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RESEARCH ARTICLE

Task bundling effect in electric scooter charging platform
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Ann Arbor, MI, USA; cInstitute of Engineering Research, Seoul National University, Seoul, South Korea 

ABSTRACT 
This study proposes two innovative optimization-based bundling algorithms to offer attractive 
options to the decentralized workforce in the electric scooter-sharing platform. The applicability of 
bundles is raised in enticing workers to a side hustle system of collecting low-battery scooters for 
a reward per task. The proposed bundling strategy considers the domain-specific characteristics of 
the scooter charging industry, such as autonomous task selection of workers, depot-oriented work
ers, a bundle decision phase before the worker selection phase, and limited information on work
ers’ task preferences. Based on assumptions about worker behavior, the value maximizing 
bundling (VMB) model aims to generate bundles with a higher reward-to-distance ratio, while the 
probability maximizing bundling (PMB) model additionally considers the distance required to 
reach the bundle centroid from the worker depot. The effectiveness of these bundling strategies 
is evaluated through a series of simulation experiments. Findings suggest that bundles signifi
cantly improved scooter collection rates compared to non-bundling scenarios. Additionally, this 
strategy enhances workers’ profit margins. Scenario-based simulations further demonstrate condi
tions that amplified the impact of bundling on the overall worker capacity and scooter distribution 
patterns. Given the superior performance of the PMB model with optimal parameters and the con
sistent stability of the VMB model, the study offers actionable insights for managers considering 
the implementation of bundling strategies.
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1. Introduction

The popularity of electric scooter-sharing services has been 
steadily increasing with the emergence of the smart city and 
shared micro-mobility (Kadri et al., 2015; Lu et al., 2024; 
Orozco-Fontalvo et al., 2023). Major companies such as 
Lime, Bird, and Jump offer scooter rental services to cus
tomers for short-distance travel (Fang et al., 2015). Dockless 
scooters provide easy access as they can be reserved via an 
app and dropped off at any location after use. As a sustain
able transportation, electric scooter trips have replaced 57% 
of trips made by foot, bicycle, and skateboard; and 28% of 
trips made by car, motorcycle, and taxi (Fitt & Curl, 2019). 
The market size is 925.3 million USD in 2021 with a com
pound annual growth rate of 18.8% from 2022 to 2028 
(Grand View Research, 2020). Easiness of accessibility and 
user-friendly platform applications are major advantages 
that support the business.

Meanwhile, the platform suffers from charging the low- 
battery scooters widespread within the service area (Singgih 
& Kim, 2020). According to Wilhelm (2018), 47% of the 
revenue is used back in the charging operation, which needs 
the most attention to lower the overall cost. Among charg
ing systems to gain a competitive edge, some companies 
contract with “gig workers.” The term “gig” comes from the 
gig economy, where the platform engages with workers 

temporarily to perform company work (Lord et al., 2023). 
In the case of the electric scooter-sharing platform, the plat
form compensates gig workers for charging low-battery 
scooters. Major companies provide these side hustle services 
through uniquely named programs like “Lime Juicers” 
(https://lime.bike/juicer). The scooter-picking process mainly 
starts in the evening, around 9 or 10 pm, when scooter rid
ing usage decreases. The location of scooters that need 
charging is displayed on the app. Workers can reserve one 
scooter at a time, collect it, and repeat this process until 
they finish their tasks for the day. They then return home to 
charge the scooters and complete relocation by the morning 
deadline. Usually, the charging operation is carried out at 
the workers’ depots using chargers provided by the platform 
upon registration. After task completion, workers receive 
payment based on the tasks completed daily. For example, 
“Lime juicers” typically earn 4–5 dollars per task, but the 
reward can go up to 12 dollars for hard-to-find scooters 
(Elkins, 2019). This system is more cost-effective than oper
ating a company-oriented vehicle to visit all scooters by lev
eraging the distributed network of gig workers. Also, it gains 
public support and loyalty effect over competitors, by offer
ing side hustle opportunities.

Under this gig system, the platform relies on gig workers 
to achieve maximum scooter collection rates to guarantee 
reliable user service the following day. However, this 
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expectation poses several considerations for the platform. 
First, the number of workers varies significantly daily due to 
open participation and flexible working hours. On days with 
fewer participants, the collection rate inevitably reduces. 
Second, gig workers prioritize their profit, often leaving sev
eral scooters uncollected. As workers autonomously select 
only profitable tasks, the collection rate might remain low 
according to scooter and worker distribution. To attract gig 
workers, tasks must offer sufficient rewards to cover the 
travel distance or encourage workers to extend their working 
hours even after meeting their earnings goal. In this context, 
the platform requires centralized decision-making to effi
ciently entice the decentralized workforce to maximize the 
daily collection rate.

One innovative approach to entice independent workers 
is bundling tasks to increase worker valuation. Initially 
developed for freight service procurement, bundling strat
egies grouped transportation lanes for independent carriers, 
who bid on desired bundles through combinatorial auctions 
(Song & Regan, 2003). In a case study by Olivares et al. 
(2012), a strategic behavior among carriers was observed, 
where they submitted higher bids for bundles with smaller 
sizes and higher proximity. This is because tasks within a 
good bundle have a complementary property by requiring 
less empty movement or detour for workers, increasing the 
willingness to engage.

Nowadays, various crowdsourced business sectors, such 
as crowdsourced delivery and mobile crowdsensing, have 
adopted task bundling, with methods customized to the spe
cific service characteristics of each field. In this context, a 
task bundle refers to multiple customer requests or a 
demand point represented by specific locations. In the field 
of crowdsourced delivery, bundling strategy is based on 
worker interaction or an auction system. Approaches based 
on these additional feedback processes guarantee that bun
dles created or assigned to workers are sufficiently valuable. 
In Horner et al. (2021), the platform presents each worker 
with personalized task options and revises the task assign
ment based on direct feedback. Meanwhile, the auction sys
tem can assign tasks for all workers at once equally, where 
the quality of a bundle is estimated through the bid price. 
While Triki (2021) dealt with a system where workers create 
their own task bundles as bids, Mancini and Gansterer 
(2022) presented a bundle generation problem for the auc
tioneer, which is likely to be perceived as valuable by work
ers. On the other hand, in the mobile crowdsensing sector, 
where task engagement is simple with a smartphone, the 
strategy focuses on creating attractive bundles without 
requiring worker confirmation. To address the uncertainty 
of worker preferences for bundles, the literature has devel
oped proxy objective functions to enhance worker engage
ment. Gansterer and Hartl (2018) evaluated the 
attractiveness of a bundle based on factors such as tour 
length, density, and isolation of the bundle. Subsequent 
studies have included additional factors to define the prob
ability of a bundle being selected, such as the bundle size 
and detour cost relative to the worker’s original trajectory 
(Zhao et al., 2021), or have incorporated task popularity 

categorization results into the bundle construction process 
(Wang et al., 2019; Zhen et al., 2022).

Similarly, in the scooter charging industry, offering bun
dle reservations in addition to individual ones can present 
more valuable choices that boost worker engagement. 
Unlike the current one-task-at-a-time reservation system, 
which may lead to unpredictable work schedules and create 
anxiety about losing potential tasks to others, bundle reser
vations offer greater predictability. By securing multiple 
tasks at once, workers can plan longer working hours and 
achieve higher earnings, reducing uncertainty. Meanwhile, 
offering bundle reservations can alleviate some of this uncer
tainty by ensuring workers have longer working times and 
higher earnings than individual reservations.

However, the unique characteristics of the scooter- 
sharing platform call for a specialized bundling algorithm 
that has not been explored in prior studies. Gig workers are 
assumed to be depot-oriented rather than trajectory-based, 
as their shifts typically begin at night from the depot, where 
they equip their vehicles and prepare for plug-in charging. 
Additionally, quick task bundling is crucial for worker 
engagement, making auction-based or feedback-driven 
methods impractical. Moreover, key information such as 
travel routes or task preferences is unavailable due to the 
spontaneous participation of workers, necessitating a new 
approach based on available information on scooter distri
bution and depot data.

This study introduces a bundling strategy to entice gig 
workers to maximize daily scooter collection rates. To the 
best of our knowledge, we are the first to propose an oper
ational approach to using bundles in the scooter-sharing 
industry, leveraging gig workers for charging by autonomous 
task selection. Our approach involves a two-stage bundling 
strategy. Initially, candidate bundles are generated via a bun
dle generator to reduce the computational load by focusing 
on potentially attractive combinations of tasks. Subsequently, 
the final configuration of non-overlapping bundles is 
selected using a set-packing optimization model, each maxi
mizing a proxy objective to evaluate bundle attractiveness.

The contribution is threefold:

� This study fills the research gap of the task bundling lit
erature applicable to the scooter charging industry to 
maximize the task completion rate. It targets self- 
scheduling, depot-oriented gig workers who can make 
multiple sequential task reservations. Unlike previous 
studies that rely on auction systems or feedback on bun
dle quality, the proposed model generates bundles dir
ectly before the worker selection phase, without 
considering task preferences or feedback.

� Two proxy objective functions of the set packing model 
are designed for assessing the bundle attractiveness. The 
value maximizing bundling (VMB) model uses task dis
tribution information to maximize the sum of bundle 
value, defined by the total reward divided by the disper
sion of tasks. The probability maximizing bundling 
(PMB) model maximizes the collection probability by 
considering the proximity of the bundle to the worker’s 
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depot in addition to its value. Both models are designed 
using only the minimum available information in the 
industry.

� Numerical experiments are conducted to demonstrate the 
effectiveness of bundles with scooter collection simula
tion. Our approach increases the collection rate near the 
maximum achievable collection rate calculated under 
centralized task assignment without bundles in the 
benchmark comparison. The efficacy of the bundling 
strategy was further examined across different scenarios, 
considering the spatial distribution of scooters and the 
total capacity of workers. By analyzing actual scooter 
data from Louisville, this study demonstrated that the 
proposed bundling strategy increases the average profit 
margin for workers, thereby confirming its benefit for 
both the platform and gig workers.

The remainder of this article is structured as follows. 
Section 2 lists a comprehensive summary of the task bun
dling literature. Section 3 introduces the mathematical mod
els constituting the bundling strategy. Section 4 presents the 
simulation of gig workers as a performance measurement of 
the suggested strategy. Section 5 addresses the research ques
tions of this study through simulation-based experiments 
with managerial insights. Finally, Section 6 summarizes the 
findings of this research.

2. Literature review

While research on task bundling remains sparse, there has 
been some exploration in the logistics field, such as less- 
than-truckload (LTL) transportation and last-mile delivery. 
Also, similar to the scooter-charging platform, the mobile 
crowdsensing platform utilizes workers to perform micro- 
tasks, such as sensing and uploading location-specific data 
through the app. We provide a literature review and list the 
differences in our study.

Kandappu et al. (2016) first emphasized the effect of bun
dles in improving the detour efficiency of workers. Even 
with the simplicity of the experiment, valuable insights were 
provided considering workers’ behavioral preferences and 
characteristics. To improve the limitations, Wang et al. 
(2019) proposed a bundling strategy for which many tasks 
and workers are considered. During each round of the col
lection process, the platform dynamically categorizes tasks 
based on their popularity and creates bundles where less 
popular tasks are combined with highly popular ones. 
Despite the increase in total worker participation, the 
authors point out that the simple task categorization process 
may worsen the system’s performance.

Complementing this weakness, other studies present bun
dling strategies by defining a worker behavior model that 
formulates a probability that a worker would select a task 
bundle. Zhao et al. (2021) defined a worker behavior model 
based on factors such as the detour cost, the number of 
tasks within the bundle, and the spatial distribution of tasks 
within a bundle. The total task bundling plan, which maxi
mizes the number of expected completed tasks, is 

determined. Zhen et al. (2022) suggested a worker behavior 
model to consider the popularity of the task inside the 
worker’s selection probability model. A reinforcement learn
ing approach is used to decide the final bundle set. Zhen 
et al. (2022) introduced a mental accounting theory to 
design the task execution profit and bonus. The overall 
incentive mechanism aims to maximize social welfare 
through bundles.

Meanwhile, a bundling strategy also exists within the 
crowdsourced delivery field. Mancini and Gansterer (2022) 
considered bundling customer requests for workers who 
deliver parcels on the way to their destinations. The auction 
system is adopted to assign the bundle with the highest 
valuation to workers. Two bundling methods are proposed: 
a traditional clustering-based method minimizes the max
imum intra-cluster distance, and a corridor-based method 
bundles requests close to the direct path between the depot 
and the worker’s destinations. Gansterer and Hartl (2018) 
presented a genetic algorithm-based framework to minimize 
a proxy objective function. This function bundles tasks to 
reduce tour lengths while maintaining low densities. Horner 
et al. (2021) presented a distinct system where workers 
could select a task among personalized bundles provided by 
the platform.

However, the bundling strategies researched thus far are 
difficult to apply directly due to the specific characteristics 
of the scooter-picking industry. Bundling strategies need to 
be tailored to the specific characteristics of workers and 
processes in each industry. Table 1 highlights how this study 
stands out by addressing these unique requirements within 
the bundling literature dealing with worker freedom.

The bundling literature covers various target fields, which 
yields different bundle distribution methods. In delivery 
platforms, including last-mile delivery and LTL transporta
tion, there is sufficient time to assign bundles to workers, 
enabling distribution through auction systems. However, in 
mobile crowdsensing fields, bundles must be given immedi
ately to match the timing of workers’ willingness to work. 
This necessitates direct bundle distribution, as with the 
scooter charging platform addressed in this study. In such 
cases, it becomes crucial to establish metrics to evaluate 
which bundles are likely to appeal to workers before they 
are offered, often achieved through proxy objectives. 
Gansterer and Hartl (2018) were the first to propose a proxy 
objective for generating appealing bundles as bids, focusing 
on the route length and density of the bundles. Zhao et al. 
(2021) and Zhen et al. (2022) built upon this idea by adopt
ing a probability-based model and a social welfare maxi
mization model, respectively. Our study extends this concept 
by introducing two novel proxy objectives: the VMB model, 
which maximizes the reward-to-dispersion ratio using the 
standard distance deviation factor, and the PMB model, 
which employs a reward-to-probability framework based on 
the sensing model.

The advantage of our approach is that it requires min
imal data from workers. All the information needed to gen
erate bundles, such as depot and capacity data, is already 
gathered during workers’ registration on the platform. This 
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is a key strength, allowing for rapid implementation and dir
ect bundle provision in fast-paced platforms such as e- 
scooter charging systems. On the other hand, other article 
needs time-consuming processes, such as auction feedback 
in Gansterer and Hartl (2018) and Mancini and Gansterer 
(2022), or additional information from workers such as 
travel trajectory in Zhao et al. (2021) or worker’s task will
ingness in Zhen et al. (2022). This is impractical in the 
scooter-charging industry to expect workers to endure long 
wait times for task assignments through an auction system 
or feedback process. Our study is distinguished by its 
strength in proposing a method for bundling that operates 
effectively with limited information and supports convenient 
worker engagement.

Finally, our study focuses on depot-oriented workers, a 
previously unexplored group in which both the starting 
point and destination are the depot. In contrast, previous 
studies either do not specify worker types or focus on 
depot-returning workers (Mancini & Gansterer, 2022; Zhao 
et al., 2021), who start at non-depot locations and return to 
a depot. These studies allow platforms to use workers’ tra
jectories as inputs for creating bundles, which is inappropri
ate in scooter-charging platforms. In this study, workers 
require vehicles with sufficient space to collect scooters and 
plug-in charging equipment for recharging, making their 
journeys inherently depot-oriented. This unique characteris
tic necessitates a tailored bundling strategy to meet the spe
cific needs of depot-oriented workers.

Overall, this study proposes a bundling approach tailored 
for depot-oriented workers, removing the need for trajectory 
data. It also introduces proxy objectives to evaluate bundle 
attractiveness, functioning efficiently without additional 
information and ensuring seamless worker engagement.

3. Mathematical models

This section introduces the mathematical models and algo
rithms employed for each stage of the bundling strategy. 
The process involves two steps: first, the generation of can
didate bundles, and second, the selection of winning bundles 
to form the final bundle set. Additionally, we present behav
ior models for gig workers considered during the bundling 

process. The proposed bundling model is applicable to 
industrial scenarios with the following characteristics:

� Bundle options are provided to workers before the task 
begins, without the need for workers’ feedback on the 
quality of the bundles.

� Geographic proximity between locations is a key 
consideration.

� Workers can make multiple task reservations in 
sequence.

� The pick-up task involves visiting specified locations and 
verifying completion via an app.

� As collection and relocation happen in separate phases, 
relocation is beyond the scope of this model.

3.1. Gig worker’s behavior

The study targets an industrial setting where it is infeasible 
to assign specific workers to pick up specific scooters or 
receive workers’ preferred schedules in advance. The work
ers in this study have a fixed destination to return to after 
completing scooter collections. Workers charge the collected 
scooters at the destination using electric chargers received 
from the platform in advance. Typically, gig workers register 
their addresses on the platform, so we assume that this loca
tion is known to the platform.

Additionally, each gig worker is assumed to have a cap
acity, denoted as Q, which restricts the amount of scooters 
they can collect. For instance, a worker with one charger is 
estimated to have a capacity Q of value 100, which is suffi
cient to full-charge a single depleted scooter (0% battery to 
100%). In practice, it usually takes an hour to fully charge a 
scooter with an 80% battery, while a scooter with no battery 
takes 5–6 hours (Helling, 2022). For simplicity, we assume 
that the charging profile of scooters is linearized. We allow 
workers to split their capacity to charge multiple scooters; 
workers with Q¼ 100 can fully charge two half-depleted 
scooters (each 50% uncharged). Therefore, Q is a measure of 
total available battery capacity, not the number of scooters, 
and workers can collect many scooters as long as they can 
fully charge them until the next service period. Note that if 
the combined capacity required to charge all scooters in a 

Table 1. Comparison of literature on bundling strategy in crowdsourcing platform with worker freedom.

Target field Bundle distribution Proxy objective usage
Additional data 

requirements Worker type

Wang et al. (2019) Mobile crowdsensing Direct distribution No Task preference data Not specified
Mancini and Gansterer 

(2022)
Last-mile delivery Auction No Worker trajectory, 

auction feedback 
data

Depot-returning

Gansterer and Hartl 
(2018)

LTL transportation Auction Yes (minimization of 
route length and 
density)

Auction feedback data Not specified

Zhao et al. (2021) Mobile crowdsensing Direct distribution Yes (probability-based 
model)

Worker trajectory data Depot-returning

Zhen et al. (2022) Mobile crowdsensing Direct distribution Yes (social welfare 
maximization)

Task willingness data Not specified

This study E-scooter charging Direct distribution Yes (VMB: reward-to- 
dispersion ratio; PMB: 
reward-to-probability 
ratio)

No additional data 
needed

Depot-oriented
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bundle exceeds Q, the corresponding worker cannot select 
that bundle.

We established the following two assumptions for the 
behaviors of an active worker in a platform. First, gig work
ers evaluate the attractiveness of tasks displayed on the plat
form according to two factors: the attractiveness of a scooter 
is proportional to reward and inversely proportional to the 
travel distance of visiting a scooter (individual option) or 
scooters within a bundle (bundle option) and returning to 
their destination. Figure 1 illustrates the evaluation of task 
attractiveness for each option. For the individual option, the 
reward is divided by the distance passing through the 
scooter to the worker’s destination. This is because workers 
need to return to their destination at last, and scooters 
located too far away are less favorable. For the bundle 
option, the bundle reward, which is the sum of individual 
rewards, is divided by the distance of the shortest path that 
covers all scooter locations and the destination. As workers 
likely estimate distances intuitively rather than by finding 
the exact shortest path, we used the nearest neighbor algo
rithm for computational efficiency in the Experiments pre
sented in Section 5. Then, considering attractiveness as an 
expression of task preference, workers select a task with the 
highest attractiveness value. This greedy nature is due to the 
competitive nature of the industry, where workers can only 
reserve one task at a time.

Second, the worker’s cumulative activity affects whether 
or not to pick up the next particular scooter or bundle. 
Workers in this study regard gig work as a side job that 
brings impromptu income in their spare time. Therefore, 
once the workers have satisfied their quota to some extent, 
they may only pick up sufficiently valuable scooters and 
otherwise terminate. We assume this activity quota is pro
portional to the worker’s capacity Q. To organize this setup, 
a worker is regarded to have threshold values for attractive
ness and an activity quota, which we denote as a and b 

ð0 � a and 0 � b � 1Þ; respectively. Before filling up the b 

rate of their capacity Q, workers will greedily choose tasks 
with the highest attractiveness value. After that, they will 
only choose tasks with an attractiveness value higher than a 

(USD/km).
Also, we consider the following assumptions for design

ing the problem.

� The reward for picking up a particular scooter is given 
(see Section 5.1 for a detailed pricing process). In the 

case of a bundle, the total reward is the sum of the 
reward prices of all scooters in the bundle.

� There is a daily set time when workers can participate in 
the platform. Once workers finish working and return to 
their destination, they do not restart collection again on 
the same day.

� A worker can reserve only one task, either an individual 
scooter or a bundle, at a time, and the previous reserva
tion must be completed before the next.

� Workers have no information about others, including 
destination or workload.

� If the attractiveness of an individual scooter provided in 
a bundle is worth more than the bundle, the worker is 
allowed only to reserve the individual scooter. Then, the 
provided bundle option is eliminated from the platform.

3.2. Step 1: Generation of candidate bundles by bundle 
generator

The approach we adopt for generating bundles consists of 
two distinct steps. At first, we generate a set of candidate 
bundles. Then, from the set of candidate bundles, we select 
a subset of winning bundles based on set packing models of 
which objectives are designed to entice workers.

Partitioning N scooters to subsets is intractable, as the 
case grows exponentially with the number of scooters. Also, 
the majority of these subsets may not be attractive to work
ers. Instead, we present a bundle generator capable of gener
ating meaningful subsets of which high attractiveness comes 
from the relative distances of scooters.

The process starts with a target scooter and gradually 
adds the next available scooter until the maximum bundle 
size is reached. Considering workers’ capacity constraints 
during scooter collection, we set an upper limit on the bun
dle size, denoted as “MaxBundleSize,” to ensure that a bun
dle does not contain excessive scooters.

We present three bundle-generating rules applied uni
formly to all scooter nodes, each serving as a target scooter. 
Each rule focuses on grouping nearby scooters by distance 
or statistical dispersion. In one way, we introduce standard 
distance deviation (Levine, 2004), which estimates the scat
tered degree of geographic points (see Section 3.3 for exact 
calculation). The three rules are as follows:

� Rule 1: Select the node nearest to the target node
� Rule 2: Select the node nearest to the last added node
� Rule 3: Select the node that least increases the standard 

distance deviation of a bundle

Each rule selects a new scooter node to generate new 
bundles, which are added to the bundle set B: Figure 2 illus
trates the scooter node selected in every iteration when three 
rules are applied to target scooter 13 with a MaxBundleSize 
of 5. Scooter 6 was selected under all three rules during the 
first iteration, but differences appeared in the subsequent 
iterations. Columns 2, 4, and 6 in Table 2 show this proced
ure in detail. Columns 3, 5, and 7 in Table 2 indicate the 
generated bundles in each iteration by the corresponding 

Figure 1. Attractiveness of an individual option and a bundle option (reward: 
USD; distance: km).
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rule. To elaborate, the chosen scooter is merged with the 
target node, along with all previously formed bundles, using 
the same criterion. That is, B is the subset of the powerset 
of previously selected scooters with more than one element. 
Note that this is applicable for rules 1 and 2 but not for rule 
3, as the latter emphasizes forming a bundle with only a low 
standard distance deviation. Every iteration updates B; and 
with each one, the size of the bundle added to the bundle 
set increases by one. This leads to jMaxBundleSize − 1j itera
tions for each rule per node. See Appendix A for the 
pseudo-code of each rule. Subsequently, duplicates are 
removed, leaving 32 unique bundles in the bundle set. The 
final candidate bundles are obtained by repeating this pro
cedure for every scooter node.

3.3. Step 2: Selection of attractive bundles by set 
packing models

So far, bundles generated through a generator may share the 
same scooter. For example, it is observed that scooter num
ber 13 is assigned to all bundles in Table 2. The next step is 
to sort out a combination of bundles to ensure that no indi
vidual scooter is included in multiple bundles.

We developed two set packing models that find the win
ning bundles among the candidates. One is the VMB model, 
which maximizes the sum of the total value of bundles, and 
the other is the PMB model, which maximizes the sum of 
the probability of a bundle being selected. Notations for the 
models are denoted in Table 3. The solution of the models 

will be offered as bundle options to workers. Additionally, 
the scooter, not in any of the winning bundles, is given as 
an individual reservation option, which is still available for 
workers to collect. The key distinction between the VMB 
and PMB models is that the VMB focuses on maximizing 
bundle value based on scooter data alone, while the PMB 
accounts for the worker’s depot location.

The VMB model can be formulated as follows:

max
X

j2B

Pj

stdj

 !

xj (1) 

s:t:
X

j2B
aijxj � 1 8i 2 N (2) 

xj 2 f0, 1g 8j 2 B (3) 

The objective function (1) maximizes the sum of the 
value of bundles, calculated by Pj

stdj
: Here, we model that the 

value of a bundle j is proportional to the total bundle 
reward, Pj (the sum of the individual rewards of included 
scooters), and is inversely proportional to the standard devi
ation of the distances of the included scooters, stdj: The stdj 

for a bundle j including nð� 3Þ scooters with coordinates 

ðe1, l1Þ, :::, ðen, lnÞ; is calculated as follows: stdj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðE−eiÞ

2
þðL−liÞ2

n−2

q

where E ¼
Pn

i¼1 ei and L ¼
Pn

i¼1 li: In 
the case of a bundle size of two, stdj is simply the distance 
between two points. Constraint (2) ensures that no scooter 
is included in more than one winning bundle.

The attractiveness of each task changes because workers 
select the next task after completing the current one, and 
the worker’s location changes accordingly. In this perspec
tive, the VMB model generates attractive bundles irrespect
ive of the worker’s location. On the other hand, the PMB 
model considers workers’ destinations when creating bun
dles, as workers tend to return to their respective locations 
after completing tasks. This approach recognizes that a 
worker’s perception of a bundle’s value can be influenced by 
the distance to the worker’s depot.

To address this issue, we introduce the parameter Prjk;

the probability of a bundle j being selected by a worker k. 
We assume that Prjk is influenced by Pj; stdj; and the dis
tance between the worker’s destination and the bundle 

Table 2. Demonstration of bundles added to candidate bundle set B with a target scooter 13.

Rule 1 Rule 2 Rule 3

Scooter Bundle Scooter Bundle Scooter Bundle

Iteration 1 6 (13, 6) 6 (13, 6) 6 (13, 6)
Iteration 2 9 (13, 9), (13, 6, 9) 2 (13, 2), (13, 6, 2) 7 (13, 6, 7)
Iteration 3 10 (13, 10), (13, 6, 10), 

(13, 9, 10), (13, 6, 
9, 10)

1 (13, 1), (13, 6, 1), 
(13, 2, 1), (13, 6, 
2, 1)

5 (13, 6, 7, 5)

Iteration 4 11 (13, 11), (13, 6, 11), 
(13, 9, 11), (13, 6, 
9, 11), (13, 10, 
11), (13, 6, 10, 
11), (13, 9, 10, 
11), (13, 6, 9, 
10, 11)

4 (13, 4), (13, 6, 4), 
(13, 2, 4), (13, 6, 
2, 4), (13, 1, 4), 
(13, 6, 1, 4), (13, 
2, 1, 4), (13, 6, 2, 
1, 4)

3 (13, 6, 7, 5, 3)

Figure 2. Iterative addition of scooters by each bundle generating rule applied 
to a target scooter 13.
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centroid, denoted by djk: We design the term based on the 
Elfes sensing model (Elfes, 2013), which models the prob
ability of a sensor detecting an object using an exponential 
distribution function with a decay parameter, k: Given that 
workers are capable of sensing tasks within a distance d;

Prjk can be designed as such:

Prjk ¼
exp −k �

djk þ stdj

Pj

 !

, if djk � d:

0, otherwise:

8
><

>:

Figure 3 depicts Prjk according to djk (Pj and stdj are 
fixed to 15 USD and 0.3 km, respectively). Prjk decreases as 
djk increases, even if bundles have the same Pj or stdj: The 
rate at which Prjk decreases is determined by k; with a 
smaller value indicating a slower decrease. As the value of k 

is larger, the model considers the probability of a worker 
showing interest in the corresponding bundle to be lower.

Finally, the PMB model is formulated as follows:

max
X

j2B
ð1 −

Y

k2K
ð1 − PrjkÞÞ � xj (4) 

s:t:
X

j2B
aijxj � 1 8i 2 N (5) 

xj 2 f0, 1g 8j 2 B (6) 

The objective function (4) maximizes the total probability 
that at least one worker will choose a given bundle. 
Constraints (5) and (6) are the same as Constraints (2) 
and (3).

4. Simulation model

This study proposes a simulation system of gig workers col
lecting the scooters. The flowchart in Figure 4 outlines the 
simulation process.

There are two preparation steps to complete before run
ning the collection. First, the model requires scooter infor
mation, including the location, the required battery charge, 
and the reward. The model also requires information on gig 
workers, which comprises the depot location, the capacity, 
and the behavior parameters a and b: We assume that each 
worker’s unique depot serves as the origin and destination 
point for that worker’s collection tasks. Next, the model 
determines whether or not to apply the bundling process 
reviewed in Section 3. If applied, the bundling process is 

Table 3. Notations for the VMB and PMB models.

N Set of scooter nodes (1, … , n)
B Set of candidate bundles (1, … , j)
KD Set of gig workers’ depot nodes (nþ 1, … , nþ k)
Pj Reward of bundle j, 8j 2 B
stdj Standard distance deviation of bundle j, 8j 2 B
k Decay parameter
d Distance limitation parameter
djk Distance between the worker k’s depot and the bundle centroid j, 8j 2 B; 8k 2 KD
aij Parameter which is 1 if bundle j contains scooter i, otherwise 0, 8i 2 N; 8j 2 B
xj Binary decision variable which is 1 if bundle j is selected as winning bundle, otherwise 0, 8j 2 B

Figure 3. Collection probability Prjk of gig worker according to k:

Figure 4. Flowchart of simulation.
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executed to provide bundles of tasks; otherwise, workers can 
only reserve individual scooters.

In the Initial task reservation step, workers reserve tasks 
based on the behavior explained in Section 3.1, based on the 
first-come, first-served rule. In case of overlapping reserva
tions, the system randomly selects one worker. Then, the 
reserved tasks disappear from the platform.

During the Routing step, the distance of each worker to 
reach their designated task is calculated. Assuming that 
workers travel at the same speed, we can track the task com
pletion time.

When a worker k is identified as the one who requires 
the shortest time to complete a task, a pick-up event is trig
gered, and the Update status step is executed. This step 
involves updating the information for the worker k, such as 
the accumulative capacity, the travel distance, and the 
reward. Additionally, for other workers who are still en 
route to their designated tasks, the remaining time until 
they reach their tasks is reduced by the according amount of 
time taken by worker k.

Then, the Check worker termination step is carried out to 
determine whether worker k leaves the platform. If any of 
the two conditions are met, we assume that the worker 
leaves the system: (1) a worker’s remaining capacity cannot 
accommodate any available tasks; (2) a worker’s accumu
lated capacity exceeds b; and there are no scooters with a 
value greater than or equal to a remaining for collection.

At the end of each cycle, we check if any workers or 
scooters are still available on the platform. If workers and 
scooters remain, a worker k selects the next task and the simu
lation proceeds with the Routing step. The simulation contin
ues until no workers or scooters remain on the platform.

5. Computational experiments

We present simulation-based experiments to examine the 
effectiveness of the proposed bundling strategy. Each experi
ment addresses the following research questions:

� To what extent can bundling improve the collection rate 
of scooters compared to a no-bundling case?

� Dividing the scenarios according to the spatial distribu
tion of scooters and the overall worker capacity, in which 
scenario is the bundling system most effective?

� How does the variability in gig worker supply change the 
effect of bundles on the platform and workers?

� How do key factors in the simulation process impact the 
performance of the bundles?

The experiments were conducted on a workstation with an 
Intel VR Pentium CPU G3250 at 3.20 GHz, and the optimization 
models were solved using ILOG CPLEX solver 12.10.

5.1. Instance generation

The simulation instances consist of data such as the map 
size, scooter, and gig worker details. Due to the lack of pub
lic scooter and worker data for security reasons, most of the 

data was generated manually. The scooter data for the 
experiment was generated in the following manner.

� Location of scooters: We use the generic geographic dis
tributions presented in Solomon (1987). The location of 
scooters is generated based on either random or clustered 
patterns, and they reflect the scenario in which some 
scooters are clustered around bus or metro stations. In 
contrast, others are randomly scattered throughout the 
area. In each experiment, the exact ratio of scooters gen
erated by each distribution is specified.

� Reward pricing of scooters: In practice, such as Lime 
scooters, the proximity of scooters is the main factor in 
determining the individual reward (Helling, 2022). For 
Lime, the reward for a single scooter typically amounts 
to 5 USD and seldom surpasses 12 USD (Helling, 2023). 
To mimic this, we use a density-based spatial clustering 
of applications with noise (DBSCAN) clustering method 
to assign rewards based on the result (Ester et al., 1996). 
Specifically, we use the parameters Eps ¼ 50 and MinPts 
¼ 5. Scooters that are part of a dense cluster of at least 
five other scooters within a 500-m radius are considered 
“core” and assigned a reward of 5 USD. Scooters that are 
outliers and not part of any cluster are considered 
“noise” and assigned a reward of 10 USD. Finally, the 
scooters on a cluster’s border are considered “border” 
and assigned a reward of 8 USD.

� Battery level of scooters: It is randomly chosen from a 
set of integers ranging from 10% to 80%, with incre
ments of 10%.

� MaxBundleSize: The baseline is set to 5.

The gig worker data is generated as follows. The locations 
of workers’ destinations are randomly generated. Also, we 
assume that workers’ initial participation starts from their 
depot for every experiment for consistent analysis. We 
assume that all workers’ parameters, such as capacity, 
attractiveness, and activity quota threshold, are identical 
within an experiment. We use a baseline value of Q¼ 600%, 
a ¼ 3 USD/km, b ¼ 0.5 for Experiment 1, and a ¼ 5 USD/ 
km for other experiments.

5.2. Experiment 1: Effect of bundles on the collection 
rate

We demonstrate the effectiveness of bundles in increasing 
the total collection rate compared to the no-bundling case 
by turning on and off the Bundling process in the simula
tion. The instance used in this experiment consists of a map 
with an area of 5 km2, two workers, and 25 scooters. The 
scooter locations consist of two clusters of 10 scooters each 
and five randomly placed scooters. A total of 42 instances 
were generated with randomness and tested independently.

The result is displayed in Figure 5 using box plots. We 
utilize both the VMB and PMB for the bundling models, 
with four different types of PMB models according to k: As 
can be seen from the figure, the bundling models have a 
significant impact on increasing the total collection rate. 
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We observe that every bundling model beats the no- 
bundling setting.

To further emphasize the effect of the bundling strategy, 
we propose another comparative model, the platform inter
vention in the no-bundling (PI-NB) model. In bundling and 
no-bundling cases, gig workers can select tasks and prioritize 
those with higher attractiveness. However, the PI-NB model 
disregards this greedy behavior and instructs gig workers to 
achieve the maximum collection rate for a no-bundling case. 
To increase the collection rate, the route of PI-NB initially 
instructs a worker to collect scooters that are not attractive. 
By doing so, it is more likely that scooters will still be avail
able that satisfy the gig worker’s condition of only collecting 
tasks with attractiveness equal to or greater than the thresh
old once the cumulative capacity exceeds the activity quota.

Although this model may not be a realistic approach, it 
can serve as an indicator to gain insights into the effects of 
bundles. Based on the multi-depot capacitated vehicle rout
ing model, PI-NB provides the route of each worker that 
achieves the maximum collection rate. PI-NB is formulated 
as follows:

max
X

i2V

X

j2V

X

k2K
zk

ij (7) 

s:t: zk
ii ¼ 0,8i 2 V, 8k 2 K (8) 

zk
ij ¼ 0,8ði, j, kÞ 2 P (9) 

X

j2N
zk

ij � 1, 8i 2 KD, 8k 2 K (10) 

X

i2N
zk

ij � 1, 8j 2 KD,8k 2 K (11) 

X

p2V
zk

pi ¼
X

t2V
zk

it , 8i 2 N, 8k 2 K (12) 

X

i2V

X

k2K
zk

ij � 1, 8j 2 N (13) 

X

j2V

X

k2K
zk

ij � 1, 8i 2 N (14) 

uk
i ¼ 0, 8i 2 KD, 8k 2 K, i ¼ k (15) 

uk
i þ qj � uk

j þ Mð1 − zk
ijÞ, 8i 2 V,8j 2 N,8k 2 K (16) 

uk
j � M �

X

p2V
zk

pj, 8j 2 N, 8k 2 K (17) 

uk
i − Q � b � Mð1 − zk

ijÞ, 8i 2 V , 8k 2 K, 8j 2 Ak
i ðaÞ (18) 

zk
ij 2 f0, 1g, 8i, j 2 V, 8k 2 K (19) 

uk
i � 0, 8i 2 V,8k 2 K (20) 

The notations are explained in Table 4 (notations listed 
in Table 3 are excluded). The objective function (7) maxi
mizes the total number of collected scooters. Constraint (8) 
ensures no travel from a node to itself. Constraint (9) pro
hibits a worker from visiting another worker’s depot. 
Constraints (10) and (11) ensure that each worker can leave 
and return to the depot only once. Constraint (12) is a bal
ance equation. Constraints (13) and (14) specify that each 
node can be visited by at most one worker or not visited at 
all. Constraint (15) makes a worker’s capacity start from 
zero. Constraint (16) enforces an accumulated capacity to 
increase by qj when a worker k visits node j immediately 
after visiting node i. Constraint (17) specifies that the accu
mulated capacity of worker k at node j is equal to zero if 
the worker does not visit that node. Constraint (18) 

Figure 5. Box plot of the collected number of scooters according to bundling 
models compared to the no-bundling case.

Table 4. Notations for the PI-NB model.

K Set of gig workers (nþ 1, … , nþ k)
V Set of total nodes, N [ KD (1, … , nþ k)
P Set of arcs that connect workers to visit other workers’ depot nodes

¼
ð8i 2 KD,8j 2 V ,8k 2 K , i 6¼ kÞ
[ð8i 2 V ,8j 2 KD ,8k 2 K , i 6¼ kÞ

�

M Large number
r Small number
Q Capacity of a worker
pj Reward of scooter j, 8j 2 N
qj Battery charge required for scooter j, 8j 2 N
a Threshold value of task attractiveness
b Threshold value of activity quota
Ak

i ðaÞ Set of scooters with value under than a for worker k right after visiting node i, 8i 2 N; 8k 2 K

zk
ij Binary variable which is 1 if worker k visits node i to j, otherwise 0, 8i 2 V; 8j 2 V; 8k 2 K

uk
i Accumulated capacity of worker k at node i, 8i 2 V; 8k 2 K
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prohibits workers whose accumulated capacity exceeds b 

from accepting tasks with an attractiveness below a: By 
applying this constraint, the workers are directed to visit 
scooters with lower values before those with higher values. 
Constraint (19) is the binary constraint, and Constraint (20) 
is the positive of the capacity variable. See Appendix B for 
additional Constraints (B1) and (B2).

Figure 6 plot represents the relative collection rate of 
each bundling compared to the comparative PI-NB model, 
which is set to 100. For instance, if the PI-NB model 
obtained a result of 25 while the VMB model obtained 22, 
the box plot value is 100 − (25 − 22) �100/25¼ 88. We pre
sent multiple models with varying k values for the PMB 
model. The findings indicate that bundling models are 
effective in increasing the collection rate compared with the 
no-bundling (box plot N/B) case. Moreover, the result of 
bundling models is notably closer to the result of the PI-NB 
model. On average, 70% is collected without bundles; how
ever, it increases to almost 90% with bundles. We illustrate 
this point using Figure 7.

Figure 7 illustrates the difference in workers’ routes of 
no-bundling, bundling models, and the PI-NB model setting 
as an example. Figure 7a shows that only 10 out of 25 
scooters are collected without bundling. However, Figure 7b
shows that when using the PMB model, eight bundles are 

generated, resulting in the collection of 21 scooters. Finally, 
Figure 7c demonstrates that 22 scooters can be collected if 
the platform directly manages the workers without bundling 
(i.e. an ideal PI-NB model).

From Figure 7, it is intuitive that bundles encouraged 
workers to participate beyond their usual activity quota. In 
Figure 7a, worker 2 returns home immediately after collect
ing scooter 8. In contrast, in Figure 7b, the worker contin
ues collecting after scooter 8, taking the opportunity to 
collect the bundle of scooters 6 and 16 without depriving 
them. This increases the value of the task, encouraging the 
worker to proceed with further collection. Additionally, 
the bundles enable the collection of scooters distributed in 
the upper-right region, which were not collected in 
Figure 7a, thereby improving the overall collection rate. As a 
result, as shown in Figure 6, the bundling models signifi
cantly outperform the no-bundling setting.

Furthermore, among the bundling models, there are 
instances where the collection rate reaches the level of the 
ideal PI-NB model. The results of the PI-NB model, as 
shown in Figure 7c, represent unrealistic outcomes that 
would require workers to be explicitly directed to prioritize 
long-distance tasks. However, introducing bundles achieves 
nearly 90% of the PI-NB results. This is achieved even when 
workers make autonomous decisions, demonstrating the 
effectiveness of the 2-stage bundling algorithm.

5.3. Experiment 2: Scenario-based experiments on the 
bundling performance

The experiment investigates the performance in different 
scenarios categorized by two features: (1) the spatial distri
bution of scooters and (2) the overall worker capacity. The 
instances used in this experiment consist of a map with an 
area of 14 km2, 10 workers, and 150 scooters. We generated 
40 instances for each scenario.

The scenarios are denoted using the following notations: 
R or C to indicate a uniformly random or clustered distribu
tion of scooters, respectively, and J or S to denote the overall 
charging capacity of workers and the overall battery required 

Figure 6. Relative collection rate normalized to the maximum collection of 
PI-NB.

Figure 7. Comparison of collection results for a sample instance of experiment 1.
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to charge every scooter fully. For example, an instance 
denoted by C100_R50 and J2000_S7500 implies that 100 out 
of 150 scooters were generated using the clustering tech
nique, and the total charging capacity of workers and total 
scooter charging requirement were 2000% and 7500%, 
respectively. We set the overall battery amount required to 
charge every scooter to 7500% for all scenarios.

Figure 8 depicts the collection efficiency according to the 
overall worker capacity. As the overall battery charge required 
for fully charging the scooters is fixed at 7500%, it is clear to 
identify the effect of the overall worker capacity. Each box 
plot illustrates the distribution of 40 instances of the total col
lection rate in Figure 8a and the improvement rate in Figure 
8b. The improvement rate indicates how much the collection 
rate was increased by implementing the relevant bundling 
techniques compared to the no-bundling case.

Figure 8a indicates that the collection rate increases as 
overall worker capacity rises, as expected. However, Figure 8b
highlights an interesting difference between the bundling 
options regarding the improvement rate. Specifically, when 
overall worker capacity is low, bundling options have minimal 
differences. In some cases, the collection rates are even lower 
than in the no-bundling case. This happens when workers 
often lack sufficient capacity to physically collect scooters, 
even when bundling offers a valuable alternative. In some 
cases, without bundling, workers may collect one or two add
itional scooters individually due to differing collection routes, 
which can occasionally lead to better outcomes in the no- 
bundling scenario. Nevertheless, as the worker capacity 
increases, the PMB models demonstrate superior performance 
over the VMB model. In general, PMB models with k values 
of 0.2 and 0.1 exhibit higher superiority. It reveals that utiliz
ing the worker’s depot information yields better collection 
rates especially when k is calibrated properly.

Another interesting observation is that the improvement 
rate is highest when the overall gig worker capacity and the 
overall charging requirements of scooters are close together. 
This is because when the realistic collectible capacity of work
ers is too low, the workers’ capacity can quickly become full, 
reducing the impact of bundling. Conversely, when the 

collecting power of gig workers is much higher than the 
scooters available for collection, the improvement rate can 
also be lower because the number of scooters that workers col
lect from the no-bundling case is already substantial.

Figures 9 and 10 depict the outcome according to the 
spatial distribution of scooters. On each graph, the x-axis 
represents a more randomized distribution of scooter loca
tions as it moves toward the right. Our analysis indicates 
that the spatial distribution of scooters and the overall 
worker capacity influence the collection rate. Upon analyz
ing Figures 9a and 10a, we observed minimal variation in 
the distribution; however, as the worker capacity increases, 
the differences in the collection rate become more 
noticeable.

As depicted in Figure 9b and c, there is a declining trend 
in the no-bundling case, indicating that the total collection 
rate decreases when scooters are less clustered. However, 
Figure 10b and c reveal that bundling models substantially 
influence random scooter distribution. The two following 
ideas can be inferred from this observation. The first is that 
when the overall capacity of gig workers is sufficient, the 
collection rate drops notably as the spatial distribution of 
scooters becomes more random instead of clustered. This 
phenomenon is especially evident in the no-bundling case. 
The rationale behind this is that the scooters are closer in a 
clustered arrangement, making it easier for workers to spot 
attractive scooters. The second is that bundles efficiently 
compensate for this gap in random distributions by increas
ing the task attractiveness. Especially the experiment finds 
the superiority of PMB models with moderate k values of 
0.1 and 0.2. This highlights that even though the VMB 
model exhibits a constant improvement rate, PMB models 
with appropriately calibrated parameters can accelerate the 
performance.

5.4. Experiment 3: Real data implementation under 
varying gig worker supply

This experiment examines the bundling benefits to gig 
workers by increasing their profit margins. To conduct the 

Figure 8. Collection efficiency according to overall worker capacity.
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analysis, we utilized open data from Louisville, Kentucky, in 
the US, which consisted of the latitude and longitude infor
mation of stationary scooters from multiple companies. The 
realistic distribution of scooter geospatial information was 
referenced using this data. Among them, 228 scooters 
located in the core area were used for the experiment, and 
their distribution is visually represented in Figure 11. The 
battery status of the scooters was randomly generated based 
on a uniform distribution of U[10, 80]. Also, the destina
tions of the workers were randomly generated to be located 
in their place of residence. Figure 11 shows the distribution 
for a group of 30 workers.

We examine the impact of bundling on gig worker sup
ply by varying the number of participating workers 
(jKj ¼ 10, 20, 30). Figure 12 presents the simulation results 
for no-bundling, VMB, and two PMB models with k values 

of 0.2 and 0.1. Each boxplot represents the average of 40 
instances with different worker locations. The 
MaxBundleSize of bundling models is set to 5, and Q is 
homogeneous to 500%. Additionally, a and b of workers are 
sampled from uniform distributions U[4.5, 5.5] and U[0.4, 
0.6], respectively.

In Figure 12a, for every model, the collection rate increases 
with the number of workers. This result is expected because of 
the workers’ limited capacity. When the gig worker supply is 
comparatively sufficient (jKj ¼ 30), the PMB model with k ¼
0:2 raises the collection rate to over 90%, while it remains 
around 40% during a shortage (jKj ¼ 10). Nonetheless, the 
findings in Figure 12a show that bundles always increased the 
total collection rate compared to no-bundling, shown by the 
positive improvement rates.

Remarkably, the bundling effect was stronger when gig 
worker supply was limited. In Figure 12b, the improvement 
rate was higher when there were fewer gig workers, suggest
ing that the bundling models encouraged workers to fully 
utilize their capacity during shortages. This inference is fur
ther supported by Figure 12c, which shows the average cap
acity usage of workers. In the no-bundling case, the 
workers’ capacity usage of around 60% suggests that they 
rarely encounter attractive scooters after fulfilling their activ
ity quota, causing them to terminate early. On the other 
hand, the bundling models significantly increased the work
ers’ capacity usage over the b; indicating that bundles stimu
lated their collection activity. For instance, the PMB 
(k ¼ 0:2) increased workers’ capacity usage nearly up to 
85% when jKj ¼ 10: Meanwhile, the declining trend in the 
improvement rate as jKj increases may be due to the 

Figure 9. Comparison of the total collection rate under the spatial distribution of scooters.

Figure 10. Comparison of the improvement rate under the spatial distribution of scooters.

Figure 11. Geographical distribution of scooters and gig workers.
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competition effect, as many workers have already preempted 
the bundles by selecting high value options. As a result, 
compared to when jKj is smaller, the total number of 
scooters available for collection decreases, making the 
improvement rate appear less significant.

Additionally, Figure 12f demonstrates that the workers 
achieved a higher average profit margin with the adoption 
of bundles. This is evidenced by the higher reward per dis
tance traveled in Figure 12d and e. The cost per kilometer is 
approximated to be 0.08 USD. A higher worker profit mar
gin implies a greater revenue earned per unit distance trav
eled, indicating that workers were provided with high-value 
alternatives through bundling. Thus, in situations where the 
workforce relies on gig workers, we demonstrated that bun
dling can partially address the instability of worker supply 
by improving both collection rates and worker margins.

5.5. Experiment 4: Sensitivity analysis

This section provides a sensitivity analysis of the parameters 
that impact the simulation result. For the platform, 
MaxBundleSize is an endogenous factor in defining the can
didate bundles in Step 1 of our approach. As exogenous fac
tors, the workers’ threshold values for the collection 
attractiveness, a; and the activity quota, b; can change the 
collection outcome significantly. We observed the changes 
in simulation outcomes by adjusting the values of these 
parameters within realistic ranges. The experimental data of 
40 instances is the same as in Experiment 3. The baseline 
setting is as follows: jKj ¼ 20; MaxBundleSize is set to 5, a 

is sampled from U[4.5, 5.5], and b is sampled from U[0.4, 
0.6]. Each sensitivity analysis was conducted by adjusting 
one parameter at a time while the others remained fixed at 
baseline values.

Figure 12. Simulation metrics according to gig worker supply levels.
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Figure 13 shows the impact of the MaxBundleSize. The 
result for each size is illustrated as the pattern of the box
plot. In Figure 13a, the total collection rate by size differs 
among models. For the PMB model with k ¼ 0:2; there was 
a notable increase between sizes 3 and 5. The phenomenon 
is explained by the increase in the number of candidate 
bundles due to the larger MaxBundleSize. This enables the 
bundling model to improve the likelihood of selecting more 
attractive bundles among diversified candidates. It can be 
inferred that the objective function of the PMB model well 
selected the bundles that were actually effective for workers.

On the other hand, there was no significant difference in 
the collection rate for the VMB and PMB models with k ¼
0:1 across sizes. The reasoning for this is that there is a limit 
to the extent to which MaxBundleSize can improve the col
lection rate. Despite the fact that the candidate bundles are 
diversified, larger bundles generally require longer detours 
for workers. As this is less attractive for workers, it lowers 
the possibility of being selected by the VMB and PMB. 
Thus, the final bundles are highly likely to have a much 
smaller size than the MaxBundleSize. As a result, the 
improvement rate in Figure 13b shows less difference 
between sizes. The PMB (k ¼ 0:2) also encounters this phe
nomenon by showing less improvement in sizes 5 to 7 than 
in sizes 3 to 5.

Meanwhile, as the bundle size increases, there is a risk of 
placing a greater collection burden on workers in terms of 
capacity, which could lower the improvement rate. The 
VMB model with size 7 in Figure 13b shows this example. 
However, the encouraging aspect is that despite this risk, the 
improvement rate did not significantly decrease for most 
cases. This reaffirms that the VMB and PMB models effect
ively maintain efficiency by selecting attractive bundles 

during the selection process. In other words, it demonstrates 
that the collection rate can be maintained above a certain 
level through appropriate filtering, without unnecessarily 
expanding the bundle size. Figure 13c and d also show a 
similar pattern in the workers’ metrics, with capacity usage 
and margin presented in each figure, respectively.

Figure 14 reveals the impact of the parameters a and b:
The x-axis displays the mean values of the uniform distribu
tions from which a and b are sampled. a is evaluated at 
four levels and b at three, resulting in 12 combinations. The 
results are displayed in boxplots, with each model evaluated 
over 40 instances. For the same instance, other worker 
attributes, such as depot location and capacity, are kept con
stant, with only the a or b being varied. The line plot in 
Figure 14 connects the averages of the PMB (k ¼ 0:2) model 
with equal b:

Figure 14a illustrates the pattern of the total collection 
rate. The consistent trend across models shows that the col
lection rate increases as the b rises, supporting the assump
tion that workers utilize more capacity with higher b: This 
is further confirmed in Figure 14c, where workers’ average 
capacity usage exceeds the b:

Additionally, Figure 14a reveals that, when comparing 
cases from a ¼ 3 to a ¼ 9; the collection rate decreases as 
the a increases. This aligns with the assumption that work
ers become more selective after reaching their b capacity 
threshold. The line plots also show that the reduction 
between consecutive a levels diminishes as the level 
increases. While workers easily find bundle options with val
ues greater than a ¼ 3; it becomes increasingly challenging 
as a increases. This suggests that bundles can only motivate 
workers up to a certain point, based on a levels. A similar 

Figure 13. Simulation metrics according to MaxBundleSize.
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trend is observed in the improvement rate, as shown in 
Figure 14b.

According to Figure 14d, a promising observation is that 
workers’ margins are higher across all combinations of a 

and b in the bundling scenarios compared to in the no- 
bundling case, as is the collection rate. Generally, workers 
with higher b earn greater margins, regardless of a; as 
shown by the line plot—where the margin gap widens at 

Figure 14. Simulation metrics according to a and b:
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lower b: A lower b represents workers who are less inclined 
to fully utilize their capacity. Thus, the larger margin gap 
between no-bundling and bundling models at lower b sug
gests that bundles are particularly effective in motivating 
more passive workers, who might otherwise not fully utilize 
their capacity. This indicates that bundling can enhance 
workers’ capacity usage and profit margins compared to the 
no-bundling scenario, robustly in all combinations of a 

and b:

5.6. Managerial insights

Based on experiments conducted, we derived the following 
managerial insights for practitioners who are interested in 
bundling tasks:

� The number of chargers provided to each worker during 
registration affects the scooter collection rate boosted by 
the bundling strategy. Too many chargers may raise 
operational costs, while too few limit workers’ charging 
capacity, reducing the effectiveness of bundling. The 
bundling algorithm is more beneficial when the majority 
of workers have enough chargers, rather than allocating a 
small number of chargers to many workers. Providing 
enough chargers, even at some operational cost, is an 
essential first step to make the bundling algorithm work 
effectively with an unstable workforce.

� Our findings indicate that different k in the PMB model 
result in varying outcomes. For practical applications, it 
is recommended to derive k from workers’ reservation 
data. Specifically, collect data on whether workers 
accepted a bundle based on the given reward, dispersion 
of scooters, and required travel distance. Use this data to 
determine the k value that best aligns with the collection 
probability in the PMB framework, and adjust it as new 
data becomes available. During these adjustments, the 
VMB model can serve as a reliable alternative, as it deliv
ers stable performance without requiring additional par
ameter tuning. Given its stability, we recommend 
deploying the VMB model as the initial bundling strategy 
on the platform and gradually transitioning to the PMB 
model as more data is collected and refined.

� The bundling policy is recommended when workers’ par
ticipation in the platform is passive. Experiments show 
that the effectiveness of bundling is maximized when the 
number of workers is smaller rather than larger. 
Therefore, if the number of workers is sufficient to col
lect all scooters without bundling—for example, when 
the total charging capacity of all workers exceeds 
the total required battery charge of the scooters and the 
workers are relatively evenly distributed across the 
regions—bundling need not be applied initially. This 
avoids unnecessary computational effort and potential 
competition among workers. Conversely, in situations 
where these conditions are not met, applying bundling is 
expected to be more efficient. To implement this, it is 
recommended to divide the service time and regions, 
assess the number of workers actively available in each 

region at designated times, and determine whether to 
apply bundling based on the regional worker 
distribution.

� Regarding the MaxBundleSize, setting it too small may 
fail to generate sufficient synergy from bundling, result
ing in minimal benefits. On the other hand, setting it too 
large may create bundles that exceed workers’ capacity 
limits, rendering them impractical. To address this, it is 
deemed efficient to set MaxBundleSize based on the 
default number of chargers uniformly provided to work
ers during registration. While the actual number of 
chargers may vary depending on a worker’s commitment 
or activity level, using this conservative baseline ensures 
that the bundles are applicable to the widest range of 
workers.

6. Conclusions

This study demonstrated the applicability of bundling mod
els using domain-specific properties of the scooter-collecting 
industry through simulation experiments. The model incor
porated gig workers’ scooter collection behaviors to create 
synergies that entice workers. The proposed bundles 
effectively increased the collection rate compared to the no- 
bundling case, approaching the upper bound of the no- 
bundling case. The proposed PMB model showed superior 
performance with appropriate parameter settings, while the 
VMB model showed stable performance.

Numerical experiments show that bundles are highly 
attractive options beyond workers’ activity quotas, encourag
ing greater engagement with the platform. This resulted in 
higher total collection rates and increased worker margins 
compared to the no-bundle cases. The scenario where the 
impact of bundling is most evident is when the workers’ 
total capacity is just enough to cover the charging require
ments of scooters. Also, when scooters are less clustered, 
bundles can effectively fill the distance gap by allowing 
workers to collect multiple distant scooters in one reserva
tion. The effectiveness of the two-step bundling strategy, 
applicable to industries with an unstable workforce, was 
demonstrated by its comparable performance to the PI-NB 
model, which directly assigns tasks to workers. Accordingly, 
the proposed approach can be applied to gig economy-based 
operations where the platform needs centralized decision- 
making for decentralized workers.

The findings suggest the following managerial insights. 
Providing sufficient chargers during registration is essential 
to enhance collection rates and ensure the algorithm works 
effectively with an unstable workforce. Using the VMB 
model as a stable model first is recommended, with k for 
the PMB model calibrated over time using workers’ reserva
tion data to enhance bundling performance. Finally, the 
bundling strategy should be implemented during specific 
periods based on each region’s scooter distribution and 
worker capacity.

While the study establishes the efficacy of the bundling 
approach, the authors acknowledge that the calibration of 
bundling models requires further investigation. Specifically, 

878 M. KIM ET AL.



the objective terms in the model of the VMB and the PMB 
models may benefit from refinement with real-world data 
on gig workers’ behavior. Nevertheless, the study provides a 
promising foundation for boosting the operational efficiency 
of gig economy-based operations. Future research may 
involve exploring bundling algorithms for scenarios involv
ing real-time task dynamics, including situations where 
scooter usage and charging occur simultaneously.
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Appendix A. Pseudo-code for bundle generator 
algorithm 

Algorithm 1 Near pack generator
Input: 8i 2 N; MaxBundleSize 2 R

Output: Set of candidate bundles BNear
1: BNear ( ;

2: for all i 2 N do
3: base( i, C( ;
4: while jCj < MaxBundleSize − 1 do
5: t( nearestnodefrombase
6: C( C [ ftg
7: base( t
8: end while
9: BNear ( BNear [ fsub [ figj8sub � Cg
10: end for
11: return BNear

Algorithm 2 Node pack generator
Input: 8i 2 N; MaxBundleSize 2 R

Output: Set of candidate bundles BNode
1: BNode ( ;

2: for all i 2 N do
3: C( MaxBundleSize − 1 number of nearest node from i
4: BNode ( BNode [ fsub [ figj8sub � Cg
5: end for
6: return BNode

Algorithm 3 STD pack generator
Input: 8i 2 N; MaxBundleSize 2 R; distance matrix DN�N ; predeter
mined distance d 2 R

Output: Set of candidate bundles BSTD
1: BSTD ( ;

2: for all i 2 N do
3: R( fj 2 NjDij � dg
4: C( fig
5: while jCj < MaxBundleSize − 1 do
6: for all j 2 R do
7: vj ( standard distance deviation of C [ fjg
8: end for
9: j0  indexjofthesmallestvj
10: C( C [ fj0g
11: end while
12: BSTD ( BSTD [ C
13: end for
14: return BSTD

Appendix B. Additional constraints for PI-NB model 

Two valid inequalities have been added. We define qs
j of qj values 

sorted in ascending order ðj 2 NÞ: For example, if q1 ¼ 50, q2 ¼

70, q3 ¼ 30; then qs
1 ¼ 30, qs

2 ¼ 50, qs
3 ¼ 70: Now, let cc be the largest 

index of j when adding up qs
j from the smallest j until the sum does 

not exceed jKj � Q; the sum of the collectible capacity of total workers. 
Then, cc is the upper bound of the total collected scooters as shown in 
Constraint (B1).

cc ¼ maxfj0 2 Nj
Xj0

j¼1
qs

j � jKj � Qg

X

i2V

X

j2V

X

k2K
zk

ij � cc þ jKj (B1) 

Also, let ps
j denote the sorted pj values in ascending order. Then, let 

cp be the smallest sum of the reward of the cc number of scooters. The 
parameter r in Constraint (B2) is small enough so that the influence of 
cp is less than 1, not disturbing the maximum number of collectible 
scooters.

cp ¼
Xcc

j¼1
ps

j 

X

i2V

X

j2V

X

k2K
ð1 − r � pjÞ zk

ij � cc þ jKj − r � cp (B2) 
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