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A B S T R A C T   

Multi-agent systems are generally applicable in a wide diversity of domains, such as robot engineering, computer 
science, the military, and smart cities. In this paper, we introduce a mobile multi-agent sensing problem and 
present a mathematical formulation. The model can be represented as a submodular maximization problem 
under a partition matroid constraint, which is NP-hard in general. The optimal solution of the model can be 
considered computationally intractable. Therefore, we propose two decent algorithms based on the greedy 
approach, which are global greedy and sequential greedy algorithms, respectively. We show that the sequential 
greedy algorithm is competitive with the global greedy algorithm and has advantages of computation times. 
Moreover, we present new approximation ratios of the sequential greedy algorithm and prove tightness of the 
ratios. Finally, we demonstrate the performances of our results through numerical experiments.   

1. Introduction 

One of the purposes for exploiting multi-agent systems is to monitor 
a set of nodes to detect event occurrences with a set of agents. The 
system can be applied in diverse domains such as wireless sensor net
works in the military (Durǐsić et al., 2012), microgrid control in the 
energy field (Kantamneni et al., 2015), artificial intelligence (AI) in 
computer science (Stone and Veloso, 2000), medical asset tracking in 
hospital environments (Pietrabissa et al., 2013), and target tracking in 
robot engineering (Spletzer and Taylor, 2003). This problem can be 
expanded to radiation surveillance using unmanned aerial vehicles 
(UAVs) (Pöllönen et al., 2009), and to path planning in emergency 
management (Berger, 2015) as well. These multi-agent systems have 
been recently applied in smart cities, especially in environment moni
toring systems (Jamil et al., 2015), urban-traffic management systems 
(Zhu et al., 2016), and in the improvement of servicing the internet of 
things (Verma et al., 2014). 

When it comes to research on how multi-agent system can be 
applied, researchers have recently started to focus on mobile and het
erogeneous agents. If an agent as a sensor moves around, the agent 
might cover initially uncovered locations at a later time, and the targets 
that might not be detected using stationary sensors can be detected (Liu 

et al., 2012). When we exploit mobile sensors, we can compensate for 
the lack of sensors and improve network coverage (Liu et al., 2005). For 
example, in the barrier coverage problem, a cost-effective system can be 
designed, in practice, by using mobile sensors (He et al., 2012). In 
addition, the city uses a group of UAVs as mobile agents that are 
equipped with an air quality measurement system instead of with sta
tionary sensors. In particular, due to the emerging sensing technologies 
of IoT and the commercialization of drones, more and more fields have 
recently begun to utilize mobile sensors in the sensing problem. 
Therefore, we consider that a small number of agents can cover a wide 
range of areas by continuously moving around. 

Using heterogeneous agents in multi-agent systems means using 
different types of agents. Nowadays, more and more studies related to 
the heterogeneous agents have been conducted in a wireless sensor 
networks (WSN) (Carrabs, 2015; Soeanu et al., 2018). In fact, imple
menting heterogeneous multi-agent systems offers several advantages, 
including higher versatility, cost reduction, and flexibility (Song et al., 
2014). Heterogeneous agents also are shown to have better performance 
than homogeneous agents, because they take advantage of the strengths 
of each configuration (Scheutz et al., 2005). Although many studies have 
been devoted to multi-agent systems, little attention has been paid to 
heterogeneous mobile multi-agent systems. Therefore, we assume that 
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our system model consists of heterogeneous agents with different 
sensing ranges and allowable distances to reflect general circumstances. 

There are two types of sensing models: the deterministic sensing 
model (Boolean sensing) and the probabilistic sensing model (the Elfes 
sensing models) in the sensor planning problem (Hossain et al., 2012; 
Elfes, 1989; Karatas and Onggo, 2019). In this paper, we consider the 
problem with the Elfes sensing model because the effective sensing 
radius of an agent is affected by sensing device characteristics and 
environmental factors, which leads to non-uniform sensing (Rai and 
Daruwala, 2016). By considering Elfes sensing model, we can calculate 
the sum of event detection probabilities from all nodes. Each agent can 
move within its allowable distance in the next period to detect the events 
from the nodes. We call this problem a mobile multi-agent sensing 
problem. The objective function of the problem, as the sum of the 
detection probabilities, is monotone increasing and submodular. 
Therefore, the problem is represented as a submodular maximization 
problem under a partition matroid constraint, which is NP-hard in 
general. This problem has been solved through the greedy algorithm. 
The algorithm is known to achieve a 1

2-approximation for the problem 
(Fisher et al., 1978; Kapralov et al., 2013). 

In this paper, we deal with a mobile multi-agent sensing problem, 
which corresponds to a submodular maximization problem under a 
partition matroid constraint. We propose two decent algorithms based 
on the greedy approach (Fisher et al., 1978; Qu et al., 2019). The two 
algorithms are global greedy and sequential greedy algorithms, 
respectively. The global greedy algorithm corresponds to the general 
greedy algorithm. The sequential greedy algorithm, which is a variant of 
the global greedy algorithm, fixes the order of agents’ arrivals before 
solving the problem and selects a strategy in the order of agents. This 
variant is similar in approach to the online setting in which the infor
mation of the agents is revealed sequentially and, on arrival of each 
agent’s information, a strategy is chosen irrevocably. We show that the 
sequential greedy algorithm is competitive with the global one and has 
advantages of cost savings caused by time consumption. Another 
contribution of the paper is to present new approximation ratios of the 
sequential greedy algorithm, which might give tighter upper bounds. 
Beyond a worst-case 1

2-approximation ratio, instance dependent gua
rantees are introduced to show improved bounds by using the concept of 
the curvature of the submodular function (Conforti and Cornuéjols, 
1984). In addition to introducing the concept of curvature ( 1

1+c1
), we 

show new approximation ratios of the sequential greedy algorithm ( 1
1+h,

R). We prove tightness of the ratios by presenting instances that the 
approximation ratios are achieved. In this paper, we present the novelty 
and validity of the new approximation ratios of the sequential greedy 
algorithm compared to the existing approximation ratio through both 
theoretical and experimental approaches. 

1.1. Related work 

The mobile multi-agents are generally equipped with sensing, 
computing, and communication devices; they also interact with each 
other (Olfati-Saber et al., 2007). To verify the application of multiple 
agents in complex environments, simulation models have been used 
(Luke et al., 2005; Castella, 2005; Li et al., 2010; Douma, 2012). There 
has been considerable interest in the analysis of multiple agents from an 
optimization perspective. Isler and Bajcsy (2005) addressed a probabi
listic approach to solve the problem of selecting sensors to minimize the 
error in estimating the position of a target. Fei (2007) selected sensor 
locations that maximize information gain. Nedic and Ozdaglar (2009) 
presented an analysis for optimizing the sum of the convex objective 
functions corresponding to multiple agents. The probabilistic sensing 
model problems have recently been used in consideration of the sub
modular property (Krause et al., 2008; Clark and Poovendran, 2011; 
Krause and Guestrin, 2011; Zivan et al., 2015; Sun et al., 2017; Corah 
and Michael, 2018; Rezazadeh and Kia, 2019). 

The submodular maximization problem under a matroid constraint 
has historically been solved through greedy-type algorithms. In partic
ular, approximation ratios that give lower bounds, compared to the 
optimal solution, are generally used to measure the performance of the 
algorithms. Some papers presented algorithms based on the greedy 
approach, which gives a 1

2-approximation (Nemhauser et al., 1978; 
Fisher et al., 1978; Lehmann et al., 2006; Rezazadeh and Kia, 2019), 

while the algorithm is known to be 
(

1 − 1
e

)

-approximation for special 

cases (e.g., the uniform matroid). 
Randomized algorithms and modified continuous greedy algorithms 

have been designed to give better approximation ratios in a theoretical 
way (Dobzinski and Schapira, 2006; Vondrák, 2008; Calinescu et al., 
2011; Buchbinder et al., 2014; Sviridenko et al., 2017). In the online 
setting, Buchbinder et al. (2019) proved a 0.5096-competitiveness for 
the greedy algorithm in random order. In practice, however, the greedy 
algorithm is good enough to show much better performance than the 
existing approximation ratios. Thus, instance dependent guarantees 
have been introduced to show better performances, depending on the 
instances. Conforti and Cornuéjols (1984) presented the concept of 
curvature. The approximation ratio of the greedy algorithm is 1

1+c1 

(0⩽c1⩽1), which is larger than 1
2. After that, element curvature, partial 

curvature, and discriminant are designed as improved instance dependent 
guarantees (Wang et al., 2016; Sun et al., 2019; Liu et al., 2019; 
Rajaraman and Vaze, 2018). 

There has recently been literature on the modified greedy algorithms 
to lessen computational complexity. As the size of agents increases, the 
computation time can be exponentially larger, even in greedy algo
rithms. Gharesifard and Smith (2017) and Rajaraman and Vaze (2018) 
presented a sequential distributed greedy algorithm in which the agents 
take their decision sequentially. This algorithm can be applied even in 
an online setting. Qu et al. (2019) compared the global greedy algorithm 
with the distributed greedy algorithm in terms of performance and 
computation time. The distributed greedy algorithm is a distributed 
variant of the global greedy algorithm, which adds local communica
tion. The instance dependent guarantees can also be applied in these 
modified algorithms. 

The mobile multi-agent sensing problem is an important problem in 
terms of operations management. In this paper, we conducted theoret
ical and experimental analysis of this problem. In comparison to previ
ous studies, we design a sequential greedy algorithm to solve our 
problem, in which time complexity to obtain a greedy solution is less 
than that of the global greedy algorithm. We also prove new approxi
mation ratios of the algorithm and show that the bound is tight even in 
the sequential greedy algorithm. In addition to theoretical contribu
tions, we present the validity of using the new approximation ratios of 
the sequential greedy algorithm compared to the existing approximation 
ratio through numerical experiments. 

The remainder of the paper is organized as follows. Section 2 pre
sents the mobile multi-agent sensing problem mathematically and shows 
that the problem is a submodular maximization problem under a 
partition matroid constraint. In Section 3, the global and sequential 
greedy algorithms are presented to solve the problem. We also prove the 
new approximation ratios of the algorithms and their tightness. Section 
4 provides numerical results of the two algorithms and shows the val
idity of the sequential greedy algorithm in terms of solution quality and 
computation times. Section 5 describes the contributions and conclu
sions of the paper. 

2. Problem statement 

In this section, we define the notations and describe a mobile multi- 
agent sensing problem mathematically. There are a set of A = {1,2,…,

M} mobile heterogeneous agents and a set of B = {1,2,…,N} nodes. We 
set i ∈ A and j ∈ B to denote an agent and a node, respectively. Agents 
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are deployed to monitor a set of nodes on a given space Ω⊂R2. We as
sume N≫M. The location of node j is ojand the current location of agent i 
is lci (oj, lci ∈ Ω). In the next period, each agent can move to detect event 
occurrences from the nodes. The maximum distance that agent i can 
move during a unit period is defined as ALi. Thus, X i =

{(i, li)
⃒
⃒
⃦
⃦li − lci

⃦
⃦⩽ALi} is the set of the strategies for agent i and let X =

X 1 ∪ X 2 ∪ ⋯ ∪ X M. The probability of event occurrences at node j is 
Ej. Each agent i has its own bounded sensing radius δi. We assume that 
the sensing technique follows the Elfes sensing model (Elfes, 1989). 
Under a strategy x = (i, li), the probability that agent i detects an event 
occurrence at node j is defined as 

p
(

x, j
)

=

{
exp
(
− λi‖li − oj‖

)
, if ‖li − oj‖⩽δi

0, otherwise (1)  

where λi is a sensing decay factor of agent i. The characteristics of each 
agent are determined by ALi, δi, and λi. Then, when X ⊆X , the joint 
probability that an event at node j is detected by a strategy set X is 
calculated by 

Pj

(

X

)

= 1 −
∏

x∈X

(

1 − p

(

x, j

))

(2)  

where it is assumed that the detection probability of each agent is in
dependent. The sum of event detection probabilities from all nodes can 
be represented as 

∑

j∈B
Ej × Pj

(

X

)

(3)  

We define Ej × Pj(X ) as a set function fj(X ), which means fj : 2X →R. 
The set function fj is normalized (fj(∅) = 0). 

The objective of the problem is to find a strategy set of all agents, 
such that the Eq. (3) is maximized. We formulate the mobile multi-agent 
sensing problem as follows: 

max
X

f

(

X

)

=
∑

j∈B
fj

(

X

)

(4)  

subject to |X ∩ X i|⩽1, ∀i ∈ A(
subject to X ∈ I ,I =

{
S |S ⊆X and |S ∩ X i|⩽1, ∀i ∈ A

}) (5)  

where I is a non-empty collection of subsets of the set X . An ordered 
pair M = (X ,I ), where I ⊆2X , is called a matroid if (a) for all D ∈ I , 
any set C⊆D is also in I and (b) for any C,D ∈ I and |C| < |D|, there 
exists a j ∈ D⧹C such that C ∪ {j} ∈ I . In this system, Constraint (5) is 
called a partition matroid (Nemhauser et al., 1978. The feasibility 

condition is to choose a strategy set that includes at most one strategy 
from each disjoint set X 1, X 2, …, X M. Theorem 1 shows that the 
objective function in this problem is a monotone increasing and sub
modular set function. 

Definition 1. Given a ground set X, a set function f : 2X→R is defined 
to be monotone (increasing) if for any S⊂T⊆X, f(S)⩽f(T), and sub
modular if for any S⊂T⊆X and x ∕∈ T,f(T ∪ {x}) − f(T)⩽f(S ∪ {x}) − f(S). 

Theorem 1. The objective function (4) is monotone and submodular. 

Proof. Let X 1 and X 2 , such that X 1⊆X 2⊆X , be two strategy sets. 
Because fj(X 1)⩽fj(X 2) ∀j ∈ B, we have f(X 1)⩽f(X 2). It means that the 
function f is monotone. For x ∈ X and x ∕∈ X 2(X 1),   

Therefore, f(X 1 ∪ {x}) − f(X 1) =
∑

j∈BEj × p(x, j)
∏

k∈X 1
(1 − p(k, j)). 

Likewise, we can calculate f(X 2 ∪ {x}) − f(X 2) =
∑

j∈BEj × p(x,
j)
∏

k∈X 2
(1 − p(k, j)). Because 

∏
k∈X 1

(1 − p(k, j))⩾
∏

k∈X 2
(1 − p(k, j)) ∀

j ∈ B, f(X 1 ∪ {x}) − f(X 1)⩾f(X 2 ∪ {x}) − f(X 2). Therefore, the func
tion f is submodular. □The problem can be represented as a sub
modular maximization problem under a partition matroid constraint. 
Maximizing a submodular function under a matriod constraint is a 
member of the class of NP-hard problems (Nemhauser et al., 1978; 
Fisher et al., 1978). Even for special cases such as uniform matroid and 
partition matroid, the submodular maximization problem is known to be 
NP-hard (Rajaraman and Vaze, 2018; Lovász, 1983). 

3. Algorithms and approximation ratios 

We know that the mobile multi-agent sensing problem is a sub
modular maximization problem under a partition matroid constraint. 
The feasible region of the problem is exponentially large in the size of M 
and N. In this case, the optimal solution can be intractable to compute 
within a reasonable time. The greedy algorithm was implemented to 
solve the problem in the previous research. For general cases, the al
gorithm is known to give an approximation ratio of 1/2, which means 
the objective value the algorithm presents is at least 1/2 of the optimal 
objective value (Fisher et al., 1978). Under a uniform matroid 
constraint, some papers presented an improved approximation ratio of 
(

1 − 1
e

)

using the greedy-based algorithms (Nemhauser et al., 1978; 

Fisher et al., 1978; Lehmann et al., 2006; Rezazadeh and Kia, 2019). 
However, there has been little research on giving an improved approx
imation ratio in the mobile multi-agent sensing problem under a parti
tion matroid constraint. This paper presents two types of greedy 
algorithms to give improved approximation ratios. 

f
(

X 1 ∪
{

x
})

=
∑

j∈B
Ej ×

⎛

⎝1 −
∏

k∈X 1∪{x}
(1 − p(k, j))

⎞

⎠

=
∑

j∈B
Ej ×

⎛

⎝1 − (1 − p(x, j))
∏

k∈X 1
(1 − p(k, j))

⎞

⎠

=
∑

j∈B
Ej ×

⎛

⎝1 −
∏

k∈X 1
(1 − p(k, j))

⎞

⎠+
∑

j∈B
Ej × p

⎛

⎝x, j

⎞

⎠
∏

k∈X 1
(1 − p(k, j))

= f

(

X 1

⎞

⎠+
∑

j∈B
Ej × p

⎛

⎝x, j

⎞

⎠
∏

k∈X 1
(1 − p(k, j))
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3.1. Global greedy algorithm 

Algorithm 1 shows the procedure of the global greedy algorithm, 
based on the general greedy approach.   

In each step, a strategy that provides the largest marginal gain from 
the current state is added while satisfying Constraint (5). The number of 
strategies is infinite, because the feasible region of the problem includes 
infinite points. To compute the problem within finite iterations, we 
restrict the infinite strategies to finite points. The algorithm calculates at 
most |X | times in each step. We call this algorithm a global greedy al
gorithm because all possible strategies have to be considered in each 
step. The time complexity of the global greedy algorithm is O(M|X |). 

3.2. Sequential greedy algorithm 

We present a decent algorithm based on the sequential greedy al

gorithm (Fisher et al., 1978; Rezazadeh and Kia, 2019). A sequence of a 
set of agents A, which is a permutation over M agents, has to be decided 
before executing the algorithm. There are various methods to decide the 
sequence of the set, such as a random method, a method based on the 

current location of the agents, and a method based on the marginal gain 
of each agent. In this paper, we adopt the random method to investigate 
the effectiveness of the sequential greedy algorithm itself. When the 
other methods are applied, initial solutions, rather than the sequential 
greedy algorithm, may affect the quality of objective value. We assume 

that the sequence of the agents is (1,2,…,M). The proposed algorithm is 
referred to as a sequential greedy algorithm, which is shown in Algo
rithm 2. The algorithm can correspond to the greedy algorithm for an 
online version of the problem, which means that the algorithm decides a 
strategy of the current agent without knowing the strategies of the 
agents not yet considered. In the tth step, a strategy of agent t that pro
vides the largest marginal gain from the current state is added while 
satisfying Constraint (5). This means that the algorithm determines a 
strategy for agent t without considering the information about agents t +
1, …, M. The time complexity of the sequential greedy algorithm is 
O(MH), where H = maxX i ∀i ∈ A. Because M|X |⩾MH, Algorithm 2 is 
faster than Algorithm 1. The time difference between the two algorithms 
becomes larger as M and N become larger.   

Fig. 1 is a flow chart showing the procedure of the two greedy al
gorithms. The input parameters include the location and event 

Algorithm 1. Global greedy algorithm 

Algorithm 2. Sequential greedy algorithm 
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occurrence probability of the nodes. The location, allowable distance, 
and sensing decay factor of the agents are also included in the input 
parameters. The global greedy algorithm proceeds with search, inser
tion, deletion, and increase in every iteration. On the other hand, the 
sequential greedy algorithm determines the sequence of agents, then 
iterates through the search, insertion, and increase processes. 

3.3. Approximation ratio 

The sequential greedy algorithm is also known to give an approxi
mation ratio of 1/2 (Fisher et al., 1978), which is the same ratio of the 
global greedy algorithm. The ratio 1/2 is a worst-case bound, but, in 
practice, the ratios of the greedy algorithm solution to an optimal so
lution are more likely to be close to 1 rather than 1/2. Thus, instance 
dependent guarantees, like the concept of curvature or discriminant, have 
emerged to show improved bounds, depending on the instances (Con
forti and Cornuéjols, 1984; Rajaraman and Vaze, 2018). 

In this paper, we present and prove new instance dependent gua
rantees for the sequential greedy algorithm. Before introducing the 
instance dependent guarantees, we define some notations that will be 

used in the proof of the following theorems. Let X
* and X

G be the 
optimal strategy set of the problem and the strategy set generated by the 
sequential greedy algorithm. We also let Oi and Gi be the strategy of 

agent i in the optimal and greedy solution, respectively (Oi := X
*
∩ X i 

and Gi := X
G
∩ X i). Let X *

S and X G
S be the union of the optimal and 

greedy strategy of agent 1, agent 2, …, agent S. (X *
S :=

⋃S
i=1Oi and 

X
G
S :=

⋃S
i=1Gi). We define ρk(X ) as f(X ∪ {k}) − f(X ). The following 

theorems show new instance dependent guarantees and prove the ratios 
and tightness of them. When there exists a scenario such that the 
approximation ratio is achieved, we can prove tightness of the bound. 
The approximation ratios presented can also be applied in the global 
greedy algorithm. 

Theorem 2. For the mobile multi-agent sensing problem, the approxima

tion ratio of Algorithm 2 is f(X
G
)

f(X
*
)
⩾ 1

1+h 

(

h := c1 ⋅c2
1− c1 

such that c1 =

maxk∕∈X ,X ∈I ,j∈B

(

1 −
fj(X ∪{k})− fj(X )

fj({k})

)

and c2 = max
∑M

t=1
ρkt (X

G
)

f(X
G
)

, kt ∈ X t

)

. 

The ratio is acceptable when c1 ∕= 1 and c1⋅c2⩽1 − c1 (h⩽1). The bound is 
also tight. 

Proof. We first present Lemma 1 to prove the ratio. 

Lemma 1. For any X 1⊆X 2,ρk(X 2)⩾(1 − c1)⋅ρk(X 1). 

Proof.  

ρk

(
X 2

)
⩾ (1 − c1)⋅f ({k} )∵ definition of c1

= (1 − c1)⋅ρk(∅)

⩾ (1 − c1)⋅ρk

(
X 1

)
∵ submodular □  

We use f(X *
∩ X

G
) to prove the ratio. 

f
(

X
*
∩ X

G
)

= f

(

X
G
)

−
∑M

t=1

∑

k∈Gt⧹Ot

ρk

((
X

*
∩ X

G
)
∪ X

G
t− 1

)

⩽f

(

X
G
)

−
∑M

t=1

∑

k∈Gt ⧹Ot

ρk

(

X
G⧹

{

k

}) (6)  

= f

⎛

⎝X
G

⎞

⎠ −
∑

k∈X
G

⧹X
* ρk

⎛

⎝X
G⧹

⎧
⎨

⎩
k

⎫
⎬

⎭

⎞

⎠ (7)  

Inequality (6) follows from the submodularity of f. 

f
(

X
*
∩ X

G
)

= f

(

X
*
)

−
∑M

t=1

∑

k∈Ot⧹Gt

ρk

((
X

*
∩ X

G
)
∪ X

*
t− 1

)

⩾f

(

X
*
)

−
∑M

t=1

∑

k∈Ot⧹Gt

ρk

((
X

*
∩ X

G
))

(8)  

⩾f

⎛

⎝X
*

⎞

⎠ −
1

1 − c1

∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠ (9)  

Inequality (8) follows from the submodularity of f. Inequality (9) is due 
to Lemma 1. Combining the two (In) equalities (7) and (9),   

⩽f
(

X
G
)

+
c1⋅c2

1 − c1
f
(

X
G
)

(11)  

=
(

1+ h
)

f
(

X
G
)

Because ρk′ (X
G
)⩽ρk(X

G⧹{k}) and 
⃒
⃒
⃒X

*⧹X
G
⃒
⃒
⃒ =

⃒
⃒
⃒X

G⧹X
*
⃒
⃒
⃒, Inequality 

(10) is satisfied. Inequality (11) is due to the definition of c2. Therefore, 
f(X

G
)

f(X
*
)
⩾ 1

1+h. If h > 1, the approximation ratio becomes less than 12. In this 

case, we use 12 instead of 1
1+h as an approximation ratio. 

f
(

X
*
)

⩽f

⎛

⎝X
G

⎞

⎠+
1

1 − c1

∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠ −
∑

k∈X
G

⧹X
* ρk

⎛

⎝X
G⧹

⎧
⎨

⎩
k

⎫
⎬

⎭

⎞

⎠

= f

⎛

⎝X
G

⎞

⎠+
c1

1 − c1

∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠+
∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠

−
∑

k∈X
G

⧹X
* ρk

⎛

⎝X
G⧹

⎧
⎨

⎩
k

⎫
⎬

⎭

⎞

⎠

⩽f

⎛

⎝X
G

⎞

⎠+
c1

1 − c1

∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠

(10)   
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Next, we prove tightness of the bound in the sense that there exist 
instances that approximation ratio 1

1+h is achieved. When c1 = 0, the 
submodular function f becomes linear. As a result, the solution given by 

Algorithm 2, X G, is optimal, and the ratio is trivially 1. When c1 ∕= 0, 
all instances such that c2 = 0 achieve tightness. In these instances, the 
ratio becomes 1. It means that the solution given by Algorithm 2, X G, is 

optimal. We establish the claim by contradiction. Suppose that X
′

is an 

optimal solution (not X G) and 
⃒
⃒
⃒X

G⧹X
′
⃒
⃒
⃒ =

⃒
⃒
⃒X

′

⧹X
G
⃒
⃒
⃒ = 1 for the sake of 

simplicity. Let {a} ∈ X
G⧹X

′

and {b} ∈ X
′

⧹X
G. Because we assume 

c2 = 0, f(X G
) = f(X G

∪ {b}). But we know f(X
′

∪ {a}) = f(X G
∪ {b})

by the assumption. Thus f(X
′

∪ {a}) = f(X G
). It means that f(X

′

∪

{a}) = f(X G
)⩽f(X

′

). The function f is monotone, so 

f(X
′

∪ {a})⩾f(X
′

). Therefore, f(X
′

∪ {a}) = f(X
′

) = f(X G
), which is 

a contradiction. □ 

We present the following lemma by modifying Conforti and 

Cornuéjols (1984)’s theorem to apply our problem. 

Lemma 2. (Conforti and Cornuéjols, 1984) For the mobile multi-agent 

sensing problem, the approximation ratio of Algorithm 2 is f(X
G
)

f(X
*
)
⩾ 1

1+c1
. 

Proof. 

f

⎛

⎝X
*
∪ X

G

⎞

⎠⩽f

⎛

⎝X
G

⎞

⎠+
∑

k∈X
*
⧹X

G ρk

⎛

⎝X
G

⎞

⎠ (12)  

= f

(

X
G
)

+
∑M

t=1

∑

k∈Ot ⧹Gt

ρk

(

X
G
)

⩽f

(

X
G
)

+
∑M

t=1

∑

k∈Ot ⧹Gt

ρk

(

X
G
t− 1

) (13)  

We have Inequality (12) from Lemma 2.1 of Conforti and Cornuéjols 
(1984). Inequality (13) follows from the submodularity of f. 

Fig. 1. Flow chart for the two greedy algorithms.  
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f

(

X
*
∪ X

G
)

= f

(

X
*
)

+
∑M

t=1

∑

k∈Gt ⧹Ot

ρk

(

X
*
∪ X

G
t− 1

)

(14)  

Combining the two (In) equalities (13) and (14), 

f
(

X
*
)

⩽f

(

X
G
)

+
∑M

t=1

∑

k∈Ot ⧹Gt

ρk

(

X
G
t− 1

)

−
∑M

t=1

∑

k∈Gt ⧹Ot

ρk

(

X
*
∪X

G
t− 1

)

⩽f

(

X
G
)

+
∑M

t=1

∑

k∈Ot ⧹Gt

ρk

(

X
G
t− 1

)

−

(

1 − c1

)
∑M

t=1

∑

k∈Gt⧹Ot

ρk

(

X
G
t− 1

)

(15)  

⩽f

(

X
G
)

+
∑M

t=1

∑

k∈Gt ⧹Ot

ρk

(

X
G
t− 1

)

−

(

1 − c1

)
∑M

t=1

∑

k∈Gt⧹Ot

ρk

(

X
G
t− 1

)

(16)  

= f

(

X
G
)

+ c1

∑M

t=1

∑

k∈Gt⧹Ot

ρk

(

X
G
t− 1

)

⩽f

(

X
G
)

+ c1

∑M

t=1

∑

k∈Gt

ρk

(

X
G
t− 1

) (17)  

= f
(

X
G
)
+ c1f

(
X

G
)

=
(

1 + c1

)
f
(

X
G
)

Inequality (15) is due to Lemma 1, and Inequality (16) follows from the 
property of the greedy algorithm. Inequality (17) follows from the 

monotonicity of f. Therefore, f(X
G
)

f(X
*
)
⩾ 1

1+c1
. The proof of tightness of the 

bound is shown in Conforti & Cornuéjols (1984) and Qu et al. (2019), so 
we skip the details of the proof. □ 

Lemma 3. When c1 +c2⩽1, using 1
1+h is more advantageous to obtain a 

tighter upper bound than using 1
1+c1

. 

Proof. When 1
1+h⩾

1
1+c1

, we can say that 1
1+h is more acceptable when 

estimating an upper bound of the optimal. It means that h⩽c1 (c1⋅c2
1− c1

⩽c1). 
Therefore, when c1 + c2⩽1, using 1

1+h is more advantageous to obtain a 
tighter upper bound than using 1

1+c1
. □ 

Theorem 3. For the mobile multi-agent sensing problem, the approxima

tion ratio of Algorithm 2 is f(X
G
)

f(X
*
)
⩾R 

(

R := min ρGt (X
G
t− 1)

maxk∈X t f({k})

)

. The ratio is 

acceptable when R⩾1
2. The bound is also tight. 

Proof. We prove the ratio, by induction on the number of agents M, 

when R⩾1
2. When M = 1, f(X

G
)

f(X
*
)
=

f(G1)
f(G1)

⩾R. Suppose that it is true for M =

n. Let X G
M=n be a solution generated by the sequential greedy algorithm 

when M = n. Let X *
M=n be an optimal solution when M = n. We focus 

on M = n + 1. First of all, the following equality and inequality are 
satisfied: 

f
(

X
G
M=n+1

)
= f
(

X
G
M=n

)
+ ρGn+1

(
X

G
M=n

)

f
(

X
*
M=n+1

)

⩽f
(

X
*
M=n

)

+ max
k∈X n+1

f
({

k
}) (18)  

because 

f
(

X
*
M=n+1

)
= f
(

X
*
M=n ∪On+1

)
+ f
(

X
*
M=n ∩On+1

)
∵f
(

X
*
M=n ∩On+1

)
= 0

⩽f
(

X
*
M=n

)
+ f
(

On+1

)
∵submodular

⩽f
(

X
*
M=n

)

+ max
k∈X n+1

f
({

k
})

.

Using the above equality and inequality, we can prove approximation 
ratio R. 

f
(

X
G
M=n+1

)

f
(

X
*
M=n+1

)⩾
f
(

X
G
M=n

)
+ ρGn+1

(
X

G
M=n

)

f
(

X
*
M=n

)

+ max
k∈X n+1

f
({

k
}) (19)  

⩾
R × f

(
X

*
M=n

)
+ ρGn+1

(
X

G
M=n

)

f
(

X
*
M=n

)

+ max
k∈X n+1

f
({

k
}) (20)  

⩾
R × f

(

X
*
M=n

)

+ R × max
k∈X n+1

f
({

k
})

f
(

X
*
M=n

)

+ max
k∈X n+1

f
({

k
}) (21)  

= R  

Inequality (19) is due to Inequality (18). Inequality (20) follows from 
f(X

G
M=n)

f(X
*
M=n)

⩾R. Inequality (21) is due to 
ρGn+1

(X
G
M=n)

maxk∈X n+1 f({k})⩾R. When R < 1
2, we use 12 

instead of R as an approximation ratio. 
Next, we prove tightness of the bound in the sense that there exist 

instances that approximation ratio R is achieved. Let R be αβ. It means that 
α
β⩾1

2. We assume that there are M agents (i ∈ A) and N nodes (j ∈ B). We 
set M⩾K such that K is the smallest positive integer with Kα⩽(K − 1)β. 
We need some notations: X i = {(i, j)|j ∈ B} is the set of the strategies for 

agent i. Sj(X ) = {i
⃒
⃒
⃒(i, j) ∈ X } is the set of agents that select node j. For 

node j,X = Zj
1 ∪ Zj

2 where Zj
1 = {k

⃒
⃒
⃒k ∈ X , i ∈ Sj(X ) when k = (i, j)} and 

Zj
2 = X − Zj

1. We assume that fj(X ) = fj(Zj
1). Suppose that a set of agents 

A associated with an ordering (1,2,…,M). The set values are as follows:  

(i) if 
⃒
⃒
⃒Zj

1

⃒
⃒
⃒ = 1 in X , 

fj

(

X

)

=

{
β, ifZj

1 =
{(

j + 1, j
)}

, j = 1, 2,…M − 1
α, otherwise    

(ii) if 
⃒
⃒
⃒Zj

1

⃒
⃒
⃒ = 2 in X ,  fj(X ) = β  

(iii) if 
⃒
⃒
⃒Zj

1

⃒
⃒
⃒⩾3 in X ,  fj(X ) = fj(X ⧹{k}), k ∈ Zj

1 

The set functions fj(X ) are all monotone submodular functions. In this 
setting, 

min ρGt (X
G
t− 1)

maxk∈X t f({k}) =
α
β is satisfied. We assume that the smallest index of 

node j is selected if two or more strategies have the same value. So, 

X
G
= {(i, j)

⃒
⃒
⃒i = j and i = 1, 2, …, M}. However, X

*
= {(i, j)

⃒
⃒
⃒i = j +

1 and j = 1, 2, …, M − 1} ∪ {(1, M)}. Therefore, 
∑

j∈B
fj(X

G
)

∑
j∈B

fj(X
*
)
=

Mα
Mβ− β+α ≈

α
β when M→∞. □ 

The following lemma shows the overall approximation ratio of Al
gorithm 2 by using Theorems 2 and 3, and Lemma 2. 

Lemma 4. For the mobile multi-agent sensing problem, the approximation 

ratio of Algorithm 2 is bounded by f(X
G
)

f(X
*
)
⩾max

{
1

1+c1
, 1
1+h,R

}

. 

Proof. We can prove this lemma by using Theorems 2 and 3, and 
Lemma 2. □ 
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4. Computational experiments 

In this section, the global and sequential greedy algorithms presented 
were evaluated through numerical tests. All tests were run on a Python 3 
with Intel Core CPU i5-3470 processor. We considered a large number of 
N nodes and a relatively small number of M agents, both of which are 
located as points in a two-dimensional space R2. We generated the lo
cations of agents and nodes uniformly random. The strategy set (X i) of 
agent i can include all the points whose distances to lci are within ALi. 
Because the number of strategy sets is infinite, the points are restricted 
to integers. 

4.1. Experiments in small data sets 

First of all, we conducted numerical experiments to analyze the 
performance of the algorithms in small data sets. For small data sets, we 
chose M = 5,N = 10,and ALi⩽3. We set a sensing range of agent i ac
cording to ALi. As ALi is high, the sensing range is low. Agents and nodes 
are in [0, 20]2. We executed 100 runs for each sensing decay factor λi ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. We computed the optimal solution through a 
brute-force search, and also derived solutions through the global greedy 
algorithm and the sequential greedy algorithm. For the sake of 
simplicity, we use C := 1

1+c1 
and H := 1

1+h in this section. 
Table 1 shows the results for the different sensing decay factors. The 

values in Table 1 are average ratios and computation times from the 
numerical experiments. rgg/opt and rsg/opt are ratios of the global and 
sequential greedy algorithm solutions to an optimal solution, respec
tively. There are three types of computation times: topt for the brute-force 
search method, tgg for the global greedy algorithm, and tsg for the 
sequential greedy algorithm. rgg/opt and rsg/opt showed larger than 0.98 in 
all cases. The ratio differences between the two algorithms were less 
than 1%. The computation times were less than 0.1 s in the algorithms, 
but more than 192 s in the brute-force search. The computation times of 
the sequential greedy algorithm were about half of the computation 
times of the global greedy algorithm. 

Existing approximation ratio C was compared with new approxi
mation ratios R and H, which were proved in this paper, through the 
numerical experiments. Fig. 2 is a plot of approximation ratios R, C, and 
H for the different sensing decay factor. We additionally executed 100 
runs for each sensing decay factor λi ∈ {0.6,0.7, 0.8,0.9, 1.0} to 
compare the approximation ratios. Approximation ratio H ranged be
tween 0.631 and 0.763 in the numerical experiments. In most data sets, 
approximation ratio H was the largest ratio among the three approxi
mation ratios. When λi was 0.9 and 1.0, approximation ratio R tended to 
be larger than approximation ratio C on average. We also observed that 
as λi increased, the three approximation ratios were more likely to in
crease. The sensing decaying factor λi represents the performance of the 
sensor. As the value of the factor gets high, the detection probability of 
event occurrences at the same node gets low. Also, by the definition of 
Pj(X ) = 1 −

∏
x∈X

(1 − p(x,j)), as λi increases, the difference of marginal 
gain that occurs whenever a strategy is added gets small. That is, Pj(X )

is close to modular function as λi increases. By the definition of 
approximation ratios R,C, and H, the ratios get close to 1 depending on 
how close the objective function is to a modular function. In these 

Table 1 
Results for the different sensing decay factor λi.  

λi  rgg/opt  rsg/opt  topt (sec)  tgg (sec)  tsg (sec)  

0.1 0.992 0.991 367.399 0.056 0.025 
0.2 0.963 0.958 284.844 0.049 0.020 
0.3 0.994 0.991 193.681 0.033 0.017 
0.4 0.993 0.985 246.191 0.029 0.015 
0.5 0.997 0.988 311.668 0.029 0.015  

Fig. 2. Comparison between approximation ratios R, C, and H for λi.  

Fig. 3. Comparison between two approximation ratios C and H (λi = 0.3).  
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experiments, approximation ratio H was the largest approximation ratio, 
however, the ranking may change depending on the certain instance 
situations. 

When we set the sensing decay parameter at λi = 0.3, average ratios 
and computation times for the two algorithms performed well in gen
eral. Therefore, We used λi = 0.3 in these experiments. Fig. 3 represents 
two plots of which each point shows the ratio of the sequential greedy 
solution to an optimal solution as compared to approximation ratios C 
(left) and H (right). Compared to approximation ratio C, approximation 
ratio H was able to give tighter upper bounds of the solutions obtained 
by the sequential greedy algorithm. In 80 out of 100 instances, 
approximation ratio H were higher than 1 − 1

e ≈ 0.632, which was 
proved by using a randomized continuous greedy algorithm (Vondrák, 
2008). Also, we observed that the ratios of the sequential greedy solu
tion to an optimal solution were close to 1 in most cases. This implies 
that it is important to design improved instance dependent guarantees. 

Fig. 4 shows the ratio of the sequential greedy solution to the global 
greedy solution. Most cases were within the interval [0.97, 1.02]. The 
performance of the global greedy algorithm was slightly better, but 
showed almost similar performances. As mentioned before, the 
computation times of the sequential greedy algorithm were about half of 
the computation times of the global greedy algorithm. 

4.2. Experiments in large data sets 

For the large data sets, we set λi = 0.3,ALi⩽6,M (10 to 70), and N (20 
to 140). Agents and nodes are in [0,50]2. We executed 10 runs for each M 
and N. Because optimal solutions were intractable to compute within a 
reasonable time, we used an upper bound instead, which is derived from 
a relaxed version of the original problem. The way to calculate the upper 
bound of the problem is as follows: We assume that there is an optimal 
strategy for each agent without considering other agents. It means that 
we can calculate X i = argmaxk∈X i

f({k}) for each agent. 
∑M

i=1f(X i) can 

be an upper bound of the problem. By the definition of X i, we know 
∑M

i=1f(X i)⩾
∑M

i=1f(Oi). We also know 
∑M

i=1f(Oi)⩾f(X *
) because func

tion f is submodular. Therefore, we use 
∑M

i=1f(X i) as an upper bound of 
the problem. Using the upper bound, the results for the large data sets 
are summarized in Table 2. rgg/ub and rsg/ub are ratios of the global and 
sequential greedy algorithm solutions to the upper bound, respectively. 
The values in Table 2 are average ratios and computation times from the 
numerical experiments. We excluded the results of approximation ratio 
R in these experiments because approximation ratio R tended to be 
lower than approximation ratios C and H. Even though approximation 
ratio R was lower than approximation ratios C and H in the experiments, 

approximation ratio R might be higher than approximation ratio C or H 
depending on instances or problems. 

The more complex a situation was (as M and N increased), the higher 
rgg/ub and rsg/ub from the two greedy algorithms in the numerical ex
periments were obtained. Overall, there was no significant difference in 
the objective value obtained by the sequential greedy algorithm and the 
global greedy algorithm under any circumstances. However, when it 
comes to the computation time, the sequential greedy algorithm was 
much faster than the global greedy algorithm, as shown in Fig. 5. Fig. 5 
gives insights into the difference between the two algorithms in terms of 
computation times. The important point is that the sequential greedy 
algorithm can derive the solution within a reasonable time, in complex 
situations. In particular, the difference in computation time occurs more 
than 25 times in the case of M = 70 and N = 140. 

We set a specific case in which the number of nodes is fixed to 100 
and the number of agents is changed. In reality, the number of nodes is 
fixed in a specific area, and managers decide the number of agents by 
considering operating costs, legal issues, and other factors. The results 
are summarized in Table 3. The values in Table 3 are average ratios and 
computation times from the numerical experiments. Even when the 
number of agents is large (i.e., 70 agents), the sequential greedy algo
rithm obtained solutions within 100 s, and the difference with the upper 
bound was also within 10%. In particular, the performance difference 
with the global greedy algorithm was 1.4%, which leads to relatively 
competitive solutions, when considering the difference between 2,331 s 
and 99 s. We have confirmed that our approximation ratio H finds a 
relatively higher ratio than existing approximation ratio C through the 
numerical experiments. Consequently, we can exploit the largest value 
of approximation ratios R, C, and H as the bounds of the approximation 
ratio. 

Fig. 6 shows the ratio of the sequential greedy solution to the upper 
bound (

∑M
i=1f(X i)), compared with approximation ratio H. In these 

experiments, when the number of agents was small, it would be better to 
use approximation ratio H to estimate the upper bound of the problem. 
On the other hand, as the number of agents increased, it would be better 

Table 2 
Results for the different M,N values.  

M N rgg/ub  rsg/ub  C H tgg (sec)  tsg (sec)  

10 20 0.787 0.792 0.562 0.692 1.655 0.533 
20 40 0.773 0.765 0.548 0.757 23.028 3.517 
30 60 0.796 0.784 0.531 0.776 109.313 12.623 
40 80 0.821 0.808 0.514 0.703 357.825 27.980 
50 100 0.850 0.832 0.515 0.717 567.010 30.739 
60 120 0.878 0.868 0.511 0.752 1732.029 93.029 
70 140 0.907 0.892 0.509 0.761 2267.131 82.271  

Fig. 4. The ratio of sequential greedy to global greedy (λi = 0.3).  

Fig. 5. Computation time of the two greedy algorithms.  
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to use 
∑M

i=1f(X i) as an upper bound instead of using approximation 
ratio H. 

The reason for this difference is that, as the number of agents in
creases, the total number of strategies for the agents increases. Ac
cording to the definitions of C1 and C2, the values of C1 and C2 tend to 
increase as the number of strategies increases. In particular, because the 
value of C1 tends to increase more than the value of C2, the value of ratio 
H tends to decrease as the number of strategies increases. When it comes 
to the ratio rsg/ub, the ratio increases as the number of agents increases. 
Given a fixed space, as the number of agents increases, it is more likely to 
obtain high-quality solutions even through the sequential greedy algo
rithm. Actually, the average area in which each agent needs to be 
monitored tends to be smaller as the number of agents increases. This 
means that the number of strategies that each agent should substantially 
consider tends to decrease as the number of agents increases. Therefore, 
it is less likely to obtain solutions somewhat different from the optimal 
solution as the number of agents increases. 

5. Conclusions 

In this paper, we presented a mobile multi-agent sensing problem, 
which is one of the submodular maximization problems under a parti
tion matroid constraint. The sequential and global greedy algorithms 
were used to obtain high-quality solutions. We introduced new instance 
dependent guarantees to show improved bounds, depending on in
stances ( 1

1+h,R). Compared to the ratio of curvature ( 1
1+c1

), we presented 
the novelty and validity of the new approximation ratios of the 
sequential greedy algorithm. Also, compared to the global greedy al
gorithm, the sequential greedy algorithm showed competitiveness in 
terms of performances and computation times. Therefore, the sequential 
greedy algorithm is expected to be useful when we deal with the mobile 
multi-agent sensing problem. 

An important area for future work is to design new algorithms. The 
algorithms have to prove tighter approximation ratios and take less 
computation time to obtain high-quality solutions. Furthermore, to 
obtain optimal (or near-optimal) solutions of the problem efficiently, we 
need to design exact algorithms such as a cutting-plane algorithm and 
branch-and-price algorithm. The problems can be extended by consid
ering the uncertainty of the objective function. Applications of sto
chastic programming to the problem with uncertainty might be future 
research. 
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Pöllönen, Roy, et al., 2009. Radiation surveillance using an unmanned aerial vehicle. 
Applied Radiation and Isotopes 67 (2), 340–344. 

Qu, Guannan, et al., 2019. Distributed greedy algorithm for multi-agent task assignment 
problem with submodular utility functions. Automatica 105, 206–215. 

Rai, Nitika, Daruwala, Rohin D., 2016. Effect of probabilistic sensing models in a 
deterministically deployed wireless sensor network. In: 2016 IEEE Region 10 
Conference (TENCON). IEEE, pp. 1352–1355. 

Rajaraman, Nived, Vaze, Rahul, 2018. Submodular Maximization under a matroid 
constraint: asking more from an old friend, the greedy algorithm. arXiv preprint 
arXiv:1810.12861. 

Rezazadeh, Navid, Kia, Solmaz S., 2019. A sub-modular receding horizon solution for 
mobile multi-agent persistent monitoring. In: arXiv preprint arXiv:1908.04425. 

Scheutz, Matthias et al. (2005). The utility of heterogeneous swarms of simple UAVs with 
limited sensory capacity in detection and tracking tasks. In: Proceedings 2005 IEEE 
Swarm Intelligence Symposium, 2005. SIS 2005. IEEE, pp. 257–264. 

Soeanu, Andrei, et al., 2018. Efficient sensor network management for asset localization. 
Computers & Operations Research 99, 148–165. 

Song, Cheng, et al., 2014. Optimal deployment of heterogeneous mobile agents on a 
circle. In: Proceedings of the 33rd Chinese Control Conference. IEEE, pp. 1168–1172. 

Spletzer, John R, Taylor, Camillo J., 2003. Dynamic sensor planning and control for 
optimally tracking targets. The International Journal of Robotics Research 22 (1), 
7–20. 

Stone, Peter, Veloso, Manuela, 2000. Multiagent systems: A survey from a machine 
learning perspective. Autonomous Robots 8 (3), 345–383. 

Sun, Xinmiao, et al., 2017. A submodularity-based approach for multi-agent optimal 
coverage problems. In: 2017 IEEE 56th Annual Conference on Decision and Control 
(CDC). IEEE, pp. 4082–4087. 

Sun, Xinmiao, et al., 2019. Exploiting submodularity to quantify near-optimality in 
multi-agent coverage problems. Automatica 100, 349–359. 

Sviridenko, Maxim, et al., 2017. Optimal approximation for submodular and 
supermodular optimization with bounded curvature. Mathematics of Operations 
Research 42 (4), 1197–1218. 

Verma, Pulkit, et al., 2014. Improving services using mobile agents-based IoT in a smart 
city. In: 2014 International Conference on Contemporary Computing and Informatics 
(IC3I). IEEE, pp. 107–111. 
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