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Abstract
In this study, we develop a reliable formulation based on a container network flow problem,
along with the full implementation of an empty container management strategy in the con-
text of an integer linear programming model. The proposed approach can play a key role
in coping with disruption in the network and can offer a proactive measure for effective
disruption management to maintain a stable level of reliability in supply capability. To for-
mulate a reliable container network problem, we design the pattern of disruption, a rare and
irregular uncertainty, based on binomial coefficients in the objective function. In this way,
flow interruption due to disruption can be expressed in node- and arc-failures and can be
properly managed. Furthermore, we provide a non-disruptive model based on a deterministic
formulation derived from a bast-case scenario. Through numerical illustrations and sensitiv-
ity analyses, we conduct in-depth analyses on the impact of disruption in the container supply
chain, and a benchmark model based on a bast-case scenario is used to determine disruption
costs, for comparative study. In particular, the numerical experiments show that if both mar-
itime and hinterland disruptions are not managed in advance, disruption costs derived from
a benchmark model result in a significant surge according to increasing potential disruption
risk. Throughout computational experiments, we also found that maritime disruption is more
destructive to container supply capability than hinterland disruption is. In particular, criti-
cal findings show that when a certain level of threshold is violated, the proposed strategies
are completely interrupted in a container supply chain. Therefore, proactive measures to
keep up a reliability of container supply in a high-risk region are highly recommended for
management side.
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1 Introduction

How to create an efficient container network model is a topic that has earned significant
attention inmaritime logistics literature, and the significance of relevant studies has increased
from time to time. Nowadays, global shipping companies, such as ocean carriers, confront
some serious challenges, or disruptions, in maritime logistics. These challenges triggered
enormous surges in freight rates because of the interrupted flow of container movement. For
example, Southeast Asian ports encountered threefold freight rates in late 2021 in comparison
with the first half of the year, due to severe US port congestion that was caused in part by
the booming market demand after the onset of the COVID-19 pandemic (Yeping, 2021).
Specifically, the freight rate of a 40-foot-equivalent unit container reached up to 3000 US
dollars in December 2021, compared to 1000 US dollars in the first half of 2021. Moreover,
the German shipping liner, Hapag-Lloyd, reached more than a tenfold increase in net profits
during the first nine months of 2021. The company reported that this drastic surge in revenue
was generated by a rapid jump in average freight rates (Hapag-Lloyd Nine-Month Net Profit
Soars 10-Fold on Record Freight Rates, 2021). The company’s net profit rose to 5.6 billion
euros in the first nine months of 2021, whereas 538 million euros were gained a year prior.
Consequently, this unusual scenario implies severe infrastructure bottlenecks, mostly found
in ports because of the coronavirus crisis that has disrupted the global container supply chain.
According to UNCTAD calculations, Fig. 1 supports these statistics to show that the weekly
Shanghai containerized freight index in main service routes reached the maximum level
during the worst of the COVID-19 pandemic, compared to past years. This fact implies that
supply chain disruption caused a significant increase in freight rates and led to an adverse
impact on a sustainable supply chain across the globe (Anser et al., 2021).

In existing literature, the concept of sustainability in supply chain management has been
used in a broad way with various definitions. The most traditional definition originates from

Fig. 1 Weekly Shanghai containerized freight index from 2009 to 2021 (UNCTAD Policy Brief, 2021)
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the World Commission on Environmental and Development report issued by the United
Nations in 1987. Specifically, the United Nations defined sustainable development as being
the state in which the needs of the present are met without compromising the ability of
the upcoming generation to satisfy their own needs (Lu et al., 2016). Therefore, we can
consider economic and social needs, along with environmental needs, together (Lu et al.,
2010). In opposition to the general concept of sustainability in supply chain management,
Seuring and Müller (2008) pointed out some critical limitations within the relevant research
area; that is, sustainability efforts are often limited to environmental improvements and
frequently miss theoretical background in terms of overall sustainability in the supply chain.
Moreover, critical perspective presents the research gap in the lack of quantitative model-
based approaches (Brandenburg et al., 2014). In line with this claim, Lu et al. (2016) also
stated that the main idea of sustainability should extend beyond environmental stewardship
in port operations. In other words, designing a reliable container network in both hinterland
and maritime regions necessitates an understanding of connections among economy, society,
and the environment.

The contribution of this study to this interconnected framework of sustainability therefore
touches on economic, societal, and environmental aspects. That is, this study proposes a
reliable and robust container supply chain for a shipping companywhile taking into account all
these angles. When disruption occurs, significant cost savings are incurred from having such
a reliable design in place, compared to the non-disruptive model without disruption scenarios
(see Fig. 2). In this regard, the sustainable supply of containers under the varying magnitude
of disruptive forces should be taken into account as a potential risk. Overall, a shipping
company can achieve a sustainable container supply chain, even under high uncertainty.
Additionally, this study takes into account social factors, namely that consumers have already
experienced a serious disruption in maritime logistics and supply chain during the COVID-
19 pandemic. Many cities around the globe suffered shortages of necessities such as food,
potable water, and energy, owing to complete shutdowns of ports. Thus, a sustainable supply
of shipping containers plays a significant role in maintaining societal well-being, as well
as in supporting social stability. Finally, this study also has an environmental angle. By
taking into account smart ways to position empty containers during disruptions, the study
proposes a more efficient way to preserve a certain level of reliability in supply capability. In
this way, only the minimum repositioning frequency could satisfy the demands of a region
where the deficit volume of empty containers is found. It is well known that a mega-sized
container ship produces a significant amount of pollution in both hinterland and maritime
regions, including CO2 andGHG emissions. In this regard, the increasing frequency of empty
container repositioning during disruptions not only causes operational and penalty costs
derived through vessel delays but also has an adverse environmental impact. Even though
some studies directly address sustainability in maritime logistics, most of them focus on
vessel management for reducing CO2 and SOx emissions, with the goal that vessel operators
will consider environmental sustainability (Van den Berg & De Langen, 2017; Cheaitou &
Cariou, 2019). In other words, such studies promote a decision-making system that is often
confined to an operational level and a strictly environmental aspect, rather than amore broadly
focused tactical level that ties in to other critical aspects, as our research attempts to do.

Nevertheless, most container network problems were developed based on deterministic
formulations with fixed settings, including demands and lead times, to analyze their impact
of key performance indicators on the basic container network structure. However, according
to Qi (2015), two types of uncertainty were defined in container shipping networks, namely
recurring and regular, or rare and irregular uncertainties. Compared to the former, the
latter is extremely difficult to predict or even to put into a framework in which its pattern of
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Fig. 2 Disruption scenario in a hinterland network for 0 ≤ r ≤ |J |

raw data can be estimated. This uncertainty is referred to as a disruption. Several types of
disruption were found in a container network structure and comprehensively discussed by
Kim et al. (2015). They showed that disruption and resilience in a supply network could be
categorized from a network structural perspective; namely, arc-, node-, and network-level
disruption. Any level completely blocks or partially interrupts flow arc capacities in different
types of a supply network. For designing the pattern of disruption, we propose a theoretical
background of a reliability-based formulation with expected terms expressed by the random
failures of echelons in the objective function. More details of this modeling procedure are
given in Sect. 4.

In this study, we assume that a container network is completely interrupted in node-
level disruption, owing to any unexpected events, so that the corresponding arcs, including
empty container repositioning and street-turn strategies, are no longer active. To maintain a
certain level of reliability in the empty container supply, a shipping company prevents empty
container stockouts for exporters in each region and supplies them with as many demands
as possible. If demands are not met on time, shortage costs will be incurred. Therefore, the
ultimate goal of a shipping company is to retain control of the entire container flow under a
varying degree of disruption by adequately replying to the following research questions:

• How can we distribute a sufficient number of empty containers throughout each region
during a disrupted container network?
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• How can we achieve cost savings even when disruption extends throughout the entire
network?

• How can we best implement an empty container management strategy under disruption?

To answer these questions, we have to design container shipping networks in a reliable
and cost-efficient manner and examine the trade-off between normal and expected cost terms
by comparing a benchmark model and by minimizing the expected total relevant costs in
disruption scenarios, which are characterized by the numbers of nodes and arcs that have
failed. To the best of our knowledge, our reliability-based approach is a novel contribution
to the study of disruption management in the literature on container supply chains, in which
the traditional approach deals with uncertainty in varying parameters—namely, a stochastic
program. Snyder andDaskin (2005) claimed that this approach usually dealswith an uncertain
future condition and seeks demand-based robustness, while their approach seeks supply-
based robustness inwhich parts of a system fail. In linewith theirwork,we also seek reliability
in supply capabilities for empty containers in a disrupted network, whereas most disruption
management studies in maritime logistics focus mainly on vessel-related decisions. More
important, the mechanism of our reliability-based model differs from that in work by them.

The structure of this study is organized as follows. In Sect. 2, we review existing litera-
ture. The problem statement is described in detail, and its mathematical model is given in
Sect. 3. Thereafter, disruption used in this model is defined, and derivations of expected cost
terms in our objective function are fully shown in Sect. 4. In Sect. 5, computational experi-
ments, including sensitivity analyses on variations in key parameters, are conducted to offer
managerial insights. The conclusion of this study is drawn in Sect. 6.

2 Literature review

The container shipping network problem has been extensively studied in existing literature
and can be categorized by different empty container management (ECM) strategies. The ECR
problem also has been extensively studied, with deterministic and stochastic perspectives.
Shintani et al. (2007) designed a container shipping network for incorporating ECR activities
and integrating two important decisions, including ship and container deployments. Kim et al.
(2019) analyzed repositioning effects in hinterlands and the impact of using foldable contain-
ers at an operational level. They aggregated both shippers and consignees as a single customer
node, including inland depots and seaports, and implicitly implemented a ST strategy with
the top priority option. In this setup, customers were first served by empty containers that
remained in their nodes and then satisfied the demands of subsequent customers. Further-
more, researchers have comprehensively employed state-of-the-art containers, or foldable
containers, in the ECR problem to maximize savings of both money and space by developing
a network flow model with aggregating demands at port areas (Myung, 2017; Myung &
Moon, 2014; Wang et al., 2017). Lee et al. (2006) developed a multi-commodity network
model based on a port-oriented network and analyzed the flow of containers in Asia–Pacific
trade routes. They assumed a deterministic situation in which lead times between ports were
known in advance.

In a stochastic framework, various types of ECR models were also developed based
on uncertainty in key parameters. Di Francesco et al. (2009) proposed a time-extended
multi-scenario optimization model in which each scenario was generated based on uncertain
parameter types for solving the ECR problem. Erera et al. (2009) presented a robust opti-
mization model for a dynamic ECR problem with uncertainty in forecasts of future supply
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and demand. This study also provided recovery actions with re-established feasibility in a
given uncertainty set. Lee and Moon (2020) also solved a robust ECR problem with foldable
containers under demand uncertainty via a robust optimization technique. They showed that
their robust formulation could be harnessed as a tractable approximation of an intractable
multistage stochastic program and proved a cost-saving effect by using foldable containers
in computational experiments. Other uncertain data also have been considered in ECR litera-
ture. A two-stage stochastic program was developed by Long et al. (2012). Random demand,
supply, ship weight, and space capacities all were taken into account in their model, while
the sample average approximation method was used for a solution approach. To the best of
our knowledge, another cost-efficient ECM strategy, ST, was not extensively studied, and yet
we found few relevant papers that looked at this strategy. Deidda et al. (2008) studied the ST
issue inherent in truck routes by applying a network design consisting of importers, exporters,
and ports, along with an exact algorithm, while Furió et al. (2013) optimized empty container
movements among shippers, consignees, terminals, and depots by using ST. Their proposed
models were embedded in a decision support system, and they conducted case studies with
real-world data from Valencia, Spain.

Unlikewith the extensive ongoing research into disruptionmanagement (DM) in the airline
industry, DM in the shipping liner industry recently has started to receive substantial attention
in maritime logistics literature. Qi (2015) introduced several topics related to DM for vessel
operations with port disruptions. Common methods for managing disruption in the recovery
of containers involve speeding up vessels, skipping, and swapping a disrupted port (Abioye
et al., 2019, 2020; Brouer et al., 2013; Li et al., 2016; Paul & Maloni, 2010). This research
studied re-optimized or rescheduled ship routes whenever required. Disruption does not just
cause uncertainty in ports, but also could impact vessels, due to disrupted transportation links.
Similar studies into the berth allocation problem also found this to be true (Xu et al., 2012).
Occasionally, such disruption might even prevent vessels from arriving on time at all ports so
that an intentional delay is allowed, with some corresponding penalty costs, while restricting
delays in a few key ports (Wang & Meng, 2012). These works simultaneously dealt with
uncertainty and disruption at the operational level, but did not thoroughly deal with a tactical
level of disruption that interrupts container network flows.

Although DM in container shipping networks has barely been written about in existing
literature, DM in classic supply chain literature has already attracted a significant amount of
attention from many researchers. Ivanov et al. (2017) comprehensively reviewed disruption
recovery in supply chains and categorized papers based on different types of frameworks.
Some reliability models for an uncapacitated facility location problem (UFLP) were pro-
posed by Synder and Daskin (2005). They showed reliable solutions for the UFLP, in which
a facility with less disruption costs would first be selected, even though optimal solutions
from the UFLP would be improved with no disruption. In this way, reliable solutions would
be cost-effective if disruption in a certain facility occurred. Cui et al. (2010) relaxed the
assumption of homogenous disruption probabilities used in Daskin (2005), and applied site-
dependent assumptions over disruption scenarios while using the continuum approximation
model for sensitivity analysis. Berman et al. (2007) also studied reliability issues in facilities
experiencing disruptions and showed that facilities in disrupted networks become more cen-
tralized and co-located when greater risks for disruption prevail. Overall, we share a similar
philosophy with these works, but to implement ECM strategies, we concentrate our research
on container supply chains that feature their own constraints. For example, instead of desig-
nating r as standing for closer facilities, we characterized r as the number of facilities that
failed for every outcome of disruption scenarios in terms of arc- and node-failures.
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Table 1 comprehensively summarizes several distinctive features of our model to high-
light the contribution of this study to existing literature on the DM in shipping liners. First,
this study presents a reliability-based model for both disruptive events, namely maritime and
hinterland sides simultaneously, to provide the proactive DM, while most existing literature
deals solely with maritime disruption from the perspective of reactive vessel management.
In particular, a few papers handle decision-making in container management under disrup-
tion and do not comprehensively consider both disruptive events. For example, although Di
Francesco et al. (2013) investigated disrupted container flows in a proactivemanner, this work
is limited to the ECR activities. Li et al. (2018) also examined the impact of disruption occur-
ring in the hinterland for disruption response strategies in truck scheduling, and yet efforts in
managing containers are restricted to the terminal side. Another contribution of this study can
be found in the effective execution of various types of the ECM strategies when designing
a reliable container network. To the best of our knowledge, facility failure by disruption is
not extensively involved with the form of node- and arc-failures in the literature on container
supply chains. Therefore, we proposed in our study the reliable container network flowmodel
(RCNF) to minimize the expected total relevant cost under disruption while maintaining a
certain level of reliability in empty supply capability without a significant increase in cost.

3 Problem description

In this section, we introduce the RCNF model that minimizes the total relevant cost com-
posed of reusing and returning containers and the expected ST of containers, along with the
corresponding arc failure costs and expected ECR costs, along with corresponding arc failure
costs. Each shipper could be disrupted with a given identical probability, and multiple ship-
pers may fail simultaneously. Another disruption occurs in repositioning arcs between ports
with a given probability. In other words, the disruption we deal with in this study indicates
a complete arc failure (a zero flow capacity in disrupted arcs). However, arcs between ports
and shippers are set as infallible, because they are considered to be a basic function that
serves customer demands in hinterland operations. ST failure may be attributed to various
types of disruptions, such as disruptions in administration, natural disasters, traffic conges-
tion, and other factors, while repositioning failure is frequently connected to port disruptions,
such as failures by quay cranes in loading and unloading, operations that fail to reach their
full capacity, or by complete system failures (Di Francesco et al., 2013). Other underlying
assumptions are provided as follows:

(i) Every hinterland operation, such as reusing, returning, and ST of containers, is com-
pleted within a single period, whereas ECR could take more than or equal to a single
period, denoted by tpp′ (Jeong et al., 2018; Lee & Moon, 2020). Therefore, a single
period indicates four days in this study.

(ii) The specific destination of laden containers after serving demands for shippers is not
taken into account to seek reduction in computational complexity. Furthermore, the
focal interest of this study is to serve demand requests arising from empty container
transportation (Lee & Moon, 2020).

(iii) We relax a strict assumption that every container must be returned to a port after
unpacking items from laden containers (Jeong et al., 2018; Song & Dong, 2012). In
this study, consignees either become the suppliers of empty containers to shippers or
return them to ports after use.
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(iv) All nodes are connected among consecutive echelons within the same region p and
ports are also linked by ECR through a container supply chain alliance (Li et al.,
2015a, 2015b). However, the repositioning of empty containers would not be allowed
if disruption occurs with s.

(v) The storage capacity of a port in each region is implicitly relaxed in this study because
the minimization of inventory holding costs for empty containers at ports is one of the
optimized objectives (Jeong et al., 2018).

(vi) Every container is expressed in a twenty-foot unit (TEU).
(vii) Container leasing is not explicitly considered, but shortage is allowed throughout the

planning horizon T .
(viii) Disruption probabilities, q and s, are site-independent.

For Assumption (i), the duration of maritime transportation exceeds that of hinterland
operations, in practice. To integrate the different levels of decision-making, it is quite common
to assume a single period for several days in most of the ECR literature; that is, Lee andMoon
(2020) set a base period of four days to illustrate maritime transportation between inter- and
intra-continental trade. To justify Assumption (ii), most of the ECR studies do not directly
consider vessel routes, meaning that free empty container movement between any ports could
be achieved for ECR. This also implies that laden container transportation is often ignored to
focus instead on empty container movement. This study is also in line with the mainstream
existing studies in this aspect. From Assumption (iii), we allow a cost-efficient ECM, the
ST strategy, in this study. This strategy is now executed in practice and has started drawing
significant attention in relevant research areas. In this regard, a shipping company is able
to direct a consignee to deliver empty containers to a shipper in close proximity, instead
of returning those containers to a port only (Deidda et al., 2008; Furió et al., 2013). The
remaining assumptions are also pulled from existing container network literature.

To briefly explain the operation of normal container network flow, each shipper j ∈ J in
region p has an empty container demand Dp

jt and each consignee i ∈ I can either supply

or return empty containers L p
it to j or to each port p ∈ P after use, respectively. Returned

containers can be reused to serve Dp
jt during planning horizon T . Each shipper is assigned to

a possible number of non-disruptive candidate suppliers and a port within the same region.
If region p

′
significantly suffers from a shortage of empty containers against shippers, then

the p region’s surplus of empty containers could transport a proper repositioning quantity by
transportation time tpp′ . Otherwise, the shipping company would not have any other options
to satisfy demands, aside from leasing containers by bp . In this study, we do not explicitly
lease containers when shippers struggle with shortages within a certain period; rather, such
a scenario is assumed to be a lost-sale opportunity, p j . This cost could significantly vary,
based on revenues that a shipping company could have earned for the travel distance to a
destination in which shippers send their shipments after packing empty containers.

The notation used for the RCNF model is summarized in Tables 2 and 3. Sets for each
echelon are considered as nodes in a container network, along with multi-periods. Relevant
cost parameters, including repositioning and hinterland transportation costs, storage costs,
and penalty costs, would be randomly generated, as would supply and demand. To design
a reliable container network flow, arc variables for ECM strategies are required, along with
indicator variables for storage.

With the given notations, we develop a mathematical model based on a container network
flow by using normal and expected cost terms in the objective function and the corresponding
constraints by characterizing a container network flow.

Minimize E[T RC] = normal costs + expected cos ts
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Table 2 Sets and parameters

Model parameters

I Set of consignees

J Set of shippers

T Set of periods

P Set of ports

cpj Inland transportation cost from port p to shipper j

cpi j Inland transportation cost directly from consignee i to shipper j within region of port p

cip Inland transportation cost from consignee i to port p

c
pp′ Repositioning cost from port p to another port p’

h p Storage cost at port p

p j Penalty cost payable to shipper j by shipping company in region of port p

Dp
jt Demand of empty containers for shipper j in period t within region of port p

L p
it Supply of laden containers from consignee i in period t within region of port p after use

I NV p Initial inventory of empty containers at port p

bp Failure cost for street turn and repositioning based on leasing activity within region of port p

t
pp′ Vessel transportation time from port p to port p

′

q Disruption probability for street-turn (0 < q < 1)

s Disruption probability for repositioning (0 < s < 1)

Table 3 Decision variables

Integer variables

qpjt Number of empty containers transported from port p to
shipper j in period t

y pi j t Number of empty containers directly transported from
consignee i to shipper j in period t within region of port p

zipt Number of empty containers transported from consignee i to
port p in period t after use

r
pp′ t Number of repositioned containers from port p to another port p in period t

I E p
t Number of empty containers stored at port p in period t

δ
p
jt Level of shortage for shipper j in period t at region of port p

where normal cos ts = reusing + returning + storage + shortage costs

expected cos ts = street turn + ERC + f ailure

I E p
1 = I NVp +

∑

i∈I
zipt −

∑

j∈J

qpjt −
∑

p′∈P,p′ �=p,t+tpp′≤T

rpp′t ,∀p ∈ P (1)

I E p
t = I E p

t−1 +
∑

i∈I
zipt −

∑

j∈J

qpjt −
∑

p′∈P,p′ �=p,t+tpp′≤T

rpp′t
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+
∑

p′∈P,p′ �=p,t>gt;tpp′
r
p′ p,

(
t−tp′ p

),∀t = 2, · · · , |T |, p ∈ P (2)

y pi j t ≤ L p
it ,∀i ∈ I , j ∈ J , t ∈ T , p ∈ P (3)

∑

i∈I
y pi j t + qpjt ≤ Dp

jt ,∀ j ∈ J , t ∈ T , p ∈ P (4)

δ
p
jt = Dp

jt −
(
∑

i∈I
y pi j t + qpjt

)
,∀ j ∈ J , p ∈ P, t ∈ T (5)

L p
it −

∑

j∈J

y pi j t = zipt ,∀i ∈ I , p ∈ P, t ∈ T (6)

qpjt , y
p
i j t , zipt , δ

p
jt , rpp′t , I E

p
t ∈ z+,∀i ∈ I , j ∈ J , p ∈ P, p′ ∈ P, t ∈ T (7)

The objective function of the RCNF model includes several ECM cost terms including
shortages to characterize disruption-related costs, and ECR and ST costs are described as
expected terms to characterize the impact of disruption in supply reliability as well as failure
costs. The detailed illustration for deriving the objective function will be given in Sect. 4.2.
Constraints (1) and (2) represent the number of empty containers stored at port p for each
period. This inventory in period t depends on the inventory level from the previous period
t-1 and the number of empty containers to be repositioned from port p in period t which
will arrive at port p

′
after t + tpp′ . Constraint (3) represents the maximum supply capacity

for ST, which is equivalent to the number of laden containers received by the consignee
i. Constraints (4) and (5) together ensure the demand fulfillment for shippers either from
multiple consignees or from a port within the same region, and allow for the shortage of
demand by shippers. Given the nature of the minimization problem, one would strive to incur
fewer shortages unless supply capacity from consignees and ports becomes completely absent
for a particular period. If full supply capacity is not utilized for ST, empty container leftovers
would be returned to port p. Constraint (7) shows non-negativity and integer decisions.

4 Reliability model under disruption

In this section, we characterize the pattern of disruption that occurred in ST and ERC imple-
mentation.Althoughwe defined that disruption is hardly predictable for estimating its pattern,
q and smay be assessed based on historical data such as weather-related disruption. However,
they should be subjectively assessed for disruption caused bymanmade disruption (i.e., labor
strike or malfunction). Most importantly, disruption is statistically independent from facility
to facility and from region to region as shown in Assumption (viii) (Snyder & Shen, 2019).
Hence, we also assume that q and s follow a two-state Markov process.

4.1 Designing the patterns of q and s

Each ST arc (i, j) has the identical probability, q, of disruption, resulting in arc failure to
implement ST between consignee i and shipper j. Figure 2 illustrates the possible disruption
scenario of ST implementation. Let r be the number of nodes failed; that is, all or none
of the arcs stay connected. Suppose |I | = |J | = 3. When r = 0 or 3, only a single
disruption scenario is plausible; that is, the network is either fully connected or disconnected,
respectively. When 1 ≤ r < |J |, multiple outcomes could be generated based on the size of
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|J |. Under this illustration, three possible outcomes are generated for r = 1 and 2. Therefore,
depending on the size of r, the probability of each disruption scenario is generalized with
qr (1 − q)|J |−r . In other words, (1 − q)|J |−r indicates the number of open facilities, |J | − r ,
while qr shows the number of facilities failed, r , as defined in the notations. In this way, we
discovered some critical aspects of designing the pattern of q.

Similarly, each repositioning arc
(
p, p

′)
also has the identical probability s of disruption,

resulting in another arc failure between the responsible ports. Unlike hinterland operations,
maritime transportation takes tpp′ . We assume that the inflow of repositioning empty con-
tainers is disrupted in each period and that the corresponding arc fails. In this sense, one can
generalize the probability of a disruption scenario in seaborne routes with sr (1 − s)|P|−1−r .
Unlike ST disruption, the number of maritime disruptions may affect container flow in the
network even more adversely, due to significant reductions in supply capacities at ports.

Even though disruption seems rare and irregular to approximately estimate certain patterns
due to high randomness, this figure reveals that the number of possible outcomes stemming
from a disruption scenario based on facility failures follows the binomial pattern. Hence,
some modeling techniques for the objective function could be used to involve this disruption
scenario in designing the reliable container network, and the strategic DM on the network
could be executed in a proactive manner. Furthermore, a decision maker in a shipping com-
pany can analyze the impact of disruption on their regular or irregular service routes in
terms of container flow management. To effectively explain the main idea of this design, we
will analyze the following illustrative example, which is represented in the simple problem
instance size.

Example 1 Suppose, for this example, a container shipping network with |I | = |J | = |P| =
|T | = 3, and suppose that shipping costs between i and j depend on their distances, and
the hinterland transportation costs from or to p are higher than ST costs, because ports are
usually located relatively farther apart than their customers are. Figure 3 illustrates that each
network is designed based on the non-disruptive and the RCNF models, and we will show

Fig. 3 a optimal solutions (left); and b reliable solutions (right) for Example 1
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how the RCNF model could be effective in terms of cost-saving and reliability under a dis-
ruption scenario. If Shipper 3 is disrupted in the non-disruptive model (r = 1), an additional
cost for disrupted arcs (2, 3) and (1, 3) would be $480 ∗ (23 + 7) = $14, 400, whereas an
additional cost in the RCNF is $480 ∗ 8 = $3, 840 for leasing activities used as a penalty,
so that the non-disruptive model bears an additional cost of $10, 560

(
$14, 400 − $3, 840

)
.

Note that (p, 3) in both models is assumed to be non-failed in this study. In contrast,
when no disruption occurs in either model, the RCNF model bears an additional cost of
$5, 970

(
$150 ∗ 23 + $120 ∗ 7 − $120 ∗ 8 − $250 ∗ 38

)
to satisfy the demand of Shipper 3

by using a cost-inefficient route (p, 3). Overall, the non-disruptive and the RCNF models
incurred costs of $20, 170 and $23, 070 for Period 3. This example indicates that reliable
solutions could maintain a similar level of reliability without significant increases in costs,
compared to optimal solutions.

4.2 Objective function

The RCNF model minimizes normal operation costs, including reusing, returning, storage,
shortage, and expected transportation costs, as well as ST and ECR. By using Fig. 2, the
following proposition could be provided.

Proposition 1 If arcs (i, j)and
(
p, p

′)
are assumed to have potential node- and arc-failures

with site-independent disruption probabilities (Assumption (viii)), 0 < q < 1and 0 < s < 1,
the expected cost terms follow the binomial coefficients for every r.

For the proof of Proposition 1, we will show how to derive the expected ST and reposition-
ing costs, along with the corresponding failure costs. Please note that this derivation follows
in the same manner from Fig. 2 and is represented in a rigorous mathematical modeling
aspect. To effectively show the binomial pattern, suppose |I | = |J | = 5 for all t and p. The
ST cost terms can be represented in a tableau form with extended equations as follows:

∑

t∈T

∑5

i=1

∑5

j=1
cpi j y

p
i j t ≈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1︷ ︸︸ ︷
cp11y

p
11t +

A2︷ ︸︸ ︷
cp12y

p
12t +

A3︷ ︸︸ ︷
cp13y

p
13t +

A4︷ ︸︸ ︷
cp14y

p
14t +

A5︷ ︸︸ ︷
cp15y

p
15t +

cp21y
p
21t + cp22y

p
22t + cp23y

p
23t + cp24y

p
24t + cp25y

p
25t +

cp31y
p
31t + cp32y

p
32t + cp33y

p
33t + cp34y

p
34t + cp35y

p
35t +

cp41y
p
41t + cp42y

p
42t + cp43y

p
43t + cp44y

p
44t + cp45y

p
45t +

cp51y
p
51t + cp52y

p
52t + cp53y

p
53t + cp54y

p
54t + cp55y

p
55t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

For better representation, let Ai for i = 1, · · · , 5 be the ith column of Eq. (8) as shown
above. This equation is properly reorganized into a tableau form. Please also note that A1 =
cp11y

p
11t +· · ·+ cp51y

p
51t , and the remaining Ai for i = 2, · · · , 5 have the ST cost components

in a similar way. When nodes between the consecutive echelons are fully connected (r = 0),
the following expected cost term is shown in a simplified form with disruption probability q:

E

[
5∑

i=1

Ai |r = 0

]
= 1 · (1 − q)5(A1 + A2 + A3 + A4 + A5)
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As shown in Fig. 2, multiple outcomes of a disruption scenario could be obtained for
1 ≤ r < |J |−1,∀r ∈ Z+. Equation (9) represents r = 1, and each zero shows facility failure.
For example, the first row of Eq. (9) has A5 = 0, meaning that y p15t = y p25t = · · · y p55t = 0.
This representation indicates all ST arcs from i = 1, · · · , 5 to j = 5 experience failure
at Consignee 5, resulting in completely interrupted empty supply to other shippers. In this
manner, five possible outcomes, differing from each individual facility failure, are taken into
account for r = 1, and the common coefficient of Equation(9) can be derived as follows:

E

[
5∑

i=1

Ai |r = 1

]
= q1(1 − q)4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A3 A4 0
+ + + + +
A1 A2 A3 0 A5

+ + + + +
A1 A2 0 A4 A5

+ + + + +
A1 0 A3 A4 A5

+ + + + +
0 A2 A3 A4 A5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈ q1(1 − q)4[4A1 + 4A2 + 4A3 + 4A4 + 4A5]

= 4 · q1(1 − q)4[A1 + A2 + A3 + A4 + A5] (9)

It is noted that each row of the matrix indicates a possible disruption scenario with a
single facility failure, resulting in every arc being disconnected from a shipper j, by multiple
consignees i. For r = 2, ten possible disruption scenarios are generated with the given
probability in Eq. (10).

E

[
5∑

i=1

Ai |r = 2

]
= q2(1 − q)3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 A3 0 0
A1 A2 0 0 A5

A1 0 0 A4 A4

0 0 A3 A4 A5

0 A2 A3 A4 0
0 A2 A3 0 A5

A1 A2 0 A4 0
A1 0 A3 A4 0
A1 0 A3 0 A5

0 A2 0 A4 A5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈ 6 · q2(1 − q)3[A1 + A2 + A3 + A4 + A5] (10)
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For r = 3, Eq. (10) has the value of common coefficient, 4.

E

[
5∑

i=1

Ai |r = 3

]
= q2(1 − q)3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A2 0 0 0
A1 0 A3 0 0
A1 0 0 A4 0
A1 0 0 0 A5

0 A2 A3 0 0
0 A2 0 A4 0
0 A2 0 0 A5

0 0 A3 A4 0
0 0 A3 0 A5

0 0 0 A4 A5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈ 4 · q3(1 − q)2(A1 + A2 + A3 + A4 + A5)

(11)

Finally, the common coefficient of Eq. (11) is computed.

E

[
5∑

i=1

Ai |r = 4

]
= q2(1 − q)3

⎛

⎜⎜⎜⎜⎜⎝

A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0
0 0 0 A4 0
0 0 0 0 A5

⎞

⎟⎟⎟⎟⎟⎠

≈ 1 · q4(1 − q)1(A1 + A2 + A3 + A4 + A5) (12)

It is noted that one does not even have to consider r = 5, because all of the elements
become zero in the matrix of Ai . For instance, (0 + 0 + 0 + 0 + 0). By observing consistent
changes in patterns for common coefficients through Eqs. (9)–(11) one can easily see that
they follow a binomial coefficient, as shown below.

{
C |J |−1
r | f orallintegersr : 0 ≤ r ≤ |J | − 1 : |J | = 5

}
=

{(
4
0

)
,

(
4
1

)
,

(
4
2

)
,

(
4
3

)
,

(
4
4

)}

Following all given steps, one can generalize the expected ST cost term for each region
of Port p and period t as shown.

E

⎡

⎣
|J |∑

i=1

Ai |0 ≤ r ≤ |J | − 1

⎤

⎦ =
|J |−1∑

r=0

C |J |−1
r · qr (1 − q)(|J |−r)

|J |∑

i=1

Ai

For r ≥ 1, arc failure costs also should be taken into account, denoted by bp and it is
assumed that reusing arc (p, j) experiences non-failure.When every ST arc (i, j) is disrupted
and port p suffers from a severe shortage of empty containers, a shipping company has only
the sole option of leasing deficit containers. Hence, bp is levied based on a unit cost of
leasing. Because we do not explicitly lease containers in this study, expected failure costs
are supplemented along with expected ST costs. To do so, we will use the same example
of deriving the expected ST costs. Denote A

′
i for i = 1, · · · , 5 is the i.th column of A

′
for

expected failure costs. For simplification, we transform the extended equations of the ECR
cost terms in Eq. (12)
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E

[
5∑

i=1

A
′
i |r = 1

]
= q1(1 − q)4

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 A
′
5

0 0 0 A
′
4 0

0 0 A
′
3 0 0

0 A
′
2 0 0 0

A
′
1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

≈ 1 · q1(1 − q)4
[
A

′
1 + A

′
2 + A

′
3 + A

′
4 + A

′
5

]
(13)

This highlights that A
′
i is a complement of Ai . We can easily derive the coefficients of A

′
i

by using a similar procedure for 1 ≤ r ≤ |J |. Unlike the upper bound of the expected ST
costs, represented by |J | − 1, complete failure, up to |J |, should be taken into account for
the upper bound of r. Hence, the common coefficients of A

′
i could be obtained by using a

total combination of possible outcomes. In addition, using recursive formula for the binomial
coefficient, C |J |

r − C |J |−1
r = C |J |−1

r−1 is satisfied.

{
C |J |−1
r−1 | f orallintegersr : 1 ≤ r ≤ |J |

}

Therefore, the expected failure cost term against ST is derived as follows:

E

⎡

⎣
|J |∑

i=1

A
′
i |1 ≤ r ≤ |J |

⎤

⎦ =
|J |∑

r=1

C |J |−1
r−1 · qr (1 − q)(|J |−r)

|J |∑

i=1

A
′
i

The repositioning of arc
(
p, p

′)
can be disrupted in a similar way to ST in the hinterlands.

However, empty containers should be repositioned from one port to another port where empty
containers are in high demand. For p = p

′
, rpp′ t = 0,∀t because the ECR transportation

does not occur within the same port. In light of this constraint, the repositioning cost term
can be presented as a tableau form in Eq. (13):

∑
t∈T

∑5

p=1

∑5

p′=1,p �=p′ cpp′ rpp′ t ≈

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c12r12t c13r13t c14r14t

B5︷ ︸︸ ︷
c15r15t

c21r21t 0 c23r23t c24r24t c25r25t
c31r31t c32r32t 0 c34r34t c35r35t
c41r41t c42r42t c43r43t 0 c45r45t
c51r51t︷︸︸︷
B1

c52r52t︷︸︸︷
B2

c53r53t︷︸︸︷
B3

c54r54t︷︸︸︷
B4 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

It is noted that we do not reposition empty containers from the port of origin to the same
port. By using a substitute, Bi for i = 1, · · · , 5, common coefficients are achieved in an
analogous manner from expected ST costs, and the expected repositioning costs are derived
with a repositioning disruption probability, s, as follows:

E

⎡

⎣
|P|∑

i=1

Bi |0 ≤ r ≤ |P| − 1

⎤

⎦ =
|P|−1∑

r=0

C |P|−1
r sr · (1 − s)(|P|−1−r)

|P|∑

i=1

Bi

It is noted that the undisruptive probability, (1 − s)(|P|−1−r), shows that a port must
reposition empty containers to another port, excluding the origin of departure port. Likewise,
the expected failure cost of repositioning can be shown by using a complement of Bi , B

′
i . In
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addition, using recursive formula for the binomial coefficient, C |P|
r − C |P|−1

r = C |P|−1
r−1 is

satisfied.

E

⎡

⎣
|P|∑

i=1

B
′
i |1 ≤ r ≤ |P|

⎤

⎦ =
|P|∑

r=1

C |P|−1
r−1 · sr (1 − s)(|P|−1−r)

|P|∑

i=1

B
′
i

In the end, our objective function involves undisruptive operation costs, including reusing,
returning, storage, shortage, and disruptive operation costs comprising ST and ECR, repre-
sented by expected values. Our expected total relevant costs cover most of the ECM in the
RCNF model.

The binomial coefficients from Proposition 1 can be also transformed into an extended
version by using factorial terms.

MinimizeE[T RC]

subjectto(1) · · · (7)

where E[T RC] =
∑

p∈P

∑

j∈J

∑

t∈T
cpj qpjt

+
|J |−1∑

r=0

(|J | − 1)!
r !(|J | − 1 − r)!q

r (1 − q)(|J |−r)

⎡

⎣
∑

i∈I

∑

j∈J

∑

p∈P

∑

t∈T
cpi j y

p
i j t

⎤

⎦

+
|J |∑

r=1

(|J | − 1)!
(r − 1)!(|J | − r)!q

r (1 − q)(|J |−r)

⎡

⎣
∑

i∈I

∑

j∈J

∑

p∈P

∑

t∈T
bp y

p
i j t

⎤

⎦

+
∑

i∈I

∑

p∈P

∑

t∈T
cipzipt

+
|P|−1∑

r=0

(|P| − 1)!
r !(|P| − 1 − r)! s

r (1 − s)(|P|−1−r)

⎡

⎣
∑

p∈P

∑

p′∈P

∑

t∈T
cpp′rpp′t

⎤

⎦

+
|P|∑

r=1

(|P| − 1)!
(r − 1)!(|P| − r)! s

r (1 − s)(|P|−1−r)

⎡

⎣
∑

p∈P

∑

p′∈P

∑

t∈T
bprpp′t

⎤

⎦

+
∑

p∈P

∑

t∈T
h p I E

p
t +

∑

j∈J

∑

p∈P

∑

t∈T
p jδ

p
jt

5 Computational experiments

Wecarriedout a series of numerical experiments of different values of disruptionprobabilities,
s andq, to evaluate the impact of eachdisruption scenario for theRCNFproblembycomparing
solutions for the non-disruptive model. For the objective function of this model, expected ST
and ECR costs are relaxed to deterministic costs, as shown below.

MinimizeT RC

subjectto(1) · · · (7)
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whereTRC =
∑

p∈P

∑
j∈J

∑
t∈T cpj qpjt +

∑
i∈I

∑
j∈J

∑
p∈P

∑
t∈T c

p
i j y

p
i j t

+
∑

i∈I
∑

p∈P

∑
t∈T cipzipt +

∑
p∈P

∑
p′ ∈P

∑
t∈T cpp′ rpp′ t

+
∑

p∈P

∑
t∈T h p I E

p
t +

∑
j∈J

∑
p∈P

∑
t∈T p jδ

p
jt

With this deterministic objective function and the corresponding constraints, the best-case
scenario driven by this model can be used to compute disruption costs (in percentages) by
using the gap between objective values from the RCNF model, ZRCNF , and the best-case
scenario, ZBest , respectively. In this way, one can estimate the scale of potential disruption
costs and use them as a benchmark model for each disruption scenario.

Gap (% ) = ZRCNF − ZBest

ZBest
× 100

To verify the proposedmodel, we tested 16 instanceswith varying s and q to investigate the
impact of these values on disruption costs, where s, q ∈ {0.05, 0.35, 0.65, 0.95}. For the gen-
eral experimental settings, the following set parameters were given: |I | = |J | = |T | = 50;
|P| = 10. Each period represented four days. In this sense, the entire planning horizon indi-
cates annual operation in a container shipping network. In Table 4, cost, demand, and supply
parameters are randomly generated by following uniform distribution. They are imported
from works by Jeong et al. (2018) and Moon and Hong (2016) and adjusted to our model
accordingly. We also separated import- and export-oriented regions by assigning transporta-
tion time,tpp′ = 4; namely, regions p = 1, · · · , 5 have a deficit of empty containers, and
regions p = 6, · · · , 10 have a surplus by assigning different levels of demand and supply. In
this way, we can emulate the imbalance of empty containers between inter-continental trade
routes. To ensure an objective performance evaluation, all computational experiments were
conducted with an Intel core™ i3-4160 computer with 3.60 GHz processors and 4.00 GB
RAM.

It is observed that disruption costs in terms of the gap (percentage) between ZRCNF

and ZBest both significantly increased when degrees of s and q consistently rose in Table
5. Especially for s = 0.95, disruption costs surged, compared to other values of s. This
implies that disruption costs are far more sensitive to failure in ECR than to failure in ST. In
other words, it would be more hazardous to plan for positioning a higher quantity of empty
containers under the imbalance of empty containers scenario. Furthermore, for q = 0.95
under any s setup, it was found that there was a far lower quantity of ST situations and a
higher quantity of situations involving reuse and return of empty containers. Itwas noted, then,

Table 4 Cost, demand, and supply
parameters Returning cost in $/unit U (200,300)

Street-turn cost in $/unit U (100,300)

Reusing cost in $/unit U (200,300)

Initial inventory level of port p in $/unit U (150,200)

Storage cost of port p in $/unit U (50,70)

Penalty cost in $/unit U (300,450)

Failure cost in $/unit U (470,490)

Demand for shipper j U (5,15)

Supply from consignee i U (1,11)
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Table 5 Results of RCNF and non-disruptive models

s q ZRCNF ($) ZBest ($) Gap (%)

0.05 0.05 111,387,581 107,445,453 3.67

0.35 128,073,161 19.20

0.65 144,741,248 34.71

0.95 161,157,773 49.99

Average – – – 26.89

0.35 0.05 122,091,582 107,445,453 13.63

0.35 138,777,167 29.16

0.65 155,445,257 44.67

0.95 171,861,840 59.95

Average – – – 36.85

0.65 0.05 151,104,502 107,445,453 40.63

0.35 167,789,989 56.16

0.65 184,457,895 71.68

0.95 200,874,283 86.95

Average – – – 63.86

0.95 0.05 528,112,171 107,445,453 391.52

0.35 544,797,657 407.05

0.65 561,465,563 422.56

0.95 577,881,951 437.84

Average – – – 417.74

that ST is a cost-efficient practice because it only requires a single unit cost, cpi j , compared

to the container reuse setup, cip + cpj , to serve any Dp
jt . However, optimal solutions in the

test instances showed significant variation, while expected total relevant costs increased in a
great number of test instances. Therefore, we will provide an in-depth analysis on reliability
in optimal solutions in the next sensitivity analysis.

5.1 Effect of expected failure costs

Let us now consider |I | = |J | = 30, |T | = 20; |P| = 10, bp ∼ U (1400, 1500), and more
variation between Dp

jt and L
p
it for triggeringmoreECRactivities during the planning horizon.

Figure 4 shows variation in the total numbers of empty containers used by ST, reusing, and
returning, and expected ST and failure costs for s = 0.45. Prior to s < 0.45 and q < 0.20,
optimal solutions are almost insensitive to change in s and q, and thereafter keep varying
until s = 0.60 and q = 0.40. Moreover, values of optimal solutions in the non-disruptive
model do not greatly differ from those of the RCNFmodel before 0.45 and q < 0.20. Hence,
we concluded that the model is reluctant to change to reliable solutions until passing some
thresholds of s and q; that is, it requires a certain amount of expected failure costs impacting
optimal solutions, as illustrated in the left of Fig. 4. It is better for shipping companies to
rely less on ST situations and more on reuse of empty containers, along with other returning
scenarios, but in doing so companies might be burdened with additional disruption costs,
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Fig. 4 Expected ST and failure costs with y pi j t*, q p j t*, and zi pt* when s = 0.45

compared to the minimum total costs achieved by using the non-disruptive model. Incurring
such costs would not be worth the investment in the absence of disruption, but instead would
help to maintain reliability in the supply of empty containers while incurring relatively low
expected total relevant costs in the event of disruptions. In the end, relying on the ST would
not be useful at all for q > 0.40.

In fixing s = 0.20, we also conducted a sensitivity analysis on increasing q. We con-
ducted this analysis to explore the impact on expected ST and failure costs, repositioning
costs, storage costs, and shortage costs, as shown in Fig. 5. It is clearly observed from this
figure that a substantial increase in storage was foundwhen repositioning activities decreased
to almost zero for s > 0.55 to preserve reliability in the container network flow. In this exper-
iment, repositioning empty containers directly resulted in an increase in shortages. Therefore,
container flow ismore adversely affected by repositioning than by ST. To prepare for such dis-
ruption, shipping companies would be better off repositioning more containers within ports,
where a high possibility of disruption is often detected, to facilitate empty container flow
within a container shipping network. In addition, when both ST and repositioning quantities
dropped to zero, no further change in optimal solutions was made.

Fig. 5 Expected repositioning and failure costs with r
p p′ t*, I E

p
t *, and δ

p
j t* when q = 0.20
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5.2 Effect of different network structures

Another sensitivity analysis was conducted to investigate the effect of the varying numbers
of I and J and to discover the trend of key performance measures. Two typical network
structures are introduced for this analysis; namely, consignee-oriented and shipper-oriented
network structures. The former one is frequently found in import-oriented nations such as
NorthAmerica andWestern Europe, whereas the latter one represents export-oriented nations
such as Far East Asia. Hence, the number of consignees dominates that of shippers in the
former network, and vice versa. We fixed q = 0.30 and s = 0.50 where reliable solutions
were found compared to those of the non-disruptive model, and we created 10 datasets based
on the number of each echelon in Table 6. Most of the cost parameters follow Table 4, but
Dp

jt and L p
it follow U (5, 15) and U (0, 10) to show the imbalance of empty containers in

demand and supply, respectively.
Figure 6 indicates disruption costs in terms of gaps in percentages when they are compared

to those of the non-disruptivemodel, and an opposite trendwas demonstratedwhen both sizes
of datasets increased by five. This gap is attributable to the sizes of Dp

jt and L p
it , due to the

different number of nodes. However, an evident pattern of change in each nodewas produced;
that is, although disruption costs for a consignee-oriented network nodes were very high in
comparison to the shipper-oriented scenario, they continuously decreased as the node size
increased. On the other hand, despite low disruption costs, these costs from shipper-oriented
dataset tended to increase. Hence, higher disruption costs would be a burden in an imbalanced
network structure, |I | < |J |, and vice versa. This implication shows that such a network is
either vulnerable to disruption or prevents disruption, especially in the ST strategy.

Using the samedatasets fromTable 4,we calculated the implementationof keyECMstrate-
gies in a similar way to that in which we calculated gaps for disruption costs to verify certain
trends for imbalanced networks (see Fig. 7). Please note that disrupted utilization indicates
usage ratios of reliable and optimal solutions, generated by the RCNF and non-disruptive
models. For ST utilization, y∗

BEST and y
∗
RCNF represent optimal and reliable solutions, respec-

tively, as well as r∗
BEST and r∗

RCNF, as follows:

disrupted utili zation f or ST =
(
y∗
BEST − y∗

RCNF

)

y∗
BEST

× 100

Table 6 Datasets based on the varying number of each echelon

Network type Datasets |I | |J | |P| |T |

Consignee-oriented 1 30 5 10 20

2 10

3 15

4 20

5 25

Shipper-oriented 1 5 30 10 20

2 10

3 15

4 20

5 25

123



Annals of Operations Research (2025) 349:1345–1378 1367

Fig. 6 Disruption costs in terms of gaps (percentages)

Fig. 7 Usage gaps for street-turn and repositioning (percentages)

disrupted utili zation f or ECR =
(
r∗
BEST − r∗

RCNF

)

r∗
BEST

× 100

For example, 0% disrupted utilization shows no difference in the values of reliable and
optimal solutions or does not incur any activity in the ST or ECR strategies in both models
while 100% indicates completely disrupted arcs. Both types of datasets reduced the use of
ST situations, whereas higher utilization of ECR activities were found in cases in which
shipper nodes were changed (consignee-oriented). In contrast, repositioning activities were
almost insensitive to changes in node sizes for a shipper-oriented network, showing that 0%
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utilizationwas achieved inDatasets 1, 3, 4, and 5. This result implies that a consignee-oriented
network utilizes more ST strategies while less ECR strategies are implemented in a shipper-
oriented network under disruption. Therefore, it gives a tip to shipping company managers
that container network flows could be smoothed by providing more effective disruption
management on a consignee-oriented network in terms of the ECR reliability because this
network showed an unstable supply of empty containers, compared to a shipper-oriented
network as illustrated in Fig. 7.

5.3 Effect of the demand–supply variation

In this subsection, we demonstrate how to affect expected total relevant costs by applying
different scales of the demand–supply variation, denoted by �DS . This value is calculated
in the following manner:

dDS = E
(
Dp

jt

)
− E

(
L p
it

)
for E

(
Dp

jt

)
> E

(
L p
it

)

We noted that the value of �DS indicated an average degree of imbalance of empty
containers held between each region. We tested 27 instances with varying key parameters
and a different degree of average imbalance, generated from q, s ∈ {0.1, 0.2, · · · 0.9} and
dDS ∈ {5, 10, 20}.The greater the�DS , the more the imbalance intensified. The optimal cost
generated from the non-disruptive model was used as a benchmark, and disruption costs were
expressed in gaps (percentages). Figure 8 shows that fewer disruption costs were incurred as
dDS increased within the same group of q and s, and that the costs belonging to the same
group substantially increased until q = s = 0.50. Thereafter, increases of the costs became

Fig. 8 Disruption costs in gaps (percentages) based on different degrees of dDS
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Fig. 9 Expected repositioning failure costs based on DS variability

steady for q, s > 0.5. This bar graph illustrates that container network flow could be more
vulnerable to disruption, even in lower degrees of imbalance. In other words, an increase in
ECM strategies triggered by an increase in dDS did not disturb container flow and helped
maintain reliability over disruption.

Furthermore, a higher average degree of imbalance caused a higher risk in implementing
ECM strategies. In Fig. 9, although the expected failure costs of ECR for three levels of dDS

reached almost zero for q, s ≥ 0.60, the growth rates of higher dDS showed an increasingly
steep slope until q, s = 0.50. Therefore, it is implied that a larger imbalance between empty
container demand and supply is accompanied by a greater risk in ECR. Our findings also
highlighted that no failure costs would be incurred after q, s > 0.70, due to the absence of
repositioning activities.

5.4 Managerial insights

To summarize results in Sect. 5, our computational experiments showed significant variation
in disruption costs (percentage), expected cost terms, and reliable solutions with a different
degree of risk in disruption on the basis of comparison with the benchmark model, which
is assumed to be the best-case scenario without characterizing the nature of disruption in
its deterministic formulation. With our sensitivity analyses, we showed that disruption costs
may rise significantly if no appropriate action were to be taken by management. Because
node- and arc-failures severely impede the flow of empty containers supplied by two main
container supply sources from consignees (ST) and ports (reusing), one can pinpoint each
regionwhere disruption is more often reported, and can therefore frequently reposition empty
containers, whenever needed, to ensure a certain level of reliability.
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Wealso observed that no remarkable difference existed between the benchmark andRCNF
models in terms of expected total relevant costs and total volumes of ECM strategies used in
computational experiments. This remained the case until certain levels of disruption probabil-
ities were met and implies that managers of shipping companies should carefully implement
reliable strategies by conducting in-depth investigations of disruptions that occur in regions
where their interests lie.

Throughout the sensitivity analyses, the ECR strategy is far more vulnerable to the impact
of disruption than is the ST strategy in terms of disruption costs. This is mainly attributable
to the fewer numbers of empty containers available; that is, the ECR strategy is implemented
between the fewer numbers of ports by maritime transportation, while the ST strategy is con-
ducted between the larger numbers of consignees and shippers, aswell as being supplemented
by the ECR through hinterland transportation. More connectivity between consecutive ech-
elons could prevent supply vulnerability from potential disruption. Therefore, management
could promote a higher level of shipping conference in which companies’ shipping service
routes and container slots in vessels are freely shared, instead of the normal situation in
which companies aggressively compete with one other, especially during times of higher
uncertainty.

From the perspective of the storage level of empty containers at ports, failure costs signifi-
cantly affect the ECR and ST costs, based on the degree of risk in disruption. After exceeding
a certain threshold point of disruption probabilities, all of the corresponding arcs are almost
completely blocked so that some import-oriented ports may suffer from extremely high stor-
age levels due to the disrupted ECR strategy (see Fig. 5). On the other hand, disruption in the
ST strategy had less impact on storage levels when ports retained sufficient empty containers
(see Fig. 4). Therefore, management could properly distribute their empty containers from
the region where the surplus of empty containers is often held to another region that is most
likely suffering from disruption. This proactive disruption management solution is practi-
cal, because shipping companies maintain rich historical disruption data on their respective
regions.

6 Conclusions

This paper developed a reliability model for the RCNF problem to design reliable container
shipping networks by using various ECM strategies, such as ECR, reusing, returning, storage,
and implicitly leasing empty containers. This paper also explored the impact of disruption
on shipping container network design by comparing models with the benchmark model,
which was based on a deterministic formulation that did not take into account disruption
occurrences. Sensitivity analyses on disruption costs were offered in Sect. 5, and expected
cost terms, including expected failure costs for ST and ECR situations, were studied. This
paper also investigated reliable solutions for the RCNF model with respect to varying key
parameters, such as disruption probabilities and the size of echelons.

We also showed uncertain situations in which the disruption probability of inducing node-
and arc-failures was escalated to provide some managerial insights and implications. That
is, we showed that reliable solutions did not remarkably differ from those of the benchmark
model until a certain degree of risk fromdisruptionwas reached; andwe showed that expected
total relevant costs stayed constant after a certain level, as well (see Figs. 3, 4, and 7). Despite
the fact that the shipping container supply chain is vulnerable to the disruption that causes
damage to supply arcs, our model offers proactive measures to cope with disruptions that
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are triggered by natural disasters, labor strikes, failures in facilities, administrative interrup-
tions, and other unforeseen circumstances. Our model does this by designing a more reliable
shipping container network with ECM strategies to counteract the impact of disruption and
achieve robustness in supply capability.

Amid all these findings, however, we admit the following limitations of this paper: (i) we
need to relax the hard assumption to consider another disruption in port-handling capacities,
such as outages of quay-cranes, as well as arc flow capacity between each echelon, instead
of complete closure; (ii) because the RCNF model is another form of a stochastic program,
known for having a high computational complexity, it would be better to develop heuristic
algorithms to cope with large-scale instances, which are frequently encountered in practice;
(iii) a port storage capacity should also be taken into account, because it is closely related to
the profit generation of a shipping company. The more empty containers that occupy storage
areas at a port, the less opportunity there is to handle laden containers. This contradicts
our claim that more repositioned containers are helpful in combatting frequent disruptions.
Hence, establishing a trade-off between the occupation of empty and laden containers is
another important aspect for the DM. On the other hand, it would be better off to design
reliable container networks based on a hub-and-spoke system in which trans-continental
shipments take place in some important hub ports. Such a system is widely known to the
ECR problem and could benefit from an increase in reliability. Moreover, various types
of shipping containers bring advantages in cost and space savings in the overall shipping
system, such as foldable and combinable containers. These containers are very effective in
reducing the volume of empty containers required and can contribute to better forestallments
of disruptions.

Funding This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) [No. 2022K2A9A2A1109732611] and [No. 2022R1G1A101096411].

Appendix

See Tables 7, 8,9 and 10.
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Table 7 Key cost components for Figs. 4 and 5

s q ZRCNF

($)

E(street-turn) ($) E(failure)
($)

E(repositioning)
($)

E(failure)
($)

0.45 0.20 38,406,262 2,599,498 8,738,657 1,983,176 13,683,657

0.25 40,423,559 2,401,115 10,754,005 1,983,176 13,683,657

0.30 42,124,361 1,477,946 8,374,229 1,968,732 13,621,066

0.35 42,885,988 224,691 1,589,681 1,955,579 13,560,562

0.40 42,921,303 – – 1,955,579 13,560,562

0.5 0.20 41,487,583 2,600,330 8,738,657 1,524,946 12,894,180

0.25 43,504,203 2,395,711 10,724,320 1,524,736 12,892,980

0.30 45,189,392 1,466,380 8,296,707 1,511,064 12,780,180

0.35 45,941,644 222,507 1,573,340 1,502,371 12,704,370

0.40 45,976,955 – – 1,502,003 12,700,210

0.55 0.20 43,039,805 2,602,475 8,729,288 65,000 628,821

0.25 45,031,254 2,318,684 10,355,327 64,578 626,010

0.30 46,649,858 1,401,899 7,914,277 64,425 626,010

0.35 47,372,257 218,420 1,543,668 64,134 626,010

0.40 47,407,121 – – 64,188 626,010

0.60 0.20 43,195,255 2,602,589 8,729,288 64,690 768,285

0.25 45,186,704 2,318,847 10,356,033 64,578 768,285

0.30 46,805,308 1,401,675 7,912,981 64,425 768,285

0.35 47,527,707 218,420 1,543,668 64,134 768,285

0.40 47,562,571 – – 64,188 768,285
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Table 8 Optimal solutions for Figs. 4 and 5

s q y pi j t
*

(unit)

qpjt
*

(unit)

δ
p
jt
*

(unit)

zipt
*

(unit)

I E p
t
*

(unit)

r
pp′ t

*

(unit)

0.45 0.20 30,113 14,025 1022 15,068 3,932 12,782

0.25 29,654 14,484 1022 15,527 3,932 12,782

0.30 19,295 24,813 1052 25,886 4,082 12,722

0.35 3191 40,888 1081 41,990 4,227 12,664

0.40 – 44,079 1081 45,181 4,227 12,664

0.5 0.20 30,113 12,556 2491 15,068 17,879 9844

0.25 29,574 13,095 2491 15,607 17,859 9844

0.30 19,118 23,507 2535 26,063 18,558 9756

0.35 3159 39,438 2563 42,022 18,956 9700

0.40 – 42,595 2565 45,181 19,003 9696

0.55 0.20 30,081 7864 7215 15,100 113,313 396

0.25 28,571 9373 7216 16,610 113,384 394

0.30 18,246 19,698 7216 26,935 113,328 394

0.35 3100 34,844 7216 42,081 113,384 394

0.40 – 37,944 7216 45,181 113,389 394

0.60 0.20 30,081 7863 7216 15,100 113,338 394

0.25 28,573 9371 7216 16,608 113,384 394

0.30 18,243 19,701 7216 26,938 113,328 394

0.35 3100 34,844 7216 42,081 113,384 394

0.40 – 37,944 7216 45,181 113,389 394
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