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A B S T R A C T

In recent years, third-party platforms (3PPs), such as Amazon, have attracted considerable
interest from omnichannel retailers as a sales channel option. Even though omnichannel retailers
have their own offline and online channels, they have participated in the fulfillment service of
3PPs to absorb additional demand from the 3PP channel. To the best of our knowledge, no
existing study has addressed the robust omnichannel retail operations utilizing the channel of
3PPs as one of a retailer’s sales channels. To fill these research gaps, this paper formulates
omnichannel retail operations with the 3PP channel into a multi-period stochastic optimization
model. The proposed model involves the supply chain networks of the retailer and 3PP and
also the production capacity constraint, which restricts replenishment quantity depending on
the production capacity of each supplier. Unfortunately, the existence of the 3PP channel and
the production capacity constraint increases the computational complexity; thus, the problem
cannot be solved within an acceptable computational time by using the existing approach (i.e.,
a two-phase approach (TPA) based on robust optimization). To overcome these challenges, we
propose a novel decomposition approach called DECOM. DECOM has a distinct advantage in
that it can decompose the proposed problem into two small problems, one for the retailer’s
supply chain and the supply chain of the 3PP. We evaluate the performance of DECOM by
comparing it with the TPA on a set of experiments carried out in various experimental settings.
Both DECOM and TPA could provide high-quality solutions, but DECOM outperformed TPA
in terms of computational efficiency. In particular, we observed that DECOM was scalable
to large-scale instances. Furthermore, we explored the advantages of utilizing omnichannel
retail operations and the 3PP channel by performing a sensitivity analysis. In particular, we
showed the cost-saving effect resulting from the introduction of the 3PP channel in omnichannel
retailing.

. Introduction

With the rapid rise of digitalization and e-commerce platforms, the omnichannel strategy has become more popular with retail
ompanies (He et al., 2022). Omnichannel refers to a strategy with multiple sales channels and can provide customers with seamless
xperiences no matter where they shop. Using the omnichannel service, customers can purchase or receive products in various ways,
uch as ‘‘buy online and pick up in-store’’ or ‘‘examine products in-store and buy online (showrooming)’’ (Jiu, 2022; Liu et al., 2023).
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According to the survey of Emma et al. (2017), among 46,000 customers, 73 percent preferred to use multiple channels during their
shopping journeys. Because of customers’ preferences for omnichannel service, retail companies operating brick-and-mortar stores
have invested large amounts of resources in the online sales channel (e.g., apps and official online websites).

However, in recent years, several retail companies have sold their products on third-party platforms (3PP), such as Amazon and
oupang, despite having their own offline and online channels (Zhen and Xu, 2022). In real business, Coupang launched a service
alled the C.AVENUE, and many omnichannel companies, such as Nike and Adidas, have participated in this service and sold their
roducts using 3PP. From the perspective of retailers, there are distinct advantages to adopting the 3PP channel as one of their
ales channels. These advantages are as follows:

• Self-supporting logistics service system (SLSS): The 3PP companies could implement logistics of fulfillment on behalf of the retailer
by using their SLSS. For example, Amazon has provided a fulfillment service called Fulfillment by Amazon (FBA) (Lai et al.,
2022).

• Customers in the 3PP channel: The retailer could absorb the additional demand of 3PP. A significant number of customers use
3PP to buy products online. Specifically, as of 2022, more than 197 million monthly active users use the Amazon app, and
more than 27 million monthly active users use the Coupang app (Daniel, 2023). Therefore, in addition to customers who want
to buy a specific product from a retailer, other users of 3PP could also buy that product while looking around the platform.

Motivated by observing the advantages retailers obtain by using 3PP, we cope with omnichannel retail operations that have
dopted the 3PP channel as one of the sales channels. Moreover, we address decision and optimization problems considering demand
ncertainty, which jointly determine the four types of decision over a multi-period planning horizon (i.e., replenishment, allocation,
ransshipment, and fulfillment). We aim to minimize the expected total cost over the planning horizon from the retailer’s perspective.
f special note, we consider the following two features, which are generally considered in real business: (1) the binary decision

or replenishment to accommodate fixed order costs and (2) the constraint restricting replenishment quantity depending on the
roduction capacity of each supplier (i.e., the production capacity constraint).

However, there are four issues that make the proposed problem challenging. First, the retailer has to make binary replenishment
decisions adaptively after demand unfolds over periods (i.e., the adjustable binary decision), which increases the solution space and
complexity of the problem (Hanasusanto et al., 2015). Second, according to the common assumption in retail environments, the
replenishment, allocation, and transshipment of products are decided before the demand is realized (anticipative manner), and the
fulfillment is decided after demand is realized (reactive manner) (Jiu, 2022). Thus, the solution approach providing a good quality
solution with integrating anticipative and reactive decisions is necessary. Third, the existence of the 3PP channel makes the problem
larger than it would be without this channel. In addition to the retailer’s supply chain for online and offline channels, the supply
chain for the 3PP channel (i.e., the 3PP supply chain) should also be considered if the 3PP channel is adopted. Fourth, the production
capacity of suppliers makes the problem quickly become intractable. To the best of our knowledge, no existing study addresses the
above four issues simultaneously, even though Lim et al. (2021) and Jiu (2022) dealt with the first and second issues.

In order to fill these research gaps, our study deals with a multi-period stochastic optimization model that takes into account
the logistics operations of an omnichannel retailer’s supply chain and the supply chain of the 3PP simultaneously. Additionally, we
propose a novel decomposition method, which is called DECOM, to enhance computational efficiency. In this research, we attempt
to answer the following research questions to derive management implications in omnichannel and 3PP research areas:

1. Does the DECOM outperform the existing algorithm, and is it scalable in realistic problem scales?
2. If it can, how does the production capacity of suppliers affect the performance of DECOM, and is DECOM effective in

guaranteeing the robustness for demand uncertainty?
3. Which cost parameters play important roles for the cost-saving effect derived from adopting omnichannel retailing and the

3PP channel?

We present the main contributions of our study from the following two perspectives:
Practical contributions: As far as we know, this is the first study to address omnichannel retail operations under demand

uncertainty and consider both the retailer’s supply chain and the supply chain of the 3PP. Furthermore, we deal with the production
capacity of suppliers and transshipment between logistics centers, which are two elements that have not been addressed in related
existing studies. We explore the effects of adopting the omnichannel system and the 3PP channel by conducting sensitivity analysis on
various cost parameters. In particular, we examine the substantial cost savings caused by employing the 3PP channel in omnichannel
retail operations. Based on experimental results, we suggest managerial insights that could be instructive to practitioners who aim
to set up an effective supply chain considering the omnichannel retail operations and the 3PP channel.

Theoretical contributions: We develop the multistage stochastic optimization model to address the proposed problem. Our
model can jointly determine every decision, and the anticipative and reactive manners are implemented seamlessly as the demand
unfolds over periods. The two-phase approach (TPA) on the robust optimization approach is the state-of-the-art method to deal with
adjustable binary decisions (Lim et al., 2021). However, the TPA requires a significant computational burden to solve large-scale
instances in our model. To alleviate these issues, we develop a novel approach, DECOM, which can be regarded as an extended
version of the TPA. DECOM can decompose the total supply chain into two streams, one for the retailer’s supply chain and the other
for the 3PP supply chain, by introducing artificial variables. On a set of computational experiments, DECOM could provide high-
quality solutions similar to solutions derived from the TPA. Furthermore, in terms of computational efficiency, DECOM outperforms
2

the TPA by solving large-scale problems within a reasonable time.
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This paper is organized as follows: We present the literature review related to omnichannel retail operations, the 3PP channel,
nd robust optimization (RO) in Section 2. We present the problem description for the omnichannel supply chain with the 3PP
hannel and the corresponding deterministic and stochastic optimization models in Section 3. In Section 4, we briefly explain how
e customize the TPA approach for the proposed problem. In Section 5, we present the principles of the DECOM approach. In
ection 6, we conduct computational experiments on various demand distributions and problem sizes to evaluate the performance of
he developed DECOM approach. Furthermore, we analyze the effects of the omnichannel and the 3PP channel. Finally, in Section 7,
e summarize the contributions of this study, along with further research ideas.

. Literature review

The literature review will focus on three streams of research in operations management: omnichannel retail operations under
ncertainty, the 3PP channel, and RO.

.1. Omnichannel retail operations under uncertainty

The last few years have seen a huge growth in the number of papers published on the topic of omnichannel leverage in
etail operations (Cai and Lo, 2020). Instead of reviewing all existing studies related to the omnichannel topic, we present a
etailed review of recent literature regarding the optimization under uncertainty in omnichannel retailing. Many researchers used
ptimization methods requiring assumptions on the demand distributions. Arslan et al. (2021) studied the distribution network
eployment problem, which aimed to integrate the online channel and offline retailers. To consider uncertainties that occurred in
nline orders, store sales, and capacities, they developed a two-stage stochastic programming model. Siawsolit and Gaukler (2021)
eveloped a Markov decision process model to derive the optimal replenishment policy within omnichannel grocery retailing. They
onsidered the uncertain nature of demand and shelf life of groceries in the proposed model. Abouelrous et al. (2022) addressed
he multi-location inventory problem, aiming to determine the initial inventory at each location within a given planning horizon.
hey also simultaneously considered the stochastic online and in-store demands, which were general assumptions in omnichannel
etail operations. Guo and Keskin (2023) studied the integration of strategic, tactical, and operational levels of decisions in the
mnichannel supply chain. Their two-stage stochastic programming model can optimize the three types of decisions, depending
n the demand realizations. Silbermayr and Waitz (2024) addressed transshipments from an offline channel to online customers
o enhance the balance between supply and demand for perishable and substitutable products. They proposed a two-location
ewsvendor model for inventory management with substitutions for product and sales channels and one-way transshipment.

However, it is difficult to estimate the exact demand distributions within omnichannel retailing (Qiu et al., 2023). Furthermore,
f a significant discrepancy between the estimated distribution and the actual demand exists, the quality of solutions derived from
he estimated distribution could be poor. Under these circumstances, RO is an effective methodology because it only requires partial
nformation about the demand (e.g., mean). We present three relevant studies that utilize the RO for omnichannel retailing. Qiu et al.
2023) addressed the problem for pricing and ordering optimization considering full-refund and no-refund policies. They also defined
he demand as a linear function of the price and refund to accommodate the general case that demands depend on the prices and
vailable return policies. Using historical data, they presented a nonlinear optimization model to cope with demand uncertainty, and
he proposed model was transformed into the tractable MILP model by using the duality theory. However, the presented approach is
hallenging to apply in the multi-period problem, and the computational efficiency was not analyzed. Guan et al. (2024) studied a
tochastic optimization model as an integrated method to address assortment planning, replenishment, and e-fulfillment problems.
hey developed a distributionally RO model, specifically the worst-case mean-conditional value-at-risk model. The proposed model
an adjust the trade-off between profitability and risk according to the decision-maker’s preference.

On the other hand, Jiu (2022), which is the most relevant study to our research, addressed the multi-period problem for robust
mnichannel retailing. The study used the TPA, developed by Lim et al. (2021), to solve the problem. The TPA could provide high-
uality solutions compared to existing approaches. In addition, through computational experiments on large-scale problems, the
tudy indicated that the TPA was scalable to the problem. Our study has several differences compared with the study by Jiu (2022).
ne of these differences is that both transshipment decisions and production capacity are considered in our model. When inventories
re insufficient, stockouts can be avoided by implementing the transshipment between logistics centers. Furthermore, suppliers
sually have their production capacity, so the retailer should replenish products by considering this constraint. Therefore, our model
s suitable for real-world problems and can offer more instructive management implications compared to previous literature. In
ddition to these two differences, the most apparent contribution of our study is that we adopt the 3PP channel in our model. In other
ords, when optimizing the proposed problem, the retailer’s supply chain and the supply chain of the 3PP should be considered

imultaneously.

.2. Third-party platform (3PP) channel

We present several studies that analyze the effects of adopting the 3PP channel for retailing. By investigating the existing studies
onsidering 3PP in retail, we observe that 3PP companies can be classified into two types depending on the existence of SLSS in those
ompanies. For 3PP companies without the SLSS, the retailer or manufacturer who participates in 3PP can only sell their products
sing the platform, but the logistics of products must be implemented by themselves. On the other hand, for 3PP companies with
3

he SLSS, the retailer can sell their products on 3PPs. Adding to that, the 3PP company implements every logistics and fulfillment
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procedure on behalf of the retailer. Our study considers the latter type for a 3PP company by reflecting real cases of Coupang and
Amazon.

We will introduce literature that considers the 3PP company operating with SLSS. Previous studies can be classified into two
ypes: whether research outcomes are helpful for the 3PP company, or whether they are helpful for the retailer who uses the
ervice provided by the 3PP company. First, we present recent studies that could be helpful for the 3PP company. Lai et al. (2022)
nvestigated the effects of FBA, which is a fulfillment service offered by Amazon, on both Amazon itself and on retailers that use this
ervice. They developed a strategic competition model and found that FBA could alleviate price competition between Amazon and
he retailer. Li and Li (2023) examined whether a 3PP company should establish the SLSS by developing game-theoretic models.
urthermore, they discussed the interaction between the SLSS of the 3PP company and the manufacturer’s platform entry decision.
eshpande and Pendem (2023) studied how logistics service quality affects service ratings and retailers’ sales on a platform provided
y the 3PP company. By utilizing the real-world data set and developing the customer choice model, they found that logistics service
uality plays an important role in the customer purchase decision.

Second, we present recent research that could be valuable for retailers who are contemplating using the services of the 3PP
ompany. Qin et al. (2020) addressed the SLSS of 3PP, which is provided to retailers that participate in the 3PP channel. They
nalyzed the strategic and economic impacts of logistic service sharing and examined the equilibrium mode between 3PP and the
etailer considering the logistics service level and the market potential. Zhen and Xu (2022) dealt with a research question of whether
he retailer who has online and offline channels should adopt 3PP for the sales channel. In order to answer the research question,
hey developed a Stackelberg game model and examined the retailer’s best choice on different channel competitions and the agency
ee. Zhen et al. (2022) addressed a similar research question of Zhen and Xu (2022) under various supply chain structures and two
irections of the spillover effect. They explored the impact of the direction of the spillover effect between sales channels by varying
he degree of channel competition and assuming the agency fee for using 3PP.

The abovementioned literature only investigated whether the retailer who owns its offline and online channels should expand
ales channels by utilizing the 3PP channel. However, in a setting where the retailer has determined to utilize the 3PP channel in
dvance, there is a lack of research investigating the optimal way to operate both the retailer’s supply chain and the supply chain of
he 3PP. To fill these gaps, our study addresses the problem that the retailer has determined to utilize the 3PP channel in advance.
urthermore, we aim to provide efficient logistics operations by minimizing the total expected cost from the perspective of the
etailer. We adopt RO as our solution approach, and several key papers in the RO research area will be presented in the following
ection.

.3. Robust optimization (RO)

RO is one of the approaches that deals with uncertainty in optimization problems (Xu et al., 2023). In contrast to other approaches
e.g., stochastic programming and dynamic programming), RO does not need any assumption about the probability distribution of
ncertain parameters. But instead, it assumes that the uncertainty value belongs within a predetermined set, called the uncertainty
set. The goal of RO is to find the optimal solution under the worst-case, and the obtained solution should be guaranteed to be feasible
for any realizations of uncertain parameters in the uncertainty set (Ben-Tal et al., 2009). In order to make the RO model tractable,
the uncertainty set is generally defined as a convex set (e.g., box shape (Soyster, 1973) and ellipsoid (Ben-Tal and Nemirovski,
1999)).

Two types of decisions can be utilized for the multi-period decisions problem: (1) here-and-now and (2) wait-and-see. For the
ere-and-now scheme, every decision is determined before the planning horizon starts (i.e., before every uncertain parameter is
evealed). In contrast, for the wait-and-see scheme, we can postpone making decisions until some of the uncertain parameters are
evealed. Therefore, the wait-and-see decision is less conservative than the here-and-now decision because it can be adjusted flexibly
ccording to the realized portion of uncertain parameters at each stage (Yanıkoğlu et al., 2019). However, it is complex to deal with
he wait-and-see decision because of the large feasible space of adjustable variables.

The adjustable robust optimization (ARO) is developed to deal with multistage problems, which commonly assume the multi-
eriod setting and consider adjustable variables to implement the wait-and-see decision. Because of tractability reasons, it is typical
o restrict feasible space by optimizing a certain type of parameterized function. This function is usually called the decision rule.
everal researches have used nonlinear functions for the decision rule (Bertsimas et al., 2011; Georghiou et al., 2015). However, a
road body of literature has adopted the linear function for the decision rule, which is called the linear decision rule (LDR). Ben-Tal
t al. (2004) first presented the LDR for a production inventory problem. Because the LDR could lead problems to be reformulated
o be tractable, it has attracted considerable interest in many domains , and in particular, it has been widely utilized in inventory
anagement (Bertsimas and Thiele, 2006; See and Sim, 2010; Shin et al., 2020). The simplest version of the decision rule is the
tatic rule, in which decisions are fixed regardless of the revealed uncertainties. For some cases, the static rule has proved to be
ptimal (See and Sim, 2010; Bertsimas et al., 2015; Marandi and Den Hertog, 2018).

The solution approaches of the abovementioned studies have focused on adjustable continuous variables. However, only a few
tudies developed solution approaches to deal with adjustable binary variables: the K-adaptability approach (Hanasusanto et al.,
015), the finite adaptability approach (FA) (Bertsimas and Dunning, 2016; Postek and Den Hertog, 2016), and the binary decision
ule (BDR) (Bertsimas and Georghiou, 2018). In particular, Lim and Wang (2017) developed the target-oriented robust optimization
TRO) method to address the adjustable binary and continuous variables at the same time. TRO could provide a static rule that was
ptimal for a multi-period inventory problem. By utilizing the strength of TRO, Lim et al. (2021) developed the TPA. In the TPA, they
4

ecoupled adjustable binary variables and adjustable continuous variables for making decisions. TPA decided the adjustable binary
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Fig. 1. Supply chain network of the proposed problem. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

variables by a static rule of TRO and resorted to the LDR for determining the adjustable continuous variables. The experimental
results showed that the TPA outperformed existing approaches, BDR and FA, for both solution quality and computational efficiency.

Even though the TPA has shown outstanding performance compared to existing approaches, it could not be scalable to our
problem. The TPA has required a significant computational burden for large-scale instances because our problem considers the
retailer’s supply chain (online and offline channels) and the supply chain of the 3PP (3PP channel) simultaneously. Therefore, our
study develops the DECOM approach, which could be scalable to large-scale problems.

3. Problem description and mathematical model

3.1. Problem description

We consider a model in which a retailer sells products, 𝑖 ∈ , to customers through several sales channels as shown in Fig. 1. By
following the assumption of Jiu (2022), we also assume that a retailer replenishes each individual product from a single supplier
(i.e., each product 𝑖 can only be provided from the corresponding supplier 𝑖). Also, each supplier 𝑖 has a limited production capacity,
𝑠𝑖𝑡. Furthermore, we assume that each product 𝑖 can only be provided from the corresponding supplier 𝑖. There are three types of
sales channels (1) a retailer’s offline channel, (2) a retailer’s online channel, and (3) the 3PP channel. The supply chain network
consists of multiple capacitated logistics centers, 𝑗 ∈  , and offline stores, 𝑘 ∈ 𝑂, several logistics centers, 𝑗 ∈ 𝐷, operated by
the retailer, which is called DC, and the others, 𝑗 ∈ 𝐹 , operated by the 3PP, which is called FC. In the case of the retailer’s offline
channel, we assume that the offline store 𝑘 is located at each offline demand zone 𝑘. Therefore, each demand zone is fulfilled by
the corresponding offline store. For the retailer’s online channel, there are multiple online demand zones. On the other hand, for
the 3PP channel, we consider the aggregate demand for FCs because the 3PP company can deliver products from FCs to customers
using its SLSS. It should be noted that our model can be easily extended to the general case, the multiple online demand zones for
FCs, by defining the set of online demand zones for FCs. We do not anticipate any customer switching between channels if there
is a stockout. We consider some features of the omnichannel supply chain network by referring to Jiu (2022). In particular, we
consider one of the significant advantages of the omnichannel setup: The retailer’s online demand can be fulfilled by the inventory
held in the offline stores (i.e., the ship-from-store for online demands). In contrast to existing studies, we also consider transshipment
between DCs and suppliers’ production capacity in our model.

We accommodate the following features of the 3PP channel in our model by deeply investigating the business model of Coupang.
First, products to be sold in the 3PP channel are stored in the fulfillment center of the 3PP (i.e., FC). Therefore, the demand for
the 3PP channel is satisfied by inventories held in FCs. Second, even though the 3PP company implements logistics of fulfillment
on behalf of the retailer, the retailer should transport the replenished products from suppliers to the 3PP company’s FCs. After
5
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that, these replenished products are handled by the SLSS service of the 3PP company. Therefore, the unit replenishment cost from
suppliers to FCs, 𝑜𝑐𝑡𝑖𝑗 , ∀𝑗 ∈ 𝐹 , is determined based on the distance between supplier 𝑖 and FC 𝑗. Third, the 3PP company delivers
products to satisfy demand in the 3PP channel on behalf of a retailer. In real business, the delivery fee is charged per product,
𝑖, 𝑎𝑓 𝑖𝑡𝑗 ,∀𝑗 ∈ 𝐹 , regardless of distances between FCs and customer demand zones. Therefore, the distance between an FC and the
demand zone is not considered for the fulfillment cost in the 3PP channel. Fourth, various types of additional costs are incurred
when using the 3PP channel as follows:

• Fixed participation cost (𝜆𝑠): A fixed participation fee could be incurred when the retailer uses the 3PP channel (Ryan et al.,
2012). We implicitly accommodate this type of fee in 𝑆 𝑖𝑡𝑗 , ∀𝑗 ∈ 𝐹 .

• Warehousing cost (𝜆𝑜): Because the process for packaging and moving products is required when the 3PP company receives
products in FCs, the warehousing fee is charged per product to users. Therefore, we consider this type of cost in 𝑜𝑐𝑡𝑖𝑗 , ∀𝑗 ∈ 𝐹 .

• Inventory holding cost (𝜆ℎ): The 3PP company charges a storage fee to users when they store their products in FCs. Therefore,
this results in higher inventory holding costs when the retailer stores products in FCs instead of in DCs. We accommodate this
property in 𝑙ℎ𝑖𝑡𝑗 ,∀𝑗 ∈ 𝐹 .

In summary, the costs parameters 𝑆𝑖𝑡𝑗 , 𝑙ℎ
𝑖𝑡
𝑗 , and 𝑜𝑐𝑡𝑖𝑗 for the 3PP channel (∀𝑗 ∈ 𝐹 ) are more expensive than they are for the retailer

(∀𝑗 ∈ 𝐷). We reflect these features with parameters 𝜆𝑠, 𝜆ℎ, and 𝜆𝑜.
We consider a multi-period problem with a finite horizon divided into period 𝑡 ∈  . For each period 𝑡, the retailer makes decisions

for the replenishment, transshipment, allocation, and fulfillment, and the following sequence of an event is repeated:

1. At the start of period 𝑡, the quantity of product 𝑖 replenished at 𝑡 − 𝐿𝑖𝑗 period arrives at the logistics center 𝑗. The retailer
decides how many products to order for each logistics center 𝑗 from each supplier 𝑖 (i.e., replenishment decision, 𝛿𝑖𝑡𝑗 and 𝑞𝑖𝑡𝑗 ).

2. The retailer then decides the transshipment quantity between DCs and how many products to allocate from DCs to offline
stores (i.e., transshipment and allocation decisions, 𝑢𝑖𝑡𝑗𝑗′ and 𝑣𝑖𝑡𝑗𝑘).

3. Each type of demand is realized at the end of period 𝑡. The retailer decides how many products to fulfill for each type of
demand, and from which DCs, FCs, and offline stores to fulfill it (i.e., fulfillment decision, 𝜌𝑖𝑡𝑘 , 𝜂

𝑖𝑡
𝑗 , 𝑔

𝑖𝑡
𝑘𝑘′ and 𝑟𝑖𝑡𝑗𝑘). If customers

face a stockout, the demand gets lost, which is a general assumption in retail environments (Goedhart et al., 2023).

Fig. 1 describes the retailer’s supply chain and four types of decisions. We represent four types of fulfillment decisions with the solid
arrow in different colors. We utilize the notations in Table A.6 to formulate mathematical models.

The total cost incurred in the supply chain consists of eleven cost components: (1) the fixed cost to place an order, 𝑆𝑖𝑡𝑗 𝛿
𝑖𝑡
𝑗 , (2)

the per-unit ordering cost, 𝑜𝑐𝑡𝑖𝑗𝑞
𝑖𝑡
𝑗 , (3) the inventory holding cost for DCs and FCs, 𝑙ℎ𝑖𝑡𝑗 𝑥

𝑖,𝑡+1
𝑗 , (4) the inventory holding cost for offline

stores, 𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 , (5) the stockout cost, 𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 , (6) the fulfillment cost from offline stores to online demand zones, 𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔

𝑖𝑡
𝑘𝑘′ , (7) the

transshipment cost between DCs, 𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′ , (8) the allocation cost from DCs to offline stores, 𝑎𝑐𝑖𝑡𝑗𝑘𝑣

𝑖𝑡
𝑗𝑘, (9) the fulfillment cost from

DCs to online demand zones, 𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘, (10) the fulfillment cost for offline demand zones, 𝑏𝑓 𝑖𝑡𝑘 𝜌

𝑖𝑡
𝑘 , and (11) the fulfillment cost for the

aggregate demand for the 3PP channel, 𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗 . We present the deterministic model (PDET) where all demand is known in Appendix A.

.2. Stochastic optimization model with the demand uncertainty

In this section, we present the stochastic optimization model to accommodate the demand uncertainty. We use 𝑑𝑖𝑡𝑘 to denote
andom demand 𝑘 for product 𝑖 at period 𝑡 for all 𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  . The mean values of demand 𝑑𝑖𝑡𝑘 are denoted as 𝑑𝑖𝑡𝑘 . Also, we
se 𝑑𝑖𝑡𝑘 to denote the realization of the demand. Let 𝐝𝑡 =

(

𝑑𝑖𝜏𝑘 ,∀𝑖 ∈ , 𝑘 ∈ , 𝜏 ∈ {1,… , 𝑡}
)

denote a collection of all demands from
eriod 1 to period 𝑡, and 𝐝 denotes 𝐝𝑇 . The realization of the demand 𝐝𝑡 and 𝐝 are denoted as 𝐝𝑡 and 𝐝, respectively.

In the proposed stochastic optimization model, we consider the adjustable decision variables to accommodate two different types
of decisions (i.e., anticipative and reactive manners). The adjustable decision variables can postpone the decision until some portion
of the demand is realized (i.e., wait-and-see decisions), which is different from the process that every decision should be made at
the start of period 1 (i.e., here-and-now decisions). We define the adjustable decision variables as presented in Table A.6. It should
be noted that only the 𝛿𝑖𝑡𝑗 (𝐝

𝑡−1) are the adjustable binary variables, and the others are the adjustable continuous variables. In addition,
ecause 𝛿𝑖𝑡𝑗 (𝐝

𝑡−1), 𝑞𝑖𝑡𝑗 (𝐝
𝑡−1), 𝑥𝑖𝑡𝑗 (𝐝

𝑡−1), 𝑢𝑖𝑡𝑗𝑗′ (𝐝
𝑡−1), and 𝑣𝑖𝑡𝑗𝑘(𝐝

𝑡−1) are decided at the start of period 𝑡, these decisions are determined based
n the anticipative manner. On the other hand, because 𝜌𝑖𝑡𝑘 (𝐝

𝑡), 𝜂𝑖𝑡𝑗 (𝐝
𝑡), 𝑔𝑖𝑡𝑘𝑘′ (𝐝

𝑡), 𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡), and 𝑧𝑖𝑡𝑘 (𝐝

𝑡) are decided at the end of period 𝑡,
these decisions are determined based on the reactive manner. For ease of the exposition, let 𝜹(𝐝) =

(

𝛿𝑖𝑡𝑗 (𝐝
𝑡−1),∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈ 

)

denote a collection of the adjustable binary variables. We use notations 𝝅(𝐝) and 𝝁(𝐝) to denote a collection of the adjustable
continuous variables determined based on the anticipative and reactive manners, respectively:

𝝅(𝐝) =
(

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1), 𝑥𝑖𝑡𝑗 (𝐝

𝑡−1), 𝑦𝑖𝑡𝑘 (𝐝
𝑡−1), 𝑢𝑖𝑡𝑗𝑗′ (𝐝

𝑡−1), 𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1), ∀𝑖 ∈ , 𝑗 ∈  , 𝑗′ ∈  , 𝑘 ∈ 𝑂 , 𝑡 ∈ 

)

,

𝝁(𝐝) =
(

𝜌𝑖𝑡𝑘 (𝐝
𝑡), 𝜂𝑖𝑡𝑗 (𝐝

𝑡), 𝑔𝑖𝑡𝑘𝑘′ (𝐝
𝑡), 𝑟𝑖𝑡𝑗𝑘′ (𝐝

𝑡), 𝑧𝑖𝑡𝑘′′ (𝐝
𝑡), ∀𝑖 ∈ , 𝑗 ∈  , 𝑘 ∈ 𝑂 , 𝑘

′ ∈ 𝐷, 𝑘
′′ ∈ , 𝑡 ∈ 

)

.

If the demand is given as 𝐝, the total cost incurred in the supply chain is defined as follows:

𝜞 𝜹(𝐝),𝝅(𝐝),𝝁(𝐝) =
6

( )
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W

∑

𝑖∈

∑

𝑡∈

⎛

⎜

⎜

⎝

∑

𝑗∈
𝑆𝑖𝑡𝑗 𝛿

𝑖𝑡
𝑗 (𝐝

𝑡−1) +
∑

𝑗∈
𝑜𝑐𝑡𝑖𝑗𝑞

𝑖𝑡
𝑗 (𝐝

𝑡−1) +
∑

𝑗∈
𝑙ℎ𝑖𝑡𝑗 𝑥

𝑖,𝑡+1
𝑗 (𝐝𝑡) +

∑

𝑘∈𝑂

𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 (𝐝𝑡) +

∑

𝑘∈
𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 (𝐝

𝑡) +
∑

𝑗∈𝐷

∑

𝑗′∈𝐷

𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′ (𝐝

𝑡−1)

+
∑

𝑗∈𝐷

∑

𝑘∈𝑂

𝑎𝑐𝑖𝑡𝑗𝑘𝑣
𝑖𝑡
𝑗𝑘(𝐝

𝑡−1) +
∑

𝑗∈𝐷

∑

𝑘∈𝐷

𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘(𝐝

𝑡) +
∑

𝑘∈𝑂

∑

𝑘′∈𝐷

𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔
𝑖𝑡
𝑘𝑘′ (𝐝

𝑡) +
∑

𝑘∈𝑂

𝑏𝑓 𝑖𝑡𝑘 𝜌
𝑖𝑡
𝑘 (𝐝

𝑡) +
∑

𝑗∈𝐹

𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗 (𝐝

𝑡)
⎞

⎟

⎟

⎠

.

e propose the following stochastic optimization model (PSTOC) by accommodating the demand uncertainty:

(PSTOC)

min E𝐝
[

𝜞
(

𝜹(𝐝),𝝅(𝐝),𝝁(𝐝)
)]

(1)

s.t. 𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑞𝑖𝑗𝛿

𝑖𝑡
𝑗 (𝐝

𝑡−1), ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  (2)
∑

𝑗∈
𝑞𝑖𝑡𝑗 (𝐝

𝑡−1) ≤ 𝑠𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈  (3)

∑

𝑖∈

(

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) + 𝑞

𝑖,𝑡−𝐿𝑖𝑗
𝑗 (𝐝𝑡−𝐿

𝑖
𝑗−1)

)

≤ 𝑥̄𝑗 , ∀𝑗 ∈ 𝐹 , 𝑡 ∈  (4)

∑

𝑖∈

⎛

⎜

⎜

⎝

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) + 𝑞

𝑖,𝑡−𝐿𝑖𝑗
𝑗 (𝐝𝑡−𝐿

𝑖
𝑗−1) +

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗′𝑗 (𝐝

𝑡−1) −
∑

𝑘∈𝑂

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1) −

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′ (𝐝

𝑡−1)
⎞

⎟

⎟

⎠

≤ 𝑥̄𝑗 , ∀𝑗 ∈ 𝐷, 𝑡 ∈  (5)

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) + 𝑞

𝑖,𝑡−𝐿𝑖𝑗
𝑗 (𝐝𝑡−𝐿

𝑖
𝑗−1) ≥

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′ (𝐝

𝑡−1), ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  (6)

∑

𝑖∈

(

𝑦𝑖𝑡𝑘 (𝐝
𝑡−1) +

∑

𝑗∈𝐷

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1)

)

≤ 𝑦̄𝑘, ∀𝑘 ∈ 𝑂 , 𝑡 ∈  (7)

∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡) +

∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘(𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) = 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑘 ∈ 𝐷, 𝑡 ∈  (8)

𝜌𝑖𝑡𝑘 (𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) = 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  (9)
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 (𝐝
𝑡) + 𝑧𝑖𝑡𝐾+1(𝐝

𝑡) = 𝑑𝑖𝑡𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  (10)

𝑥𝑖,𝑡+1𝑗 (𝐝𝑡) = 𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) + 𝑞

𝑖,𝑡−𝐿𝑖𝑗
𝑗 (𝐝𝑡−𝐿

𝑖
𝑗−1) +

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗′𝑗 (𝐝

𝑡−1) −
∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′ (𝐝

𝑡−1) −
∑

𝑘∈𝑂

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1) −

∑

𝑘∈𝐷

𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡), (11)

∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 

𝑥𝑖,𝑡+1𝑗 (𝐝𝑡) = 𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) + 𝑞

𝑖,𝑡−𝐿𝑖𝑗
𝑗 (𝐝𝑡−𝐿

𝑖
𝑗−1) − 𝜂𝑖𝑡𝑗 (𝐝

𝑡), ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  (12)

𝑦𝑖,𝑡+1𝑘 (𝐝𝑡) = 𝑦𝑖𝑡𝑘 (𝐝
𝑡−1) +

∑

𝑗∈𝐷

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1) −

∑

𝑘′∈𝐷

𝑔𝑖𝑡𝑘𝑘′ (𝐝
𝑡) − 𝜌𝑖𝑡𝑘 (𝐝

𝑡), ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  (13)

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑞𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, 𝛿𝑖𝑡𝑗 (𝐝
𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  (14)

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑥𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  + (15)

𝑦𝑖𝑡𝑘 (𝐝
𝑡−1) ≥ 0, 𝑦𝑖𝑡𝑘 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  + (16)

𝑢𝑖𝑡𝑗𝑗′ (𝐝
𝑡−1) ≥ 0, 𝑢𝑖𝑡𝑗𝑗′ (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑗 ∈ 𝐷, 𝑗′ ∈ 𝐷, 𝑖 ∈ , 𝑡 ∈  (17)

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1) ≥ 0, 𝑣𝑖𝑡𝑗𝑘(𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑗 ∈ 𝐷, 𝑘 ∈ 𝑂 , 𝑖 ∈ , 𝑡 ∈  (18)

𝜌𝑖𝑡𝑘 (𝐝
𝑡) ≥ 0, 𝜌𝑖𝑡𝑘 (𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  (19)

𝜂𝑖𝑡𝑗 (𝐝
𝑡) ≥ 0, 𝜂𝑖𝑡𝑗 (𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  (20)

𝑔𝑖𝑡𝑘𝑘′ (𝐝
𝑡) ≥ 0, 𝑔𝑖𝑡𝑘𝑘′ (𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑘
′ ∈ 𝐷, 𝑡 ∈  (21)

𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡) ≥ 0, 𝑟𝑖𝑡𝑗𝑘(𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐷, 𝑡 ∈  (22)

𝑧𝑖𝑡𝑘 (𝐝
𝑡) ≥ 0, 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  (23)

where 𝜏 and 𝜏 functions are mapping from R𝐼×𝜏×(𝐾+1) to R and {0, 1}, respectively. The objective function (1) minimizes the
expected total cost incurred within the supply chain. Constraint (2) represents that if products are ordered, a fixed ordering cost is
incurred. Constraint (3) enforces that the total number of products replenished from supplier 𝑖 cannot exceed the given production
capacity 𝑠𝑖𝑡. Constraint (4) enforces that the inventory of the FC 𝑗 cannot exceed its capacity, 𝑥̄𝑗 , after products arrive. Constraint (5)
also represents the storage capacity constraint for the DC 𝑗 considering the replenishment, transshipment, and allocation quantities.
Constraint (6) represents that the number of products transshipped from the DC 𝑗 to other DCs should be less than the inventory of the
7

DC 𝑗. Constraint (7) restricts that the inventory of the offline store 𝑘 cannot exceed its capacity, 𝑦̄𝑘, after products arrive. Constraints
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(8), (9), and (10) ensure that the demand is satisfied by inventories held in DCs, offline stores, and FCs, respectively. Moreover,
these constraints ensure that all unsatisfied demand becomes lost. Constraints (11), (12), and (13) are the balance equations for
inventories of DCs, FCs, and offline stores, respectively. Finally, Constraints (14)−(23) ensure that adjustable continuous variables
are non-negative real variables, except for 𝛿𝑖𝑡𝑗 (𝐝

𝑡−1), which are adjustable binary variables. The two advantages of adopting the 3PP
channel (i.e., (1) SLSS and (2) Customers in the 3PP channel) are reflected in the proposed mathematical model with Constraints
(4), (10), and (15). In detail, we accommodate the first advantage by defining the fulfillment decisions for the 3PP channel as 𝜂𝑖𝑡𝑗 (𝐝),
which does not consider the index for the locations of customer demand zones, 𝑘, because the SLSS of the 3PP company delivers
product on behalf of the retailer. To accommodate the second advantage, we define Constraint (15), which ensures that the demand
for the 3PP channel can only be fulfilled by the supply chain operations of the 3PP. Therefore, the retailer can absorb the additional
demand by adopting the 3PP channel.

The PSTOC aims to minimize the total expected cost, and every constraint must be satisfied for all demand realizations. The PSTOC
is the multistage stochastic optimization problem that is generally intractable to solve (Shapiro and Nemirovski, 2005). Traditionally,
dynamic programming or multistage stochastic programming methods are used to solve the stochastic optimization problem by
characterizing demand uncertainty with a known probability distribution. However, assumptions about demand distribution could
be unrealistic if a decision maker has insufficient demand data. If the gap between true demand and assumed distributions is large,
solutions derived from these methods could show poor performance in practice. Furthermore, the existence of 𝜹(𝐝) increases the
computational complexity of PSTOC significantly. Before explaining the proposed approach, we briefly introduce how we customize
the TPA for our problem in the following section.

4. A two-phase approach (TPA) based on robust optimization

TPA solves the proposed problem by decoupling binary decision variables and the continuous decision variables. The binary
decisions are determined with the static rule (i.e., 𝜹(𝐝𝑡−1) = 𝜹) by utilizing a TRO (Lim and Wang, 2017) in Phase 1. In Phase 2,
we adaptively decide the continuous variables by utilizing the LDR with an objective of minimizing the worst-case expected total
cost (Ben-Tal et al., 2004). In order to adopt a TPA, it is assumed that the demand 𝑑𝑖𝑡𝑘 is 𝑑𝑖𝑡𝑘 mean random variables and fall in a
support set

[

𝑑𝑖𝑡𝑘 , 𝑑
𝑖𝑡
𝑘
]

,∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  . Considering this assumption, the uncertainty set is defined as 𝐷𝑖𝑡
𝑘 ∶=

{

𝑑𝑖𝑡𝑘 ∣ 𝑑𝑖𝑡𝑘 ≤ 𝑑𝑖𝑡𝑘 ≤ 𝑑𝑖𝑡𝑘
}

or each 𝑑𝑖𝑡𝑘 ,∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  .

.1. Phase 1 of TPA

The binary decisions are determined by utilizing the TRO aiming to maximize the size of the uncertainty set and make a total
ost lower than a predetermined cost target. Lim and Wang (2017) proved that a static rule is optimal for TRO formulation and
howed that the computational burden could be reduced significantly. In order to reformulate PSTOC into the TRO model, we define
he adjustable uncertainty set for each 𝑑𝑖𝑡𝑘 as 𝐷𝑖𝑡

𝑘 (𝛾) ∶=
{

𝑑𝑖𝑡𝑘 ∣ 𝑑𝑖𝑡𝑘 − 𝛾𝜁 𝑖𝑡
𝑘
≤ 𝑑𝑖𝑡𝑘 ≤ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘

}

where 𝜁 𝑖𝑡
𝑘
= 𝑑𝑖𝑡𝑘 − 𝑑𝑖𝑡𝑘 and 𝜁 𝑖𝑡𝑘 = 𝑑𝑖𝑡𝑘 − 𝑑𝑖𝑡𝑘 . For

notational convenience, let 𝐃𝑡(𝛾) =
(

𝐷𝑖𝜏
𝑘 (𝛾) , ∀𝑘 ∈ , 𝑖 ∈ , 𝜏 ∈ {1,… , 𝑡}) and 𝐃(𝛾) = 𝐃𝑇 (𝛾). In addition, we define a cost target 𝜓 to

restrict total cost to be no more than a predetermined value 𝜓 under any demand realizations. We present the TRO model, PTRO,
as follows:

(PTRO)

𝛾∗ = max 𝛾

s.t. 𝜞 (𝜹(𝐝),𝝅(𝐝),𝝁(𝐝)) ≤ 𝜓, ∀𝐝 ∈ 𝐃(𝛾)
Constraints (2)–(23), ∀𝐝𝑡 ∈ 𝐃𝑡(𝛾)
0 ≤ 𝛾 ≤ 1

The objective of the model is to absorb as much uncertainty as by maximizing the sizes of the adjustable uncertainty set. We
control the sizes of adjustable uncertainty set by adopting the new decision variable 𝛾 (0 ≤ 𝛾 ≤ 1). Simultaneously, the total cost
must be lower than a cost target 𝜓 as indicated in the first constraint. The other constraints are the same as PSTOC. However, the
equality constraints (8)−(10) could cause an infeasibility issue if the static rule is adopted. Fortunately, we can overcome this issue
by allowing Constraints (8)−(10) to be relaxed from equality to inequality as follows:

(PTRO−R)

𝛾 ′ = max 𝛾 (24)

s.t. 𝜞 (𝜹(𝐝),𝝅(𝐝),𝝁(𝐝)) ≤ 𝜓, ∀𝐝 ∈ 𝐃(𝛾) (25)
∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡) +

∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘(𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ≥ 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷, ∀𝐝𝑡 ∈ 𝐃𝑡(𝛾) (26)

𝜌𝑖𝑡𝑘 (𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ≥ 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂 , ∀𝐝𝑡 ∈ 𝐃𝑡(𝛾) (27)
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 (𝐝
𝑡) + 𝑧𝑖𝑡𝐾+1(𝐝

𝑡) ≥ 𝑑𝑖𝑡𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  , ∀𝐝𝑡 ∈ 𝐃𝑡(𝛾) (28)

Constraints (2)–(7), (11)–(23) ∀𝐝𝑡 ∈ 𝐃𝑡(𝛾) (29)
8
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I

0 ≤ 𝛾 ≤ 1 (30)

t should be noted that Constraints (26)−(28) lead to 𝛾∗ ≤ 𝛾 ′.
We define uncertainty variables 𝑛𝑖𝑡𝑘 and 𝑚𝑖𝑡𝑘 falling in 𝑁 𝑖𝑡

𝑘 (𝛾) ∶=
{

𝑛𝑖𝑡𝑘 ∣ 0 ≤ 𝑛𝑖𝑡𝑘 ≤ 𝛾𝜁 𝑖𝑡
𝑘

}

and 𝑀 𝑖𝑡
𝑘 (𝛾) ∶=

{

𝑚𝑖𝑡𝑘 ∣ 0 ≤ 𝑚𝑖𝑡𝑘 ≤ 𝛾𝜁 𝑖𝑡𝑘
}

,

respectively. By adopting uncertainty variables, we can tighten constraints in PTRO−R, and each demand can be represented as
𝑑𝑖𝑡𝑘 = 𝑑𝑖𝑡𝑘 −𝑛

𝑖𝑡
𝑘 +𝑚

𝑖𝑡
𝑘 , ∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  . For simplicity, we use boldface notation to denote collections of 𝑛𝑖𝑡𝑘 , 𝑚

𝑖𝑡
𝑘 , 𝑁

𝑖𝑡
𝑘 (𝛾), and 𝑀 𝑖𝑡

𝑘 (𝛾) as

𝐧𝑡 =
(

𝑛𝑖𝜏𝑘 , ∀𝑖 ∈ , 𝑘 ∈ , 𝜏 ∈ {1,… , 𝑡}
)

, 𝐦𝑡 =
(

𝑚𝑖𝜏𝑘 , ∀𝑖 ∈ , 𝑘 ∈ , 𝜏 ∈ {1,… , 𝑡}
)

,

𝐍𝑡(𝛾) =
(

𝑁 𝑖𝜏
𝑘 (𝛾), ∀𝑖 ∈ , 𝑘 ∈ , 𝜏 ∈ {1,… , 𝑡}

)

, 𝐌𝑡(𝛾) =
(

𝑀 𝑖𝜏
𝑘 (𝛾), ∀𝑖 ∈ , 𝑘 ∈ , 𝜏 ∈ {1,… , 𝑡}

)

.

By replacing 𝑑𝑖𝑡𝑘 with 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 in Constraints (26)−(28), PTRO−R can be approximated as follows:

(PTRO−A)

𝛾 ′′ = max 𝛾

s.t. 𝜞 (𝜹(𝐝),𝝅(𝐝),𝝁(𝐝)) ≤ 𝜓, ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾)
∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘(𝐝
𝑡) +

∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘(𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ≥ 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷, ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾)

𝜌𝑖𝑡𝑘 (𝐝
𝑡) + 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ≥ 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂 , ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾)
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 (𝐝
𝑡) + 𝑧𝑖𝑡𝐾+1(𝐝

𝑡) ≥ 𝑑𝑖𝑡𝐾+1 + 𝑔
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  , ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾)

Constraints (2)–(7), (11)–(23), ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾)

0 ≤ 𝛾 ≤ 1

Because constraints in PTRO−A are tighter than those of Problem PTRO−R, it is obvious that 𝛾 ′′ ≤ 𝛾 ′.
We consider a static rule; thus, decisions are fixed regardless of the revealed uncertainties. Therefore, every adjustable variable

is replaced with the decision variables of the deterministic problem (e.g., 𝛿𝑖𝑡𝑗 (𝐝
𝑡−1) → 𝛿𝑖𝑡𝑗 and 𝜹(𝐝) → 𝜹). We define the total cost for

the static rule as follows:

𝜞 † (𝜹,𝝅,𝝁) =

∑

𝑖∈

∑

𝑡∈

⎛

⎜

⎜

⎝

∑

𝑗∈
𝑆𝑖𝑡𝑗 𝛿

𝑖𝑡
𝑗 +

∑

𝑗∈
𝑜𝑐𝑡𝑖𝑗𝑞

𝑖𝑡
𝑗 +

∑

𝑗∈
𝑙ℎ𝑖𝑡𝑗 𝑥

𝑖,𝑡+1
𝑗 +

∑

𝑘∈𝑂

𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 +

∑

𝑘∈
𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 +

∑

𝑘∈𝑂

∑

𝑘′∈𝐷

𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔
𝑖𝑡
𝑘𝑘′ +

∑

𝑗∈𝐷

∑

𝑗′∈𝐷

𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′

+
∑

𝑗∈𝐷

∑

𝑘∈𝑂

𝑎𝑐𝑖𝑡𝑗𝑘𝑣
𝑖𝑡
𝑗𝑘 +

∑

𝑗∈𝐷

∑

𝑘∈𝐷

𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘 +

∑

𝑘∈𝑂

𝑏𝑓 𝑖𝑡𝑘 𝜌
𝑖𝑡
𝑘 +

∑

𝑗∈𝐹

𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗

)

.

The static rule can be derived by solving the following PTRO−S:

(PTRO−S)

𝛾𝑠 =max 𝛾 (31)

s.t. 𝜞 † (𝜹, 𝝅, 𝝁) ≤ 𝜓 (32)
∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷, ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾) (33)

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂 , ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾) (34)
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1 + 𝑔
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  , ∀𝐧𝑡 ∈ 𝐍𝑡(𝛾),𝐦𝑡 ∈ 𝐌𝑡(𝛾) (35)

Constraints (A.2)–(A.7), (A.11)–(A.23) (36)

0 ≤ 𝛾 ≤ 1 (37)

We could know that 𝛾𝑠 ≤ 𝛾 ′′ because decisions with the static rule are more restrictive than adjustable decisions. Before presenting
an approach to derive an optimal static rule for PTRO−S, we use the notation 𝜽 to denote a collection of uncertainty variables 𝑛𝑖𝑡𝑘 and
𝑚𝑖𝑡𝑘 (i.e., 𝜽 =

(

𝑛𝑖𝑡𝑘 , 𝑚𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  )). Given 𝛾, let 𝜣(𝛾) denote the support set of 𝜽. For ease of the exposition, we represent
PTRO−S as the following simple form:

𝛾𝑠 = max 𝛾

s.t. 𝐂(𝜽)𝜿 ≤ 𝐞(𝜽), ∀𝜽 ∈ 𝜣(𝛾)

𝜿 ∈  , ∀𝜽 ∈ 𝜣(𝛾)

where 𝐂(𝜽) and 𝐞(𝜽) represent all coefficients, and 𝜿 and  represent decision variables for the static rule and the feasible set,
9

respectively. We present the definition of the worst-case scenario of uncertainty as follows:
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𝜽

𝑑
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Definition 1 (Worst-case Scenario of Uncertainty (WSU)). Given the coefficients 𝐂(𝜽) and 𝐞(𝜽) in PTRO−S, we call an element
̆ (𝛾) ∈ 𝜣(𝛾) as the WSU if for each 𝜿 ∈  that satisfies 𝐂(𝜽̆(𝛾))𝜿 ≤ 𝐞(𝜽̆(𝛾)), it also satisfies 𝐂(𝜽)𝜿 ≤ 𝐞(𝜽), ∀𝜽 ∈ 𝜣(𝛾).

We reformulate PTRO−S with the WSU 𝜽̆(𝛾) by replacing the right-hand side inequality Constraints (33)−(35) from 𝑑𝑖𝑡𝑘 + 𝑚𝑖𝑡𝑘 to
̂𝑖𝑡
𝑘 + 𝛾𝜁 𝑖𝑡𝑘 . Finally, the problem with the WSU is defined as the following deterministic problem:

(PSTATIC)

𝛾† =max 𝛾

s.t. 𝜞 † (𝜹, 𝝅, 𝝁) ≤ 𝜓
∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1 + 𝛾𝜁
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈ 

Constraints (A.2)–(A.7), (A.11)–(A.23)
0 ≤ 𝛾 ≤ 1

et 𝜹̄ denote the optimal solution of 𝜹 obtained by solving the PSTATIC. Because the constraints of PSTATIC are more restrictive than
those of PTRO−S, we have 𝛾† ≤ 𝛾𝑠 ≤ 𝛾 ′′. Interestingly, Lim et al. (2021) shows that 𝛾† ≥ 𝛾𝑠 ≥ 𝛾 ′′ in Theorem 1. Therefore, we have
𝛾† = 𝛾 ′′; thus, the optimal solution of the deterministic problem PSTATIC is also optimal for PTRO−A.

By controlling the cost target 𝜓 , a decision maker could choose the degree of conservativeness for the obtained solution. To
determine the proper value for 𝜓 , we utilize the following affine function of 𝜙, which is called the target coefficient :

𝜓(𝜙) ∶= (1 − 𝜙)𝜈(1) + 𝜙𝜈

where 𝜈(1) and 𝜈(0) is the optimal objective of the following deterministic problem:

(PTPA−𝜈(𝛾))

𝜈(𝛾) =min𝜞 † (𝜹, 𝝅, 𝝁)

s.t.
∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1 + 𝛾𝜁
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈ 

Constraints (A.2)–(A.7), (A.11)–(A.23)

If the 𝜙 is close to zero, the conservativeness of solutions is increased; otherwise, it is decreased. Until now, we briefly introduced
the principle of the TRO approach in this section. For further information, we recommend readers refer to Lim and Wang (2017)
and Lim et al. (2021).

4.2. Phase 2 of TPA

In Phase 2, we determine the adjustable continuous variables with fixed binary decisions 𝜹̄ obtained in Phase 1. As mentioned in
Section 4.1, without any knowledge on the true demand distribution, only the mean of 𝑑𝑖𝑡𝑘 (i.e., 𝑑𝑖𝑡𝑘 ) and the support set

[

𝑑𝑖𝑡𝑘 , 𝑑
𝑖𝑡
𝑘
]

are
iven. In order to deal with distributional ambiguity, we adopt the solution approach proposed by Gilboa and Schmeidler (1989).
e first consider  as a family of distributions of 𝐝, and the mean support set 𝐃̂ =

(

𝐷̂𝑖𝑡
𝑘 ,∀𝑘 ∈ , 𝑖 ∈ , 𝑡 ∈ 

)

. Let  denote any
distribution of 𝐝 included in  ,  ∈  ; thus, we have E

[

𝐝
]

∈ 𝐃̂. Considering a family of distributions  , we solve the following
problem with the objective of minimizing the worst-case expected total cost:

(PARO)

minmax
∈

E
[

𝜞
(

𝝅(𝐝),𝝁(𝐝)
)]

s.t. 𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑞𝑖𝑗𝛿

𝑖𝑡
𝑗 , ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  , ∀𝐝𝑡−1 ∈ 𝐃𝑡−1

Constraints (3)–(23), ∀𝐝𝑡 ∈ 𝐃𝑡

with the fixed binary decisions 𝛿𝑖𝑡𝑗 . Because it is generally intractable to solve PARO, we rely on optimizing parameterized functions,
where the feasible space is restricted to linear functions (i.e., the LDR (Yanıkoğlu et al., 2019)). For each adjustable continuous
variable, we define the following LDR:

𝑞𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑞𝑖𝑡,0𝑗 +
∑

𝑡−1
∑

𝑞𝑖𝑡,𝜎𝜏𝑗 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈ 
10

𝜎∈ 𝜏=1
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𝑥𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑥𝑖𝑡,0𝑗 +
∑

𝜎∈

𝑡−1
∑

𝜏=1
𝑥𝑖𝑡,𝜎𝜏𝑗 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  +

𝑦𝑖𝑡𝑘
(

𝐝𝑡−1
)

= 𝑦𝑖𝑡,0𝑘 +
∑

𝜎∈

𝑡−1
∑

𝜏=1
𝑦𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  +

𝑢𝑖𝑡𝑗𝑗′
(

𝐝𝑡−1
)

= 𝑢𝑖𝑡,0𝑗𝑗′ +
∑

𝜎∈

𝑡−1
∑

𝜏=1
𝑢𝑖𝑡,𝜎𝜏𝑗𝑗′ 𝑑

𝑖𝜏
𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑗′ ∈ 𝐷, 𝑡 ∈ 

𝑣𝑖𝑡𝑗𝑘
(

𝐝𝑡−1
)

= 𝑣𝑖𝑡,0𝑗𝑘 +
∑

𝜎∈

𝑡−1
∑

𝜏=1
𝑣𝑖𝑡,𝜎𝜏𝑗𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝑂 , 𝑡 ∈ 

𝜌𝑖𝑡𝑘
(

𝐝𝑡
)

= 𝜌𝑖𝑡,0𝑘 +
∑

𝜎∈

𝑡
∑

𝜏=1
𝜌𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈ 

𝜂𝑖𝑡𝑗
(

𝐝𝑡
)

= 𝜂𝑖𝑡,0𝑗 +
∑

𝜎∈

𝑡
∑

𝜏=1
𝜂𝑖𝑡,𝜎𝜏𝑗 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

𝑔𝑖𝑡𝑘𝑘′
(

𝐝𝑡
)

= 𝑔𝑖𝑡,0𝑘𝑘′ +
∑

𝜎∈

𝑡
∑

𝜏=1
𝑔𝑖𝑡,𝜎𝜏𝑘𝑘′ 𝑑

𝑖𝜏
𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑘

′ ∈ 𝐷, 𝑡 ∈ 

𝑟𝑖𝑡𝑗𝑘
(

𝐝𝑡
)

= 𝑟𝑖𝑡,0𝑗𝑘 +
∑

𝜎∈

𝑡
∑

𝜏=1
𝑟𝑖𝑡,𝜎𝜏𝑗𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐷, 𝑡 ∈ 

𝑧𝑖𝑡𝑘
(

𝐝𝑡
)

= 𝑧𝑖𝑡,0𝑘 +
∑

𝜎∈

𝑡
∑

𝜏=1
𝑧𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈ 

If the coefficient of the LDR is given, each type of decision is determined as demand is unveiled. We present PLDR in Online Appendix
A of the supplementary material. We could obtain the coefficient of the LDR by solving PLDR considering coefficients as decision
variables. We develop the PLDR based on Theorem 2 in Lim et al. (2021). PLDR can be transformed to the linear deterministic
model by duality theory (Ben-Tal et al., 2009). Consequently, the coefficient can be obtained by solving the linear deterministic
model with a commercial solver. We present the linear deterministic model transformed from the PLDR in Online Appendix B of the
supplementary material.

5. A decomposition approach (DECOM)

Given cost target 𝜓 , three MILP models (PTPA−𝜈(0),PTPA−𝜈(1), and PSTATIC) and one linear programming (LP) model (PLDR) must
be solved for applying the TPA. However, the existence of the supply chain of 3PP and the production capacity constraint increases
the complexity of the problem because two supply chains, one for the retailer and the other for the 3PP, should be considered
simultaneously. Therefore, it requires a significant computational burden to solve the three MILP models. To alleviate this issue,
we develop a DECOM approach which can be regarded as an extended version of the TPA. The key idea of DECOM is to adopt the
artificial variable 𝑤𝑖𝑡. A collection of the artificial variable is denoted by 𝒘 =

(

𝑤𝑖𝑡,∀𝑖 ∈ , 𝑡 ∈ 
)

. The production capacity constraint
(A.3) in PDET is reformulated as the following constraints by introducing decision variables 𝒘:

∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡𝑤𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈  (38)

∑

𝑗∈𝐹

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡
(

1 −𝑤𝑖𝑡
)

, ∀𝑖 ∈ , 𝑡 ∈  (39)

𝑤𝑖𝑡 ≥ 0, ∀𝑖 ∈ , 𝑡 ∈  (40)

There are two advantages to using variables 𝒘. First, given 𝒘, the feasible region for variables 𝑞𝑖𝑡𝑗 ,∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  can be reduced.
Second, PTPA−𝜈(𝛾) and PSTATIC can be solved separately for a retailer’s supply chain and the supply chain of 3PP. Consequently, these
two advantages could significantly reduce the computational burden, and experimental results will be presented in Section 6.

5.1. Phase 1 of DECOM

Phase 1 of DECOM aims to determine the binary decision 𝜹, which is similar to Phase 1 of the TPA. Of special note, we also
determine the artificial variable 𝒘 in Phase 1. We use the 𝜹𝐷,𝝅𝐷, and 𝝁𝐷 to denote a collection of variables for the retailer’s supply
chain and the 𝜹𝐹 ,𝝅𝐹 , and 𝝁𝐹 for the supply chain of 3PP as follows:

𝜹𝐷 =
(

𝛿𝑖𝑡𝑗 ,∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 
)

, 𝜹𝐹 =
(

𝛿𝑖𝑡𝑗 ,∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 
)

,

𝝅 =
(

𝑞𝑖𝑡, 𝑥𝑖𝑡, 𝑦𝑖𝑡, 𝑢𝑖𝑡 , 𝑣𝑖𝑡 , ∀𝑖 ∈ , 𝑗 ∈  , 𝑗′ ∈  , 𝑘 ∈  , 𝑡 ∈ 
)

, 𝝅 =
(

𝑞𝑖𝑡, 𝑥𝑖𝑡, ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈ 
)

,

11
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𝝁𝐷 =
(

𝜌𝑖𝑡𝑘 , 𝑔
𝑖𝑡
𝑘𝑘′ , 𝑟

𝑖𝑡
𝑗𝑘′ , 𝑧

𝑖𝑡
𝑘′′ , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝑂 , 𝑘

′ ∈ 𝐷, 𝑘
′′ ∈ −, 𝑡 ∈ 

)

, 𝝁𝐹 =
(

𝜂𝑖𝑡𝑗 , 𝑧
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

)

.

Given 𝜹𝐷, 𝜹𝐹 ,𝝅𝐷,𝝅𝐹 ,𝝁𝐷, and 𝝁𝐹 , the total cost for retailer’s supply chain is defined as

𝜞 †
𝐷
(

𝜹𝐷,𝝅𝐷,𝝁𝐷
)

=

∑

𝑖∈

∑

𝑡∈

⎛

⎜

⎜

⎝

∑

𝑗∈𝐷

𝑆 𝑖𝑡𝑗 𝛿
𝑖𝑡
𝑗 +

∑

𝑗∈𝐷

𝑜𝑐𝑡𝑖𝑗𝑞
𝑖𝑡
𝑗 +

∑

𝑗∈𝐷

𝑙ℎ𝑖𝑡𝑗 𝑥
𝑖,𝑡+1
𝑗 +

∑

𝑘∈𝑂

𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 +

∑

𝑘∈−
𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 +

∑

𝑘∈𝑂

∑

𝑘′∈𝐷

𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔
𝑖𝑡
𝑘𝑘′

+
∑

𝑗∈𝐷

∑

𝑗′∈𝐷

𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′ +

∑

𝑗∈𝐷

∑

𝑘∈𝑂

𝑎𝑐𝑖𝑡𝑗𝑘𝑣
𝑖𝑡
𝑗𝑘 +

∑

𝑗∈𝐷

∑

𝑘∈𝐷

𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘 +

∑

𝑘∈𝑂

𝑏𝑓 𝑖𝑡𝑘 𝜌
𝑖𝑡
𝑘

⎞

⎟

⎟

⎠

,

and the total cost for the 3PP supply chain is defined as

𝜞 †
𝐹
(

𝜹𝐹 ,𝝅𝐹 ,𝝁𝐹
)

=
∑

𝑖∈

∑

𝑡∈

(

∑

𝑗∈𝐹

𝑆𝑖𝑡𝑗 𝛿
𝑖𝑡
𝑗 +

∑

𝑗∈𝐹

𝑜𝑐𝑡𝑖𝑗𝑞
𝑖𝑡
𝑗 +

∑

𝑗∈𝐹

𝑙ℎ𝑖𝑡𝑗 𝑥
𝑖,𝑡+1
𝑗 + 𝑝𝑖𝑡𝐾+1𝑧

𝑖𝑡
𝐾+1 +

∑

𝑗∈𝐹

𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗

)

.

n Phase 1, we first solve the following MILP problem to determine 𝒘:

(PDECOM−𝜈(1))

𝜈(1) =min𝜞 †
𝐷
(

𝜹𝐷,𝝅𝐷,𝝁𝐷
)

+ 𝜞 †
𝐹
(

𝜹𝐹 ,𝝅𝐹 ,𝝁𝐹
)

s.t.
∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡𝑤𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐹

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡
(

1 −𝑤𝑖𝑡
)

, ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1 + 𝜁
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈ 

𝑤𝑖𝑡 ≥ 0, 𝑖 ∈ , 𝑡 ∈ 
Constraints (A.2), (A.4)–(A.7), (A.11)–(A.23)

Let 𝒘̄ denote the optimal solution of 𝒘. We use PDECOM−𝜈(1) to determine 𝒘 because of the following two reasons. First, we utilize
PDECOM−𝜈(1) to obtain the robust solution of 𝒘. Because PDECOM−𝜈(1) considers the WSU with 𝛾 = 1, it is obvious that the robust
solution of 𝒘 could be obtained. Second, because the optimal value 𝜈(1) of PDECOM−𝜈(1) is used to get the cost target for applying
the TRO approach, it is not mandatory to implement another unnecessary scheme to determine 𝒘, which could save computational
time. Note that the 𝒘 is not used for actual decisions (i.e., replenishment, transshipment, allocation, and fulfillment). The 𝒘 is only
used to decompose the proposed problem and reduce computational times.

Let 𝜹̄1𝐷, 𝝅̄
1
𝐷, 𝝁̄

1
𝐷, 𝜹̄

1
𝐹 , 𝝅̄

1
𝐹 , and, 𝝁̄1

𝐹 are optimal solutions of Problem PDECOM−𝜈(1). We define 𝜈𝐷(1) = 𝜞 †
𝐷

(

𝜹̄1𝐷, 𝝅̄
1
𝐷, 𝝁̄

1
𝐷

)

and 𝜈𝐹 (1) =

𝜞 †
𝐹

(

𝜹̄1𝐹 , 𝝅̄
1
𝐹 , 𝝁̄

1
𝐹

)

, and the sum of 𝜈𝐷(1) and 𝜈𝐹 (1) is equal to 𝜈(1). Then, we solve the following problem to get value 𝜈(0) with fixed
value 𝒘̄:

(PDECOM−𝜈(0))

𝜈(0) =min𝜞 †
𝐷
(

𝜹𝐷,𝝅𝐷,𝝁𝐷
)

+ 𝜞 †
𝐹
(

𝜹𝐹 ,𝝅𝐹 ,𝝁𝐹
)

s.t.
∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡𝑤̄𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐹

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡
(

1 − 𝑤̄𝑖𝑡
)

, ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1, ∀𝑖 ∈ , 𝑡 ∈ 

Constraints (A.2), (A.4)–(A.7), (A.11)–(A.23)

The first and second constraints use the fixed value 𝒘̄, which is obtained by solving the PDECOM−𝜈(1). Let 𝜹̄0𝐷, 𝝅̄
0
𝐷, 𝝁̄

0
𝐷, 𝜹̄

0
𝐹 , 𝝅̄

0
𝐹 , and,

𝝁̄0
𝐹 are optimal solutions of Problem PDECOM−𝜈(0). We have 𝜈𝐷(0) = 𝜞 †

𝐷

(

𝜹̄0𝐷, 𝝅̄
0
𝐷, 𝝁̄

0
𝐷

)

and 𝜈𝐹 (0) = 𝜞 †
𝐹

(

𝜹̄0𝐹 , 𝝅̄
0
𝐹 , 𝝁̄

0
𝐹

)

, and the sum of
𝜈𝐷(0) and 𝜈𝐹 (0) is equal to 𝜈(0). In contrast to the procedure of the TPA, DECOM adopts two cost targets, 𝜓𝐷 and 𝜓𝐹 , one for the
retailer and the other for the 3PP. The 𝜓𝐷 and 𝜓𝐹 are determined with the following two affine functions of 𝜙, respectively: (1)
12

𝜓𝐷(𝜙) ∶= (1 − 𝜙)𝜈𝐷(1) + 𝜙𝜈𝐷(0) and (2) 𝜓𝐹 (𝜙) ∶= (1 − 𝜙)𝜈𝐹 (1) + 𝜙𝜈𝐹 (0).
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Given 𝒘̄, the stochastic optimization model PSTOC can be decomposed into two models, one for the retailer’s supply chain and
the other for the supply chain of the 3PP. For each model, we could derive two MILP models, PSTATIC−D and PSTATIC−F, by applying
the TRO approach presented in Section 4.1. PSTATIC−D and PSTATIC−F are formulated for the retailer’s and the 3PP supply chains,
espectively. In the case of the TPA, the 𝛾†, which is for maximizing the adjustable uncertainty set, is the same for the retailer’s and
he 3PP supply chains. On the other hand, in DECOM, we define 𝛾†𝐷 for the objective value of PSTATIC−D, and 𝛾†𝐹 for the objective
alue of PSTATIC−F. PSTATIC−D and PSTATIC−F are presented as follows:

(PSTATIC−D)

𝛾†𝐷 = max 𝛾

s.t. 𝜞 †
𝐷 (𝜹, 𝝅, 𝝁) ≤ 𝜓𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑞𝑖𝑗𝛿
𝑖𝑡
𝑗 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 

∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡𝑤̄𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 ≥ 𝑑𝑖𝑡𝑘 + 𝛾𝜁 𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂

𝑞𝑖𝑡𝑗 ≥ 0, 𝛿𝑖𝑡𝑗 ∈ {0, 1} , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 

𝑥𝑖𝑡𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  +

𝑧𝑖𝑡𝑘 ≥ 0, ∀𝑖 ∈ , 𝑘 ∈ −, 𝑡 ∈ 
Constraints (A.5)–(A.7), (A.11), (A.13), (A.16)–(A.19), (A.22)
0 ≤ 𝛾 ≤ 1

(PSTATIC−F)

𝛾†𝐹 = max 𝛾

s.t. 𝜞 †
𝐹 (𝜹, 𝝅, 𝝁) ≤ 𝜓𝐹

𝑞𝑖𝑡𝑗 ≤ 𝑞𝑖𝑗𝛿
𝑖𝑡
𝑗 , ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡(1 − 𝑤̄𝑖𝑡), ∀𝑖 ∈ , 𝑡 ∈ 

∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 ≥ 𝑑𝑖𝑡𝐾+1 + 𝛾𝜁
𝑖𝑡
𝐾+1, ∀𝑖 ∈ , 𝑡 ∈ 

𝑞𝑖𝑡𝑗 ≥ 0, 𝛿𝑖𝑡𝑗 ∈ {0, 1} , ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

𝑥𝑖𝑡𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  +

𝑧𝑖𝑡𝐾+1 ≥ 0, ∀𝑖 ∈ , 𝑡 ∈ 

Constraints (A.4), (A.12), (A.20)
0 ≤ 𝛾 ≤ 1

et 𝜹̄𝐷 and 𝜹̄𝐹 be optimal solutions for 𝜹𝐷 and 𝜹𝐹 obtained by solving the Problems PSTATIC−D and PSTATIC−F, respectively.
onsequently, the 𝜹̄𝐷 and 𝜹̄𝐹 will be used for binary replenishment decisions in Phase 2 of DECOM.

.2. Phase 2 of DECOM

The goal of Phase 2 of DECOM is to determine the adjustable continuous variables, which is similar to the goal of Phase 2 of
he TPA. However, a key difference between these two approaches is that Phase 2 of DECOM utilizes the solution for the artificial
ariable 𝒘̄ obtained in Phase 1. In addition, by using the fixed 𝒘̄, we can decompose the PARO into the following two problems
ARO−D and PARO−F:

(PARO−D)

minmax
∈

E
[

𝜞𝐷
(

𝝅𝐷(𝐝),𝝁𝐷(𝐝)
)]

s.t. 𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑞𝑖𝑗𝛿

𝑖𝑡
𝑗 , 𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  , ∀𝐝𝑡−1 ∈ 𝐃𝑡−1

∑

𝑗∈𝐷

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑠𝑖𝑡𝑤̄𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈  , ∀𝐝𝑡−1 ∈ 𝐃𝑡−1

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑞𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑥𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  +

𝑧𝑖𝑡𝑘 (𝐝
𝑡) ≥ 0, 𝑧𝑖𝑡𝑘 (𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑘 ∈ −, 𝑡 ∈ 
𝑡 𝑡
13

Constraints (5)–(9), (11), (13), (16)–(19), (22) ∀𝐝 ∈ 𝐃
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(PARO−F)

minmax
∈

E
[

𝜞 𝐹
(

𝝅𝐹 (𝐝),𝝁𝐹 (𝐝)
)]

s.t. 𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑞𝑖𝑗𝛿

𝑖𝑡
𝑗 , ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  , ∀𝐝𝑡−1 ∈ 𝐃𝑡−1

∑

𝑗∈𝐹

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≤ 𝑠𝑖𝑡(1 − 𝑤̄𝑖𝑡), ∀𝑖 ∈ , 𝑡 ∈  , ∀𝐝𝑡−1 ∈ 𝐃𝑡−1

𝑞𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑞𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

𝑥𝑖𝑡𝑗 (𝐝
𝑡−1) ≥ 0, 𝑥𝑖𝑡𝑗 (𝐝

𝑡−1) ∈ 𝑡−1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  +

𝑧𝑖𝑡𝐾+1(𝐝
𝑡) ≥ 0, 𝑧𝑖𝑡𝐾+1(𝐝

𝑡) ∈ 𝑡, ∀𝑖 ∈ , 𝑡 ∈ 

Constraints (4), (10), (12), (20) ∀𝐝𝑡 ∈ 𝐃𝑡

where given 𝐝

𝜞𝐷
(

𝝅𝐷(𝐝),𝝁𝐷(𝐝)
)

=

∑

𝑖∈

∑

𝑡∈

⎛

⎜

⎜

⎝

∑

𝑗∈𝐷

𝑜𝑐𝑡𝑖𝑗𝑞
𝑖𝑡
𝑗 (𝐝

𝑡−1) +
∑

𝑗∈𝐷

𝑙ℎ𝑖𝑡𝑗 𝑥
𝑖,𝑡+1
𝑗 (𝐝𝑡) +

∑

𝑘∈𝑂

𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 (𝐝𝑡) +

∑

𝑘∈−
𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 (𝐝

𝑡) +
∑

𝑗∈𝐷

∑

𝑗′∈𝐷

𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′ (𝐝

𝑡−1)

+
∑

𝑗∈𝐷

∑

𝑘∈𝑂

𝑎𝑐𝑖𝑡𝑗𝑘𝑣
𝑖𝑡
𝑗𝑘(𝐝

𝑡−1) +
∑

𝑗∈𝐷

∑

𝑘∈𝐷

𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘(𝐝

𝑡) +
∑

𝑘∈𝑂

∑

𝑘′∈𝐷

𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔
𝑖𝑡
𝑘𝑘′ (𝐝

𝑡) +
∑

𝑘∈𝑂

𝑏𝑓 𝑖𝑡𝑘 𝜌
𝑖𝑡
𝑘 (𝐝

𝑡)
⎞

⎟

⎟

⎠

,

𝜞 𝐹
(

𝝅𝐹 (𝐝),𝝁𝐹 (𝐝)
)

=

∑

𝑖∈

∑

𝑡∈

(

∑

𝑗∈𝐹

𝑜𝑐𝑡𝑖𝑗𝑞
𝑖𝑡
𝑗 (𝐝

𝑡−1) +
∑

𝑗∈𝐹

𝑙ℎ𝑖𝑡𝑗 𝑥
𝑖,𝑡+1
𝑗 (𝐝𝑡) + 𝑝𝑖𝑡𝐾+1𝑧

𝑖𝑡
𝐾+1(𝐝

𝑡) +
∑

𝑗∈𝐹

𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗 (𝐝

𝑡)

)

.

In order to restrict feasible space to linear functions, we also utilize the LDR for each adjustable continuous variable. The LDR
or a retailer’s supply chain is defined as

𝑞𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑞𝑖𝑡,0𝑗 +
∑

𝜎∈−

𝑡−1
∑

𝜏=1
𝑞𝑖𝑡,𝜎𝜏𝑗 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈ 

𝑥𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑥𝑖𝑡,0𝑗 +
∑

𝜎∈−

𝑡−1
∑

𝜏=1
𝑥𝑖𝑡,𝜎𝜏𝑗 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  +

𝑦𝑖𝑡𝑘
(

𝐝𝑡−1
)

= 𝑦𝑖𝑡,0𝑘 +
∑

𝜎∈−

𝑡−1
∑

𝜏=1
𝑦𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  +

𝑢𝑖𝑡𝑗𝑗′
(

𝐝𝑡−1
)

= 𝑢𝑖𝑡,0𝑗𝑗′ +
∑

𝜎∈−

𝑡−1
∑

𝜏=1
𝑢𝑖𝑡,𝜎𝜏𝑗𝑗′ 𝑑

𝑖𝜏
𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑗′ ∈ 𝐷, 𝑡 ∈ 

𝑣𝑖𝑡𝑗𝑘
(

𝐝𝑡−1
)

= 𝑣𝑖𝑡,0𝑗𝑘 +
∑

𝜎∈−

𝑡−1
∑

𝜏=1
𝑣𝑖𝑡,𝜎𝜏𝑗𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝑂 , 𝑡 ∈ 

𝜌𝑖𝑡𝑘
(

𝐝𝑡
)

= 𝜌𝑖𝑡,0𝑘 +
∑

𝜎∈−

𝑡
∑

𝜏=1
𝜌𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈ 

𝑔𝑖𝑡𝑘𝑘′
(

𝐝𝑡
)

= 𝑔𝑖𝑡,0𝑘𝑘′ +
∑

𝜎∈−

𝑡
∑

𝜏=1
𝑔𝑖𝑡,𝜎𝜏𝑘𝑘′ 𝑑

𝑖𝜏
𝜎 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑘

′ ∈ 𝐷, 𝑡 ∈ 

𝑟𝑖𝑡𝑗𝑘
(

𝐝𝑡
)

= 𝑟𝑖𝑡,0𝑗𝑘 +
∑

𝜎∈−

𝑡
∑

𝜏=1
𝑟𝑖𝑡,𝜎𝜏𝑗𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐷, 𝑡 ∈ 

𝑧𝑖𝑡𝑘
(

𝐝𝑡
)

= 𝑧𝑖𝑡,0𝑘 +
∑

𝜎∈−

𝑡
∑

𝜏=1
𝑧𝑖𝑡,𝜎𝜏𝑘 𝑑𝑖𝜏𝜎 , ∀𝑖 ∈ , 𝑘 ∈ −, 𝑡 ∈  ,

and for the 3PP supply chain is defined as

𝑞𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑞𝑖𝑡,0𝑗 +
𝑡−1
∑

𝜏=1
𝑞𝑖𝑡,𝐾+1,𝜏
𝑗 𝑑𝑖𝜏𝐾+1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 

𝑥𝑖𝑡𝑗
(

𝐝𝑡−1
)

= 𝑥𝑖𝑡,0𝑗 +
𝑡−1
∑

𝜏=1
𝑥𝑖𝑡,𝐾+1,𝜏
𝑗 𝑑𝑖𝜏𝐾+1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  +

𝜂𝑖𝑡𝑗
(

𝐝𝑡
)

= 𝜂𝑖𝑡,0𝑗 +
𝑡

∑

𝜂𝑖𝑡,𝐾+1,𝜏
𝑗 𝑑𝑖𝜏𝐾+1, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈ 
14

𝜏=1
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Fig. 2. Frameworks of TPA and DECOM.

𝑧𝑖𝑡𝐾+1
(

𝐝𝑡
)

= 𝑧𝑖𝑡,0𝐾+1 +
𝑡

∑

𝜏=1
𝑧𝑖𝑡,𝐾+1,𝜏
𝐾+1 𝑑𝑖𝜏𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  .

Based on the above LDR, we present PLDR−D for the retailer’s supply chain and PLDR−F for the 3PP supply chain to obtain the
coefficient of LDR. PLDR−D and PLDR−F are presented in the Online Appendix C of supplementary material.

By following the same logic outlined in Section 4.2 and in the Online Appendix B, PLDR−D and PLDR−F also can be reformulated to
he linear deterministic model using the duality theory. In summary, we must solve four MILP models (i.e., PDECOM−𝜈(1), PDECOM−𝜈(0),
STATIC−D, and PSTATIC−F) and two LP models (i.e., PLDR−D and PLDR−F) to implement the DECOM approach. Fig. 2 presents
rameworks of the TPA and DECOM.

. Computational experiments

In this section, we conducted extensive experiments to answer the research questions presented in Section 1. Research question
is addressed by the results in Sections 6.1 and 6.2.1. Research question 2 is answered by the results in Sections 6.2.2 and 6.3.1.

he experimental results in Section 6.4 address Research question 3.
We compare our developed approach with the two benchmark algorithms: TPA and an alternative two-phase approach (DTPA).

he DTPA determines the adjustable binary variables 𝜹(𝐝) with the static rule by solving the expected value problem, i.e., the
eterministic model PDET with mean demands (Lim et al., 2021). On the other hand, the adjustable continuous variables are
etermined by applying Phase 2 of the TPA. A PC with an AMD Ryzen 2700X 7-Core CP, 3.60 GHz processor, and 16 GB of RAM
ith a Windows 10 64-bit system was utilized to conduct every experiment. In addition, every test instance is generated using
ython 3.8 with the libraries SciPy and Numpy. The DTPA, TPA, and DECOM were developed with FICO Xpress 8.6, and we solved
very model by utilizing the Xpress-Optimizer with its default parameter settings. In addition, we set the integrality gap tolerance
n Xpress to one percent by following the setting of Lim et al. (2021).

We determine the constant parameters in the mathematical model by referring to the parameter setting of Jiu (2022). Parameters
re generated randomly by following the uniform distributions in Table B.7. The replenishment lead time 𝐿𝑖𝑗 is generated by the

discrete uniform distribution. The continuous uniform distribution is used to determine the rest of the parameters. The locations
of logistics centers and offline stores are distributed uniformly over the 50 × 50 XY plane. We determine 𝑜𝑐𝑡𝑖𝑗 , 𝑡𝑐

𝑖𝑡
𝑗𝑗′ , 𝑎𝑐

𝑖𝑡
𝑗𝑘, and 𝑒𝑓 𝑖𝑡𝑗𝑘

ased on the Euclidean distance between each location. Even though we consider the offline fulfillment cost in the mathematical
odels for the sake of generality, we set 𝑏𝑓 𝑖𝑡𝑘 = 0 because offline purchases by walk-in customers do not incur any fulfillment cost.

n order to accommodate a property that the costs 𝑆𝑖𝑡𝑗 , 𝑙ℎ
𝑖𝑡
𝑗 , and 𝑜𝑐𝑡𝑖𝑗 for the 3PP channel are more expensive than they are for the

etailer, we multiply 𝜆𝑠 and 𝜆ℎ to the lower and upper bound of parameters 𝑆𝑖𝑡𝑗 and 𝑙ℎ𝑖𝑡𝑗 , ∀𝑗 ∈ 𝐹 , respectively. Also, we determine
he 𝑜𝑐𝑡𝑖𝑗 , ∀𝑗 ∈ 𝐹 by multiplying 𝜆𝑜 on the distance between supplier 𝑖 and FC 𝑗. We set 𝜆𝑠 = 1.5, 𝜆ℎ = 1.5, and 𝜆𝑜 = 1.0 for all
15

xperiments, except for in Section 6.4.2.
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Table 1
Experimental results on symmetric demand distributions.

𝐵𝑒𝑡𝑎(0.3, 0.3) 𝐵𝑒𝑡𝑎(1, 1) 𝐵𝑒𝑡𝑎(4, 4)

𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10

DTPA LDR(×102) 56.97 90.03 141.82 54.09 115.22 138.23 52.37 127.06 146.25
SIM(×102) 57.18 89.84 141.94 53.88 115.37 138.12 52.27 127.04 146.36
Gap(%) 31.67 28.66 20.76 33.20 28.27 13.94 20.24 21.30 27.33
Std(×102) 3.52 6.68 7.43 3.78 5.44 3.94 1.39 1.40 2.92
CPU(s) 1.49 11.79 24.43 1.86 8.68 29.22 0.88 8.93 29.63

TPA LDR(×102) 49.19 77.79 128.29 46.13 99.00 131.75 47.88 114.21 126.09
SIM(×102) 49.19 77.81 128.29 46.13 99.02 131.74 47.89 114.17 126.06
Gap(%) 13.27 11.43 9.14 14.05 10.09 8.67 10.15 9.01 9.68
Std(×102) 0.69 0.83 1.13 0.36 0.84 0.93 0.31 0.67 0.42
CPU(s) 1.37 9.90 35.53 1.14 8.86 24.10 0.96 9.19 55.44
𝜙∗ 0.0∼0.4 0.0 0.2 0.2∼0.6 0.2 0.2∼0.4 0.0∼0.8 0.2∼0.4 0.2

DECOM LDR(×102) 49.19 77.72 128.56 46.02 99.29 132.33 47.88 114.58 126.14
SIM(×102) 49.19 77.74 128.55 46.01 99.31 132.32 47.89 114.55 126.12
Gap(%) 13.27 11.32 9.37 13.76 10.42 9.15 10.15 9.37 9.72
Std(×102) 0.70 0.83 1.14 0.36 0.87 0.93 0.31 0.65 0.43
CPU(s) 0.92 8.46 10.84 0.82 4.86 13.13 0.78 1.05 13.98
𝜙∗ 0.0∼0.4 0.0 1.0 0.0 0.2∼1.0 0.0∼0.4 0.0∼1.0 0.6 0.0

EVPI (×102) 43.43 69.83 117.54 40.45 89.95 121.23 43.48 104.74 114.94

We assume that the sum of every demand for product 𝑖 at period 𝑡 falls in [80, 120], i.e., ∑𝑘∈ 𝑑
𝑖𝑡
𝑘 ∈ [80, 120] , ∀𝑖 ∈ , 𝑡 ∈  , except

or the robustness analysis in Section 6.3.1. To determine each demand 𝑘 ∈ , we define the share of each distribution channel
or ∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 as: (1) 𝛼1 for the retailer’s offline channel, (2) 𝛼2 for the retailer’s online channel, and (3) 𝛼3 for the 3PP channel.

e set 𝛼1 = 0.2, 𝛼2 = 0.3, and 𝛼3 = 0.5. Each channel’s demand is generated by the assumed demand distributions, which fall
n the corresponding support set represented in Table B.8. The mean demand 𝑑𝑖𝑡𝑘 is determined according to the assumed demand
istribution. Even though we assume the demand distribution to generate random demand, every algorithm is implemented without
ny knowledge about the demand distribution.

In order to analyze the effects of the production capacity constraint, we define the following affine function of 𝜉 to determine
he 𝑠𝑖𝑡:

𝑠𝑖𝑡(𝜉) ∶= 𝜉 ×
∑

𝑘∈
𝑑𝑖𝑡𝑘 + (1 − 𝜉) × 2

∑

𝑘∈
𝑑𝑖𝑡𝑘 .

here 0 ≤ 𝜉 ≤ 1. According to the above affine function, the production capacity becomes insufficient as the 𝜉 is close to one.
therwise, there is sufficient production capacity when the 𝜉 is close to zero. The value of 𝜉 will be set as zero in most experiments

n the following sections. However, we will evaluate the performance of developed approaches and implement cost analysis by
arying the 𝜉 in Sections 6.2.2 and 6.3.2, respectively.

.1. Performance analysis in small problems

In this section, we compare DECOM with benchmark algorithms in small problems. In Section 6.1.1, we validate DECOM under
ymmetric and asymmetric distributions. In Section 6.1.2, we evaluate the effectiveness of adopting PDECOM−𝜈(1) in determining the
rtificial variable 𝒘.

.1.1. Experiments under symmetric and asymmetric distributions
We have conducted various experiments for the two purposes. First, we validate the obtained decision rule through Monte Carlo

MC) simulation. Every MC simulation is implemented with 500 samples. Second, we evaluate our approach for symmetric and
symmetric demand distributions. We utilize the beta distribution by referring to Jiu (2022). In this section, we set 𝐼 = 3, 𝐾𝑂 =
, 𝐾𝐷 = 3, 𝐽𝐷 = 2, 𝐽𝐹 = 2. We have tested on this setup with three different planning horizons: 𝑇 = 4, 7, and 10. Furthermore, we
efine the set of candidate parameters 𝛷 to find the best cost target. We use the notation 𝜙∗ to denote the target coefficient, which
hows the best performance. We consider six candidate values for 𝜙 as 𝛷 = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Note that we use notation
𝑎 ∼ 𝑏’ to indicate that multiple values of 𝜙∗ ∈ 𝛷 between 𝑎 and 𝑏 show the same best performances (i.e., 𝑎 ≤ 𝜙∗ ≤ 𝑏).

First, we have conducted experiments on three types of symmetric distribution, 𝐵𝑒𝑡𝑎(0.3, 0.3), 𝐵𝑒𝑡𝑎(1, 1), and 𝐵𝑒𝑡𝑎(4, 4), and
xperimental results are reported in Table 1. We provide shapes of symmetric and asymmetric distributions in the Online Appendix
of the supplementary material. In Table 1, ‘‘LDR’’ means the objective value of PLDR with the fixed order cost 𝑆 𝑖𝑡𝑗 𝛿

𝑖𝑡
𝑗 for the TPA,

nd the sum of objective values of PLDR−D and PLDR−F with the fixed order cost for DECOM. The ‘‘SIM’’ indicates the expected
otal cost implemented by MC simulation utilizing the obtained decision rule, and the ‘‘Std’’ is the standard deviation of the total
ost for 500 samples. The ‘‘CPU(s)’’ means the computation times in seconds. We adopt the expected value of perfect information
16

EVPI) to evaluate the solution quality of each algorithm. To derive the EVPI, we solve the deterministic model PDET under the
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Fig. 3. Box plots for the total cost for 500 samples for every algorithm.

perfect information setting (i.e., the deterministic demand setting). We use the ‘‘Gap(%)’’ to measure the solution quality, which is
calculated by (SIM − EVPI) × 100∕EVPI.

Every experimental result of the TPA and DECOM was reported by adopting the best target coefficient 𝜙∗. The values of LDR
nd SIM were indifferent, which meant that the obtained decision rule achieved our goal (i.e., minimizing the expected total cost).
n terms of solution quality, the Gaps of the TPA and DECOM were around 10 percent. However, the Gap of the DTPA was bigger
han 20 percent, except for a result for 𝐵𝑒𝑡𝑎(1, 1) with 𝑇 = 10. As shown in Fig. 3, the total cost of the TPA and DECOM was similar
nd significantly lower than the total cost of the DTPA. Also, the standard deviation of the TPA and DECOM was relatively small
ompared to that of the DTPA. For symmetric distributions, there is a tendency for the best solutions of the TPA and DECOM to be
erived when the value of 𝜙∗ is small. This tendency meant that conservative binary decisions were necessary when the demand
istribution was symmetric.

Second, we have conducted experiments on four types of asymmetric distribution, 𝐵𝑒𝑡𝑎(2, 5), 𝐵𝑒𝑡𝑎(5, 2), 𝐵𝑒𝑡𝑎(1, 6), and 𝐵𝑒𝑡𝑎(6, 1),
and the experimental results were reported in Table C.9. As in the case of symmetric distributions, the values of LDR and SIM
were indifferent when the demand distributions were asymmetric. However, when the beta distributions were skewed to the right
(𝐵𝑒𝑡𝑎(𝑎, 𝑏), 𝑎 < 𝑏), the Gap was bigger compared to the beta distributions skewed to the left (𝐵𝑒𝑡𝑎(𝑎, 𝑏), 𝑏 < 𝑎). The binary decisions

ith the static rule 𝜹 could be too conservative for the beta distribution with 𝑎 < 𝑏 because the realized demand was usually smaller
han the mean value. Also, because the realized demand was relatively small, the 𝜙∗ value was high compared to the symmetric
istributions. On the other hand, when the beta distributions were skewed to the left (𝐵𝑒𝑡𝑎(𝑎, 𝑏), 𝑏 < 𝑎), the Gap was smaller than
0 percent. Because the realized demand was usually bigger than the mean value, there was no doubt that robust solutions were
ecessary; thus, the 𝜙∗ value was small.
17
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Fig. 4. Comparison of performance between TPA and DECOM in terms of Gap and CPU(s).

As shown in Fig. 4, the performance of TPA and DECOM were compared in terms of solution quality (Gap) and computational
efficiency (CPU(s)). Among 21 results of experiments (9 for the symmetric distribution and 12 for the asymmetric distribution),
the number of wins of DECOM and TPA was indifferent regarding the Gap (i.e., DECOM → 8, TPA → 9, and the same performance
→ 4). However, for CPU(s), DECOM outperformed TPA except for one result (i.e., DECOM → 20 and TPA → 1).

.1.2. Impact of the artificial variable 𝑤 on the performance of DECOM
As indicated in Section 5.1, DECOM determines the artificial variable 𝒘 with the optimal solution 𝒘 obtained by solving

roblem PDECOM−𝜈(1). Then, Problem PDECOM−𝜈(0) is solved with the fixed value 𝒘̄. In order to evaluate this scheme, we validate
he performance of determining 𝒘 with PDECOM−𝜈(1) by comparing with the following two alternative methods. The first method
etermines 𝒘 with the optimal solution 𝒘 obtained by solving Problem PDECOM−𝜈(0). Thereafter, Problem PDECOM−𝜈(1) was solved
ith the fixed value 𝒘̄, which is the opposite procedure of the proposed approach. The second method utilizes the information of
ean demand 𝑑𝑖𝑡𝑘 to determine 𝒘 as follows:

𝑤𝑖𝑡 =

∑

𝑘∈𝑂∪𝐷 𝑑
𝑖𝑡
𝑘

∑

𝑘∈ 𝑑
𝑖𝑡
𝑘

, ∀𝑖 ∈ , 𝑡 ∈  .

This simple method could be effective because 𝒘 can be interpreted as the predetermined ratio dividing the production capacity 𝑠𝑖𝑡
or the retailer’s supply chain and the supply chain of the 3PP, respectively (referring to Constraints (38)−(40)).

In Table 2, we compared the above three methods determining 𝒘. We utilized the problem instances presented in Table 1, and
was set as zero. In the first column, ‘‘𝑊 P𝜈(1)’’ is the proposed method in this research, as illustrated in Section 5.1. ‘‘𝑊 P𝜈(0)’’ is the

irst alternative method, and ‘‘RATIO’’ is the second alternative method. In terms of solution quality, we could observe that 𝑊 P𝜈(1)
utperformed other methods for all experiments. 𝑊 P𝜈(0) had poor solution quality because this method provided the aggressive
ecision to the uncertainty. In terms of computation times, we found insignificant differences between every method.

To investigate the impact of 𝒘, we conducted a sensitivity analysis on 𝒘. For ease of exposition, we use the expression ‘‘𝒘 = 𝛽’’
to denote 𝑤𝑖𝑡 = 𝛽,∀𝑖 ∈ , 𝑡 ∈  . Table 3 shows the solution quality (Gap) derived from each value of 𝑤𝑖𝑡,∀𝑖 ∈ , 𝑡 ∈  , and we
highlighted the smallest value of Gap within 𝛽 = 0.1,… , 0.9 in boldface at each experiment. The solution obtained with 𝒘 = 0.5
showed the best performance, except for 𝑇 = 4. Also, as the value of 𝛽 deviated from 0.5, the solution quality became poor. The
solution with the setting of 𝒘 = 0.5 yielded a smaller gap compared to RATIO. However, 𝑊 P𝜈(1) outperformed the solution with
𝒘 = 0.5 in all experiments, except for in the case of 𝐵𝑒𝑡𝑎(4, 4) with 𝑇 = 7. For experiments with 𝑇 = 10, we reported the values of
𝑤𝑖𝑡,∀𝑖, 𝑡 returned by 𝑊 P𝜈(1) in Table C.10. Table C.10 shows that 𝑊 P𝜈(1) returned the different value of 𝑤𝑖𝑡 depending on the values
of 𝑖 and 𝑡.

6.2. Computational efficiency of DECOM

In the previous section, we observed that DECOM could alleviate the computational burden in small problems. Therefore, this
section aims to validate the computational efficiency of DECOM in detail for various test environments. In this section, we set 𝜙 = 0.0
for DECOM and TPA, based on the results of Section 6.1.1. We validate the computational efficiency of DECOM for large-scale
problems. In addition, we vary the production capacity and compare the DECOM and TPA in detail.

6.2.1. Experiments in large-scale problems
In this section, we have conducted several experiments to examine the computational efficiency of DECOM in large-scale

problems. For every experiment, we fix the value of 𝑇 , 𝐾𝑂, and 𝐾𝐷 as 7, 5, and 5, respectively. In addition, we vary with the
value of 𝐼, 𝐽 , and 𝐽 to change the problem scales, in which the 𝑀 (=  , | | , | |) varies from 3 to 10. We assume that the
18
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Table 2
Experimental results on three methods for the artificial variable 𝑤.

𝐵𝑒𝑡𝑎(0.3, 0.3) 𝐵𝑒𝑡𝑎(1, 1) 𝐵𝑒𝑡𝑎(4, 4)

𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10

𝑊 P𝜈(1) LDR(×102) 49.19 77.72 128.58 46.02 99.34 132.33 47.88 115.42 126.14
SIM(×102) 49.19 77.74 128.57 46.01 99.36 132.32 47.89 115.40 126.12
Gap(%) 13.27 11.32 9.39 13.76 10.47 9.15 10.15 10.18 9.72
Std(×102) 0.70 0.83 1.12 0.36 0.86 0.93 0.31 0.65 0.43
CPU(s) 0.91 8.65 11.01 0.82 4.36 12.93 0.78 8.01 14.93

𝑊 P𝜈(0) LDR(×102) 86.55 139.77 230.29 83.09 164.27 221.10 93.34 193.40 219.03
SIM(×102) 87.12 140.27 231.10 82.38 164.89 220.83 93.53 193.29 219.09
Gap(%) 100.60 100.86 96.62 103.66 83.32 82.16 115.14 84.55 90.61
Std(×102) 12.06 16.86 9.83 8.75 12.08 14.03 5.01 6.95 8.29
CPU(s) 1.78 10.15 13.16 1.93 5.41 14.78 1.08 11.18 17.22

RATIO LDR(×102) 50.32 78.64 131.18 46.95 101.36 135.55 49.07 116.00 129.95
SIM(×102) 50.34 78.68 131.17 46.94 101.38 135.54 49.07 115.96 129.93
Gap(%) 15.92 12.67 11.60 16.06 12.71 11.81 12.87 10.72 13.04
Std(×102) 0.91 1.05 1.16 0.43 0.87 1.00 0.32 0.68 0.46
CPU(s) 0.78 8.14 10.12 0.98 4.80 13.90 0.88 7.67 15.35

EVPI (×102) 43.43 69.83 117.54 40.45 89.95 121.23 43.48 104.74 114.94

Table 3
Experimental results on the solution quality (Gap (%)) by varying the value of 𝒘.

𝐵𝑒𝑡𝑎(0.3, 0.3)

𝒘 = 0.1 𝒘 = 0.2 𝒘 = 0.3 𝒘 = 0.4 𝒘 = 0.5 𝒘 = 0.6 𝒘 = 0.7 𝒘 = 0.8 𝒘 = 0.9

Gap (%) 𝑇 = 4 233.45 198.05 14.33 15.86 14.58 18.03 19.04 27.09 198.05
𝑇 = 7 343.12 56.10 15.10 12.62 11.96 14.45 19.25 66.10 360.15
𝑇 = 10 325.82 62.48 13.63 11.61 11.04 12.83 16.63 67.40 314.89

𝐵𝑒𝑡𝑎(1, 1)

𝒘 = 0.1 𝒘 = 0.2 𝒘 = 0.3 𝒘 = 0.4 𝒘 = 0.5 𝒘 = 0.6 𝒘 = 0.7 𝒘 = 0.8 𝒘 = 0.9

Gap (%) 𝑇 = 4 226.62 20.50 15.16 16.08 15.78 14.79 19.17 26.92 184.62
𝑇 = 7 259.77 45.50 14.83 12.69 12.28 14.81 15.45 47.32 280.37
𝑇 = 10 314.96 63.73 13.79 11.81 11.58 13.90 17.08 59.96 306.17

𝐵𝑒𝑡𝑎(4, 4)

𝒘 = 0.1 𝒘 = 0.2 𝒘 = 0.3 𝒘 = 0.4 𝒘 = 0.5 𝒘 = 0.6 𝒘 = 0.7 𝒘 = 0.8 𝒘 = 0.9

Gap (%) 𝑇 = 4 198.57 31.84 14.07 12.86 11.70 13.14 15.74 26.60 201.11
𝑇 = 7 219.92 40.00 11.97 10.76 9.03 12.52 14.22 26.60 205.42
𝑇 = 10 347.75 75.10 15.14 13.06 11.55 14.16 17.19 70.42 334.41

demand distribution follows 𝐵𝑒𝑡𝑎(1, 1). Based on the experimental result for 𝐵𝑒𝑡𝑎(1, 1) in Table 1. When solving the MILP models,
we terminate the commercial solver if the time limit is reached and output the feasible solution obtained so far (i.e., 3600 s).

We present experimental results for large-scale problems in Table C.11, which presents Gap, Std, CPU(s), and EVPI. We keep
in mind that PDET is a MILP model; thus, significant computational power is necessary to solve it 500 times to obtain the EVPI
in large-scale problems. Therefore, we utilize the ‘‘alternative’’ EVPI. In the alternative EVPI, we first obtain the optimal binary
solution 𝜹̄ by using Phase 1 of DECOM. Then, we fix the binary variable with the value 𝜹̄ to make PDET as an LP model. Therefore,
PDET can be solved 500 times with perfect information within a reasonable time. To avoid confusion, the obtained value from the
alternative EVPI is also indicated by the term ‘‘EVPI’’ in Tables C.11, C.12, and C.13. The DTPA had the largest value for Gap and
Std compared to other approaches, which meant the solution quality of the DTPA was poor. DECOM and TPA had similar values
for Std, but DECOM showed the best performance regarding solution quality (Gap). In addition, it required less computation time
to implement the DECOM compared to the TPA (CPU(s)).

We analyze the computational efficiency in detail with the following five types of CPU(s): ‘‘Phase 1’’, ‘‘Phase 2’’, ‘‘P𝜈(1)’’, ‘‘P𝜈(0)’’,
nd ‘‘PSTATIC’’. The meaning of these five types of CPU(s) is presented in Online Appendix E of supplementary material. Fig. 5 presents
he CPU(s) of Phase 1 and Phase 2 for three approaches. The DTPA could finish Phase 1 within a relatively short computation time
ompared to the TPA and DECOM. The DTPA and TPA required similar computation times to conduct Phase 2. However, DECOM
equired less of a computational burden compared to the DTPA and TPA to conduct Phase 2.

Fig. 6 depicts the CPU(s) of P𝜈(1), P𝜈(0), and PSTATIC for TPA and DECOM. For P𝜈(1), the performance of the TPA and DECOM
as indifferent. However, for P𝜈(0), DECOM required a much shorter time to solve the problem than TPA. The DECOM could finish

he procedure for P𝜈(0) within a short time because the feasible region was substantially reduced by fixing the value for 𝒘̄. When
𝑀 ≥ 4, TPA could not solve the Problem PSTATIC until the time limit (1 h). On the other hand, when 𝑀 ≥ 6, DECOM could not
solve Problem P within the time limit; but, Problem P could be solved in less than a second. In addition, DECOM
19
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Fig. 5. Computation times of Phase 1 and Phase 2 for three approaches in large-scale problems.

Fig. 6. Computation times of P𝜈(1), P𝜈(0), and PSTATIC for DECOM and TPA in large-scale problems.

could provide high solution quality compared to TPA, although both approaches could not finish the procedure for PSTATIC within
he time limit.

In real-world cases, retailers have to handle various types of products in their supply chain. Therefore, we have examined the
erformance of DECOM on different product numbers based on the problem instances presented in Table 1. In Table C.12, we
ompared DTPA, TPA, and DECOM by varying the product numbers from 50 to 200. Similar to previous experiments, DTPA provided
oor solution quality. In contrast, DECOM and TPA could provide high solution quality, in which the Gaps were about 10 percent
or all results. Furthermore, we could observe that DECOM outperformed TPA regarding both Gap and CPU(s).

.2.2. Performance analysis by varying the production capacity
In this section, we have conducted experiments to analyze the performance of DECOM by varying the production capacity with

ifferent values of 𝜉 ∈ {0.0, 0.1,… , 0.8, 0.9}. We set 𝑇 = 7, 𝐼 = 5, 𝐾𝑂 = 3, 𝐾𝐷 = 3, 𝐽𝐷 = 4, and 𝐽𝐹 = 4. Also, demand distribution
follows 𝐵𝑒𝑡𝑎(1, 1) as in the setting of Section 6.2.1. Table C.13 shows the experimental results with different production capacities.
We excluded the DTPA in this experiment because of poor solution quality when the production capacity was insufficient. In order
to show the computational efficiency of DECOM, we set the commercial solver’s time limit as 10,800 s when solving the Problem
PSTATIC.

As shown in Table C.13, TPA required more than 3 h in all experiments, except for the 𝜉 = 0.3. However, DECOM required less
han 5 min to solve the same problems, except for in the case of 𝜉 = 0.9. Furthermore, because TPA could not solve problems within
he time limit, the Gap of DECOM was smaller than it was for TPA for all experiments. Fig. 7 depicts the CPU(s) of Phases 1 and 2,
nd Fig. 8 shows the CPU(s) of P𝜈(1), P𝜈(0), and PSTATIC. Interestingly, DECOM had a clear advantage over solving PSTATIC, compared

to TPA. Except for 𝜉 = 0.3, TPA could not finish the procedure for PSTATIC within 3 h for all experiments. On the contrary, DECOM
ould find optimal solutions for PSTATIC within 10 s, except for a result for 𝜉 = 0.0 (80 s).

.3. Robustness analysis and cost analysis

In Section 6.3.1, we validate the robustness of DECOM over the demand uncertainty set and a family of demand distributions.
20

ection 6.3.2 examines the cost components by varying the production capacity and target coefficient 𝜙.
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Fig. 7. Computation times of Phase 1 and Phase 2 for DECOM and TPA with different production capacity.

Fig. 8. Computation times of P𝜈(1), P𝜈(0), and PSTATIC for DECOM and TPA with different production capacity.

Table 4
Robustness analysis by varying the demand uncertainty set.

∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 , ∀𝑖 ∈ , 𝑡 ∈  uncertainty set in the simulation

[50,150] [60,140] [70,130] [80,120] [90,110]

DTPA SIM(×102) 171.98 172.08 172.18 172.29 172.39
Std(×102) 10.73 8.58 6.44 4.29 2.15

DECOM SIM(×102) 114.40 114.39 114.39 114.39 114.39
Std(×102) 1.56 1.25 0.94 0.63 0.31

6.3.1. Robustness analysis
We implemented robustness analysis of DECOM under the condition of 𝑇 = 7, 𝐼 = 4, 𝐾𝑂 = 5, 𝐾𝐷 = 5, 𝐽𝐷 = 4, 𝐽𝐹 = 4 and 𝜙 = 0.0.

First, we conducted experiments to validate the robustness of DECOM over the demand uncertainty. We implemented DECOM and
DTPA under the following assumptions: (1) ∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 = 100 and (2) ∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 ∈ [50, 150] , ∀𝑖 ∈ , 𝑡 ∈  . Even though we assume the

specified demand uncertainty set, the real demand can fall into a narrower uncertainty set. To fulfill this, we derived the solutions
of DECOM and DTPA (i.e., the decision rule) under the uncertainty set [50, 150]. Then, we conducted simulations with the decision
rules obtained under the uncertainty set [50, 150] by varying the demand uncertainty set from [50, 150] to [90, 110] as shown in
Table 4. The demands in the simulations are generated by following the 𝐵𝑒𝑡𝑎(1, 1) with predetermined uncertainty sets.

Table 4 shows that DECOM and DTPA derived similar expected total costs (i.e., SIM), respectively, even if the demand uncertainty
set varied. However, DECOM provided a much smaller standard deviation of the total cost (i.e., Std) compared to DTPA. As the range
of the demand uncertainty set decreased, the Std of DTPA decreased significantly. However, there were no significant changes in the
case of DECOM, compared to DTPA. Furthermore, as indicated in boldface, the Std of DECOM under the most extensive uncertainty
set (i.e., [50,150]) was smaller than the Std of DTPA under the narrowest uncertainty set (i.e., [90,110]).

Next, we utilized the decision rules obtained in the experiment of Table 4 to check the robustness under a family of distributions.
Because of the definition of a family of distribution in Section 4.2, the sample demand in the simulation has to be generated under
the probability distribution, which has the same mean demand (i.e., ∑𝑘∈ 𝑑

𝑖𝑡
𝑘 = 100). Therefore, as shown in Table 5, we utilized

several types of symmetric beta distributions for a simulation. Table 5 represents that the decision rules obtained from the DECOM
and DTPA could provide almost the same total expected cost under different distributions. Similar to the results of Table 4, the
21

Std of DECOM was smaller than the Std of DTPA for all demand distributions. In particular, the Std of DECOM in 𝐵𝑒𝑡𝑎(0.1, 0.1)
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Table 5
Robustness analysis under a family of demand distributions.

Generated demand in the simulation

𝐵𝑒𝑡𝑎(0.1, 0.1) 𝐵𝑒𝑡𝑎(0.3, 0.3) 𝐵𝑒𝑡𝑎(2, 2) 𝐵𝑒𝑡𝑎(3, 3) 𝐵𝑒𝑡𝑎(5, 5)

DTPA SIM(×102) 172.95 172.08 172.28 172.12 172.57
Std(×102) 16.67 14.55 8.04 6.67 5.60

DECOM SIM(×102) 114.34 114.48 114.33 114.37 114.40
Std(×102) 2.42 2.19 1.19 0.98 0.82

Fig. 9. Cost analysis by varying the production capacity.

was smaller than the Std of DTPA in 𝐵𝑒𝑡𝑎(5, 5), as shown in boldface. These experimental results indicate that the decision rules of
DECOM are robust to distributional ambiguity.

6.3.2. Cost analysis
We implement cost analysis by varying the production capacities (i.e., 0.5 ≤ 𝜉 ≤ 1.0). Fig. 9 presents bar plots for six cost

components: (1) the total cost for the whole supply chain (TC), (2) the total cost for the retailer’s supply chain (TJD), (3) the total
cost for the 3PP supply chain (TJF), (4) the stockout cost for the whole supply chain (PC), (5) the stockout cost for the retailer’s
supply chain (PJD), and (6) the stockout cost for the supply chain of the 3PP (PJF). We conducted experiments for two decision
rules; one was obtained from the DECOM with 𝜙 = 0.0, and the other was obtained from the DECOM with 𝜙 = 0.8. Because the
DECOM with 𝜙 = 0.0 could derive the conservative decision rule to the uncertainty, the stockout only occurred when the 𝜉 = 1.0,
which was the case in which suppliers had the smallest production capacities. However, because the DECOM with 𝜙 = 0.8 output the
aggressive decision rule to the uncertainty, the stockout occurred when 𝜉 ≥ 0.5. These results suggest that a conservative decision
rule obtained from the DECOM with 𝜙 = 0.0 could save costs in the supply chain if the market imbalance between supply and
demand is expected.

6.4. Sensitivity analysis

In this section, we have conducted three types of experiments to explore the effects of omnichannel retail operations and the
3PP channel by varying several cost parameters. Because the proposed problem involves too many cost parameters, we chose the
following cost parameters, which showed the apparent tendency, for sensitivity analysis: (1) fulfillment costs associated with online
demand; (2) the additional costs associated with using the 3PP; and (3) the lost sales cost. We employed the problem instances
presented in Section 6.2.2, and 𝜙 was set as zero. We employed the DECOM under the condition in which the demand uncertainty
set is [50, 150]. We measured the cost-saving effect of adopting omnichannel retailing and the 3PP channel as follows:

Cost-saving (%) = Expected total cost of No-omni/No-3PP − Expected total cost of Omni/With-3PP
× 100.
22

Expected total cost of No-omni/No-3PP
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Fig. 10. Cost-saving effect of omnichannel operations varying the parameters 𝑜𝑓 𝑖𝑡𝑘𝑘′ and 𝑒𝑓 𝑖𝑡𝑗𝑘.

6.4.1. Effects of using omnichannel retail operations
In the first experiment, we investigated the impact of fulfillment cost parameters 𝑜𝑓 𝑖𝑡𝑘𝑘′ and 𝑒𝑓 𝑖𝑡𝑗𝑘 on the advantages of

implementing omnichannel retail operations. We employed the parameter 𝛥𝑟𝑎𝑡𝑖𝑜 to vary the cost parameters 𝑜𝑓 𝑖𝑡𝑘𝑘′ and 𝑒𝑓 𝑖𝑡𝑗𝑘. We
changed the value of cost parameters by multiplying the 𝛥𝑟𝑎𝑡𝑖𝑜 on the original value, and the 𝛥𝑟𝑎𝑡𝑖𝑜 ranges from 0.5 to 1.7
(i.e., 𝑜𝑓 𝑖𝑡𝑘𝑘′ , 𝑒𝑓

𝑖𝑡
𝑗𝑘 × 𝛥𝑟𝑎𝑡𝑖𝑜). We validated the benefits of omnichannel retail operations (i.e., Omni), specifically ship-from-store 𝑔𝑖𝑡𝑘𝑘′ ,

by comparing them with the retailer operations without properties of the omnichannel setup (i.e., No-omni). The total costs of Omni
and No-omni were derived by solving the proposed model with the DECOM. In order to exclude the ship-from-store, we set the 𝑔𝑖𝑡𝑘𝑘′
as zero for No-omni. Because only the retailer’s supply chain has omnichannel properties, the total cost and cost-saving effect of the
retailer’s supply chain was reported.

Fig. 10 presents the cost-saving effect by varying fulfillment cost parameters from the DC to the online demand zone, 𝑒𝑓 𝑖𝑡𝑗𝑘, and
for ship-from-store for online demands, 𝑜𝑓 𝑖𝑡𝑘𝑘′ . The cost savings by omnichannel operations decreased as the value of 𝑜𝑓 𝑖𝑡𝑘𝑘′ increased
and 𝑒𝑓 𝑖𝑡𝑗𝑘 decreased. In particular, the cost savings showed more rapid changes when varying the 𝑒𝑓 𝑖𝑡𝑗𝑘 rather than the 𝑜𝑓 𝑖𝑡𝑘𝑘′ . In the
case of 𝑜𝑓 𝑖𝑡𝑘𝑘′ , the cost savings was about 4 percent when the 𝛥𝑟𝑎𝑡𝑖𝑜 was 0.5. On the other hand, for 𝑒𝑓 𝑖𝑡𝑗𝑘, the cost savings was 17
percent when the 𝛥𝑟𝑎𝑡𝑖𝑜 was set as 1.7.

6.4.2. Effects of introducing the 3PP channel
In the second experiment, we evaluated the advantages of utilizing the 3PP channel by varying the 𝑝𝑖𝑡𝐾+1 and 𝜆𝑠, 𝜆ℎ, and 𝜆𝑜

employed to reflect the additional costs of using the 3PP channel. In particular, we compared the retail operations using both the
retailer channel and the 3PP channel (i.e., With-3PP) with using the retailer channel only (i.e., No-3PP). To implement No-3PP,
we addressed the aggregate demand of the 3PP channel as lost sales by setting the 𝛿𝑖𝑡𝑗 , ∀𝑗 ∈ 𝐹 as zero. Then, because products
were replenished only for the retailer’s channel, the 3PP channel was not used in the retail operations. The With-3PP yields cost
savings because the No-3PP fulfills less demand than does the With-3PP. However, because the impact on cost savings is different for
each cost parameter, we compared the With-3PP and the No-3PP and examined the cost-saving effect by implementing a sensitivity
analysis on 𝑝𝑖𝑡𝐾+1, 𝜆

𝑠, 𝜆ℎ, and 𝜆𝑜.
Fig. 11 shows the cost savings of introducing the 3PP channel by comparing No-3PP and With-3PP. As shown in the left subfigure,

we investigated the impact of the lost sales cost parameter for the 3PP channel, 𝑝𝑖𝑡𝐾+1. We varied the value of 𝑝𝑖𝑡𝐾+1 from 4 to 10 with
the steplength 0.5. The cost-saving effect of using the 3PP channel was insignificant when 𝑝𝑖𝑡𝐾+1 ≤ 5.5. Then, when 𝑝𝑖𝑡𝐾+1 was between
5.5 and 6.5, the cost-saving effect increased slightly as the value of 𝑝𝑖𝑡𝐾+1 increased. After that, when 𝑝𝑖𝑡𝐾+1 ≥ 6.5, the cost-saving
effect increased linearly with increasing 𝑝𝑖𝑡𝐾+1.

We employed the parameter 𝛥𝜆 to analyze the impact that parameters 𝜆𝑠, 𝜆ℎ, and 𝜆𝑜 had on cost savings incurred by using the
3PP channel. The 𝛥𝜆 ranges from 1.0 to 4.0 with steplength 0.5. The right subfigure shows the cost savings brought about by varying
the additional costs using the 3PP channel for the following four cases: (1) fixed participation cost 𝜆𝑠 = 𝛥𝜆, orange line; (2) inventory
holding cost 𝜆ℎ = 𝛥𝜆, green line; (3) warehousing cost 𝜆𝑜 = 𝛥𝜆, red line; and (4) 𝜆𝑠 = 𝜆ℎ = 𝜆𝑜 = 𝛥𝜆, blue line. As the 𝜆𝑜 increased,
the cost-saving effect of using the 3PP channel decreased significantly compared to 𝜆𝑠 and 𝜆ℎ. Conversely, the changes of 𝜆ℎ had a
minimal effect on the cost savings of utilizing the 3PP channel. As presented in the blue line, if the value of parameters 𝜆𝑠, 𝜆ℎ, and
𝑜
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𝜆 were bigger than 4.0, it was insignificant to utilize the 3PP channel in terms of the cost-saving effect.
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Fig. 11. Cost-saving effect of using the 3PP channel varying the parameters 𝑝𝑡𝐾+1 , 𝜆
𝑠 , 𝜆ℎ, and 𝜆𝑜.

Fig. 12. Stockout ratio and expected stockout cost of supply chains of retailer and 3PP.

6.4.3. Impact of lost sales cost on the retailer and the 3PP supply chains
In the third experiment, we examined the stockout ratio and the expected stockout cost of the retailer and the 3PP supply

chains. The stockout ratio of each supply chain was obtained by dividing the total demand by the total amount of the stockout. We
implemented a sensitivity analysis on the lost sales cost parameter for both the retailer channel and the 3PP channels, 𝑝𝑖𝑡𝑘 , ∀𝑘 ∈ .
We varied the value of 𝑝𝑖𝑡𝑘 from 1 to 8 with the steplength 1. Fig. 12 shows that the stockout ratio of both supply chains decreased
as the 𝑝𝑖𝑡𝑘 increased. However, the stockout ratio of the 3PP was higher than the retailer’s supply chain when 𝑝𝑖𝑡𝑘 ≤ 6. When 𝑝𝑖𝑡𝑘 was
between 4 and 5, the stockout ratio of the 3PP decreased rapidly. Furthermore, the expected stockout cost of the retailer began to
decrease when 𝑝𝑖𝑡𝑘 > 2, and in the case of the 3PP, it decreased when 𝑝𝑖𝑡𝑘 > 4. These results suggest that the stockout ratio and cost
of the 3PP supply chain are sensitive to the value of 𝑝𝑖𝑡𝑘 compared to the retailer’s supply chain.

6.5. Managerial insights

We present several managerial insights that could be instructive to practitioners who are concerned about both omnichannel
retailing and the 3PP channel. We underpin the proposed managerial insights by considering the experimental results.

• Based on the experimental results of Section 6.4.1, we could observe that omnichannel retailing can cut total costs compared
to retail operations without the ship-from-store option when fulfillment costs from DCs to online demand zones (i.e., 𝑒𝑓 𝑖𝑡𝑗𝑘)
increase and ship-from-store costs decrease (i.e., 𝑜𝑓 𝑖𝑡𝑘𝑘′ ). In particular, the changes in cost parameters regarding fulfillment from
DCs lead to a rapid increase or decrease in the cost-saving effect. Therefore, even if the cost of ship-from-store operations is
high, it is still beneficial to embrace omnichannel retail operations if the cost of satisfying online demand zones from DC is
considerable (e.g., when the DCs are far from the online demand zones).

• The experimental results of the first experiment in Section 6.4.2 indicate that the increase in the warehousing cost leads
to a rapid decrease of the cost-saving effect when introducing the 3PP channel in omnichannel retailing among the three
types of additional costs associated with the 3PP channel, 𝜆𝑠, 𝜆ℎ, and 𝜆𝑜. In contrast, the increase in inventory holding costs
has a minor impact on the cost savings of employing the 3PP channel. If the three additional costs are too expensive, there
is no advantage in using both the retailer and 3PP channels in comparison to operating the retail channel only. Therefore,
omnichannel retailers should take into account these additional costs, particularly warehousing costs, when introducing the
24

3PP channel in their channels.
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• On the basis of the results of the second experiment in Section 6.4.2, we could observe that there are no benefits to employing
the 3PP channel if the lost sales cost for the 3PP channel demand is low. Otherwise, the cost-saving effect of using the 3PP
channel increases as the lost sales cost increases. The retailer usually determines or estimates the lost sales cost parameter. If
the lost sales cost parameter is estimated to be smaller than the true value, the retailer could miss the cost-saving effect by
using the 3PP. On the other hand, an excess usage of the 3PP channel will be the outcome if the lost sales cost is estimated
to be larger. Therefore, retailers should precisely estimate the lost sales parameter before applying our suggested approach.

• Table C.9 shows that it is necessary to derive a conservative solution by setting a large value for the cost target if the demand
distribution is skewed to the right. Otherwise, if the distribution is skewed to the left, the cost target should be set with a
small value to obtain an aggressive solution to demand uncertainty. Furthermore, the degree of production capacity is also
an essential factor in determining the appropriate value of the cost target. Therefore, users of our proposed approach should
determine the cost target value by considering their production capacities and by identifying how the demand distribution is
roughly shaped (e.g., by examining the skewness or variance of demand distributions).

7. Conclusions

We studied the optimization problem considering demand uncertainty in a setting where the omnichannel retailer determined to
tilize the 3PP channel in advance. In the proposed problem, the retailer’s online and offline channels were operated by the retailer’s
upply chain, and the 3PP channel was operated by the supply chain of the 3PP. Moreover, we considered joint replenishment,
llocation, transshipment, and fulfillment decisions over a multi-period planning horizon. To minimize the expected total cost,
e presented the stochastic optimization model from the perspective of a retailer. Furthermore, we accommodated the distinct
dvantages and properties of adopting the 3PP channel in the proposed model.

However, there were four challenges in our problem. First, the adjustable binary decisions for replenishment should be
onsidered, which incurs a fixed order cost. Second, we should integrate anticipative and reactive decisions when solving the
roblem. Third, the existence of the 3PP channel increased the problem size because the retailer’s supply chain and the supply chain
f the 3PP should be considered simultaneously. Fourth, the production capacity constraint made the problem more intractable.
ven though the TPA developed by Lim et al. (2021) could mitigate the first and second challenges, TPA often required a high
omputational burden to solve the proposed problem because of the third and fourth challenges. As a way to overcome these
hallenges, we proposed a DECOM approach by utilizing artificial variables, and it can solve the problem separately according to
he retailer’s supply chain and the 3PP supply chain.

Experimental results show beneficial contributions of this research from both academic and managerial perspectives. First,
e observed that DECOM and TPA provided solutions with similar quality in various demand distributions. However, DECOM
utperformed TPA in terms of computational efficiency. In particular, DECOM was scalable to large-scale problems while maintaining
ts high solution quality. In addition, the robustness analysis showed that DECOM could provide robust and stable solutions against
hanges in uncertainty sets and demand distributions. Second, we explored the cost-saving effects of employing omnichannel
etailing and introducing the 3PP channel, respectively. We observed that omnichannel retailing leads to significant potential cost
avings compared to retailing without omnichannel as the fulfillment cost from DCs to online demand zones increases. As the lost
ales cost increases, introducing the 3PP channel in omnichannel retail operations also leads to cost savings compared to utilizing
he retailer’s channel only, which is because the retailer can absorb additional demand by using the 3PP channel. Therefore, we
mphasized the importance of accurately estimating the stockout cost parameter before participating in the 3PP service, since the
etailer usually determines the lost sales cost.

Considering the limitations of our study, we conclude by discussing directions for further research. First, our model assumes that
he information regarding the storage capacity of FCs is complete. Although the storage capacity can often be observed or estimated,
t can be uncertain and vary depending on the time period, because other users of the 3PP channel can also store their products in
he FCs. It will be interesting to investigate how uncertainty for the storage capacity of FCs affects the utilization of the 3PP channel.
econd, our model does not consider return policies regarding online products. One of the advantages of omnichannel retailing is the
eturn policies. Usually, omnichannel retailing allows customers to return products through all available channels. Therefore, future
tudies should target developing the model with return policies and then examine how introducing the 3PP channel in omnichannel
etailing influences the return flow of products and the profitability of the retailer.
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ppendix A. Notations and the deterministic model (𝐏𝐃𝐄𝐓)

See Table A.6.

Table A.6
Indices, sets, parameters, and decision variables for the mathematical model.

Indices and sets

 Set of time periods, 𝑡 ∈  = {1, 2,… , 𝑇 }
 + 𝑡 ∈  + = {1, 2,… , 𝑇 + 1}
 Set of products (=suppliers), 𝑖 ∈  = {1, 2,… , 𝐼}
𝑂 Set of offline demand zones (= offline stores), 𝑘 ∈ 𝑂 =

{

1, 2,… , 𝐾𝑂
}

𝐷 Set of online demand zones for the retailer’s supply chain, 𝑘 ∈ 𝐷 =
{

𝐾𝑂 + 1,… , 𝐾𝑂 +𝐾𝐷
}

− Set of online and offline demand zones for DCs, 𝑘 ∈ − = {1,… , 𝐾} (𝐾 = 𝐾𝑂 +𝐾𝐷)
 Set of demand zones for DCs and FCs, 𝑘 ∈  = {1,… , 𝐾 + 1}
𝐷 Set of capacitated DCs, 𝑗 ∈ 𝐷 =

{

1, 2,… , 𝐽𝐷
}

𝐹 Set of capacitated FCs, 𝑗 ∈ 𝐹 =
{

𝐽𝐷 + 1,… , 𝐽𝐷 + 𝐽𝐹
}

 𝑗 ∈  = {1,… , 𝐽} (𝐽 = 𝐽𝐷 + 𝐽𝐹 )

Parameters

𝑆 𝑖𝑡𝑗 Fixed cost to order product 𝑖 for the logistics center 𝑗 from supplier 𝑖 at period 𝑡

𝑙ℎ𝑖𝑡𝑗 Unit inventory holding cost for the logistics center 𝑗 per product 𝑖 at period 𝑡

𝑜ℎ𝑖𝑡𝑘 Unit inventory holding cost for the offline store 𝑘 per product 𝑖 at period 𝑡

𝑜𝑐𝑡𝑖𝑗 Unit replenishment cost between the supplier 𝑖 and the logistics center 𝑗 per product 𝑖 at period 𝑡

𝑡𝑐𝑖𝑡𝑗𝑗′ Transshipment cost between the DC 𝑗 and the other DC 𝑗′ per product 𝑖 at period 𝑡

𝑎𝑐𝑖𝑡𝑗𝑘 Allocation cost between the DC 𝑗 and the offline store 𝑘 per product 𝑖 at period 𝑡

𝑒𝑓 𝑖𝑡𝑗𝑘 Fulfillment cost from the DC 𝑗 to the online demand zone 𝑘 per product 𝑖 at period 𝑡

𝑜𝑓 𝑖𝑡𝑘𝑘′ Fulfillment cost from the offline store 𝑘 to the online demand zone 𝑘′ per product 𝑖 at period 𝑡

𝑏𝑓 𝑖𝑡𝑘 Fulfillment cost for the offline demand zone 𝑘 per product 𝑖 at period 𝑡

𝑎𝑓 𝑖𝑡𝑗 Fulfillment cost for the aggregate demand for FC 𝑗 per product 𝑖 at period 𝑡

𝑝𝑖𝑡𝑘 Lost sales cost for demand type 𝑘 per product 𝑖 at period 𝑡

𝑠𝑖𝑡 Production capacity of supplier 𝑖 at period 𝑡

𝐿𝑖𝑗 Lead time of product 𝑖 replenished from supplier 𝑖 to the logistics center 𝑗
𝑞𝑖𝑗 Capacity for the replenishment from the supplier 𝑖 to the logistics center 𝑗
𝑥̄𝑗 Storage capacity of the logistics center 𝑗
𝑦̄𝑘 Storage capacity of the offline store 𝑘

𝑑𝑖𝑡𝑘 Realized value of demand type 𝑘 for product 𝑖 at period 𝑡

Adjustable decision variables

𝛿𝑖𝑡𝑗 (𝐝𝑡−1) 1 if product 𝑖 is replenished from supplier 𝑖 to the logistics center 𝑗 at the start of period 𝑡, 0 otherwise
𝑞𝑖𝑡𝑗 (𝐝𝑡−1) Quantity of the product 𝑖 replenished from supplier 𝑖 to the logistics center 𝑗 at the start of the period 𝑡

𝑥𝑖𝑡𝑗 (𝐝𝑡−1) On-hand inventory of product 𝑖 in the logistics center 𝑗 at the start of period 𝑡

𝑦𝑖𝑡𝑘 (𝐝
𝑡−1) On-hand inventory of product 𝑖 in the offline store 𝑘 at the start of period 𝑡

𝑢𝑖𝑡𝑗𝑗′ (𝐝
𝑡−1) Quantity of the product 𝑖 transshipped from the DC 𝑗 to the other DC 𝑗′ at the start of the period 𝑡

𝑣𝑖𝑡𝑗𝑘(𝐝
𝑡−1) Quantity of the product 𝑖 allocated from the DC 𝑗 to the offline store 𝑘 at the start of period 𝑡

𝜌𝑖𝑡𝑘 (𝐝
𝑡) Quantity of the product 𝑖 fulfilled to satisfy the offline demand zone 𝑘 at the end of period 𝑡

𝜂𝑖𝑡𝑗 (𝐝𝑡) Quantity of the product 𝑖 fulfilled from the FC 𝑗 to satisfy the aggregate demand for FCs at the end of period 𝑡

𝑔𝑖𝑡𝑘𝑘′ (𝐝
𝑡) Quantity of the product 𝑖 fulfilled from the offline store 𝑘 to satisfy the online demand zone 𝑘′ at the end of period 𝑡 (i.e.,

ship-from-store for online demands)
𝑟𝑖𝑡𝑗𝑘(𝐝

𝑡) Quantity of the product 𝑖 from the DC 𝑗 fulfilled to satisfy the online demand zone 𝑘 at the end of period 𝑡

𝑧𝑖𝑡𝑘 (𝐝
𝑡) Lost sales of product 𝑖 for the demand type 𝑘 at the end of period 𝑡
26
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(PDET)

min
∑

𝑖∈

∑

𝑡∈

⎛

⎜

⎜

⎝

∑

𝑗∈
𝑆 𝑖𝑡𝑗 𝛿

𝑖𝑡
𝑗 +

∑

𝑗∈
𝑜𝑐𝑡𝑖𝑗𝑞

𝑖𝑡
𝑗 +

∑

𝑗∈
𝑙ℎ𝑖𝑡𝑗 𝑥

𝑖,𝑡+1
𝑗 +

∑

𝑘∈𝑂

𝑜ℎ𝑖𝑡𝑘𝑦
𝑖,𝑡+1
𝑘 +

∑

𝑘∈
𝑝𝑖𝑡𝑘𝑧

𝑖𝑡
𝑘 +

∑

𝑘∈𝑂

∑

𝑘′∈𝐷

𝑜𝑓 𝑖𝑡𝑘𝑘′𝑔
𝑖𝑡
𝑘𝑘′ (A.1)

+
∑

𝑗∈𝐷

∑

𝑗′∈𝐷

𝑡𝑐𝑖𝑡𝑗𝑗′𝑢
𝑖𝑡
𝑗𝑗′ +

∑

𝑗∈𝐷

∑

𝑘∈𝑂

𝑎𝑐𝑖𝑡𝑗𝑘𝑣
𝑖𝑡
𝑗𝑘 +

∑

𝑗∈𝐷

∑

𝑘∈𝐷

𝑒𝑓 𝑖𝑡𝑗𝑘𝑟
𝑖𝑡
𝑗𝑘 +

∑

𝑘∈𝑂

𝑏𝑓 𝑖𝑡𝑘 𝜌
𝑖𝑡
𝑘 +

∑

𝑗∈𝐹

𝑎𝑓 𝑖𝑡𝑗 𝜂
𝑖𝑡
𝑗

⎞

⎟

⎟

⎠

s.t. 𝑞𝑖𝑡𝑗 ≤ 𝑞𝑖𝑗𝛿
𝑖𝑡
𝑗 , ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  (A.2)

∑

𝑗∈
𝑞𝑖𝑡𝑗 ≤ 𝑠𝑖𝑡, ∀𝑖 ∈ , 𝑡 ∈  (A.3)

∑

𝑖∈

(

𝑥𝑖𝑡𝑗 + 𝑞
𝑖,𝑡−𝐿𝑖𝑗
𝑗

)

≤ 𝑥̄𝑗 , ∀𝑗 ∈ 𝐹 , 𝑡 ∈  (A.4)

∑

𝑖∈

⎛

⎜

⎜

⎝

𝑥𝑖𝑡𝑗 + 𝑞
𝑖,𝑡−𝐿𝑖𝑗
𝑗 +

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗′𝑗 −

∑

𝑘∈𝑂

𝑣𝑖𝑡𝑗𝑘 −
∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′

⎞

⎟

⎟

⎠

≤ 𝑥̄𝑗 , ∀𝑗 ∈ 𝐷, 𝑡 ∈  (A.5)

𝑥𝑖𝑡𝑗 + 𝑞
𝑖,𝑡−𝐿𝑖𝑗
𝑗 ≥

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′ , ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  (A.6)

∑

𝑖∈

(

𝑦𝑖𝑡𝑘 +
∑

𝑗∈𝐷

𝑣𝑖𝑡𝑗𝑘

)

≤ 𝑦̄𝑘, ∀𝑘 ∈ 𝑂 , 𝑡 ∈  (A.7)

∑

𝑗∈𝐷

𝑟𝑖𝑡𝑗𝑘 +
∑

𝑘′∈𝑂

𝑔𝑖𝑡𝑘′𝑘 + 𝑧
𝑖𝑡
𝑘 = 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝐷 (A.8)

𝜌𝑖𝑡𝑘 + 𝑧𝑖𝑡𝑘 = 𝑑𝑖𝑡𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , 𝑘 ∈ 𝑂 (A.9)
∑

𝑗∈𝐹

𝜂𝑖𝑡𝑗 + 𝑧𝑖𝑡𝐾+1 = 𝑑𝑖𝑡𝐾+1, ∀𝑖 ∈ , 𝑡 ∈  (A.10)

𝑥𝑖,𝑡+1𝑗 = 𝑥𝑖𝑡𝑗 + 𝑞
𝑖,𝑡−𝐿𝑖𝑗
𝑗 +

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗′𝑗 −

∑

𝑗′∈𝐷∖{𝑗}
𝑢𝑖𝑡𝑗𝑗′ −

∑

𝑘∈𝑂

𝑣𝑖𝑡𝑗𝑘 −
∑

𝑘∈𝐷

𝑟𝑖𝑡𝑗𝑘, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑡 ∈  (A.11)

𝑥𝑖,𝑡+1𝑗 = 𝑥𝑖𝑡𝑗 + 𝑞
𝑖,𝑡−𝐿𝑖𝑗
𝑗 − 𝜂𝑖𝑡𝑗 , ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  (A.12)

𝑦𝑖,𝑡+1𝑘 = 𝑦𝑖𝑡𝑘 +
∑

𝑗∈𝐷

𝑣𝑖𝑡𝑗𝑘 −
∑

𝑘′∈𝐷

𝑔𝑖𝑡𝑘𝑘′ − 𝜌
𝑖𝑡
𝑘 , ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  (A.13)

𝑞𝑖𝑡𝑗 ≥ 0, 𝛿𝑖𝑡𝑗 ∈ {0, 1} , ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  (A.14)

𝑥𝑖𝑡𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈  , 𝑡 ∈  + (A.15)

𝑦𝑖𝑡𝑘 ≥ 0, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  + (A.16)

𝑢𝑖𝑡𝑗𝑗′ ≥ 0, ∀𝑗 ∈ 𝐷, 𝑗′ ∈ 𝐷, 𝑖 ∈ , 𝑡 ∈  (A.17)

𝑣𝑖𝑡𝑗𝑘 ≥ 0, ∀𝑗 ∈ 𝐷, 𝑘 ∈ 𝑂 , 𝑖 ∈ , 𝑡 ∈  (A.18)

𝜌𝑖𝑡𝑘 ≥ 0, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑡 ∈  (A.19)

𝜂𝑖𝑡𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈ 𝐹 , 𝑡 ∈  (A.20)

𝑔𝑖𝑡𝑘𝑘′ ≥ 0, ∀𝑖 ∈ , 𝑘 ∈ 𝑂 , 𝑘
′ ∈ 𝐷, 𝑡 ∈  (A.21)

𝑟𝑖𝑡𝑗𝑘 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈ 𝐷, 𝑘 ∈ 𝐷, 𝑡 ∈  (A.22)

𝑧𝑖𝑡𝑘 ≥ 0, ∀𝑖 ∈ , 𝑘 ∈ , 𝑡 ∈  (A.23)

Appendix B. Parameter information

See Tables B.7 and B.8.

Appendix C. Detailed experimental results
27

See Tables C.9–C.13.
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Table B.7
Ranges of the parameters.
𝑆 𝑖𝑡𝑗 , 𝑗 ∈ 𝐷 𝑆 𝑖𝑡𝑗 , 𝑗 ∈ 𝐹 𝑙ℎ𝑖𝑡𝑗 , 𝑗 ∈ 𝐷 𝑙ℎ𝑖𝑡𝑗 , 𝑗 ∈ 𝐹 𝑜ℎ𝑖𝑡𝑘 𝑝𝑖𝑡𝑘 𝑎𝑓 𝑖𝑡𝑗 𝐿𝑖𝑗
 (50, 80)  (50 × 𝜆𝑠 , 80 × 𝜆𝑠)  (0.2, 0.5) 

(

0.2 × 𝜆ℎ , 0.5 × 𝜆ℎ
)

 (0.3, 0.6)  (60, 80)  (2, 3)  {0, 1}

Table B.8
Support set of each channel for product 𝑖 and period 𝑡.
Retailer’s offline channel (𝑑𝑖𝑡𝑘 , ∀𝑘 ∈ 𝐾𝑂) Retailer’s online channel (𝑑𝑖𝑡𝑘 , ∀𝑘 ∈ 𝐾𝐷) 3PP’s online channel (𝑑𝑖𝑡𝐾+1)
[

𝛼1
𝐾𝑂

×
∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 ,

𝛼1
𝐾𝑂

×
∑

𝑘∈ 𝑑
𝑖𝑡
𝑘

] [

𝛼2
𝐾𝐷

×
∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 ,

𝛼2
𝐾𝐷

×
∑

𝑘∈ 𝑑
𝑖𝑡
𝑘

] [

𝛼3 ×
∑

𝑘∈ 𝑑
𝑖𝑡
𝑘 , 𝛼3 ×

∑

𝑘∈ 𝑑
𝑖𝑡
𝑘

]

Table C.9
Experimental results on asymmetric demand distributions.

𝐵𝑒𝑡𝑎(2, 5) 𝐵𝑒𝑡𝑎(5, 2) 𝐵𝑒𝑡𝑎(1, 6) 𝐵𝑒𝑡𝑎(6, 1)

𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10 𝑇 = 4 𝑇 = 7 𝑇 = 10

DTPA LDR(×102) 43.34 114.93 152.14 50.77 92.81 143.59 50.44 75.05 128.33 55.26 95.04 150.38
SIM(×102) 43.32 114.91 152.24 50.86 92.80 143.64 50.48 75.04 128.17 55.29 95.04 150.42
Gap(%) 27.28 58.40 37.51 23.93 5.44 29.28 40.84 20.94 30.73 17.09 2.45 7.67
Std(×102) 0.74 5.03 4.38 1.25 0.39 1.78 3.31 0.47 3.62 0.60 0.28 0.84
CPU(s) 1.71 9.42 23.08 2.01 8.46 16.96 1.01 7.02 69.39 1.42 6.62 24.65

TPA LDR(×102) 40.62 89.09 127.44 44.32 92.13 116.18 47.16 75.05 125.53 49.04 94.80 142.86
SIM(×102) 40.62 89.09 127.41 44.33 92.13 116.17 47.16 75.04 125.68 49.04 94.80 142.86
Gap(%) 19.34 22.81 15.09 8.01 4.67 4.55 31.58 20.94 28.19 3.86 2.19 2.26
Std(×102) 0.24 0.05 0.84 0.24 0.39 0.38 0.65 0.47 2.32 0.17 0.30 0.36
CPU(s) 1.95 6.38 61.58 1.73 9.51 44.85 1.01 8.86 72.31 1.81 9.97 31.07
𝜙∗ 0.6 0.4 0.6 0.2∼0.6 0.0∼1.0 0.0∼0.2 0.6 1.0 0.6 0.0∼0.2 1.0 0.0∼0.4

DECOM LDR(×102) 41.09 84.27 126.36 44.35 91.79 116.18 46.43 74.49 116.72 49.04 94.81 143.09
SIM(×102) 41.09 84.27 126.34 44.36 91.79 116.17 46.44 74.48 116.73 49.04 94.81 143.09
Gap(%) 20.71 16.17 14.12 8.08 4.28 4.55 29.58 20.03 19.06 3.86 2.20 2.43
Std(×102) 0.23 0.41 0.67 0.24 0.43 0.38 0.73 0.45 0.54 0.17 0.28 0.35
CPU(s) 1.25 5.90 15.57 1.18 6.53 11.04 1.63 4.33 13.82 1.17 5.51 16.32
𝜙∗ 0.6∼0.8 0.6∼1.0 0.8 0.0∼0.6 0.0 0.0∼0.8 0.8 0.8 0.8 0.0∼0.4 0.0∼0.8 0.0∼0.8

EVPI (×102) 34.04 72.54 110.71 41.04 88.02 111.11 35.84 62.05 98.04 47.22 92.77 139.71

Table C.10
Values of 𝒘 obtained from 𝑊 P𝜈(1).

𝐵𝑒𝑡𝑎(0.3, 0.3)

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10

𝑤𝑖𝑡 𝑖 = 1 0.67 1.00 0.25 1.00 1.00 0.50 1.00 0.50 1.00 1.00
𝑖 = 2 0.67 1.00 0.00 1.00 1.00 1.00 0.25 1.00 1.00 0.00
𝑖 = 3 0.75 0.31 1.00 1.00 0.25 1.00 1.00 0.50 1.00 1.00

𝐵𝑒𝑡𝑎(1, 1)

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10

𝑤𝑖𝑡 𝑖 = 1 0.67 1.00 0.00 1.00 1.00 1.00 0.25 1.00 1.00 0.00
𝑖 = 2 1.00 0.56 0.50 1.00 1.00 0.25 1.00 1.00 0.50 1.00
𝑖 = 3 1.00 0.81 0.75 0.25 1.00 0.00 1.00 1.00 1.00 1.00

𝐵𝑒𝑡𝑎(4, 4)

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10

𝑤𝑖𝑡 𝑖 = 1 0.46 1.00 1.00 0.50 1.00 0.00 1.00 1.00 1.00 0.75
𝑖 = 2 0.92 0.00 1.00 1.00 1.00 0.50 1.00 0.50 1.00 0.00
𝑖 = 3 0.56 1.00 0.00 1.00 1.00 1.00 0.75 0.50 1.00 0.00
28
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Table C.11
Experimental results on large-scale problems.

Set size 𝑀
(

= || , |
|

𝐷|| , ||𝐹 ||
)

𝑀 = 3 𝑀 = 4 𝑀 = 5 𝑀 = 6 𝑀 = 7 𝑀 = 8 𝑀 = 9 𝑀 = 10

DTPA LDR(×102) 121.14 125.21 133.91 168.23 190.42 248.98 246.12 282.11
SIM(×102) 121.58 124.94 133.89 168.26 190.35 248.84 245.55 282.00
Gap(%) 41.27 37.90 11.52 10.59 19.84 25.21 18.98 26.64
Std(×102) 6.79 4.76 2.09 1.19 4.48 7.76 6.52 5.28
CPU(s) 56.90 108.95 400.43 4057.07 3922.53 4210.85 4796.60 5235.13

TPA LDR(×102) 93.75 98.79 131.15 165.88 171.94 218.30 226.32 245.68
SIM(×102) 93.79 98.81 131.15 165.91 171.89 218.34 226.22 245.69
Gap(%) 8.98 9.06 9.24 9.04 8.22 9.87 9.61 10.33
Std(×102) 0.79 0.69 0.78 0.87 0.93 1.07 1.11 1.05
CPU(s) 68.05 3782.58 7615.99 11,217.25 7852.77 11,326.39 11,926.40 12,245.01

DECOM LDR(×102) 93.38 98.39 130.36 164.17 170.68 214.09 222.14 240.00
SIM(×102) 93.43 98.40 130.34 164.20 170.65 214.12 222.04 240.00
Gap(%) 8.56 8.61 8.56 7.91 7.44 7.75 7.59 7.78
Std(×102) 0.79 0.69 0.77 0.88 0.93 1.08 1.12 1.06
CPU(s) 39.82 162.85 353.33 7494.96 4159.56 11,183.06 11,410.72 11,693.43

EVPI (×102) 86.06 90.60 120.06 152.16 158.83 198.73 206.38 222.69

Table C.12
Experimental results on different combinations of product numbers.

𝑇 = 4 𝑇 = 7

𝐼 = 50 𝐼 = 100 𝐼 = 200 𝐼 = 50 𝐼 = 100 𝐼 = 200

DTPA LDR(×102) 1029.74 2458.36 3996.06 1782.72 3452.43 7351.93
SIM(×102) 1030.46 2456.20 3993.89 1783.23 3453.15 7350.41
Gap(%) 45.49 35.99 43.83 35.21 27.95 35.48
Std(×102) 18.08 26.00 38.25 21.83 27.29 43.13
CPU(s) 117.33 3726.66 4813.41 408.05 1104.82 5449.16

TPA LDR(×102) 793.25 1995.45 3116.34 1454.29 2977.03 6040.39
SIM(×102) 793.39 1995.36 3116.24 1454.54 2977.18 6040.43
Gap(%) 12.02 10.48 12.23 10.29 10.31 11.33
Std(×102) 0.88 3.27 4.49 3.21 4.82 6.33
CPU(s) 3718.07 3789.26 5146.47 3991.88 4490.21 12,694.83

DECOM LDR(×102) 787.80 1987.14 3089.80 1432.64 2943.06 5893.83
SIM(×102) 787.93 1987.09 3089.48 1432.79 2943.08 5893.97
Gap(%) 11.25 10.02 11.26 8.64 9.05 8.63
Std(×102) 1.89 3.13 4.14 3.06 4.13 5.88
CPU(s) 3675.77 3670.18 3742.76 3977.86 3910.71 8299.79

EVPI (×102) 708.25 1806.11 2776.75 1318.86 2698.88 5425.50

Table C.13
Experimental results on different production capacities.

Production capacity 𝑠𝑖𝑡 (𝜉)

𝜉 = 0.0 𝜉 = 0.1 𝜉 = 0.2 𝜉 = 0.3 𝜉 = 0.4 𝜉 = 0.5 𝜉 = 0.6 𝜉 = 0.7 𝜉 = 0.8 𝜉 = 0.9

TPA LDR(×102) 128.18 129.93 130.13 130.06 130.15 131.04 132.49 132.18 133.25 138.08
SIM(×102) 128.16 129.92 130.11 130.05 130.14 131.02 132.46 132.16 133.23 138.05
Gap(%) 7.77 8.48 8.45 8.18 8.00 7.62 7.64 6.87 6.29 5.92
Std(×102) 0.85 0.88 0.92 0.83 0.86 0.90 0.91 0.92 0.96 1.25
CPU(s) 10,854.03 11,016.63 10,987.28 1658.89 10,892.53 10,975.34 11,034.56 10,918.95 10,852.73 14,443.41

DECOM LDR(×102) 128.56 129.12 129.44 129.86 129.73 130.49 131.26 131.82 132.12 137.09
SIM(×102) 128.55 129.11 129.43 129.84 129.72 130.48 131.24 131.79 132.09 137.06
Gap(%) 8.09 7.80 7.89 8.01 7.65 7.18 6.65 6.58 5.38 5.16
Std(×102) 0.81 0.85 0.86 0.86 0.86 0.92 0.92 0.92 0.97 1.03
CPU(s) 117.92 211.76 154.26 56.94 59.26 145.09 225.84 94.51 39.34 3617.10

EVPI (×102) 118.92 119.77 119.96 120.21 120.50 121.73 123.05 123.66 125.35 130.34

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.tre.2024.103466.
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