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Abstract
Multi-agent systems are generally applicable in various fields and aim to coor-
dinate the decisions from agents, each of which makes a local decision. In
particular, research on operations management with mobile multi-agents such
as drones has gained prominence in recent years. In this article, we present
a mobile multi-agent sensing problem, which is formulated as a submodu-
lar maximization problem under a partition matroid constraint. When events
detected by agents lead to severe and catastrophic consequences, obtaining
(near)-optimal solutions by using exact algorithms is crucial to reducing the
probability of harmful situations. Therefore, in this article we propose an
exact solution approach, using two valid inequalities for our problem to find
a (near)-optimal solution. Moreover, we deal with the risk-averse decision
and its cutting-plane algorithm for our problem, which is to maximize condi-
tional value-at-risk (CVaR). Finally, we show the performance of our algorithms
through numerical experiments, including a case study on forest fires.
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1 INTRODUCTION

A multi-agent system refers to the computerized system composed of multiple interacting intelligent agents and is known
as a suitable tool for data processing, data control, and data expertise. The objective of the system is to coordinate the
decisions from all agents, which each makes a local decision, in order to optimize the sum of the agents’ local objec-
tive function.1-3 These systems are generally applicable in various fields, such as air traffic management,4 transportation
systems,5,6 and structural health monitoring.7 Recently, the systems have been expanded to cover sensing problems,
especially in sensor fault estimation,8 remote-sensing images,9 detection of forest fires,10,11 and energy management.12

If agents in a system are movable, we have to consider the system as a mobile multi-agent system. Mobile multi-agents
that can move and interact with each other are widely applicable in diverse domains, such as traffic control and man-
agement systems,13 the NASA sensor web,14 and collision avoidance.15 When it comes to the mobile multi-agent system,
there has been interest in designing a practical model with mobile agents and enhancing the flexibility of the model. Chen
et al. proposed a mobile multi-agent system that improves the flexibility and adaptability of large traffic management sys-
tems through simulation results.13 Pavone et al. studied a dynamic vehicle routing system for mobile robotic networks
and wireless ad hoc networks in mobile multi-agent systems.16 Su et al. presented a second-order consensus problem
with mobile multi-agents that have a characteristic of nonlinear dynamics.17 Gu et al. considered a cooperative detection
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problem in mobile multi-agent networks.18 They emphasized the importance of introducing mobile multi-agents in the
problem because they enhance flexibility and accessibility in large networks.

This study focuses on a sensing problem by utilizing mobile multi-agents as sensors. If agents are movable, then
effective and efficient operations management would be possible in terms of event detection, sensing, and monitoring.18-20

The characteristics of the sensor as a mobile agent are classified into two types: deterministic sensing characteristics and
probabilistic sensing characteristics.21 Between the two types, the probabilistic sensing model has been used more in
research on mobile multi-agent systems.19,22 This model is more reasonable because the sensing probability distribution
is determined according to the distance between the agent and the target. Our model also reflects the realistic situation
by exploiting the Elfes sensing model, which is known as one of the probabilistic sensing models and has widely been
applied in recent research.23,24

Using a given set of mobile multi-agents, we present a problem in which the objective is to maximize the sum of
detection probabilities from the nodes in one period. It is assumed that the probability of event occurrence at each node is
not constant and changes irregularly, regardless of periods. This feature can be applied in detecting forest fires, uncertain
traffic incidents, or oil spillage in a large area.13,25,26 Agents execute an event detection task at a point and then move to
another point based on current probabilities of event occurrence at nodes. It is more likely to get solutions that have more
prediction accuracy when the solutions are obtained by utilizing immediately updated probabilities, not those in the old
times. For this reason, the agents repeat the process in which the problem is solved given the changeable probabilities in
every period.

The sum of detection probabilities, the objective function of our problem, has the properties of monotone increas-
ing and submodular. A feature of submodularity refers to the marginal gain diminishing. Sensing problems with these
properties have been studied in various research fields.27-30 Shamaiah et al. presented a sensor selection problem in
resource-constrained sensor networks. They covered the problem as the maximization of a submodular function over
uniform matroids represented as selecting a subset of the given sensors.30 Jawaid and Smith considered a sensor schedul-
ing problem to minimize the estimation error at a terminal time under linear dynamical systems.28 Sun et al. studied
a coverage problem with stationary multi-agents to maximize a joint event detection probability, which is submodular
under a uniform matroid.31 Contrary to these studies, this article expands to a sensing problem under a partition matroid
because it is appropriate for using mobile multi-agent systems. That is, each movable agent has to choose only one posi-
tion (strategy) among all positions available. The problem is known to be NP-hard.32,33 Effective and efficient solution
methodologies are needed to solve the sensing problem.

There has been previous literature on presenting approximation algorithms to deal with the sensing problems inher-
ent in submodularity. Approximation ratios that compare solutions obtained by algorithms with optimal solutions are
generally adopted to measure performance.34 Previous literature has presented algorithms based on the greedy approach
by using the concept of an approximation ratio.35-37 Shamaiah et al. presented a sensor selection problem under uniform
matroids and proved that a greedy sensor selection algorithm achieved performance within 1 − 1

e
of the optimal solution.30

Moreover, instance-dependent guarantees of the greedy-type algorithm have been presented in the sensing problems with
submodularity.20,38-40 (Instance-dependent guarantees are guarantees in which the approximation ratio is dependent on
the instances.) However, when events detected by multi-agents lead to severe or catastrophic consequences, obtaining
(near)-optimal solutions by using exact algorithms might be more critical to reducing the probability of harmful situations.

In this article, we design an exact algorithm for the mobile multi-agent sensing problem to find a (near)-optimal solu-
tion. There have not been many studies on exact algorithms to obtain (near)-optimal solution for sensing problems with
submodularity. Nemhauser and Wolsey and Ko et al. presented branch-and-bound algorithms for maximizing a submodu-
lar set function under a uniform matroid.41,42 Ko et al. showed the computational results through numerical experiments,
but only analyzed the problem situation in which the number of decision variables is less than 40.42 Paulson and Mesbah
used the sample average approximation for stochastic optimal control with joint chance constraints.43 Kawahara et al.
presented a cutting-plane algorithm for the sensor placement problem.44 The objective was to maximize a submodular set
function under a cardinality constraint, which is identical to a uniform matroid. However, little research has been con-
ducted to design an exact algorithm that considers a partition matroid constraint. Numerous decision variables are likely
to be needed to formulate the problem with a partition matroid constraint, and the number of feasible solutions becomes
enormous. For these reasons, it is important to present an exact algorithm in terms of efficiency. This article introduces
a cutting-plane algorithm using two valid inequalities to solve the problem. We derive two valid inequalities (optimality
cuts), which are based on the propositions of Nemhauser et al.,33 to achieve feasibility and to find a (near)-optimal solu-
tion efficiently. In our algorithm, we add these valid inequalities in every iteration. We also present how effective these
valid inequalities are through numerical experiments.
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Moreover, in practice, there is a possibility of failure in sensing targets, due to errors or problems with sensors. Our
model also attempts to solve the mobile multi-agent sensing problem by considering such uncertain situations. Previous
literature reflected uncertainty in problems by introducing an expected value of the objective function with a random
variable.45,46 If the data were uncertain and of high variability, the solution obtained by the expected function might lead
to a poor performance with a high probability.46 In this article, we also deal with the mobile multi-agent sensing problem
with a risk-averse measure. We use conditional value-at-risk (CVaR), which is known as a popular risk-averse measure
and defined as the expectation of the worst 𝛼-tail scenarios.47

To deal with uncertain situations, there has been research on maximizing CVaR in sensing problems. Maehara showed
that CVaR is not necessarily submodular even if the objective function is monotone submodular.45 An auxiliary function
is introduced to make the function submodular and shows the equivalent results when optimizing the function and
CVaR. Zhou and Tokekar considered that there is uncertainty in the value of the objective function because sensors
might fail.47 They proposed a sequential greedy algorithm for the sensing problems using CVaR. Wu et al. studied a set
covering problem in which the objective was to maximize CVaR, which is equivalent to maximizing a submodular set
function under a uniform matroid.48 Contrary to the previous research, we cover a risk-averse problem for maximizing a
submodular set function under a partition matroid. The problem under a partition matroid tends to have a greater number
of decision variables than a uniform matroid has. For convergence, we propose a two-stage stochastic programming model
based on a sample average approximation. We also present a cutting-plane algorithm for the mobile multi-agent sensing
problem considering the risk-averse measure. Similar to the mobile multi-agent sensing problem without uncertain data,
we derive two valid inequalities and present the effectiveness of these valid inequalities through numerical experiments.

Our goal in this article is to mathematically present a mobile multi-agent sensing problem to maximize the
sum of detection probabilities from the nodes in one period. The problem is NP-hard because it is represented as a
submodular maximization problem under a partition matroid constraint. To cope with the difficulty, we design an
exact solution approach, using two valid inequalities, to find a (near)-optimal solution efficiently. Another contribu-
tion of the article is to deal with the risk-averse decision and its exact algorithm for the problem under uncertain
situations (errors with sensors). We show the validity and excellence of the solution approaches theoretically and
experimentally.

The remainder of the article is organized as follows. Section 2 defines the mobile multi-agent sensing problem and
shows that the problem is formulated as a submodular maximization problem under a partition matroid constraint. In
Section 3, we present a cutting-plane algorithm using two valid inequalities to find a (near)-optimal solution efficiently.
Section 4 covers the risk-averse problem by using CVaR. We present a cutting-plane algorithm using two valid inequalities
to find effective risk-averse solutions. Section 5 provides numerical experiments with algorithms for the two problems
(without and with uncertainty). We analyze the performance of the algorithms by considering three methods of choosing
initial solutions. A case study is also conducted, based on the detection of forest fires, to show the validity and applicability
of the algorithms. We conclude the article in Section 6.

2 PROBLEM STATEMENT

In this section, a mobile multi-agent sensing problem is defined. Table 1 shows the notations of the problem.
Let X = {1, 2, … ,N} be a set of agents, and Y = {1, 2, … ,M} be a set of nodes. Each agent is movable on a given

spaceΩ ⊂ R2 and it can monitor a set of nodes whose positions are fixed. We then decide the next locations of the agents
based on the current locations of the agents. The agent can move to li during a unit period. This means that the dis-
tance between cli and li is less than or equal to Li. In other words, we define i as {(i, li)|||li − cli|| ≤ Li} in a period. Let
 = 1 ∪ 2 ∪ · · · ∪ N . We simplified the Elfes sensing model into a suitable form and used it as a sensing technique.23

If ||li − oj|| ≤ 𝛿i, p(s, j) becomes exp
(
−𝜆i||li − oj||

)
; otherwise, p(s, j) becomes 0. When it comes to the probability from

each node, we calculate Pj
(

)

as 1 −
∏

s∈ (1 − p(s, j)). It is assumed that the detection probabilities of different agents are
independent.

The mobile multi-agent sensing problem is expressed as follows:

max


∑

j∈Y
Ej × Pj(), (1)

subject to | ∩ i| ≤ 1,∀i ∈ X , (2)
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10408 KIM et al.

T A B L E 1 Notations

Notations Definitions

i Index of agent (i ∈ X)

j Index of node (j ∈ Y )

oj Position of node j (oj ∈ Ω)

cli Current location of agent i

Li Maximum distance for agent i in one period

Si Set of strategies for agent i

𝛿i Bounded sensing radius of agent i

𝜆i Sensing decay factor of agent i

p(s, j) Probability that agent i detects an event occurrence at node j under a strategy s = (i, li)

Pj() Joint probability of node j under a strategy set (⊆ )

Ej Probability of event occurrence in node j

where node j has the probability of event occurrences Ej. We show that the problem is a submodular maximization
problem under a partition matroid constraint. First, Constraint (2) is represented as a condition for partition matroid.33

When we choose a strategy set that includes, at most, one strategy from each disjoint set 1,2, … ,N , it satisfies fea-
sibility. Second, the objective function in this problem is a monotone increasing and submodular set function, which is
shown in Theorem 1.

Theorem 1. The objective function (1) is a monotone increasing and submodular set function.

Proof. First of all, Given a ground set S, a set function f ∶ 2S → R is defined to be monotone (increasing) if for any A ⊂

B ⊆ S, f (A) ≤ f (B), and submodular if for any A ⊂ B ⊆ S and s ∉ B, f (B ∪ {s}) − f (B) ≤ f (A ∪ {s}) − f (A).
Consider two strategy sets 1 and 2 such that 1 ⊆ 2 ⊆  . We know that Pj(1) ≤ Pj(2) ∀j ∈ Y by the definition

of Pj. We have
∑

j∈Y Ej × Pj(1) ≤
∑

j∈Y Ej × Pj(2). It means that the objective function is monotone increasing. For s ∈ 
and s ∉ 2,

∑

j∈Y
Ej × Pj

(
1 ∪ {s}

)
=
∑

j∈Y
Ej ×

(

1 −
∏

k∈1∪{s}

(
1 − p(k, j)

)
)

=
∑

j∈Y
Ej ×

(

1 −
(
1 − p(s, j)

)∏

k∈1

(
1 − p(k, j)

)
)

=
∑

j∈Y
Ej ×

(

1 −
∏

k∈1

(1 − p(k, j))
)

+
∑

j∈Y
Ej × p(s, j) ×

∏

k∈1

(1 − p(k, j))

=
∑

j∈Y
Ej × Pj

(
1

)
+
∑

j∈Y
Ej × p(s, j) ×

∏

k∈1

(
1 − p(k, j)

)
.

Above the equations, we know that
∑

j∈Y Ej × Pj
(
1 ∪ {s}

)
−
∑

j∈Y Ej × Pj
(
1

)
becomes

∑
j∈Y Ej × p(s, j) ×

∏
k∈1

(1 −
p(k, j)). In a similar way,

∑
j∈Y Ej × Pj

(
2 ∪ {s}

)
−
∑

j∈Y Ej × Pj
(
2

)
becomes

∑
j∈Y Ej × p(s, j) ×

∏
k∈2

(1 − p(k, j)). We
know that Pj

(
1

)
≤ Pj

(
2

)
∀j ∈ Y . It means that 1 − Pj

(
1) ≥ 1 − Pj

(
2

)
∀j ∈ Y , which is equal to

∏
k∈1

(1 − p(k, j)) ≥
∏

k∈2
(1 − p(k, j)) ∀j ∈ Y . Therefore,

∑
j∈Y Ej × Pj

(
1 ∪ {s}) −

∑
j∈Y Ej × Pj

(
1

)
≥
∑

j∈Y Ej × Pj
(
2 ∪ {s}

)
−
∑

j∈Y Ej ×
Pj
(
2

)
. The objective function is submodular set function. ▪

Submodularity has a feature of the marginal gain diminishing. That is, as the number of agents monitoring a spe-
cific node increases, the marginal gain of the joint probability from the node decreases. It is important to appropriately
allocate the agents to a given space to satisfy the objective of the problem. In addition, the mathematical problem is
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KIM et al. 10409

represented as a submodular maximization problem under a partition matroid constraint, which is known to be NP-hard
in general.32,33 This means that the optimal solution can be intractable to obtain within a reasonable time. Solution
methodologies to find high-quality solutions should be designed. Therefore, we present an exact solution approach, which
is a cutting-plane algorithm with valid inequalities, to solve the problem in Sections 3 and 4. In Section 3, we deal with the
mobile multi-agent sensing problem in which the objective value is deterministic. In Section 4, we cover the risk-averse
problem by using CVaR.

3 ALGORITHM FOR THE DETERMINISTIC PROBLEM

In this section, we design a cutting-plane algorithm as an exact solution approach to the mobile multi-agent sensing
problem. A cutting-plane algorithm is one of the optimization methods used to efficiently find a (near)-optimal solution by
using valid inequalities (optimality cuts). We derive two types of valid inequalities based on the propositions of Nemhauser
et al.,33 which are used to refine the feasible solution set and achieve optimality. Algorithm 1 shows a general procedure
of applying a cutting-plane algorithm to an optimization problem (max{f (z) ∶ z ∈ Z}).

Before conducting the algorithm, a relaxed problem (max{g(𝜎) ∶ z ∈ }), which is a relaxed version of the
original problem, has to be defined. In the first iteration, an optimal solution, z, and an optimal objective value
are obtained after solving the relaxed problem. The optimal objective value is probably infinity because the first
iteration proceeds without constraints that are related to 𝜎. Then, valid inequalities consisting of z and 𝜎 are
added to the relaxed problem as constraints. Valid inequalities have to be designed to separate an incumbent
solution from the feasible region. Therefore, the generated inequalities lead to reducing a feasible region of 𝜎 in
the relaxed problem. The algorithm iteratively refines the region until the optimality gap is below 𝜖 (optimality
tolerance).

Algorithm 1. Cutting-plane algorithm

1: set  (set of valid inequalities) ← ∅, UB (upper bound) ← ∞, LB (lower bound) ← −∞
2: while 1 − LB

UB
≥ 𝜖 do

3: Solve a relaxed problem (max{g(𝜎) ∶ z ∈ });
4: Obtain an optimal solution z;
5: UB ← optimal objective value of the relaxed problem;
6: Add valid inequalities (optimality cuts) to  based on z;
7: if LB ≤ f (z) then
8: LB ← f (z);
9: end if

10: end while

In the mobile multi-agent sensing problem, a feasible set  has to satisfy the constraint | ∩ i| ≤ 1 for all i ∈ X . We
know that agent i has |i| strategies. To express a form of integer programming according to the relaxed problem, we
introduce a binary decision variable, xit. If agent i selects tth strategy, xit = 1; otherwise 0. Using the binary decision vari-
ables,  is represented as a vector of

∑
i∈X |i| binary decision variables (x11, x12, … , x1|1|, … , xN1, xN2, … , xN|N |). The

constraint | ∩ i| ≤ 1 for all i ∈ X is equal to
∑|i|

t=1xit ≤ 1 for all i ∈ X . Because the problem is a maximization problem
and the objective function is monotone increasing, we use

∑|i|

t=1xit = 1 for all i ∈ X instead of
∑|i|

t=1xit ≤ 1 for all i ∈ X . For
the sake of simplicity, we use fj

(

)
∶= Ej × Pj() ∀j ∈ Y and f

(

)
∶=

∑N
j=1fj

(

)
. We define 𝜌k

(

)

as f
(
 ∪ {k}

)
− f ().

For a given  , let qi be the value of t such that xit = 1 for agent i.  i denotes the strategy set of agent i ( i = {(i, qi)}).
 = 1 ∪ 2 ∪ · · · ∪ N is defined as the strategy set of all agents.

We present a relaxed master problem (MP1) for using a cutting-plane algorithm as follows:

[MP1] max 𝜎 (3)

s.t.
|i|∑

t=1
xit = 1 ∀i ∈ X (4)
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10410 KIM et al.

( , 𝜎) ∈  (5)

xit ∈ {0, 1} ∀i, t & 𝜎 ∈ R (6)

where 𝜎 is the optimal objective value of MP1, which results in an upper bound of the mobile multi-agent sensing problem
for an incumbent solution  . In the beginning,  is an empty set and MP1 has a partition matroid constraint only.
A feasible solution,  , is obtained at each iteration, then valid inequalities using  are added to MP1 as constraints.
Given  , the objective value of (1), which is equivalent to f (), becomes a lower bound. Constraint (4) is equivalent to a
partition matroid constraint. In Constraint (5),  means a set of valid inequalities. The generated inequalities lead to
reducing the feasible region in MP1.

For a given set  , we propose two valid inequalities (optimality cuts) related to 𝜎 as follows:

𝜎 ≤ f
(

)
+

N∑

i=1
𝜌ai

(

)
× (1 − xiqi)

(ai = argmax
a

𝜌a
(

)

such that a ∈ i ∀i ∈ X) (7)

𝜎 ≤ f () +
N∑

i=1
𝜌bi(∅) × (1 − xiqi) −

N∑

i=1
𝜌
 i

(
 ⧵  i

)
× (1 − xiqi )

(bi = argmax
b

𝜌b(∅) such that b ∈ i ∀i ∈ X) (8)

Theorem 2. For a given feasible set  , Inequality (7) is valid for MP1.

Proof. Consider two feasible sets 
A

and 
B
. Proposition 2.1.(v) of Nemhauser et al. shows that f is submodular if and

only if f
(


B)
≤ f

(


A)
+
∑

a∈
B
⧵

A 𝜌a
(


A)
.33 We show that Inequality (7) is valid for MP1 by using Proposition 2.1.(v) of

Nemhauser et al.33

We assume that there is an arbitrary feasible solution (̂ , �̂�) for MP1. We know that �̂� ≤ f (̂) satisfies a feasibility
condition for MP1.

�̂� ≤ f (̂)

≤ f () +
∑

a∈̂⧵

𝜌a
(

)

(9)

= f () +
N∑

i=1

∑

a∈̂ i⧵ i

𝜌a
(

)

= f () +
N∑

i=1

∑

a∈̂ i⧵ i

𝜌a
(

)
×

(
|i|∑

t=1
xit − xiqi

)

≤ f () +
N∑

i=1
𝜌ai

(

)
×

(
|i|∑

t=1
xit − xiqi

)

= f () +
N∑

i=1
𝜌ai

(

)
× (1 − xiqi ). (10)

Inequality (9) is due to Proposition 2.1. (v) of Nemhauser et al.33 The first equality in Inequality (9) follows from
̂ ⧵ =

⋃N
i=1

(
̂i ⧵ i

)
. In the second equality, if ̂i ≠ i for some i, xiqi becomes 0. We know

∑|i|

t=1xit = 1, therefore, the
equality is satisfied. Inequality (10) follows from the definition of ai. Therefore, Inequality (7) becomes an optimality cut
for MP1 when a feasible set  is given. ▪

Theorem 3. For a given feasible set  , Inequality (8) is valid for MP1.

Proof. Consider two feasible sets 
A

and 
B
. Proposition 2.1(vii) of Nemhauser et al. shows that f is submodular if and

only if f
(


B)
≤ f

(


A)
+
∑

b∈
B
⧵

A 𝜌b
(


A
∩ 

B)
−
∑

b∈
A
⧵

B 𝜌b
(


A
⧵ {b}

)
.33 We show that Inequality (8) is valid for MP1

by using Proposition 2.1.(vii) of Nemhauser et al.33
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KIM et al. 10411

We assume that there is an arbitrary feasible solution (̂ , �̂�) for MP1. We know that �̂� ≤ f (̂) satisfies a feasibility
condition for MP1.

�̂� ≤ f (̂)

≤ f
(

)
+

∑

b∈̂⧵

𝜌b
(
 ∩ ̂

)
−

∑

b∈⧵̂

𝜌b
(
 ⧵ {b}

)
(11)

≤ f
(

)
+

∑

b∈̂⧵

𝜌b(∅) −
∑

b∈⧵̂

𝜌b
(
 ⧵ {b}

)
(12)

= f
(

)
+

N∑

i=1

∑

b∈̂ i⧵ i

𝜌b(∅) −
⎛
⎜
⎜
⎝

N∑

i=1

∑

b∈ i

𝜌b
(
 ⧵ {b}

)
−

N∑

i=1

∑

b∈ i∩̂ i

𝜌b
(
 ⧵ {b}

)⎞
⎟
⎟
⎠

= f
(

)
+

N∑

i=1

∑

b∈̂ i⧵ i

𝜌b(∅) ×

(
|i|∑

t=1
xit − xiqi

)

−
⎛
⎜
⎜
⎝

N∑

i=1

∑

b∈ i

𝜌b
(
 ⧵ {b}

)
−

N∑

i=1

∑

b∈ i∩̂ i

𝜌b
(
 ⧵ {b}

)
× xiqi

⎞
⎟
⎟
⎠

≤ f
(

)
+

N∑

i=1
𝜌bi(∅) × (1 − xiqi)

−
⎛
⎜
⎜
⎝

N∑

i=1

∑

b∈ i

𝜌b
(
 ⧵ {b}

)
−

N∑

i=1

∑

b∈ i∩̂ i

𝜌b
(
 ⧵ {b}

)
× xiqi

⎞
⎟
⎟
⎠

(13)

≤ f
(

)
+

N∑

i=1
𝜌bi(∅) × (1 − xiqi )

−
⎛
⎜
⎜
⎝

N∑

i=1

∑

b∈ i

𝜌b
(
 ⧵ {b}

)
−

N∑

i=1

∑

b∈ i

𝜌b
(
 ⧵ {b}

)
× xiqi

⎞
⎟
⎟
⎠

= f
(

)
+

N∑

i=1
𝜌bi(∅) × (1 − xiqi ) −

N∑

i=1
𝜌
 i

(
 ⧵  i

)
× (1 − xiqi). (14)

Inequality (11) is due to Proposition 2.1.(vii) of Nemhauser et al.33 Inequality (12) follows from the submodularity of f . The
first equality in Inequality (12) follows from ̂ ⧵ =

⋃N
i=1

(
̂i ⧵ i

)
and ̂i ⧵ i = ̂i −

(
̂i ∩ i

)
. In the second equality, if

̂i ≠ i for some i, xiqi becomes 0. We know
∑|i|

t=1xit = 1, therefore, the equality is satisfied. Inequality (13) follows from
the definition of bi. Inequality (14) is due to  i ∩ ̂ i ⊆  i. Therefore, Inequality (8) becomes an optimality cut for MP1
when a feasible set  is given. ▪

Algorithm 2 shows a procedure of the cutting-plane algorithm with the two valid inequalities (Inequalities (7) and
(8)) to solve the mobile multi-agent sensing problem.

In each iteration, we solve MP1 to obtain an incumbent solution ( , 𝜎). The optimal objective value of MP1 (𝜎)
becomes the upper bound for the problem. Using the strategy set  , we add two valid inequality to MP1. If LB ≤ f (), the
lower bound becomes f (). If the gap between the upper and lower bounds is smaller than 𝜖, the algorithm is terminated.

The computation time of Algorithm 2 is affected depending on which initial solution is used before solving MP1.
Depending on an initial solution, we may start the algorithm with a high lower bound, and more effective valid inequalities
may be obtained. In Section 5, we analyze the efficiency of Algorithm 2 depending on different types of initial solutions.

Algorithm 2 is designed to solve the mobile multi-agent sensing problem when the objective value f () is determinis-
tic. In reality, agents might break down or not detect the target accurately. This means that there might be uncertainty in
the mobile multi-agent sensing problem. In Section 4, we consider the risk-averse problem by using CVaR in the objective
function.
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10412 KIM et al.

Algorithm 2. Cutting-plane algorithm for the deterministic problem

1: Input: (= 1 ∪ 2 ∪ · · · ∪ N , i: set of all strategies for agent i)
2: Output: 
3: set  ← ∅, UB ← ∞, LB ← −∞
4: while 1 − LB

UB
≥ 𝜖 do

5: Solve MP1;
6: ( , 𝜎) ← optimal solution for MP1;
7: UB ← 𝜎;
8: Add two valid inequalities ((7) and (8)) to  based on  ;
9: if LB ≤ f () then

10: LB ← f ();
11: end if
12: end while

4 ALGORITHM FOR THE RISK-AVERSE PROBLEM

In this section, we present the mobile multi-agent sensing problem with uncertain situations. We defined f () ∶=
∑N

j=1fj() (fj() ∶= Ej × Pj() ∀j ∈ Y ) as an objective function of the deterministic problem in Section 3. To reflect
uncertain situations, we introduced a new objective function, f ( , 𝜔). 𝜔 ∈ Ω is a random variable that represents uncer-
tainty and is also independent of  . We consider that f ( , 𝜔) is monotone and submodular. A basic approach to the
problem with uncertainty is to use the expected value of the objective function E𝜔[f ( , 𝜔)]. However, in the case of
high variability, there is a high possibility that the basic approach may find poor solutions. Instead of this approach,
recent research has focused on a risk-averse submodular optimization to reflect the risk from the uncertainty in a
rational way.46,47

The risk-averse decisions are important when failure from uncertainty leads to severe or catastrophic consequences.
In a finance field, value-at-risk (VaR) is known as a popular risk measure:

VaR𝛼

(
f
(
 , 𝜔

))
= inf{𝜏 ∶ Prob

[
f
(
 , 𝜔

)
≤ 𝜏

]
≥ 𝛼, 𝜏 ∈ R}. (15)

For a given risk level 𝛼 ∈ (0, 1], VaR means the (left) 𝛼-percentile of the random variable f ( , 𝜔). However, conditional
value-at-risk (CVaR) is the expectation of f ( , 𝜔) from 𝛼-percentile cases of f ( , 𝜔). CVaR is a more popular measure than
VaR because CVaR has some properties (coherence and tractability).49 Because CVaR is more conservative than VaR,
more risk-averse solutions are obtained.45

In this article, we use CVaR as a risk measure. For a given risk level 𝛼 ∈ (0, 1], the definition of CVaR is as follows:

CVaR𝛼

(
f ( , 𝜔)

)
= E

[
f ( , 𝜔)|f ( , 𝜔) ≤ VaR𝛼(f ( , 𝜔))

]
. (16)

CVaR is not necessarily a submodular function. We use an auxiliary function to maintain submodularity. It is known that
maximizing CVaR𝛼(𝜏, f ( , 𝜔)) over  is equivalent to maximizing 𝜏 − 1

𝛼

E
([
𝜏 − f ( , 𝜔)

]

+

)
over  and 𝜏:45,47,50

max


CVaR𝛼

(
𝜏, f ( , 𝜔)

)
= max

 ,𝜏

𝜏 − 1
𝛼

E
([
𝜏 − f ( , 𝜔)

]

+

)
, (17)

where [𝜏 − f ( , 𝜔)]+ is defined as max(𝜏 − f ( , 𝜔), 0). The auxiliary function is used to solve the problem. The mobile
multi-agent sensing problem that maximizes CVaR at a given risk level 𝛼 ∈ (0, 1] is expressed as follows:

max
 ,𝜏

𝜏 − 1
𝛼

E

(

[𝜏 − f ( , 𝜔)]+
)

, (18)

subject to | ∩ i| ≤ 1,∀i ∈ X and 𝜏 ∈ R. (19)
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KIM et al. 10413

As the number of agents increases or the sensing environment gets more complex, the number of scenarios that
result from the uncertainty might increase exponentially. It may take a great deal of time to solve the problem by using
the proposed exact algorithm for a large data set or complex environment. The sample average approximation approach
is introduced to approximately estimate the objective value of stochastic optimization problems by using finite sce-
narios derived from a random sample. In this article, the problem of maximizing CVaR based on the sample average
approximation is considered.

We assume that there is a set of finite scenarios Ω = {𝜔1, 𝜔2, … , 𝜔K} ⊂ and the probability of each
scenario 𝜔k is pk. We define 𝜌

k
a() as f ( ∪ {a}, 𝜔k) − f ( , 𝜔k). Based on the sample average approximation

approach, we present a relaxed master problem (MP2) that maximizes CVaR at a given risk level, 𝛼 ∈ (0, 1],
as follows:

[MP2] max 𝜏 − 1
𝛼

∑

k∈[K]
pkrk, (20)

s.t.
|i|∑

t=1
xit = 1 ∀i ∈ X , (21)

rk ≥ 𝜏 − 𝜎k ∀k ∈ [K], (22)

( , 𝜎1, 𝜎2, … , 𝜎K) ∈ , (23)

xit ∈ {0, 1} ∀i, t, r ∈ R
K
+ 𝜏 ∈ R 𝜎 ∈ R

K
, (24)

where [K] = {1, 2, … ,K}. The objective value of MP2 is an upper bound of the problem that maximizes CVaR for an
incumbent solution  . rk and 𝜎k are represented as (𝜏 − f ( , 𝜔k))+ and f ( , 𝜔k), respectively. Given  and 𝜏, we can
calculate the objective value of Problem (18). The objective value becomes a lower bound because  and 𝜏 is a feasible
solution of Problem (18). Constraint (21) is equivalent to a partition matroid constraint. In Constraint (23),  means a set
of valid inequalities. In the beginning,  is an empty set. A feasible solution,  , is obtained at each iteration, then valid
inequalities using  are added to MP2 as constraints. The generated inequalities lead to reducing the feasible region
in MP2.

For a given set  and scenario 𝜔k, we propose two valid inequalities (optimality cuts) related to 𝜎1, 𝜎2, … , 𝜎K as
follows:

𝜎k ≤ f
(
 , 𝜔k

)
+

N∑

i=1
𝜌

k
ak

i

(

)
× (1 − xiqi )

(ak
i = argmax

a
𝜌

k
a() such that a ∈ i ∀i ∈ X), (25)

𝜎k ≤ f ( , 𝜔k) +
N∑

i=1
𝜌

k
bk

i
(∅) × (1 − xiqi ) −

N∑

i=1
𝜌

k
 i

(
 ⧵  i

)
× (1 − xiqi )

(bk
i = argmax

b
𝜌

k
b(∅) such that b ∈ i ∀i ∈ X), (26)

The above two inequalities are based on Inequalities (7) and (8). Algorithm 3 shows a procedure of the cutting-plane
algorithm using the two valid inequalities (Inequalities (25) and (26)) to solve the problem of maximizing CVaR based on
the sample average approximation.

In each iteration, we solve MP2 to obtain an incumbent solution ( , 𝜏, r, 𝜎). The optimal objective value of MP2
becomes the upper bound. Using the strategy set  , we add two valid inequalities to MP2 for each scenario. This means
that 2K constraints are generated at each iteration. After generating cuts, the algorithm solves the problem (18) in which
the strategy set  is given. If the objective value of the problem (18) is higher than LB, the lower bound is updated as the
objective value of the problem (18). If the gap between the upper and lower bounds is smaller than 𝜖, the algorithm is
terminated and we obtain the (near)-optimal strategy.
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10414 KIM et al.

Algorithm 3. Cutting-plane algorithm for the risk-averse problem

1: Input: (= 1 ∪ 2 ∪ · · · ∪ N , i: set of all strategies for agent i), Ω = {𝜔1, 𝜔2,… , 𝜔K}: set of finite scenarios
2: Output: 
3: set  ← ∅, UB ← ∞, LB ← −∞
4: while 1 − LB

UB
≥ 𝜖 do

5: Solve MP2;
6: ( , 𝜏, r, 𝜎)← optimal solution for MP2;
7: UB ← objective value for MP2;
8: k ← 1;
9: while k ≤ K do

10: Add two valid inequalities ((25) and (26)) to  based on  & 𝜔k;
11: k ← k + 1;
12: end while
13: Solve the problem (18) in which the strategy set  is given;
14: LBcur ← objective value for the problem (18);
15: if LB ≤ LBcur then
16: LB ← LBcur;
17: end if
18: end while

T A B L E 2 Parameter sets

Parameter Value

N 10, 20, 30, 40, 50

M 10, 20, 30, 40, 50, 60, 80, 100

cli [0,100]2

oj [0,100]2

Li (Integer) Uniform[1, 5]

Ej Uniform(0, 1)

𝛿i (Integer) 5×Uniform[1, 4]

𝜆i 0.4

𝜖 0.1

𝛼 0.1 / 0.01 & 1.0 (Figure 3)

5 COMPUTATIONAL EXPERIMENTS

In this section, computational experiments are conducted to show the performance of Algorithms 2 and 3. First of all, in
Subsection 5.1, we conduct numerical experiments with Algorithm 2 for the deterministic problem. In Subsection 5.2, we
present numerical results of Algorithm 3 for the problem of maximizing CVaR based on the sample average approxima-
tion. All tests were run on a Python 3 and a CPLEX ver.12.10 with an Intel core CPU i5-3470 processor. We considered a
realistic situation in which there are a large number of M nodes and a relatively small number of N agents. The agents
and nodes are located as points, which are generated as uniformly random, in a two-dimensional space, R2. The algo-
rithms are terminated when the ratio of LB

UB
achieves (1 − 𝜖) × 100%. The time limit was set to 3600 s. In real cases, it is

possible for decision makers to adjust the time limit based on the decision period and the number of agents and nodes.
We defined a strategy set, i, of agent i as all points whose distances to cli are within Li. We restricted the points to inte-
gers; otherwise, the number of strategy sets is infinite. Parameter values used in the numerical experiments are presented
in Table 2.
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KIM et al. 10415

T A B L E 3 Results for the two guarantees and the optimality gap

Guarantees or optimality gap

N M Qu et al.39 Lee et al.38 Algorithm 2 (1st iter.)

10 20 0.505 0.641 0.939

20 40 0.508 0.610 0.912

30 60 0.510 0.617 0.866

40 80 0.519 0.603 0.809

50 100 0.515 0.605 0.786

When conducting the cutting-plane algorithm, it is important to decide the way to get an initial solution so that the
algorithm can find (near)-optimal solutions efficiently. We considered three methods of choosing initial solutions in these
experiments. The three methods are as follows:

(a) Random: a randomly generated solution that satisfies the constraints
(b) Individual: a solution in which each agent chooses its optimal strategy without considering others’ strategies
(c) Sequential: a solution in which a greedy algorithm is applied according to a fixed order of agents

In the Sequential method, we first set an order of agents, and then select a strategy of each agent in which marginal gain
gets maximized from the current situation according to the order (which corresponds to a greedy algorithm). The Sequen-
tial method, which is a variant of a greedy algorithm, is known to have approximation ratios for the proposed problem.
In particular, Qu et al. and Lee et al. introduced theoretical instance-dependent guarantees in terms of approximation
ratios.38,39 The guarantees (ratios) are dependent on instances. The guarantee means the relative difference between the
upper bound and value obtained from the Sequential method. Thus, it is interpreted as an optimality gap for the problem.

A different optimality gap of the same solution can also be obtained through the first iteration in Algorithm 2. Before
presenting the performances of the algorithms, we compared the two guarantees and the optimality gap of the first itera-
tion in Algorithm 2 in terms of the effectiveness of the upper bounds. We executed 10 runs for each M and N, and Table 3
shows the results for the two guarantees and the optimality gap.

The guarantees introduced by Qu et al. showed up as being slightly larger than 0.5,39 and the guarantees introduced
by Lee et al. showed up as being close to 0.6,38 on average. On the other hand, the optimality gap in Algorithm 2 was
larger than the two guarantees by 18% to 43% in all cases. Even though the same solutions from the Sequential method
were obtained, the algorithm in this article showed more effective upper bounds than the two guarantees.

5.1 Experiments for the deterministic problem

First of all, we conducted numerical experiments to analyze the performance of Algorithm 2 for the deterministic problem.
Table 4 shows the results for different values of N and M (five cases). We executed 10 runs for each case, and the val-
ues in Table 4 are all average values. Column vars denotes the range of the number of decision variables used in MP1.
Column iters means the number of iterations before the algorithm was terminated. Column cuts denotes the number of
valid inequalities (optimality cuts) added to MP1. Column time means the computation times (in) that Algorithm 2 took.
Numbers in parentheses of column time denote the number of instances that Algorithm 2 solved within the time limit.

For small data sets ((N,M) = (10, 20) and (20, 40)), all instances were solved within the time limit. When we
applied Individual and Sequential for initial solutions, the number of iterations was one for all instances. On the other
hand, in Random, the algorithm conducted more than 13 iterations to find (near)-optimal solutions. In complex situ-
ations, we observed that the computation time increased as the number of N and M increased for all three methods.
Moreover, the number of instances solved within 3,600 tended to reduce as the number of N and M increased. In the
instances not solved within 3600 s, the average ratio of LB

UB
showed 79%, 85%, and 86% at Random, Individual, and

Sequential. For all instances, we observed that the performances in Individual and Sequential were better compared to
Random. Therefore, choosing initial solutions properly is crucial so that the algorithm can find (near)-optimal solutions
efficiently.
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10416 KIM et al.

T A B L E 4 Results for the different values N and M

Random Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time Iters Cuts Time

10 20 110∼210 13.0 26.0 4 (10) 1.0 2.0 1 (10) 1.0 2.0 1 (10)

20 40 220∼420 17.0 34.0 33 (10) 1.0 2.0 5 (10) 1.0 2.0 6 (10)

30 60 330∼630 36.5 73.0 212 (8) 3.0 6.0 24 (8) 3.0 6.0 27 (8)

40 80 440∼840 144.0 288.0 1756 (4) 12.0 24.0 156 (8) 9.5 19.0 132 (8)

50 100 550∼1050 86.0 172.0 2306 (1) 2.0 4.0 68 (1) 47.5 95.0 1147 (2)

T A B L E 5 Results for the different values M

Random Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time Iters Cuts Time

20 10 220∼420 15.0 30.0 9 3.0 6.0 2 3.0 6.0 3

20 20 220∼420 34.5 69.0 34 5.5 11.0 7 5.5 11.0 7

20 30 220∼420 57.0 114.0 81 17.0 34.0 24 12.5 25.0 19

20 40 220∼420 54.5 109.0 102 10.5 21.0 21 7.5 15.0 17

20 50 220∼420 152.0 304.0 425 70.5 141.0 167 27.0 54.0 67

T A B L E 6 Results for the different values N

Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time

10 50 110∼210 45.6 91.2 19 (10) 43.0 86.0 19 (10)

20 50 220∼420 17.1 34.2 26 (10) 9.7 19.4 16 (10)

30 50 330∼630 24.8 49.6 58 (10) 37.8 75.6 85 (10)

40 50 440∼840 52.2 104.4 760 (5) 91.7 183.4 1340 (4)

50 50 550∼1050 53.0 106.0 1156 (1) 27.5 55.0 620 (2)

To consider the situation in which the number of agents is fixed, we conducted experiments (five cases) depending
on the number of nodes with a fixed number of agents N = 20. The number of agents that managers have may be limited
because of purchasing costs, operating costs, and other factors. The results are summarized in Table 5.

The range of the total number of the decision variables in Table 2 was identical because it is determined depending
on the number of agents. Even though the range was identical, as the number of nodes increased, both the number of
cuts added and the computation times attained tended to increase (except for (20, 40) instances). As the number of nodes
increased, it was more likely that the coefficients of the two valid inequalities

(∑N
i=1𝜌ai() and

∑N
i=1𝜌bi(∅) −

∑N
i=1𝜌 i

( ⧵
 i)

)
got large. In fact, the upper bound given by the algorithm had to decrease, according to the added valid inequalities.

If the coefficients were large, the decreasing rate of the upper bound might be small at each iteration.
In all cases, we observed more efficient results when we applied Individual and Sequential compared to Random.

When the number of nodes was small, there was no significant difference in the performance between Individual and
Sequential. However, as the number of nodes increased, Sequential could find (near)-optimal solutions with a relatively
small number of cuts, compared to Individual.

The Random method for determining an initial solution was poor in terms of computation times and ratios, so we
covered only the other two methods for the next experiments. We handled a specific situation in which the number of
nodes was fixed to 50. Given a fixed number of nodes in a specific area, managers might determine the number of agents
to use by considering operating costs, legal issues, and other factors. The results are summarized in Table 6.
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KIM et al. 10417

F I G U R E 1 Result for Algorithm 2

The values in Table 6 are all average values. We executed 10 runs for each N and M. As the number of agents increased,
the number of decision variables increased as well. This means that the number of strategies considered gets large. As a
result, the computation time to obtain the (near)-optimal solution with a ratio of (1 − 𝜖) × 100% tended to increase. Also,
in a complex situation, the algorithm might need a lot of optimality cuts to lower its current upper bound. As the number
of agents increased, the instances of solving the problems within the time limit of 3600 s decreased. In the instances that
were not solved within 3600 s, the average ratio of LB

UB
showed 85% at both Individual and Sequential.

Figures 1A–1C show the changing shape of the upper and lower bounds according to the number of optimality cuts
added. The figures represent the results for Algorithm 2 with the Random, Individual, and Sequential methods, respec-
tively. The three results are analyzed by using the same data. We used an instance for N = 10, M = 50, and 210 decision
variables. The algorithm was terminated when the ratio of LB

UB
was less than 2%. In all figures, as the number of cuts

increased, the lower bound gradually increased while the upper bound gradually decreased. In particular, the upper bound
shrunk little by little in every iteration, while the lower bound increased occasionally but significantly.

Figure 1a shows the case of the Random method. The algorithm found a (near)-optimal solution after 628 cuts were
generated. Figure 1b shows the case of the Individual method. The algorithm found a (near)-optimal solution after 580
cuts were generated. Figure 1c shows the case of the Sequential method. The algorithm found a (near)-optimal solution
after 418 cuts were generated. In this instance, as the initial solution given by the Sequential method was closer to the
optimal solution than it was in other methods, the algorithm might find a (near)-optimal solution with a relatively small
number of cuts.

As the number of cuts increased gradually, the upper and lower bounds eventually converged to the optimal solution.

5.2 Experiments for the risk-averse problem

We conducted numerical experiments on the risk-averse problem discussed in Section 4. We applied Algorithm 3 to
solve the risk-averse problems and analyzed the performance of Algorithm 3 for the risk-averse problem. In these exper-
iments, we set 𝛼 = 0.1. We assumed that the failure rate for each agent is 10%, which means that each agent does not
work at a 10% probability. We generated |Ω| = 15 scenarios for the sample average approximation approach. We exe-
cuted 10 runs for each N and M (five cases). Table 7 shows the results for different values of N and M. The values in
Table 7 are all average values. Column vars denotes the range of the number of the decision variables used in MP2. Col-
umn iters means the number of iterations before the algorithm was terminated. Column cuts denotes the number of valid
inequalities (optimality cuts) added to MP2. Column time means the computation times (in seconds) that Algorithm 3
took. Numbers in parentheses of column time denote the number of instances that Algorithm 3 solved within the
time limit.

Because we generate the two valid inequalities (Inequalities (25) and (26)) for each scenario, the algorithm adds 30
(=2 × 15) cuts per each iteration during the procedure. The initial solutions given by Individual and Sequential had no
significant difference in the performance. When N = 50 and M = 100, the instances in which the (near)-optimal solutions
were obtained within 3600 s was 3 out of 10 instances in both methods. In the instances not solved within 3600 s, the
average ratios of LB

UB
showed 84% at both Individual and Sequential. Compared to the results for Algorithm 2 to solve

the deterministic problem (Table 4), the number of iterations of Algorithm 3 was smaller, but the computation time of
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10418 KIM et al.

T A B L E 7 Results for the different values N and M

Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time

10 20 110∼210 1.1 33.0 12 (10) 1.1 33.0 12 (10)

20 40 220∼420 7.7 231.0 205 (10) 7.9 237.0 213 (10)

30 60 330∼630 10.4 312.0 771 (10) 8.6 258.0 641 (10)

40 80 440∼840 6.4 193.3 960 (9) 6.3 190.0 952 (9)

50 100 550∼1050 5.0 150.0 1481 (3) 5.0 150.0 1481 (3)

F I G U R E 2 Comparison between Individual and Sequential methods

T A B L E 8 Results for the different values M

Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time

20 10 220∼420 2.0 60.0 17 2.0 60.0 17

20 20 220∼420 2.0 60.0 36 2.6 78.0 44

20 30 220∼420 1.0 30.0 33 1.0 30.0 33

20 40 220∼420 7.7 231.0 205 7.9 237.0 213

20 50 220∼420 1.2 36.0 65 2.0 60.0 92

Algorithm 3 was larger. This implies that Algorithm 3 took a lot of time to solve MP2 at every iteration because a relatively
large number of constraints were added.

Figure 2A is a plot of the ratios of LB
UB

obtained by Individual and Sequential methods when N = 20 and M = 50. We
used 100 instances for the two methods. The dots (instances) in the yellow region indicate that better performances are
shown in the Sequential method. The dots (instances) in the red region indicate that better performances are shown in
the Individual method. That is, the Sequential method obtained a higher ratio in 60 experiments. Figure 2B is a plot of
the computation times obtained by Individual and Sequential methods. The average computation times of Individual and
Sequential methods were 262 and 270 s, respectively. There was no significant difference in the computation time of the
two methods. Therefore, in these experiments, we observed that the use of the Sequential method to determine an initial
solution was more advantageous in terms of the computation time and the ratio.
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T A B L E 9 Results for the different values N

Individual Sequential

N M Vars Iters Cuts Time Iters Cuts Time

10 50 110∼210 1.1 33.0 32 (10) 1.1 33.0 32 (10)

20 50 220∼420 1.2 36.0 65 (10) 2.0 60.0 92 (10)

30 50 330∼630 11.2 336.0 702 (10) 11.4 342.0 700 (10)

40 50 440∼840 4.9 146.3 960 (8) 4.6 138.8 952 (8)

50 50 550∼1050 3.1 94.3 1481 (7) 3.1 94.3 1481 (6)

F I G U R E 3 Result for Algorithm 3 in terms of a risk level 𝛼
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10420 KIM et al.

We set a specific case in which the number of nodes was fixed to 50 and the number of agents was changed (five cases).
The results are summarized in Table 8. The values in Table 8 are all average values from the numerical experiments when
we executed 10 runs for each case. Despite maintaining the same experimental environment in Table 5, the results were
somewhat different. Compared to Table 5, an increase in the number of iterations or valid inequalities was not significant
as the number of nodes increased. In fact, as the number of nodes increased, it was more likely that the coefficients of the
two valid inequalities

(∑N
i=1𝜌

k
ak

i
() and

∑N
i=1𝜌

k
bk

i
(∅) −

∑N
i=1𝜌

k
 i
( ⧵  i)

)
got large. However, the coefficients might decrease

because of the failure rate; and the number of added cuts in which the coefficients are low might increase because of the
number of scenarios. For these reasons, the tendency might be relatively weaker than it is in the deterministic problems.

We set a specific case in which the number of nodes was fixed to 50 and the number of agents was changed (five cases).
The results are summarized in Table 9. The values in Table 9 are all average values from the numerical experiments when
we executed 10 runs for each case. As the number of nodes increased, the computation time of Algorithm 3 increased.
There were three cases (Individual) and four cases (Sequential) in which the problem could obtain (near)-optimal solu-
tions when N = 50 and M = 50. In the instances that were not solved within 3600 s, the average ratios of LB

UB
showed 86%

at both Individual and Sequential.
Figure 3 shows results for Algorithm 3 in terms of two risk levels, 𝛼 = 0.01 and 𝛼 = 1. Each node is shown as a red

rectangle, and the color gets darker as the probability of event occurrences rises. When 𝛼 = 1, the result shows a decision
for risk-neutral. On the other hand, when the risk level, 𝛼, is small, the result shows a decision for risk-averse. Current
positions of agents and nodes before conducting Algorithm 3 are shown in Figure 3A. Figure 3B shows an initial solution
given by the Random method. Comparing the two remaining figures (Figures 3C and 3D), agents in 𝛼 = 1 tended to cover
a wider range than those in 𝛼 = 0.01. This means that it was more likely to concentrate on detecting nodes that have a
high probability of event occurrence in 𝛼 = 0.01.

5.3 Case study

A case study on detecting forest fires is conducted considering real-time data from moderate resolution imaging spectro-
radiometer (MODIS) provided by NASA to analyze insights of the algorithms to the problem. MODIS data are generally
known to be used for dealing with forest fire monitoring.52 The coverage of the data is worldwide, which is shown in
Figure 4.51 However, we cover only one nation (the Republic of Korea) in accordance with the applicability of the sensing
problem in the case study.

In general, Fire Radiant Power (FRP) data from MODIS, which is a quantitative measure of radiant heat output, are
used to estimate fire intensity.53 This study uses normalized FRP data as the probability of event occurrences at each

F I G U R E 4 Satellite regional data coverage provided by NASA51
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KIM et al. 10421

F I G U R E 5 Visualization and data transformation of real-time FRP data

F I G U R E 6 Results of the case study according to the number of agents (N = 3, 5, 7, and 9)
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10422 KIM et al.

F I G U R E 7 Results of the case study according to the risk levels (𝛼 = 0.01, 0.1, and 1.0)

node. We also use geographical data in FRP data as node positions by filtering based on the latitude and longitude of the
Republic of Korea. We selected the highest 30 regions among real-time FRP data as nodes. Figure 5 shows the results of
visualization and data transformation. As in Figure 3, the darker each node is marked in red, the higher the FRP value,
defined as the probability of event occurrence.

In the case of the deterministic problem, Figure 6 shows the strategies of agents used to maximize the objective func-
tion (1) by using Algorithm 2 according to the number of agents (3, 5, 7, and 9). As the number of agents used in this
experiment increases, the objective value also increases. However, the objective values divided by the number of agents
are 1.63, 1.31, 1.03, and 0.84, respectively. This means that the expected sensing effect obtained from one agent decreases
as the number of agents increases. Therefore, it is necessary to decide the appropriate number of agents used consid-
ering the expected sensing effect and operating costs. We conducted numerical experiments on the risk-averse problem
with five agents. Figure 7 shows the strategies of agents based on Algorithm 3 according to the three risk levels (𝛼 =
0.01, 0.1, and 1.0). We confirmed a tendency to cover a wider range as the risk level increases. Meanwhile, as the risk
level decreases, the agents were more likely to monitor specific nodes intensively rather than to cover a wider range. This
means that Algorithm 3 can provide various strategies, depending on the value of the risk level. When we deal with the
sensing problem with Algorithm 3 in reality, it is important to determine effective and reasonable strategies based on the
limited resources and degree of risk.

6 CONCLUSIONS

In this article, we covered a mobile multi-agent sensing problem, which is NP-hard. It might be critical to obtain
(near)-optimal solutions to reduce the probability of situations in which severe or catastrophic consequences happen.
Therefore, we presented a cutting-plane algorithm for the problem to find a (near)-optimal solution efficiently. We also
presented a cutting-plane algorithm for the risk-averse problem by using CVaR. We analyzed the performance of the
algorithms through numerical experiments based on the three methods to set initial solutions (Random, Individual, and
Sequential). The Sequential method showed better performance than the two other methods in terms of the average com-
putation time and the ratio. This means that when the exact algorithm is used, it is also important to consider the way to
set initial solutions because it affects the computation costs to find solutions. We also showed the validity and applicability
of the algorithm in a case study on forest fires.

There is ample opportunity for future research on the mobile multi-agent sensing problem. First, when the severity
of the event is catastrophic or the purchasing (or operating) cost of the agent is extremely high, it is important to decide
the appropriate number of agents used by considering a trade-off between effectiveness and cost. An integrated model
for selecting the number of agents and finding effective strategies for agents selected is needed. Other research might
consider the physical limitations of the mobile agent (e.g., battery constraints or a limited number of drone stations) to
reflect realistic situations.
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