

0, y*
0
)

is set as θ*
i . The 

second subproblem, denoted SP2, explores a feasible solution from the 
leader’s perspective while keeping x* fixed and ensuring that the fol
lower’s best solution obtained from SP1 is satisfied. The SP2 formula
tion is given by Eqs. (44)–(50) along with Eq. (52). Eq. (52) integrates 
the best objective value θ*

i obtained from SP1, ensuring that the leader’s 
decision-making process properly accounts for the follower’s optimal 
behavior. 

fi
(
x, p0, y0

)
≤ θ*

i ,∀i (52) 

In this Benders decomposition-based technique, the RMP always 
provides a relaxed solution, whereas SP2 searches for a feasible primal 
solution or reports infeasibility. The iterative process continues until no 
further discrete variable combinations ys need to be added to the master 
problem. Specifically, if the solutions obtained from RMP and SP2 
converge to the same result, the procedure terminates, yielding the best 
solution. Alternatively, the procedure may terminate with an alternative 
solution where the follower’s optimal response does not satisfy the 
leader’s constraints. The latter case is further discussed in detail in the 
computational experiments section. To systematically implement this 
decomposition-based technique, the detailed algorithmic procedure is 
outlined in the following section.

4.3. Algorithm procedures

The flowchart of the proposed reformulation-decomposition algo
rithm is illustrated in Fig. 2. The algorithm begins with an initialization 
phase where key variables such as the lower bound LB and upper bound 
UB are initialized to negative and positive infinity, respectively, and a 
tolerance level of ε is set to ensure convergence. An empty set S0 (or Sk) 
is also initialized to store discrete variable combinations explored during 
the iterations. Next, the current lower bound is updated based on the 
relaxed solution of the RMP. Subsequently, the feasibility of the leader’s 
best solution x* from RMP is verified with respect to the bilevel opti
mization problem. This is done through solving two subproblems, SP1 
and SP2, which ensure that the leader’s decisions are compatible with 
the followers’ optimal responses. Specifically, SP1 evaluates the objec
tive function value corresponding to the followers’ optimal response to 
the leader’s decision x*. Meanwhile, SP2 provides a solution to the 

Fig. 2. Flowchart of the reformulation-and-decomposition algorithm.
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original problem by incorporating the obtained follower’s objective 
function value while keeping x* fixed, without imposing restrictions on 
the follower’s decisions. If an alternative solution exists in SP2, it sat
isfies feasibility and is used to update the primal bound. Next, the gap 
between the dual bound and the primal bound is computed, and if the 
convergence criterion is met, the best solution from either RMP or SP2 is 
returned. If the convergence condition is not satisfied, the combination 
of values of y*

0 is added to the set S0 (or Sk), and the corresponding KKT 
conditions and optimality cut, as defined in Eq. (51), are incorporated 
into RMP. However, if SP2 results in infeasibility, the combination of 
values of y0 obtained from SP1 is instead used to update the set S0 (or Sk) 
and Eq. (51). This iterative procedure continues until either (i) the dual- 
primal gap falls below the predefined tolerance ϵ, or (ii) neither SP1 nor 
SP2 identifies a new y*

0.
The proposed algorithm offers several key advantages in addressing 

the challenges of solving bilevel optimization problems, particularly in 
multi-follower scenarios. By leveraging SOS1 constraints, the algorithm 
effectively incorporates discrete decision variables without the compu
tational burden associated with Big-M relaxation. This approach en
hances numerical stability and eliminates reliance on arbitrary scaling 
factors, streamlining the solution process for problems involving mixed- 
integer variables. Another key advantage of the algorithm is its scal
ability. By decomposing the problem into a master problem and 
manageable subproblems, the algorithm maintains computational effi
ciency even as the number of followers and the complexity of decision 
variables grow. This scalability is essential for real-world applications 
where the number of stakeholders and grid components can be sub
stantial. The algorithm preserves the hierarchical structure of leader- 
follower interactions by carefully structuring the reformulation pro
cess. By fixing discrete variables during the reformulation step, the al
gorithm ensures compatibility with convex optimization techniques 
while accurately modeling the interdependent decisions of the leader 
and followers. This approach maintains the integrity of the bilevel 
structure while enabling efficient computation.

5. Computational experiments

To demonstrate the applicability of the proposed reformulation-and- 
decomposition algorithm, computational case studies are conducted on 
the design of an upcoming microgrid as a pilot test. These experiments 
first examine the effects of different DRP settings in the bilevel optimi
zation problem along with the computational performance of the algo
rithm. Next, the Pareto curve for the ISO’s objectives is analyzed to 
assess the trade-off between the grid stability and the economic mea
sures. Finally, managerial insights are provided regarding the imple
mentation of the algorithm within the hierarchical structure of 
interactions between the ISO and microgrids. This analysis demonstrates 
the practical applicability of the proposed approach to real-world 
microgrid planning.

5.1. Problem instance and experimental setting

Electricity demand for each user is generated based on a normal 
distribution. The mean hourly electricity demand μt is set according to 
historical data from the literature, while the standard deviation σt is 
defined as a fraction of μt where the variability factor is empirically set 
to 0.15 to account for consumption variability. The resulting demand 
values for multiple users follow: 

pit ∼ N
(
μt , σ2

t
)
, σt = β • μt (53) 

where β is the variability factor ensuring diversity in electricity con
sumption.

Table 1 presents the mean hourly electricity demand derived from 
referenced datasets, along with the generated demand profiles for three 
electricity users. The potentials of PV and WT, which electricity users 

can assess for installation, are based on the data from the literature [37]. 
The potential of RES is assumed to be identical across all users when they 
install PV or WT units. The SMPs represent the electricity price accessed 
by the ISO. In this study, the price at which the ISO purchases surplus 
electricity from users is set equal to the SMPs. The lower/upper limit for 
the ISO’s RTP is set according to the minimum/maximum SMP values in 
Table 1. Specifically, the lower limit is 0.5 times the minimum SMP, 
while the upper limit is 1.5 times the maximum SMP. The maximum 
budget allocated for supporting the DRPs is set to $100. To analyze the 
impact of budget constraints on the proposed bilevel optimization 
problem, the ε-constraint method is applied. Accordingly, the budget B 
varies from 0 to 100 in increments of 5 to assess the trade-off between 
the grid stability and the economic measures.

Table 2 summarizes the capital, operational, and technical specifi
cations of the DER units, with reference to established data sources 
[37–40]. The table includes capital costs, operating costs, and mainte
nance costs associated with each DER unit. The capital costs are con
verted into daily equivalent values using CRFs, derived from annual 
costs computed with a standard annuity formula using an interest rate of 
6 % and economic lifetimes of 10 and 3 years for DG and ESS, respec
tively. These values are adopted from Sufyan et al. [39], and the 
resulting annual CRFs are divided by 365 to yield daily costs of 
0.000372 and 0.001025. Operating costs reported in Table 2 inherently 
reflect both fuel prices and fuel-to-electricity conversion efficiency of 
the generation units (e.g., MT and FC), and therefore, explicit modeling 
of thermal efficiency is not required. Maintenance costs are adopted 
from Qi et al. [38] for most units, while the ESS maintenance cost is 
referenced from Sufyan et al. [39], which incorporates battery degra
dation modeling. Technical constraints include the minimum and 

Table 1 
Time-series data of electricity prices, RES potentials, and electricity demand.

Time 
(hour)

μt(kW) User 1 
(kW)

User 2 
(kW)

User 3 
(kW)

PV 
(kW)

WT 
(kW)

SMP 
(¢/kWh)

0 52 44.4 46.7 53.8 0 1.785 0.23
1 50 42.1 47.6 52.5 0 1.785 0.19
2 50 41.3 47.7 45.9 0 1.785 0.14
3 50 45.4 61.9 45.8 0 1.785 0.12
4 56 52.8 60.3 52.7 0 1.785 0.12
5 63 53.8 64.2 57.6 0 0.915 0.20
6 70 70.7 73.8 68.1 0 1.785 0.23
7 75 72.0 72.7 66.5 0.2 1.305 0.38
8 76 78.0 67.9 73.4 3.75 1.785 1.50
9 80 82.1 72.3 74.9 7.53 3.090 4.00
10 78 78.0 77.2 79.6 10.45 8.775 4.00
11 74 71.9 78.4 80.5 11.95 10.41 4.00
12 72 70.5 78.0 81.2 23.90 3.915 1.50
13 72 70.1 79.0 77.1 21.05 2.370 4.00
14 76 77.2 78.2 76.8 7.88 1.785 2.00
15 80 80.3 80.3 81.5 4.23 1.305 1.95
16 85 89.5 83.2 82.5 0.55 1.785 0.60
17 88 86.1 95.0 89.7 0 1.785 0.41
18 90 86.6 87.1 84.9 0 1.302 0.35
19 87 78.8 86.9 83.8 0 1.785 0.43
20 78 76.4 80.8 81.8 0 1.301 1.17
21 71 72.0 70.5 65.1 0 1.301 0.54
22 65 66.5 60.5 59.7 0 0.915 0.30
23 56 57.1 55.2 51.9 0 0.615 0.26

Table 2 
Economic and technical parameters of the DER units.

DER unit MT FC PV WT ESS

Capital cost (K$/DER unit) [39,40] 27 60 75 32.25 33
Operating cost (¢/kWh) [39] 0.4 0.2 – – –
Maintenance cost (¢/kWh) [38,39] 0.12 0.04 0.11 0.08 0.02
Min power (kW) [37] 6 3 0 0 − 30
Max power (kW) [37] 30 30 25 15 30
Ramp-up rate (kW) [39] 140 120 – – 20
Ramp-down rate (kW) [39] − 30 − 60 – – − 60
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maximum power output of each unit. PV and WT have zero minimum 
output, reflecting their dependency on solar irradiance and wind speed, 
while MT and FC have nonzero minimum output due to dispatch re
quirements [37]. Ramp-up and ramp-down rates are defined only for 
dispatchable units (MT and FC) [39], while PV and WT do not require 
such constraints. The ESS is modeled with a negative minimum power 
value, indicating its discharge capacity. Additionally, the energy output 
of PV and WT is bounded above by their resource-based generation 
potential, and not by demand-based dispatch. Therefore, the maximum 
power levels for these units represent generation ceilings rather than 
adjustable dispatch values.

All computational experiments are carried out using the Gurobi 
solver on a system with an Intel core i9–9900 CPU at 3.60 GHz and 32 
GB RAM. The Gurobi solver version 12.0.0 is employed with its default 
parameter settings. The proposed reformulation-and-decomposition al
gorithm and all mathematical models are implemented in C#. For the 
configuration of the reformulation-and-decomposition algorithm, the 
tolerance ε is set to 10− 4.

5.2. Case study on DRP settings

The first computational experiment deals with case studies 
comparing two different DRP settings for the development of decen
tralized power grid systems as follows: 

(i) Case Study 1: subsidy-only DRP
(ii) Case Study 2: mixed DRPs with RTP and subsidy

In this experiment, Case Study 1 serves as the benchmark scenario. In 
the formulated bilevel optimization problem, the ISO determines DRP 
parameters based on the anticipated responses of electricity users. 
However, due to the hierarchical structure of the problem, bilevel 
feasibility is not satisfied if the followers’ decisions violate the leader’s 
budget constraints. This study explores whether a mixed DRP setting 
improves the ability to find bilevel feasible solutions and examines its 
effectiveness in enhancing the ISO’s primary objective of grid stabili
zation. In Case Study 1, the RTP decision variables in the proposed al
gorithm are fixed at the SMP values provided in Table 1. Consequently, 
the RMP in Case Study 1, where only the subsidy program is applied, can 
be formulated as a mixed-integer linear programming (MILP) model 
through the linearization of discrete bilinear terms xsub

k yik. Conversely, 

in Case Study 2, where both RTP and subsidy programs are utilized, the 
RMP includes continuous bilinear terms xrtp

t pin
it , resulting in a non- 

convex mixed-integer quadratically constrained quadratic program
ming (MIQCQP) model. This structural difference in the optimization 
problem highlights the computational complexity associated with inte
grating RTP into the DRPs.

Table 3 presents the comparative results between Case Study 1 and 
Case Study 2 for instances with three electricity users. Bold values 
indicate cases where a bilevel feasible solution was not found, prompt
ing an additional process in which the leader’s decision x was fixed at 
the final solution of RMP, and then SP2 was solved without the budget 
constraint. Due to the MILP formulation of RMP, Case Study 1 was 
solved significantly faster than Case Study 2, which involved a non- 
convex MIQCQP model. In several instances, Case Study 2 did not 
converge within the five-hour time limit, as Gurobi attempted to obtain 
a global optimum. Some instances resulted in infeasibility in both case 
studies, meaning no bilevel feasible solution could be found. However, 
for budget levels of 35 and 60, Case Study 2 successfully found bilevel 
feasible solutions, whereas Case Study 1 did not, suggesting that the RTP 
mechanism can mitigate violations of the ISO’s budget constraint caused 
by the followers’ best responses. However, it is not easy to generalize 
this finding based on only two instances. In terms of grid cost and peak 
load minimization, Case Study 2 achieved the lowest overall system cost 
and peak load compared to Case Study 1. However, this reduction came 
at the expense of higher follower operational costs, indicating that the 
mixed DRP setting shifts economic burdens onto electricity users. 
Additionally, the proposed algorithm for Case Study 2 did not converge 
within the five-hour limit for certain instances, highlighting the 
computational challenge of solving a non-convex MIQCQP model due to 
the bilinear terms introduced by RTP decisions.

5.3. Analysis of grid stabilization and budget usage

Figs. 3 and 4 illustrate the impact of budget allocation on peak load 
reduction and budget usage in Case Study 1 and Case Study 2, respec
tively. As the budget increases, peak load decreases significantly in both 
cases, demonstrating the effectiveness of DRPs in managing demand. In 
Case Study 1, notable reductions in peak load are observed when the 
budget is set at 15 and 30, suggesting that these budget levels provide 
the most cost-effective peak load reduction. However, budget usage is 
not maximized in all instances, indicating that certain budget allocations 

Table 3 
Comparative results of Case Study 1 and Case Study 2.

B($) Case Study 1 Case Study 2

CPU 
(min.)

F1(kWh) F2($) f1($) f2($) f3 

($)
CPU 
(min.)

F1(kWh) F2($) f1($) f2($) f3 

($)

0 0.0 271.0 0.0 21.5 21.8 22.0 0.4 73.0 0.0 50.6 52.3 51.7
5 0.1 265.0 3.9 21.5 21.8 22.0 0.9 71.4 5.0 52.8 53.9 53.0
10 0.0 259.0 7.9 21.5 21.8 22.0 1.2 71.4 10.0 51.2 52.3 51.4
15 0.0 241.0 14.3 21.5 21.8 22.0 2.2 69.8 15.0 52.6 54.0 53.1
20 0.1 235.0 18.2 21.5 21.8 22.0 19.8 69.8 19.5 51.6 52.4 51.7
25 0.1 229.0 22.2 21.5 21.8 22.0 0.6 68.1 25.0 53.1 54.2 53.3
30 0.1 211.0 28.6 21.5 21.8 22.0 9.5 65.5 30.0 52.2 53.5 52.5
35 0.4 229.0 138.1 21.4 21.7 22.0 43.0 65.5 30.0 51.6 53.0 52.6
40 0.2 199.0 36.5 21.5 21.8 22.0 +5hs – – – – –
45 1.0 299.0 108.3 20.9 21.2 21.5 +5hs – – – – –
50 0.5 193.0 40.4 21.5 21.8 22.0 24.7 62.2 48.7 52.4 53.8 52.9
55 3.0 186.0 55.0 21.4 21.7 21.9 +5hs – – – – –
60 1.8 207.9 231.8 19.7 20.0 20.3 282.2 60.0 60.0 53.0 54.3 53.3
65 1.1 186.0 65.0 18.0 18.3 18.6 30.1 60.0 65.0 51.4 52.7 52.1
70 5.2 211.0 150.8 21.3 21.6 21.9 +5hs – – – – –
75 2.5 207.9 153.7 20.4 20.7 20.9 +5hs – – – – –
80 7.8 207.9 158.7 18.7 19.0 19.3 +5hs – – – – –
85 6.1 211.0 153.3 20.5 20.8 21.1 +5hs – – – – –
90 2.9 142.1 154.8 20.2 20.3 20.6 +5hs – – – – –
95 4.5 142.1 159.7 18.6 18.7 19.0 +5hs – – – – –
100 2.9 137.3 187.0 20.3 20.5 20.7 +5hs – – – – –
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may not be fully utilized for subsidy distribution. In contrast, Case Study 
2 consistently utilizes the allocated budget across most budget settings. 
Despite this, evaluating the efficiency of budget usage in terms of peak 
load reduction remains challenging, as the integration of RTP inherently 
enhances demand-side response. The simultaneous implementation of 
RTP and subsidies results in a more substantial reduction in peak load 
compared to the subsidy-only scenario, making direct comparisons of 
budget efficiency between the two cases non-trivial.

Notably, in Case Study 2, a temporary increase in peak load is 
observed at certain budget levels (e.g., 35 or 60) despite the application 
of RTP. This behavior can be attributed to the elasticity-driven con
centration of user demand during low-RTP hours, which may inadver
tently create new peaks if not offset by sufficient DER activation. When 
the ISO sets low retail prices for specific time slots to shift demand, some 
users may concentrate on their consumption within these intervals, 
leading to secondary peaks. Additionally, limited DER generation ca
pacity or unavailability during those time slots may restrict the system’s 
ability to flatten the load curve effectively. This result highlights a non- 
trivial effect of dynamic pricing mechanisms: while they improve overall 
flexibility and reduce average costs, they may also introduce localized 
fluctuations in peak demand under certain conditions. Such dynamics 

suggest that RTP policies must be carefully designed in conjunction with 
DER planning and load diversity analysis to avoid unintended peak 
rebounds.

Tables 4 and 5 present the optimal subsidy rates determined by the 
ISO in Case Study 1 and Case Study 2 under different budget allocations. 
The values represent the proportion of installation costs covered by 
subsidies for each DER unit, including costs of the MT, FC, PV, WT, and 
ESS. In Case Study 1, the allocation of subsidies varies significantly 
across different DER types. While subsidies for FC and PV increase as the 
budget rises, MT and WT receive limited or no subsidies under most 

Fig. 3. Peak load reduction and budget usage under Case Study 1.

Fig. 4. Peak load reduction and budget usage under Case Study 2.

Table 4 
Subsidy rates determined by the ISO under Case Study 1.

Subsidy rate Initial budget B

0 5 10 15 20 25 30 35

xsub
MT 0 % 41 % 41 % 0 % 41 % 41 % 0 % 41 %

xsub
FC 0 % 23 % 47 % 67 % 67 % 67 % 67 % 67 %

xsub
PV 0 % 0 % 38 % 56 % 75 % 0 % 90 % 90 %

xsub
WT 0 % 44 % 87 % 0 % 0 % 0 % 0 % 0 %

xsub
ESS 0 % 0 % 30 % 45 % 60 % 75 % 90 % 95 %
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budget levels. An ESS begins receiving subsidies only when the budget 
exceeds 10, with the subsidy rate reaching 95 % at the highest budget 
level. In contrast, Case Study 2 exhibits a different subsidy distribution 
pattern due to the presence of RTP. The ISO consistently prioritizes 
subsidizing the ESS across all budget levels, maintaining a subsidy rate 
of approximately 95 %, regardless of budget size. The WT also receives 
relatively high levels of subsidy, particularly when the budget ranges 
from 5 to 20, with values exceeding 75 %. However, for higher budgets 
(30 and 35), the subsidy rate for WT drops to zero, indicating a shift in 
prioritization. Meanwhile, the MT and PV consistently receive no sub
sidy, and FC only receives marginal support at limited budget levels. 
These results suggest that the RTP mechanism influences the ISO’s 
strategy by concentrating subsidies on storage and, to some extent, re
newables like WT under certain conditions, while reducing support for 
dispatchable or high-cost generation units.

These results highlight how the introduction of RTP influences the 
ISO’s subsidy allocation strategy. The ISO in Case Study 2 allocates 
subsidies predominantly to ESS and renewable generation, whereas in 
Case Study 1, a more varied subsidy distribution is observed. This sug
gests that RTP not only impacts electricity pricing but also affects in
vestment decisions related to DER deployment.

Table 6 presents the RTP decisions made by the ISO under Case Study 
2 across different initial budget levels. The values in the table represent 
the electricity price determined by the ISO for each hour in a twenty- 
four-hour period, considering varying budget constraints. Several key 
observations can be made from the results. First, for budget levels of 
0 and 5, the RTP remains close to the predefined lower bound in most 
hours, indicating that the ISO has limited flexibility in adjusting prices 

due to financial constraints. As the budget increases, the ISO actively 
utilizes higher RTP values, particularly during peak demand hours (e.g., 
6 a.m. to 8 p.m.), suggesting a strategic pricing adjustment to manage 
grid stability. Notably, when the budget reaches 10 or higher, the RTP 
values begin fluctuating more dynamically, reflecting the ISO’s ability to 
fine-tune pricing mechanisms to influence electricity consumption pat
terns effectively. Another critical trend is that the RTP consistently 
reaches the predefined upper bound (six cents/kWh) during high- 
demand periods, indicating that the ISO fully exploits its pricing flexi
bility under larger budget allocations. This pricing strategy aligns with 
the objective of peak load reduction by encouraging users to shift con
sumption to lower-priced periods. However, during low-demand hours 
(e.g., early morning and late night), RTP values remain near the lower 
bound, minimizing unnecessary price surges while maintaining eco
nomic efficiency.

These findings highlight the role of RTP in demand-side management 
under a mixed DRP setting. The results indicate that increasing the 
budget allows the ISO to exert greater control over electricity pricing, 
thereby optimizing demand response effectiveness and improving grid 
stability.

To complement the analysis of Table 6 and to clarify the behavioral 
and cost implications of RTP, we provide additional visual and numer
ical comparisons. Fig. 5 presents the hourly profiles of SMP and RTP 
under a budget level of 20. While SMP remains relatively low and stable 
throughout the day, RTP increases sharply during the daytime hours 
from 8:00 to 20:00. This indicates that the ISO uses time-varying prices 
to reduce demand during peak periods. The gap between SMP and RTP 
represents the economic signal intended to guide user behavior.

Tables 7 and 8 present a side-by-side comparison of user-level out
comes under two different demand response settings: one based on 
subsidies only (Case Study 1), and the other combining RTP with tar
geted subsidies (Case Study 2). In the subsidy-only case, users 1 and 2 
adopt MT and FC, receiving subsidy rates of 41 % and 67 %, respec
tively. These units generate significant amounts of electricity—408 kW- 
hours and 531 kW-hours for User 1—but User 1 still purchases 704 kW- 
hours from the grid, resulting in a daily purchase cost of 5.43 dollars. 
Users 2 and 3, who follow similar installation decisions, purchase 1706 
kW-hours and 1670 kW-hours, incurring costs of 21.76 and 22.03 dollars 
per day.

In Case Study 2, users respond differently under the influence of RTP. 
User 1 adds a WT, which receives a 78 % subsidy, reducing its net cost to 
2.61 dollars. The user’s generation increases accordingly, while elec
tricity purchased from the grid falls to 280.12 kW-hours. However, the 
daily purchase cost rises to 13.32 dollars, reflecting the higher RTP 
during certain hours. User 2 adds both WT and an ESS, receiving sub
sidies of 78 % and 96 %, respectively. With these additions, User 2 re
duces grid purchases to 275.35 kW-hours and lowers the purchase cost 
to 12.28 dollars. The ESS actively contributes to cost control, charging 
43.75 kW-hours and discharging 35.44 kW-hours. Although User 3 
maintains the same DER installation in both cases, the daily purchase 
cost increases from 22.03 to 26.25 dollars under RTP, despite a reduc
tion in purchased electricity. This is due to the user’s exposure to 
elevated RTP levels during peak periods.

Overall, these results show that users with flexible resources such as 
ESS and WT can respond more effectively to RTP, both in terms of 
reducing grid dependence and in managing daily costs. In contrast, users 
without such flexibility may face higher expenses even when their total 
electricity purchases are reduced. These findings highlight the impor
tance of aligning pricing signals with user capability and DER avail
ability, especially when RTP is used to support demand-side 
coordination under limited budgets.

5.4. Performance tests

Table 9 presents the computational performance of the proposed 
reformulation-and-decomposition algorithm under varying budget 

Table 5 
Subsidy rates determined by the ISO under Case Study 2.

Subsidy rate Initial budget B

0 5 10 15 20 25 30 35

xsub
MT 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

xsub
FC 0 % 0 % 1 % 0 % 0 % 0 % 0 % 1 %

xsub
PV 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

xsub
WT 0 % 77 % 80 % 76 % 78 % 76 % 0 % 0 %

xsub
ESS 92 % 96 % 95 % 96 % 96 % 96 % 95 % 96 %

Table 6 
RTP decisions made by the ISO under Case Study 2 (¢/kWh).

Time Initial budget B

0 5 10 15 20 25 30 35

0 0.52 0.52 0.24 0.52 0.52 0.52 0.24 0.52
1 0.52 0.52 0.24 0.52 0.52 0.52 0.24 0.52
2 0.52 0.52 0.39 0.52 0.52 0.52 0.24 0.52
3 0.52 0.69 0.52 0.52 0.69 0.52 0.52 0.52
4 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
5 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
6 6.00 5.99 4.61 6.00 0.52 6.00 6.00 4.82
7 0.52 5.99 3.70 6.00 6.00 6.00 6.00 6.00
8 1.50 5.99 4.61 6.00 6.00 6.00 6.00 6.00
9 6.00 5.99 4.61 6.00 4.82 6.00 6.00 6.00
10 6.00 5.99 4.61 6.00 6.00 6.00 6.00 6.00
11 6.00 4.82 4.61 6.00 6.00 6.00 4.82 6.00
12 6.00 5.99 4.82 6.00 4.82 6.00 4.82 6.00
13 6.00 5.99 6.00 4.82 4.82 6.00 5.75 6.00
14 2.00 5.99 4.82 6.00 6.00 6.00 4.82 4.82
15 6.00 5.99 6.00 6.00 4.82 6.00 6.00 6.00
16 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
17 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
18 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
19 6.00 5.99 6.00 6.00 4.82 6.00 6.00 6.00
20 6.00 5.99 6.00 6.00 6.00 6.00 6.00 6.00
21 6.00 4.82 6.00 6.00 6.00 6.00 6.00 0.54
22 0.52 5.99 6.00 0.52 6.00 6.00 0.52 0.52
23 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
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levels. The table aggregates experimental results across different 
numbers of electricity users (one to three) and reports the average values 
for key performance indicators. The columns include the initial budget 
B, the average total CPU time required to solve the problem, the number 
of RMP steps, the average CPU time per RMP iteration, the number of 
successful SP2 solutions, the number of infeasible SP2 instances, and the 
average CPU time for solving SP2. The results indicate that computa
tional performance varies significantly with the allocated budget. 
Notably, at B = 10, the total CPU time is substantially higher than it is 
when compared to solving times required for other budget levels, sug
gesting that the algorithm encounters more complex bilevel interactions 
that require additional iterations for convergence. The number of RMP 
steps increases with budget, particularly beyond B = 20, which implies 
that larger budgets allow the ISO to explore more complex DRP settings 
before convergence. Similarly, the number of SP2 infeasibilities tends to 
rise with budget, highlighting the challenge of ensuring bilevel feasi
bility as the leader’s DRP decisions become more intricate.

Table 10 summarizes the computational performance of the pro
posed algorithm under different numbers of electricity users. The re
ported values are averaged over all budget settings to analyze how the 
number of users affects computational complexity. The columns provide 
the average total CPU time, the number of RMP steps, the average CPU 
time per RMP iteration, the number of successful SP2 solutions, the 
number of infeasible SP2 instances, and the average CPU time for 
solving SP2. The findings reveal that as the number of users increases, 
the computational burden of the algorithm grows significantly. When 
the number of users increases from 1 to 3, the total CPU time exhibits a 
sharp increase, indicating the increased complexity of solving bilevel 
optimization problems with multiple followers. The number of RMP 
steps and SP2 infeasibilities also increase, confirming that larger user 
groups lead to more complex interactions that require additional itera
tions for convergence. However, despite the increased computational 
complexity, the proposed algorithm successfully identifies feasible so
lutions in most budget settings, demonstrating its robustness in handling 
multi-follower bilevel optimization problems.

It should also be noted that the experimental setup assumes a ho
mogeneous user base with normally distributed demand profiles. While 
this assumption facilitates tractable computation and controlled vali
dation of the proposed bilevel structure, it may not fully capture the 
diversity of user behaviors in real-world power systems. The current 
setting was designed primarily to isolate and evaluate the structural 
performance of the algorithm under exact bilevel modeling. Future 
studies will aim to extend the model by incorporating clustered user 
groups and empirical load data from residential, commercial, and in
dustrial sectors to enhance behavioral realism and scalability 
assessment.

Although the results reveal scalability limitations, particularly in 
instances involving more than two users, the proposed algorithm retains 
significant value as a benchmark tool for future method development. 
Despite the increase in computational time with user count, it provides 
exact solutions for small- to medium-scale bilevel instances that include 
both discrete user decisions and bilinear leader-follower interactions. 
While the current formulation does not enable practical solution times 

for large-scale systems, it establishes a foundational basis for evaluating 
the performance of heuristic and approximation-based approaches. 
Future bilevel methods aiming for scalability may benefit from using this 
algorithm as a reference to assess optimality gaps, generate high-quality 
initial solutions, or derive primal-dual bounds in complex grid decision 
environments.

5.5. Managerial insights

The findings reveal key trade-offs between grid stability, financial 
feasibility, and computational efficiency. In particular, combining RTP 
with subsidy programs improves the likelihood of bilevel feasibility, 
especially in scenarios involving diverse user behaviors and constrained 
budgets. In contrast, subsidy-only programs often result in budget vio
lations due to their limited flexibility in guiding user behavior. The re
sults suggest that RTP provides a complementary mechanism for 
managing demand-side decisions, helping the ISO accommodate diverse 
user responses while staying within budget. This effect was especially 
evident in certain budget scenarios, where the mixed DRP approach 
successfully prevented infeasibilities that occurred under subsidy-only 
settings.

From a computational perspective, the results reveal notable chal
lenges in solving bilevel optimization problems involving mixed DRP 
settings. The non-convex MIQCQP structure of Case Study 2 led to 
significantly longer computational times, with some instances failing to 
converge within the solver’s time limit. This increased complexity 
highlights a fundamental trade-off: while mixed DRP settings enhance 
feasibility and grid stability, they introduce additional computational 
burdens. These results emphasize the need for computationally efficient 
algorithms, especially as the number of participants and decision vari
ables increases. Research into scalable reformulation techniques or 
learning-based approximations could further reduce solution times 
without compromising optimality. These findings suggest that a hybrid 
scheme may support both DER adoption and behavioral flexibility, 
particularly in contexts where static incentives alone are insufficient. 
For example, tiered pricing schemes or time-of-use incentives aligned 
with DER performance metrics could improve load diversity and grid 
reliability.

The study also carries important policy implications for managing 
decentralized power grids. The subsidy mechanism is effective in 
incentivizing DER adoption, which contributes to long-term sustain
ability by increasing renewable energy integration. However, the results 
indicate that without an RTP component, users may not optimally adjust 
their electricity consumption, potentially leading to inefficient grid 
operations. A hybrid DRP structure that combines both financial in
centives and market-driven pricing strategies is recommended to 
improve demand-side management. Additionally, differentiated pricing 
models based on user profiles and DER adoption status could enhance 
the effectiveness of DRPs. By considering these strategic elements, pol
icymakers can design more adaptive and resilient power grid systems.

Overall, the findings of this study reinforce the value of mixed DRP 
settings in decentralized power grid management. While subsidy pro
grams alone can drive DER adoption, the integration of RTP provides 

Fig. 5. SMP vs RTP over Time (Budget = 20).
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greater flexibility in aligning electricity user behavior with grid stability 
objectives. The proposed algorithm demonstrates strong potential for 
integration into pilot-scale grid platforms where heterogeneous DER 
participation is a design priority. Further work may also consider 
embedding the algorithm into ISO planning tools for daily operational 
scheduling.

Compared to conventional demand response programs that rely 
solely on fixed installation subsidies, the proposed mixed incentive 
mechanism that combines RTP with budget-limited subsidies offers 
notable advantages in terms of efficiency and adaptability. The simu
lation results indicate that this approach induces more differentiated 
user responses and improves system-level outcomes, particularly when 
users have diverse installation costs or consumption behaviors. RTP 
provides dynamic economic signals that encourage flexible behavior, 
while targeted subsidies help lower financial barriers to DER adoption. 
However, the variability of price signals may introduce behavioral un
certainty for some users, potentially affecting participation stability if 
not supported by appropriate communication or guidance. This mixed 
approach is particularly advantageous in contexts marked by high user 
diversity and policy-driven DER targets. Conversely, in environments 
requiring stable, predictable program structures, fixed subsidy models 
may offer more practical benefits despite their lower responsiveness.

6. Conclusion

This study presented a bilevel optimization framework to model the 
interactions between an ISO and multiple electricity users in a decen
tralized power grid system. The proposed framework incorporates two 
key DRPs of RTP and a subsidy mechanism, which together influence 
user decisions on electricity consumption and DER adoption. To address 
the inherent computational challenges of bilevel optimization, a 
reformulation-and-decomposition algorithm was developed, ensuring 
bilevel feasibility while maintaining computational tractability.

Through computational experiments, two DRP settings were 
analyzed: (i) a subsidy-only program and (ii) a mixed DRP setting 
combining RTP and subsidies. The results demonstrated that integrating 
RTP with subsidies increases the likelihood of finding bilevel feasible 
solutions by dynamically adjusting electricity prices to influence user 
responses. Additionally, the mixed DRP setting resulted in more 

effective peak load reductions and improved grid stability compared to 
the subsidy-only program. However, it also introduced additional 
computational complexity due to the non-convex nature of the optimi
zation problem. These findings highlight the trade-offs between feasi
bility, grid stability, and computational efficiency in bilevel decision- 
making processes.

This study has certain limitations that warrant further investigation. 
The computational experiments were conducted on a finite set of test 
instances with specific parameter values, meaning that broader gener
alization requires additional validation on larger-scale power grid 
models. Furthermore, the problem was analyzed within a single-day 
operational horizon, whereas real-world grid management often re
quires multi-period decision-making. Future studies should consider 
multi-period bilevel optimization models that account for investment 
decisions over extended planning horizons. Additionally, the develop
ment of more advanced decomposition algorithms tailored to non- 
convex bilevel models could further enhance solution scalability and 
computational efficiency.

While large-scale extensions remain computationally intensive, the 
current approach establishes a strong foundation, and the proposed 
method offers a rigorous benchmark for future algorithmic de
velopments. In particular, it provides a reliable reference point for 
evaluating the performance and optimality of metaheuristic or learning- 
based approaches aimed at solving large-scale bilevel problems that 
involve both discrete follower decisions and bilinear interactions. The 
exact solutions obtained from our framework can serve not only as 
ground-truth baselines for small instances but also as a source of primal- 
dual bounds or initial solutions in hybrid methods.

Overall, this research underscores the importance of integrating 
multiple DRP mechanisms to achieve both economic and operational 
efficiency in decentralized power grid management. The proposed al
gorithm provides a practical approach to handling bilevel feasibility 
constraints, enabling more adaptive and resilient grid operations. Future 
research should continue refining bilevel optimization techniques to 
address computational challenges and to enhance the applicability of 
DRP strategies in real-world energy systems.
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Table 9 
Computational performance of the proposed algorithm under varying initial 
budget levels.

B($) Avg. 
Total 
CPU

RMP SP2

No. of  
Steps

Avg.  
CPU

No. of  
solved

No. of  
infeasible

Avg. 
CPU

0 1.0 2.0 0.2 2.0 0.0 0.3
5 2.4 4.0 0.2 2.2 1.8 0.4
10 929.7 14.0 45.7 6.2 7.8 0.1
15 1.4 3.0 0.2 2.2 0.8 0.3
20 4.2 7.2 0.3 3.2 4.0 0.3
25 4.1 6.2 0.3 3.8 2.4 0.3
30 5.7 8.0 0.4 4.4 3.6 0.4
35 6.5 10.0 0.4 4.2 5.8 0.2

Table 10 
Computational performance of the proposed algorithm under different numbers 
of electricity users.

No. 
of 
Users

Avg. 
CPU

RMP SP2

No. 
of  
Steps

Avg.  
CPU

No. of  
solved

No. of  
infeasible

Avg. 
CPU

1 0.3 5.7 0.1 5.7 0.0 0.0
2 19.4 12.6 1.2 4.9 7.7 0.1
3 37.7 12.8 2.9 3.8 9.0 0.2
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