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This paper models the problem of providing an unmanned aerial vehicle (UAV)-based wireless network 

in a disaster area as a set covering problem that takes into consideration the operational constraints 

and benefits of UAVs. The research presents a branch-and-price algorithm and two approximation mod- 

els of the quadratic coverage radius constraint in a simple discretization and a linear pairwise-conflict 

constraint based on Jung’s theorem. In computational experiments, we found that the exact branch-and- 

price algorithm and two approximation models are applicable for realistic-scaled problems with up to 

100 demand points and 2,000 m of coverage radius. 
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. Introduction 

Various fields of industry are showing an increasing interest

n unmanned aerial vehicle (UAV). The main advantage of UAVs

s their autonomous swarm operation capability ( Kim et al., 2018;

im and Moon, 2019 ), which enables the system to execute mul-

iple tasks simultaneously at a low cost and without human inter-

ention. Under the most recent positioning system, which guaran-

ees precise location recognition, UAVs can be operated as flexible,

xpendable resources in diverse industries and environments. For

xample, UAVs have been used not only in the military, surveil-

ance, and logistics applications but also in disaster management,

ncluding casualty search and relief logistics ( Chowdhury et al.,

017 ). An emerging approach is the use of UAVs to establish an

mergency wireless network in a disaster area. In a natural disaster

ituation with mass destruction over a large area, such as an earth-

uake, tsunami, or flood, the damage to infrastructure facilities of-

en leads to immediate and secondary casualties. Survivors in the

isaster area who cannot evacuate immediately require a means of

ommunication with the outside world. At the same time, authori-
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ies require a system for monitoring survivors and the scene of the

isaster. 

Many cases have shown that in disaster areas, the wireless net-

ork is one of the systems to be recovered first. Survivors of dis-

sters often use wireless networks to inform the authorities and

heir relatives the status they are encountered. For example, some

urvivors of the 2011 Great East Japan Earthquake watched for up-

ates of the disaster and posted about their situation on Twit-

er and Facebook ( Wallop, 2011 ). Besides, some survivors used the

ireless network to inform authorities of the current immediate

ituation and to request rescue ( Aida et al., 2013 ). Similarly, sur-

ivors of the 2010 Haiti earthquake ( Heinzelman and Waters, 2010 )

nd Hurricane Harvey in southeast Texas ( Holley, 2017 ) used Twit-

er to request evacuation, which allowed authorities and home-

rown volunteer groups to provide aid. 

Effort s have also been underway to develop systems to mon-

tor disaster scenes. After the rapid growth of sensor technology,

he only remaining hurdle is to maintain connectivity between the

isaster scene and authorities. Thus, researchers in both academia

nd industry are helping to develop UAV-based wireless networks

hat can help recover a temporary wireless connection in a dis-

ster environment. One issue with a UAV-enabled wireless net-

ork is ensuring that the overall system (including the sensors

nd the UAV) has enough power to maintain operation for the

ime needed. Thus, researchers are searching for ways to mini-

ize energy consumption and maximize the overall system life-

ime. The UAV routing model can be used for similar problems,
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such as a visual surveillance and monitoring system based on

camera-mounted UAVs that need to operate near the actual site.

Ho et al. (2015) used particle swarm optimization as an approx-

imation algorithm to optimize the UAV trajectory along waypoint

candidates. Zhan et al. (2018) synchronized the wake-up sched-

ule of sensors and the UAV trajectory. Zeng et al. (2016) and

Wu et al. (2018) maximized the throughput controlling trajec-

tory and speed of the UAV. Zeng et al. (2018) approximated the

makespan-minimization problem as a generalized traveling sales-

person problem and proposed a two-stage algorithm to solve it. 

Another issue is the UAVs’ need to hover in a planned area to

maintain continuous network connectivity, which is addressed in

this paper. There are three closely related approaches to the con-

tinuous network and facility location problems. The first approach

is the continuous location problem. The continuous location prob-

lem, including the minimal covering circle problem, aims to de-

cide the position of a facility in the xy-plane with various types of

distance (e.g., Euclidean, rectangular, and p -norms). While decid-

ing the position of one facility and its coverage radius, a weighted

sum or a minimax distance is used as an objective. Accordingly, ev-

ery facility and demand point pair is considered without division.

Drezner et al. (2001) and Plastria (2001) provide detailed informa-

tion about the continuous location problem approach. 

The second approach is the clustering problem. Some of the

considerable research conducted on the clustering approach has

focused on K -means ( Periyasamy et al., 2016; Sasikumar and

Khara, 2012 ), modified K -means ( Periyasamy et al., 2016 ), disk

covering ( Mozaffari et al., 2016b ), and circle packing in a circle

( Mozaffari et al., 2016a ). In the field of facility location, there are

similar problems of p -center ( Daskin and Maass, 2015 ) and p -cover

( Calik et al., 2015 ). These problems consider the given number of

the clusters K (or p ) as the primary constraint instead of the physi-

cal limitation of the coverage radius. Existing studies use a function

(e.g., sum or minimax) of various types of distances as an objective

because the purpose of traditional clustering problems is not the

physical clustering but the classification of data. 

The third approach is the set covering problem. Facility loca-

tion problems with a set covering approach make the decision

using given candidates with predefined positions for facility lo-

cations. Because every location of the facility is already known,

the constraint on the coverage radius is easily considered by

checking the feasibility of each facility and demand point pair.

Chandrashekar et al. (2004) modeled a two-layer network that

consists of mobile ad hoc networks (MANET) and a covering UAV

network. Zorbas et al. (2016) proposed a minimum-cost drone lo-

cation problem that takes into consideration the network coverage

changing over flight altitudes. 

The UAV set covering problem (USCP) has two distinct charac-

teristics that the approaches mentioned above do not have. First,

the objective of the USCP is to optimize the cardinality of the

UAVs, whereas the continuous location and clustering problem ap-

proaches minimize the cost function, which is usually related to

the arcs of the network. The arc-related cost function considers the

relation between every facility and demand point pair, which does

not require an extra decision on a set partition. Interested read-

ers are referred to Boonmee et al. (2017) for a detailed literature

review. For the USCP, changing the objective significantly reduces

the ability to resolve the problem. Without a decision on a set par-

tition, the linear relaxation bound for the USCP does not provide

any information, as explained in Section 3.1 . Note that the solution

algorithm of p -center problem is exponential in p ( Capoyleas et al.,

1991 ). Because the cardinality of the UAV is not predefined as a pa-

rameter in the USCP, the researcher must iterate over p up to the

number of demand points, which will grow exponentially. 

Second, the USCP brings the positions of facilities into the de-

cision problem. The traditional set covering problem approach de-
ides among given candidates for facility locations. This is because

 real disaster situation has a wide variety of constraints and a

andful of possible sites for facility locations. Also, to avoid im-

ractical solution algorithms ( Toregas et al., 1971 ), models make

ecisions among a limited number of candidates. When the fa-

ility candidate is predefined, the availability between each de-

and point and each candidate facility location is defined as well;

hus, it is straightforward to apply coverage radius as a constraint.

or literature focusing on coverage constraints, we refer readers to

mbulance location and relocation problems ( Ahmadi-Javid et al.,

017; Aringhieri et al., 2017; Bélanger et al., 2019; Brotcorne et al.,

003 ). However, in the case of the USCP, there is flexibility to po-

ition the UAV freely on the xy-plane. This imposes the problem

f having to check every possible subset of demand points, which

ill grow exponentially. 

Therefore, it is difficult to apply the knowledge from existing

tudies to the USCP straightforwardly. Despite the straightforward

efinition of the problem and the model, which will be presented

ater, the USCP suffers from a computational burden; however, the

ecessity of the research has recently begun to emerge. The in-

roduction of UAVs into the set covering problem has changed the

ituation dramatically because of the flexible positioning and the

imitations of network coverage significantly affect the model. We

oticed a gap between the related approaches and the technolo-

ies required at the scene of a disaster. Thus, this paper presents a

et covering problem without predefined candidate positions and

ith the consideration of a fixed-radius coverage constraint to fill

he gap mentioned above. 

The wireless network is assumed to be uncapacitated to show

nd maximize the effects of the disaster environment’s topographic

tructures. To utilize the knowledge of the topographic structure

or the solution algorithm, we developed a branch-and-price (B&P)

lgorithm for the USCP as other research considering assignment

onstraints (e.g., set covering, clique covering, and vehicle routing;

i and Mitchell, 2007; Johnson et al., 1993; Vance, 1998; Vance

t al., 1994 ). The B&P algorithm runs a column generation (CG)

ethod on every node in a branch-and-bound (B&B) tree, defin-

ng new patterns of the demand points to be covered by a UAV

s new variables. The reformulation associated with the B&P algo-

ithm strengthens the linear programming relaxation (LP) bound

nd decreases symmetries in the branching tree. It enabled the

roposed B&P algorithm to provide the optimal solution in a rea-

onable timescale for both a small-sized artificial dataset and a

ealistic-scale dataset in computational experiments. 

Even though the USCP is reformulated, the mixed-integer

uadratic coverage constraint remains in the CG subproblem. An

pproximation model is designed to avoid the numerical instabil-

ty incurred by the coverage constraint and to improve the compu-

ation speed. In the approximation model, a linearized, pairwise-

onflict constraint based on the sufficient condition substitutes

he quadratic constraint. We observed that the B&P algorithm for

he pairwise-conflict constraint approximated model is numerically

table and provides a time-efficient solution with applicable opti-

ality. 

The rest of this paper is structured as follows: Section 2 pro-

oses the problem description and the mathematical model of the

tandard formulation. A direct way to discretely approximate the

ixed-integer quadratic constraint into the integer constraint is

lso proposed. Section 3 describes, in detail, the B&P approach

or the USCP and the pairwise-conflict constraint approximation

ased on Jung’s theorem. This section also presents the com-

arison between two approximation models and the overall al-

orithmic framework for further clarification. Section 4 presents

he computational experiments conducted, including the algo-

ithmic performances of four proposed models. In this sec-

ion, we analyze the managerial insights for practical applica-
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ions in a disaster environment. Finally, Section 5 concludes the

esearch. 

. Problem definition 

This section presents a detailed description of the USCP. UAVs

onstruct a wireless network to restore connectivity for survivors

n a disaster area. The ultimate scope of the UAV operation prob-

em should be the development of an optimal flight schedule for

n overall UAV system within the constraints of battery capacity.

he interval scheduling or interval partitioning problem expands

he set covering problem to the time dimension. The flight time to

he target position and the duration of hovering, considering the

attery capacity of the UAVs, would be incorporated into the inter-

al scheduling problem. However, this problem is simplified in the

et covering problem to allow more explicit consideration of the

AV system’s characteristics. The set covering approach provides

 less dimensionally complex and more intuitive solution as com-

ared with the scheduling approach; this would allow authorities

o manage the system efficiently. The proposed USCP provides a

ough-cut response plan that can be used in creating a routing and

cheduling plan. The solution for the USCP, which consists of the

osition and the assignment of demand points for each UAV, can

e used as a set of feasible tasks. For this reason, the USCP mini-

izes the number of UAVs needed to cover every demand points

ather than maximizing the number of demand points covered by

 limited number of UAVs. 

.1. Problem description 

The cardinality minimization problem is designed for the im-

ediate response phase after a disaster. Thus, authorities can ob-

ain information on the approximate number of UAVs to create a

ough-cut response plan. The cardinality minimization problem can

e transformed into the coverage maximization problem, which

aximizes the number of demand points covered by a given num-

er of UAVs. Since the hard target in disaster management is to

inimize the damage of human life through the utmost effort s,

he constraint is set to fulfill every demand. 

The assumptions of the presented problem are defined as fol-

ows: 

1. The information on the positions of demand points is already

known. 

2. Each UAV has an identical coverage distance. 

3. There is no restriction on a UAV’s hovering position in the xy-

plane. 

4. A demand point is covered if it is in the coverage circle. 

5. There is no transmission capacity limitation on the wireless

network. 

6. There is no overlap interference between UAVs or shadowing

effect incurred by buildings. 

It is assumed to have initial information on the positions of de-

and points, which can be acquired by a primary search or by ex-

erts of disaster management. If there is a solution algorithm to

olve the USCP efficiently, authorities can provide a more advanced

esponse through optimizing the model iteratively and adding new

nformation. To utilize the UAV’s full capability, there is no restric-

ion on its position; in other words, there is no predefined can-

idate for each UAV to fly. This research focuses on the geometri-

al coverage constraint rather than the capacity constraints of the

ireless network. Each demand point is covered by a UAV if it is

n the coverage circle, regardless of a UAV’s capacity on the net-

ork’s accessor or transmission. The characteristic that authorities

nd survivors both have limitations on resources grounds the as-

umption. For the authorities, there are limitations on the number
f UAVs to be invested. At the same time, survivors conserve their

attery of the mobile devices as much as possible because there

s a lack of assurance of rescue. As a result, access to the wireless

etwork only occurs if absolutely necessary, which makes capacity

onstraints of the network immaterial. 

Fig. 1 presents an overview of the USCP. Under the given infor-

ation of the static position of demand point, the objective of the

AV set covering problem considered in this paper is to minimize

he number of UAVs required to cover every demand point in a

isaster situation. UAVs can be located without any restriction on

n xy-plane. The network-covered area is defined by the employ-

ent and position of UAVs, and a demand point is covered if and

nly if it is inside the area. 

.2. Mathematical formulation 

Based on the problem defined in Section 2.1 , a mathematical

odel is developed. The followings are the notations used in the

tandard mathematical formulation for the USCP: 

Set 

N set of demand points. 

Parameters 

a x 
i 

position of demand point i on x-coordinate. ∀ j ∈ N
a y 

i 
position of demand point i on y-coordinate. ∀ j ∈ N

R coverage radius of a UAV. 

Decision variables 

y j = 

{
1 , if UAV j is used . 

0 , otherwise . 
∀ j ∈ N

x i j = 

{
1 , if demand point i is covered by UAV j . 

0 , otherwise . 

∀ i ∈ N
∀ j ∈ N

c x 
j 

∈ R , position of UAV j on x-coordinate. ∀ j ∈ N
c y 

j 
∈ R , position of UAV j on y-coordinate. ∀ j ∈ N

The set N consists of the demand points and represents the

urvivors in the disaster area. Positions of demand points and the

overage radius of a UAV are given as parameters. There are two

ypes of decision variables: binary decision variables related to the

ocation-allocation problem and position decision variables on the

y-plane. UAV j and y j are predefined for each demand point to

over every extreme case. The following is the standard mathemat-

cal formulation of the USCP. For distinction, the formulation will

e renamed as Euclidean standard (ES) formulation. 

in 

∑ 

j∈ N 
y j (1) 

 . t . x i j ≤ y j , ∀ i ∈ N, ∀ j ∈ N (2)

∑ 

j∈ N 
x i j ≥ 1 , ∀ i ∈ N (3) 

(a x i − c x j ) 
2 + (a y 

i 
− c y 

j 
) 2 ≤ R 

2 + M(1 − x i j ) , 

∀ i ∈ N, ∀ j ∈ N (4) 

x i j ∈ { 0 , 1 } , ∀ i ∈ N, ∀ j ∈ N (5)

y j ∈ { 0 , 1 } , ∀ j ∈ N (6)

c x j , c 
y 
j 
∈ R , ∀ j ∈ N (7) 
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Fig. 1. Overview of the USCP. 
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The objective of the mixed-integer quadratically-constrained pro-

gramming (MIQCP) model is to minimize the total number of UAVs

used to cover the demand points. Constraint (2) is a linking con-

straint between a demand point and a UAV; the deployment of a

UAV precedes the assignment of a demand point. Constraint (3) is

a demand assignment constraint; every demand is required to be

fulfilled by at least one UAV. Constraint (4) is a mixed integer

quadratic constraint that relates the position-coverage of UAV and

its usage. A demand point i is covered by a UAV j only if the dis-

tance between the position of the demand point i , ( a x 
i 
, a 

y 
i 
) and the

position of UAV j , ( c x 
j 
, c 

y 
j 
) is less than the coverage radius R . Con-

straints (5) –(7) define the dimension of the decision variables. The

quadratic shape of Constraint (4) originates in Comley (1995) . It is

hard to solve the ES model within an applicable time, even for a

small-sized problem. To tackle the intractability of the ES model,

a natural approximation model based on discretization is proposed

in the next section. 

2.3. Discrete approximation model 

Constraint (4) is quadratic because of the continuous decision

variable for the position of the UAV, c x 
j 

and c 
y 
j 
. The simplest ap-

proximation of the ES model to linearize the quadratic constraint

is to discretize the xy-plane into grids and consider every lattice

point as a candidate for the position of a UAV. The following are

the new set and parameters used in the mathematical formulation

of the discrete approximation (DA) model: 

Set 

M set of candidates of flight position of UAV. 

Parameters 

b x 
j 

flight position of UAV j on x-coordinate. ∀ j ∈ M
b y 

j 
flight position of UAV j on y-coordinate. ∀ j ∈ M

αi j binary feasibility of UAV j to cover demand point i . ∀ i ∈ N, 

∀ j ∈ M
 s  
Decision variables 

y j = 

{
1 , if UAV j is used . 

0 , otherwise . 
∀ j ∈ M

x i j = 

{
1 , if demand point i is covered by UAV j. 

0 , otherwise . 

∀ i ∈ N, 

∀ j ∈ M 

Unlike in the ES model, UAV j ∈ M is predefined for each

attice point on the xy-plane, separated into grids. The binary

easibility αij is defined based on the distance between the de-

and point and the flight position of UAV j. αij equals 1 if
 

(a x 
i 
− b x 

j 
) 2 + (a 

y 
i 

− b 
y 
j 
) 2 ≤ R and 0 otherwise. Except for the do-

ain of the binary decision variable y j and the discretization of the

ontinuous decision variables c x 
j 

and c 
y 
j 
, the mathematical formu-

ation of the DA model is almost identical to that of the ES model:

in 

∑ 

j∈ M 

y j (8)

 . t . x i j ≤ y j , ∀ i ∈ N, ∀ j ∈ M (9)

∑ 

j∈ M 

αi j x i j ≥ 1 , ∀ i ∈ N (10)

x i j ∈ { 0 , 1 } , ∀ i ∈ N, ∀ j ∈ M (11)

y j ∈ { 0 , 1 } , ∀ j ∈ M (12)

et M is defined based on the size of the grid and the boundary of

he demand points. The extreme values of the leftmost, rightmost,

ppermost, and lowermost points become the boundary of set M .

he smaller each grid is, the more precise the approximation be-

omes, but at the same time, the size of set M increases quickly

n squares. Even though the approximation of the quadratic con-

traint accelerated the computation speed, the size of the prob-

em in terms of decision variables and constraints can be exces-

ively large. Thus, a scientific criteria to identify an efficient grid

ize is vital to implement the DA model. The detailed performance
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f the DA model and the criteria for the grid size is analyzed in

ections 3.4 and 4 . 

. Branch-and-price approach for the USCP 

Section 3.1 presents an extended formulation for the B&P al-

orithm. Section 3.2 introduces a detailed branching strategy re-

ated to the B&P algorithm on the USCP. Section 3.3 exam-

nes Jung’s theorem and the approximation model with pairwise-

onflict constraints based on Jung’s theorem. Section 3.4 com-

ares two approximation models based on the approximation ra-

io. Section 3.5 presents the overall algorithmic framework to use

airwise-conflict constraint approximation model in a disaster sit-

ation. 

.1. An extended formulation of the USCP 

To utilize the structural knowledge of the problem’s feasible so-

ution, we reformulated the ES into the extended formulation. One

trong point of the nominal set covering problem is the small in-

egrality gap and the tendency for the LP relaxation to provide an

nteger solution ( Simchi-Levi et al., 2005 ). However, the LP relax-

tion of the USCP neutralizes the coverage constraint. Unlike in the

ominal set covering problem, the coverage constraint is consid-

red jointly by Constraints (3) and (4) in the ES formulation. The LP

elaxation separates the relation among x ij , c 
x 
j 
, and c 

y 
j 
. Thus, the so-

ution of the LP relaxation does not satisfy the coverage constraint.

oreover, because the objective of the USCP is to minimize the

umber of homogeneous UAV without a consideration of capacity,

he relaxation always provides the LP bound as 1. In the extended

ormulation, the fixed-radius coverage constraint with Euclidean

istance (4) is considered implicitly in the decision variable; there-

ore, the solutions of the LP relaxation satisfy the coverage con-

traints, which obtains tighter LP bounds than in the nominal set

overing problem. Another advantage of the decomposition was

he elimination of symmetry among solutions, which obstructed

he search on the B&B algorithm ( Vanderbeck and Wolsey, 2010 ). 

Each column in the extended formulation defines a set of de-

and points that can be covered by one UAV. In this approach, one

akes the column-wise decision instead of the UAV - demand point

air decision by choosing to use particular columns and cover

he included demand points. For example, if columns j 1 = { 1 , 3 } ,
j 2 = { 2 , 3 } , and j 3 = { 1 , 2 } are considered, one can cover demand

oints {1, 2, 3} by selecting columns j 1 and j 2 , or j 2 and j 3 . Let

be the set of every feasible column that implicitly represents

 set of demand points covered by one UAV. For each assignment

lan j ∈ �, the inclusion of each demand point i is defined as a

inary parameter w ij . A binary decision variable z j is defined for

ach feasible column to denote the adoption. The extended formu-

ation model of the USCP is represented in the following integer

rogram: 

in 

∑ 

j∈ �
z j (13) 

 . t . 
∑ 

j∈ �
w ij z j ≥ 1 , ∀ i ∈ N (14) 

z j ∈ { 0 , 1 } , ∀ j ∈ � (15) 

bjective function (13) minimizes the cardinality of UAVs operated

o cover every demand point. Constraint (14) is a demand assign-

ent constraint. For each demand point, at least one active as-

ignment plan is required to cover it. In the extended formulation,

t is impossible to define intact � and every decision variable z j 
ecause the size of the set � is exponential on the number of
emand points m . The optimality under the current basis is ver-

fied by a subproblem called a pricing subproblem , which identifies

 new column for entering the basis to improve the solution; the

peration is iterated until no new column with a negative reduced

ost is found. The B&P algorithm is a B&B algorithm with a CG

echnique implemented at each node. The branching occurs when

he LP solution after the CG terminates does not satisfy the inte-

rality. Let π i be a dual price associated with constraint (14) ; addi-

ional columns for the restricted master problem can be generated

y solving the following pricing problem: 

Decision variables 

x i = 

{
1 , if demand point i is covered by the generated column . 

0 , otherwise . 
∀ i ∈ N

c x ∈ R , position of UAV of the generated column on x-coordinate. 

c y ∈ R , position of UAV of the generated column on y-coordinate. 

in 1 −
m ∑ 

i =1 

πi x i (16) 

 . t . (a x i − c x ) 2 + (a y 
i 
− c y ) 2 ≤ R 

2 + M(1 − x i ) , ∀ i ∈ N (17)

x i ∈ { 0 , 1 } , ∀ i ∈ N (18)

c x , c y ∈ R , (19)

The pricing subproblem for the CG is equivalent to the La-

rangian subproblem of the ES formulation. Because all the UAVs

re assumed to be identical, the cost parameter for using a UAV

 is set to be 1 for every UAV in Formulation (1) . Thus, the pric-

ng subproblem is identical for every UAV. The objective function

16) calculates the cost to employ one UAV, as we must always use

ne UAV. Moreover, the dual price π i subtracts the covering effect

f the demand point. The fixed-radius coverage constraint with Eu-

lidean distance, Constraint (4) in the ES formulation, is considered

n Constraint (17) , which provides the feasible column to be cov-

red by one UAV. The B&P algorithm over extended formulation

s renamed as Euclidean branch-and-price (EBP). For the initial re-

tricted master problem, we assigned a UAV to each demand point.

n other words, each initial column covered one demand point, and

he number of initial columns was the same as the number of de-

and points. In this way, the initial restricted master problem had

 feasible LP relaxation and could provide dual values, which were

sed in the pricing problem. Powerful heuristic algorithms exist to

luster demand points efficiently, and one can easily use these al-

orithms to provide initial columns while implementing the sys-

em in the real application. 

.2. Branching strategies 

Branching is required when the CG terminates and the opti-

al solution does not satisfy integrality. New constraints are added

y the branching to divide the solution space without losing any

easible solution and to gain the optimal integer solution. The

ranching decision is based on the standard formulation rather

han on an extended (disaggregated) formulation, because branch-

ng on the decision variable causes an unbalance in the branch-

nd-bound tree and requires massive modifications in the pricing

ubproblem ( Desaulniers et al., 2006 ). The Ryan–Foster branching

ule ( Ryan and Foster, 1981 ) is often used in the set partitioning

roblem ( Ji and Mitchell, 2005 ). In this rule, the branching deci-

ion controls whether two demand points are simultaneously cov-

red by a UAV or not. It is modeled by fixing the coexistence of

ecision variables x i and x k for subproblem, which represents the

ssignment of demand points i and k for each UAV. In detail, we
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can identify a pair of the most fractured demand points based on

the solution from extended formulation. Because the CG is oper-

ated on the restricted master linear program (RMLP), the employ-

ment of each column is given as a fractional value. Based on the

fractional solution of the RMLP, the degree of coexistence of a pair

of demand points v ik is calculated. For each pair of demand points,

the value of the fractional solution of a column ˜ z j is aggregated if

both demand points are included: 

v ik := 

∑ 

j∈ �,w i j = w k j =1 

˜ z j . 

The pair of demand points with the degree of coexistence nearest

to 0.5 is chosen for the branching. 

When the branching is executed, division of feasible solutions is

required in both the master problem and the pricing subproblem.

In the master problem, the existing columns should be divided into

two groups based on the coexistence of the pair of demand points

chosen for the branching. This separates the columns covering both

demand points into one branch and the columns covering only one

demand point of the pair into another branch. In the pricing sub-

problem, a new pairwise-conflict constraint is added to enforce the

acceptance or prohibition of the coexistence. Because the subprob-

lem makes decision of the demand points to be covered, the addi-

tion of the pairwise-conflict constraint does not change the struc-

ture of the problem. 

3.3. Pairwise-conflict constraint approximation model based on Jung’s

theorem 

The reformulation provides a better LP bound and eliminates

the symmetries in the branching tree. Furthermore, the advance-

ment of the nonlinear solver engine enables the solution algorithm

to solve a knapsack-like pricing subproblem efficiently regardless

of the quadratic constraints. In ES and extended formulations of

the USCP, quadratic constraints (4) and (17) represent the coverage

circle around each UAV. Even though the commercial solver can

find the optimal solution of USCP within the appropriate time, it

is still necessary to find a more practical model. One reason for

this is the numerical instability of the coverage constraint. The bi-

nary decision variable x i and the continuous decision variables c x 

and c y coexist in Constraint (17) . Because the scale of the cover-

age distance of one UAV and overall xy-plane is compared in one

inequality in quadratic form, R 2 and M can easily have the differ-

ence of 10 8 units when 10 −8 is the limit of the solver’s feasibility

tolerance. 

For the same reason, it is not possible for the solver to use

the built-in presolver and heuristics, since they can provide infea-

sible solutions. In addition, linear constraints are usually preferred

over nonlinear constraints because the movement between feasible

points is more straightforward when the solution space is linear

rather than curved ( Elzinga et al., 1976 ). Therefore, in most cases,

linearization can accelerate the computation speed. 

In the field of geometry, finding the minimum enclosing ball

of a set has been an important question. Under the given set,

Welzl (1991) proposed a randomized linear programming algo-

rithm that runs in linear time. Because a circle is defined by three

points, Welzl’s algorithm recursively chooses three points from the

given set of points to find the enclosing circle. However, due to the

recursive characteristic, it is not possible to apply Welzl’s algorithm

as a constraint in the mathematical model. 

Instead of the minimum enclosing ball approach, which can-

not be used as a constraint, a sufficient condition can be used

for the approximation. If every pair in the set of demand points

satisfies the linearized conflict constraint, the sufficient condi-

tion ensures that the set will be covered together in one cir-

cle. The conflict constraint is widely used in optimization mod-
ls. Sadykov and Vanderbeck (2012) , Gendreau et al. (2016) , and

anerba and Mansini (2016) used conflict constraints to model

redefined incompatibility between choices. Grötschel and Wak-

bayashi (1989) , Hoffman and Padberg (1993) , and Borndörfer and

eismantel (20 0 0) developed valid inequalities for the solution al-

orithm. In our approximation, a pairwise-conflict constraint in-

pired by the Ryan–Foster branching strategy and Jung’s theorem is

sed to identify the pairs of demand points that can coexist within

 given coverage distance. 

Jung (1901) proposed an inequality between the diameter and

he radius of the minimum enclosing ball of a set: 

heorem 1 (Jung’s theorem) . Considering a compact set K ⊂ R 

n and

et the diameter of a set K as d(K) := max 
p,q ∈ K 

|| p − q || 2 . There exists a

losed ball with radius 

r ≤ d(K) 

√ 

n 

2(n + 1) 

hat contains K. 

In the case of the xy-plane ( n = 2 ), according to Jung’s theorem,

 circle with r ≤ d(K) √ 

3 
containing the given compact set K exists.

owever, we can distinguish a sufficient condition for some sets to

e enclosed in a closed ball under the given radius R . 

emma 2. Considering a compact set K ⊂ R 

2 . For a given R ∈ R 

1 , if

(K) ≤ √ 

3 R, then there exists a closed ball with radius r ≤ R. 

According to Lemma 2 , if the coverage radius R is given and

he distance of every pair of demand points in a set K is smaller

han 

√ 

3 R, the set K can be covered by one circle. The approxima-

ion of Constraints (4) and (17) are modeled as pairwise-conflict

onstraints. A constraint on the diameter of a set K can be sub-

tituted by a set of constraints that includes the constraint of dis-

ance between every pair of demand points. Let d ik be the distance

etween demand points i and k . Constraints (4) and (17) can be

pproximated into Constraints (20) and (21) , respectively: 

x ij + x kj − 2 + C ik ≤ 0 , ∀ i, j, k ∈ N (20)

x i + x k − 2 + C ik ≤ 0 , ∀ i, k ∈ N (21)

here pairwise-conflict parameter C ik := 

(d ik ) 
2 − 3 R 2 

( max 
i,k ∈ N 

[ d ik ]) 
2 − 3 R 2 

. If

 ik ≤ R 
√ 

3 , Constraint (20) and (21) become redundant. Otherwise,

 ≤ C ik ≤ 1 and Constraint (20) and (21) define pairwise-conflict

onstraints. The model is named as pairwise-conflict constraint ap-

roximation (PCA) model. For distinction, the approximated formu-

ations are renamed as pairwise-conflict constraint approximated

tandard formulation (PCS) and pairwise-conflict constraint ap-

roximated branch-and-price algorithm (PCBP). Let x, y be a feasi-

le solution of a PCS model. According to Lemma 2 , x , y is also fea-

ible for the ES model. A feasible solution to a pricing subproblem

f PCBP is likewise feasible for the pricing subproblem of EBP. Note

hat the approximations of the coverage constraints have the same

tructure as the branching constraints. Moreover, this means that

he structure of the problem does not need to be changed while

xecuting branching over the original model. 

PCBP has the same extended formulation as EBP, and the ap-

roximated CG subproblem has the same objective function as For-

ulation (16) and Constraints (18) and (19) . Constraint (21) re-

laces Constraint (17) to represent the approximated coverage con-

traint. In the CG subproblem, Constraint (21) requires that every

air of demand point chosen for a new column must be within a

ertain distance. After the approximation, the decisions of the UAV

osition and the set partition are decomposed, and only the deci-

ion of the set partition becomes relevant. In other words, when
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Fig. 2. Worst-case of the PCA. 
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e approximate the geometric network structure, the pairwise-

onflict constraint can work as a filter that abstracts the original

etwork into the digitized network. Connectivity between a pair of

emand points remains only if Jung’s theorem guarantees the co-

xistence. After the abstraction, it is not necessary to consider the

ength of each arc between the demand points. By the approxima-

ion, the physical distribution of demand points is abstracted to a

etwork that only considers the pairwise connectivity between de-

and points. In the abstracted network, the master problem is to

over every demand point with the minimum number of cliques,

nd the pricing subproblem is translated into the category of find-

ng the maximum vertex clique. 

The clique partitioning problem is one of the most studied com-

inatorial optimization problems. Many researchers (e.g., Grötschel

nd Wakabayashi, 1989; Ji and Mitchell, 2005; Ji and Mitchell,

007 ) have conducted various types of problems both in practical

nd theoretical fields, including maximum clique or K -equipartition

roblems with several categories of constraints including mini-

um or maximum clique size and capacity. The closest work

o the proposed problem is the uncapacitated clustering problem

 Mehrotra and Trick, 1998 ), which introduced a B&P algorithm.

owever, even though the Ryan-Foster branching strategy is in-

orporated in their work, the solution method is not applicable to

he problem in this paper because their objective was to minimize

he sum of the arc cost under the minimum clique size require-

ent. As mentioned earlier, capacity-related constraints (e.g., min-

mum/maximum clique size) are not considered in this research

s we focus instead on the effects of the geometrical coverage

onstraint. In further research, more practical constraints could be

onsidered with the related knowledge, including cutting plane or

ranching strategies from the literature mentioned earlier. 

The cost of the approximation is the loss of the feasible so-

ution, which might decrease the optimal value of the problem.

owever, in the case of large-sized problems, the approximation

rovided time-efficient solutions at relatively high speeds. The per-

ormance of the approximated algorithm was analyzed in the per-

pective of the approximation rate and the computational experi-

ents in Sections 3.4 and 4 . 

.4. Comparison of the approximation models 

The proposed approximation models are compared from the

erspective of the performance ratio. Let F be the solution of an

xact or approximation model in the form of the set of subsets of

emand points. For an optimal solution of the USCP F 

∗, each ele-

ent S ∗
j 
∈ F 

∗ can be covered by a UAV. Let F 

PCA and F 

DA be op-

imal solutions for the PCA model and the DA model, respectively.

n approximation ratio of each approximation model is calculated

ased on the ratio between |F| and |F 

∗| . 
heorem 3. The PCA model is a 3-approximation for the USCP. 

It is obvious that if a set of demand points can be enclosed in a

ircle with a given radius R , the PCA model requires at most three

ircles with the same radius to cover the set. The worst-case is

hen the solution of the PCA model separates the given set into

hree sets whose diameters are equal to 
√ 

3 R . This case is pre-

ented in Fig. 2 . 

roof. For every element S ∗
j 
∈ F 

∗, there exists a subset P 

PCA ⊆
 

PCA such that |P 

PCA | ≤ 3 and S ∗
j 
⊆ ⋃ 

P 

PCA . It will follow that

F 

∗| ≥ |F 

PCA | / 3 . �

In the DA model, the size of the grid affects the computation

peed and the approximation ratio–that is, when the grid size de-

reases, the loss in the approximation follows until the objective

alue converges to a near-optimal value of USCP. Nevertheless, the
omputational burden increases after the size of the problem in-

reases. Therefore, it is essential to decide on an appropriate grid

ize. From the perspective of the approximation ratio, the most

atural setting of the DA model with a grid size of R is used for

he analysis. Let G d and F 

DA 
G d 

be the grid size and the associated

ptimal solution of the DA model, respectively. If G d ≤
√ 

2 R, the

A model can cover the plane with circles with radius R around

ach lattice point. 

heorem 4. The approximation ratio of DA model with G d ≥ R for

he USCP is larger than 3. 

roof. To prove that this is true, a counterexample that holds

 |F 

∗| < |F 

DA 
G d 

| is suggested: Let R = 

√ 

3 and | N| = 4 with (a x 
i 
, a 

y 
i 
) =

( 17 
10 , 

√ 

11 
5 −

√ 

299 
10 ) , ( 33 

10 , 
3 
√ 

11 
10 ) , ( 17 

10 , 
√ 

11 
5 + 

√ 

299 
10 ) , and (− 1 

10 , 
3 
√ 

11 
10 ) are

iven. The USCP covers the given demand points with one cir-

le: (x − 16 
10 ) 

2 + (y −
√ 

11 
5 ) 2 = 3 . Therefore, |F 

∗| = 1 holds. In the

A model with G d = 

√ 

3 , no lattice point that can cover more

han one given demand point. Thus, |F 

DA 
R 

| > 3 holds for the given

ounterexample. �

Note that the approximation ratio is measured based on the

orst-case scenario. In most situations, the worst cases have the

xtreme position of the demand points that spreading around cir-

les with the coverage radius. In most instances, the objective

alue of the approximated model was within the 30% gap from the

ptimal value of USCP. Section 4 compares performances of the DA

nd the PCA models with the exact model based on the computa-

ion speed and the objective value. 

.5. Framework of the solution algorithm for the PCBP model 

Fig. 3 shows the overall framework of the solution algorithm

sing the PCBP model. 

The framework consists of three phases: approximation, B&P,

nd flight position decision phase. At the first phase, informa-

ion on the positions of demand points is translated into a set of

airwise-conflict constraints based on Jung’s theorem. Constraint

21) is calculated for each pair of demand points i and k based on

he distance d ik and M . At the second phase, the PCBP algorithm

s executed for the set covering solution; this algorithm provides

nly the set of demand points assigned for each UAV, unlike the

BP algorithm, which also determines the position for each UAV.

herefore, an additional phase is required to decide the position
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Fig. 3. Framework of the solution algorithm for PCBP model. 
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for each UAV. In the third phase, Welzl’s algorithm is employed

for each UAV to provide the destination points. Since Welzl’s algo-

rithm provides not only the circumcenter but also the circumra-

dius of the given set, the feasible region that the UAV needs to fly

to cover the demand points can be calculated based on the output

solution. Figs. 4 a and 4 b show solutions of the USCP, illustrated on

the xy-plane. 

4. Computational experiments 

We conducted computational experiments to measure the

performance of the proposed solution algorithms ( Section 4.2 ).

Section 4.1 describes two datasets used for computational exper-

iments. The Euclidean standard (ES), Euclidean branch-and-price

(EBP), pairwise-conflict constraint approximated standard formu-

lation (PCS) and pairwise-conflict constraint approximated branch-

and-price algorithm (PCBP) models were developed in FICO Xpress

7.9 and solved with Xpress-Optimizer 33.01.02. MIQCP in the ES

and EBP models were solved by B&B in Xpress MIQCQP solver

using barrier algorithm for each nodes. The discrete approxima-

tion (DA) model was developed in FICO Xpress Python interface

8.6.1. and solved on Python 3.6. Experiments were performed with
ntel ® Core TM i7-3820 CPU at 3.60 GHz and 24 GB of RAM oper-

ted on a Windows 10 64-bit operating system. 

.1. Datasets used in the experiments 

Two datasets were used for the computational experiments. A

mall-sized artificial dataset drew input from the benchmark data

f the customer position of a capacitated p -median test problem

n OR-Library ( Beasley, 1990 ), which was introduced by Osman and

hristofides (1994) . Based on the benchmark data, instances were

eveloped with three sizes of demand points: 10, 20, and 50. For

ach size of the demand point, 10 instances were modeled by

istributing demand points uniformly on the 100 × 100 xy-

lane. Three coverage radii-10, 20, and 30-were tested for each in-

tance. A realistic-scale dataset was developed based on the well-

nown dataset of Hurricane Katrina Fatalities (HKF), as reported

y Maaskant et al. (2018) . HKF dataset includes data on the re-

overy of deceased victims of Hurricane Katrina, one of the most

otorious hurricanes ever faced by the United States. The HKF

ataset was used to measure the applicability of the proposed al-

orithm in the actual situation and was named as a realistic-scale

ataset in this research. Detailed information on fatalities in the
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Fig. 4. Solution examples. 
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KF dataset has been used in a variety of studies on disaster man-

gement ( Brunkard et al., 2008; Jonkman et al., 2009 ). The recov-

ry data consists of GPS coordinates, type of recovery location, and

ates of the recovery of 771 fatalities of Louisiana. For the realistic-

cale dataset, 20 instances and 60 problems were generated based

n the 539 fatalities found in New Orleans. Fatalities were con-

idered as demand points if the person could have survived if

hey had wireless communication. Datasets using two sizes of de-

and points-50 and 100-were developed. For each size of demand

oints, 10 instances were generated by randomly picking demand

oints from the original dataset. The GPS information was trans-

ated into Cartesian coordinates by equirectangular projection. 

Using state-of-the-art wireless communication technology, 

AVs can construct a network with distances from 200 m to

,0 0 0 m ( Chand et al., 2018; Gu et al., 2015 ). Thus, three radii-200,

,0 0 0, and 2,0 0 0 m-were tested for each instance. Fig. 4 b shows a

olution of a realistic-scale dataset. In total, there were 15 classes

f problems, each consisting of 10 instances; 150 different prob-

ems ranging from small to large were conducted for the computa-

ional experiments. 

.2. Algorithmic performances 

We compared the performances of the ES, DA, EBP, PCS, and

CBP. For each experiment, the limitation of maximum computa-

ion time was set to 30 0 0 seconds because rapid computation is

xtremely important in disaster management. We conducted three

nalyses for the algorithmic performances. First, we summarized

he computational experiments and compared the algorithmic per-

ormance between the proposed algorithms from the perspectives

f computation time and optimality. A detailed analysis on the DA

odel is presented, including the adequate grid size and the com-

arison between the DA and the PCBP model. Second, we con-

ucted further analysis of the B&P algorithm. Observations of root

ode CG and the overall B&P algorithms were executed for the EBP

nd the PCBP. The comparison consisted of the quality of the root

ode LP bound, the number of columns generated for each stage,

nd the computation times. Third, we provided a sensitivity analy-

is of the proposed algorithms for managerial insight. 

For the first analysis, Tables 1–3 summarize the computational

esults of five algorithms, which are related to the computation

peed and optimality, respectively. The columns in these tables are
efined as follows: 

• | N |: the number of demand points 
• Rd : the coverage radius of a UAV 

• # Opt: the number of problems for which the algorithm pro-

vided the optimal solution 

• # F eas : the number of problems for which the algorithm pro-

vided at least one feasible solution 

• Time : the average time for the computation to find the optimal

solution– For problems not solved within the time limit, the

limit was used as the computation time while calculating the

average. 
• Gap L : the average of the gap between the best lower bound

(BB) and the best feasible solution (BFS)–For the problems for

which the algorithm provided optimal solutions, Gap L = 0 be-

cause the BB meets the BFS at the optimal solution. Gap L was

used to evaluate the convergence of an algorithm itself. 

Gap L = 

( BFS ) − ( BB ) 

( BFS ) 
× 100% 

• # of UAVs: the average of the BFS, or the number of UAVs

needed to cover every demand point 
• Gap : the average of the gap between # of UAVs of the EBP and

an algorithm–Gap was used to assess the optimality of an algo-

rithm comparing it with the EBP. It was possible for a problem

and an algorithm to have either positive or negative Gap . 

Gap = 

( BFS of an algorithm ) − ( BFS of EBP ) 

( BFS of EBP ) 
× 100% 

In the field of aerial operation, some circumstances demand

ub-minute or sub-second time pressures. Table 1 shows that the

BP could solve almost every problem within 100 seconds, and

he PCBP could solve every problem class except | N| = 100 and

d = 2,0 0 0, faster than the EBP. The computation speed between

he EBP and the PCBP depends on | N | and Rd , both of which affect

he sparsity of the problem. In the USCP, the sparsity of the prob-

em is affected not only by the density of demand points but also

y the coverage radius of the UAVs. In sparse problems, demand

oints are widely spread with a small coverage radius, resulting

n a relatively small number of demand points assigned to a UAV.

here is a tendency for the computation speed of the PCBP to be

aster than that of the EBP when the problem class is sparse. In the

rtificial dataset, when Rd was less than 30, the PCBP was faster

han the EBP for 54 out of 60 instances. However, when Rd was 30,
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Table 1 

Results related to the computation speed. 

| N | Rd # Opt/ # F eas Time(s) Gap L (%) 

ES EBP PCS PCBP ES EBP PCS PCBP ES EBP PCS PCBP 

10 10 2/10 10/10 10/10 10/10 2862.10 0.29 0.01 0.01 27.82 0.00 0.00 0.00 

20 10/10 10/10 10/10 10/10 91.26 0.32 0.01 0.01 0.00 0.00 0.00 0.00 

30 10/10 10/10 10/10 10/10 8.55 0.25 0.01 0.01 0.00 0.00 0.00 0.00 

20 10 0/2 10/10 10/10 10/10 3000s 0.99 0.04 0.03 82.06 0.00 0.00 0.00 

20 0/10 10/10 10/10 10/10 3000s 1.09 0.09 0.06 45.00 0.00 0.00 0.00 

30 5/10 10/10 10/10 10/10 1531.02 0.68 0.04 0.20 12.50 0.00 0.00 0.00 

50 10 0/0 10/10 9/10 10/10 3000s 10.39 393.99 2.02 96.00 0.00 0.77 0.00 

20 0/0 10/10 8/10 10/10 3000s 14.46 663.61 22.49 96.00 0.00 2.27 0.00 

30 0/8 10/10 10/10 10/10 3000s 8.35 3.15 70.02 68.05 0.00 0.00 0.00 

50 200 0/0 10/10 10/10 10/10 3000s 3.10 0.79 0.18 95.80 0.00 0.00 0.00 

1000 0/0 10/10 10/10 10/10 3000s 6.69 110.15 1.08 95.60 0.00 0.00 0.00 

2000 0/0 10/10 10/10 10/10 3000s 7.07 95.14 7.38 95.75 0.00 0.00 0.00 

100 200 0/0 10/10 10/10 10/10 3000s 32.02 360.90 3.72 98.98 0.00 0.00 0.00 

1000 0/0 10/10 0/10 10/10 3000s 87.32 3000s 74.37 98.82 0.00 12.31 0.00 

2000 0/0 10/10 1/10 10/10 3000s 69.65 2704.66 771.47 98.98 0.00 11.19 0.00 

30 0 0s: The solver failed to find the optimal solution within 30 0 0s for every instance. 

Table 2 

Results related to the optimality. 

| N | Rd # of UAVs Gap (%) 

ES EBP PCS PCBP ES PCS PCBP 

10 10 7.0 7.4 7.9 7.9 0.00 7.26 7.26 

20 3.9 4.1 4.8 4.8 0.00 19.17 19.17 

30 2.8 2.8 2.9 2.9 0.00 5.00 5.00 

20 10 20.0 11.1 12.2 12.2 67.20 10.15 10.15 

20 5.4 5.5 6.4 6.4 0.00 17.00 17.00 

30 3.5 3.5 4.0 4.0 0.00 16.67 16.67 

50 10 50.0 17.0 19.3 19.3 195.18 13.87 13.87 

20 50.0 7.2 8.6 8.6 593.43 19.64 19.64 

30 14.5 4.0 4.8 4.8 262.50 20.00 20.00 

50 200 50.0 39.0 40.2 40.2 28.55 3.06 3.06 

1000 50.0 17.4 19.9 19.9 188.93 14.45 14.45 

2000 50.0 9.1 10.8 10.8 452.78 19.03 19.03 

100 200 100.0 65.3 68.0 68.0 53.39 4.08 4.08 

1000 100.0 22.1 25.5 25.2 354.20 15.49 14.14 

2000 100.0 10.0 12.0 11.9 912.37 21.12 19.87 

Table 3 

Performance of DA in accordance of grid sizes related to Rd . 

| N | Rd Time(s) # of UAVs 

Grid size of DA Grid size of DA √ 

2 Rd Rd Rd /2 
√ 

2 Rd Rd Rd /2 

10 10 0.050 0.052 0.129 8.9 8.5 7.8 

20 0.011 0.010 0.030 6.9 5.8 4.7 

30 0.007 0.007 0.015 4.4 4.1 3.4 

20 10 0.065 0.110 0.403 15.8 13.7 12.3 

20 0.025 0.029 0.095 9.7 8.1 6.3 

30 0.013 0.016 0.046 6.2 5.4 4.3 

50 10 0.274 0.478 1.695 27.7 23.3 19.1 

20 0.071 0.093 0.280 13.7 11.2 8.8 

30 0.038 0.052 0.123 8.4 7.2 5.1 

50 200 78.858 300.222 3885.516 41.5 40.8 40.0 

1000 0.860 1.629 9.543 26.4 22.8 19.8 

2000 0.193 0.313 1.169 14.7 13.4 10.8 

100 200 320.876 822.009 10633.638 73.9 70.7 67.3 

1000 3.682 6.733 32.115 35.1 30.5 25.6 

2000 0.660 1.115 3.787 18.2 15.1 11.9 
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the EBP was faster than the PCBP for 11 out of 30 instances. Like-

wise, in the realistic-scale dataset, when Rd was less than 2,0 0 0,

the PCBP was faster than the EBP for 35 out of 40 instances, while

only 6 out of 10 instances were faster when Rd = 2,0 0 0. 

In some extremely dense problem classes in artificial dataset

Rd = 30 , the computation speed of the PCS was faster than both
he EBP’s and the PCBP’s. Fig. 4 a shows the PCS solution of Instance

 in problem class | N| = 50 and Rd = 30 . The 100 × 100 plane

an almost be covered by 5 UAVs with a coverage radius of 30.

hus, the solution does not change much as | N | increases, which

eans that the concurrent optimizer of the commercial solver pro-

ides the solution fast. 



Y. Park, P. Nielsen and I. Moon / Computers and Operations Research 119 (2020) 104936 11 

Table 4 

Performance of DA in accordance of grid sizes. 

| N | Rd Time(s) # of UAVs 

Grid size of DA Grid size of DA 

32 16 8 4 2 1 32 16 8 4 2 1 

10 10 – – 0.046 0.221 1.772 22.888 – – 7.9 7.7 7.7 7.5 

20 – 0.013 0.045 0.213 1.747 22.472 – 4.8 4.5 4.2 4.1 4.1 

30 0.006 0.013 0.043 0.216 1.875 23.778 4.2 3.2 2.9 2.9 2.9 2.8 

20 10 – – 0.135 0.667 5.596 88.567 – – 12.8 12 11.7 11.5 

20 – 0.034 0.125 0.611 5.341 91.234 – 7 6.2 5.7 5.6 5.6 

30 0.014 0.032 0.120 0.613 5.346 93.324 5.2 4.1 3.7 3.6 3.5 3.5 

50 10 – – 0.669 2.756 20.481 302.785 – – 21.2 18.6 17.8 17.4 

20 – 0.137 0.446 2.154 18.057 308.372 – 9.9 8.4 7.7 7.5 7.4 

30 0.047 0.113 0.377 1.907 17.278 295.531 7.6 5.5 4.5 4.1 4 4 

2048 1024 512 256 128 2048 1024 512 256 128 

50 200 – – – 122.536 1681.441 – – – 41.5 40.1 

1000 – 1.823 9.508 110.616 1671.042 – 23.7 19.3 18.3 17.9 

2000 0.339 1.308 8.007 103.741 1677.347 13.2 10.8 9.9 9.5 9.2 

100 200 – – – 502.397 4295.910 – – – 72.3 68.7 

1000 – 7.117 35.634 311.769 3678.380 – 31.3 25.6 23.3 22.5 

2000 1.079 3.906 24.819 280.069 3714.565 15.4 12.1 10.8 10.4 10.3 

– : Grid size is bigger than the upper limit. 
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Table 2 shows the loss of optimality of the PCS and the PCBP.

here was a general tendency for the gap to improve when the

roblem class became denser. The problems in the artificial dataset

ad demand points on the fixed-size xy-plane; the larger num-

er of demand points | N | denoted the denser distribution of de-

and points. The tendency mentioned above could be seen when

omparing the problem classes in the artificial dataset with the

ame Rd but different | N |. In some cases, the approximation of the

CS and the PCBP provided dramatic increases in Gap . However,

ap measured in the ratio can be exaggerated when the objective

alue is too small. For example, for an instance with | N| = 50 and

d = 30 , even though the objective value of the PCBP (which is 5)

s only 1 larger than the optimal value (which is 4), the Gap equals

5%. In total, for 10 out of 150 instances the actual difference of the

bjective value between the PCBP and the EBP was greater than 3.

Tables 3 and 4 show the performance of the DA according to

he grid size based on two factors. Because the DA experiment was

erformed on the Python and FICO Xpress Python interface with

 large-sized problem, the computation was executed even after

he time limit had passed (3,0 0 0 seconds). The problem classes

n which the DA showed shorter average computation times and

etter average BFS than the PCBP are indicated in bold font. In

he problem classes with (| N |, Rd ) = (50 , 20) , (50, 30), and (100,

,0 0 0), the system could be covered perfectly with a number of

AVs equal to about one-tenth the number of demand points.

hus, it is reasonable to assume that for extremely dense prob-

ems, discretization can provide a good solution efficiently. 

However, it is difficult to find a simple, standardized way to de-

ide the grid size. The most natural way is to base the grid size on

he multiples of Rd . As discussed in Section 3.4 , the upper limit of

rid size G d is 
√ 

2 Rd. Table 3 compares three grid sizes–
√ 

2 Rd, Rd ,

nd Rd /2. For G d = Rd, in 98 out of 150 instances, the DA found

he solution faster than the PCBP. However, the DA had only 22 in-

tances with the same objective value of the PCBP and no instance

ith the lower objective value. For only five instances did the DA

erform better than the PCBP in terms of both computation speed

nd optimality. For G d = Rd/ 2 , the DA had only 61 instances with

horter computation times than the PCBP; however, the DA also

ad 22 instances with the better objective value and 76 instances

ith the same objective value. In conclusion, the DA with a grid

ize of Rd was faster than the PCBP but was not sufficient in terms

f optimality. At the same time, the DA with the grid size of Rd /2

as better than the PCBP in terms of optimality, though it was also
lower. 
Instead of finding one standardized grid size as the multiple of

d , problem classes in which the DA performed well were noticed.

or problems with more density, the DA outperformed the PCBP

nd could find near-optimal solutions within a shorter amount of

ime than the EBP. Table 4 shows that for dense problems, the

A with a grid size smaller than Rd /4 could be solved faster than

oth the PCBP and the EBP. Appendix A compares the computa-

ion times and the objective values of the EBP, PCBP, and DA with

arious grid sizes. 

For the second analysis, we summarized the performance of the

&P algorithm. The computation performances of the root node

nd the overall B&P algorithm are listed separately. Table 5 com-

ares the integrality gap, the number of columns generated during

he algorithms, and the computation time of the root nodes and

heir ratio compared to the overall B&P algorithm. The reformula-

ion of the problem and the CG in the root node provided strong

P bound, which minimized the branching while solving the prob-

em. The LP bounds and the process of branching are illustrated in

able 6 . The columns in Tables 5 and 6 are defined as follows: 

• Integrality Gap: the average of the ratio of the BFS over the

lower bound-For the root node, the LP solution of the root node

was used for the lower bound. We used different BFS to the

EBP and the PCBP, because the solution space of the EBP in-

cluded the solution space of the PCBP. For the EBP, some prob-

lems could not be solved within the time limits. The better fea-

sible solutions found during the four algorithms were used as

the BFS for those unsolved problems. In addition, for the PCBP,

there was one unsolved problem, and the BFS of the PCS re-

placed the PCBP’s. 

Integrality Gap = 

( BFS ) 

( Lower bound ) 

• # Columns: the average of the number of columns generated

while solving the root node and the overall B&P algorithm 

• Root Time: the average computation times needed to solve the

root node 
• Time Ratio: the ratio of the computation times of the root node

over the overall B&P algorithm 

Time Ratio = 

( Root Time ) 

( T ime ) 
× 100% 

• #IB: the number of problems that were solved for which the LP

bound was not changed by branching 
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Table 5 

Comparison between branch-and-price algorithms. 

| N | Rd Integrality gap # Columns Root time(s) Time ratio(%) 

EBP PCBP EBP PCBP EBP PCBP EBP PCBP 

Root B&P Root B&P Root B&P Root B&P 

10 10 1.009 1.000 1.000 1.000 3.8 3.9 3.0 3.0 0.20 0.00 66.02 63.25 

20 1.032 1.000 1.000 1.000 6.0 7.0 6.3 6.4 0.23 0.01 68.73 76.98 

30 1.000 1.000 1.000 1.000 5.3 5.3 7.7 7.7 0.20 0.01 79.65 76.19 

20 10 1.005 1.000 1.000 1.000 9.9 10.0 8.2 8.3 0.90 0.03 90.18 80.48 

20 1.009 1.000 1.000 1.000 10.2 10.6 13.9 14.2 0.90 0.05 84.49 84.02 

30 1.000 1.000 1.000 1.000 8.0 8.5 17.7 22.1 0.58 0.12 87.90 80.69 

50 10 1.006 1.000 1.000 1.000 25.2 25.9 36.0 39.2 9.65 1.58 93.39 82.81 

20 1.016 1.000 1.018 1.000 27.6 32.9 100.5 117.5 11.86 15.44 86.81 78.57 

30 1.000 1.000 1.000 1.000 16.6 18.7 184.6 211.5 6.80 53.26 90.95 80.98 

50 200 1.000 1.000 1.000 1.000 9.5 9.5 8.4 8.4 2.75 0.14 88.29 75.34 

1000 1.006 1.000 1.003 1.000 19.2 19.8 24.9 27.2 6.14 0.82 92.05 79.89 

2000 1.018 1.000 1.005 1.000 18.9 20.1 57.8 71.4 6.46 4.17 91.29 71.23 

100 200 1.000 1.000 1.000 1.000 21.4 21.4 20.7 20.7 30.30 3.34 94.53 89.67 

1000 1.010 1.000 1.000 1.000 38.9 41.6 86.5 99.8 80.33 51.48 92.91 82.83 

2000 1.010 1.000 1.004 1.000 29.6 32.8 243.5 310.6 63.21 454.32 91.24 64.70 

Table 6 

The change of the LP bound over the branching. 

| N | Rd EBP PCBP Nodes 

#IB #B #IB #B EBP PCBP 

10 10 0 1 0 0 1.1 1.0 

20 1 3 1 1 1.6 1.1 

30 0 0 0 0 1.0 1.0 

20 10 0 1 1 1 1.1 1.1 

20 0 1 1 1 1.2 1.2 

30 1 1 2 2 1.2 1.6 

50 10 1 3 5 5 1.4 2.2 

20 0 3 3 6 2.5 4.1 

30 1 1 4 4 1.2 2.9 

50 200 0 0 0 0 1.0 1.0 

1000 0 2 4 5 1.3 1.8 

2000 2 5 6 7 1.6 3.1 

100 200 0 0 0 0 1.0 1.0 

1000 2 6 6 6 2.2 2.6 

2000 3 5 9 10 2.1 4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

The number of demand points assigned to one 

UAV. 

Rd | N | EBP PCBP 

Avg. Max. Avg. Max. 

10 10 1.4 2.4 1.3 2.3 

20 1.8 3.3 1.7 3.1 

50 3.0 5.9 2.6 5.3 

20 10 2.5 4.0 2.1 3.6 

20 3.7 6.3 3.1 5.5 

50 7.0 11.7 5.8 10.0 

30 10 3.8 5.3 3.6 4.7 

20 5.8 8.7 5.0 7.7 

50 12.5 18.8 10.5 14.9 

200 50 1.3 3.7 1.2 3.6 

100 1.5 7.2 1.5 7.2 

1000 50 2.9 7.5 2.5 6.8 

100 4.5 13.9 4.0 11.5 

2000 50 5.5 11.8 4.7 9.5 

100 10.1 23.9 8.4 19.3 
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• #B: the number of problems that were solved for which

branching was executed 

• Nodes: the average number of nodes in the branch-and-bound

tree 

As mentioned in Section 3.1 , the LP relaxation neutralized the

coverage constraints (4) and (20) in the ES and the PCS, respec-

tively. In the extended formulation, however, even the LP solutions

satisfied the coverage constraints and had stronger LP bounds. Ac-

cordingly, unlike most of the literature on the B&P approach, it was

not significant to compare the LP bound between standard formu-

lations and the root node LP bounds of B&P algorithms; instead,

we compared the Integrality Gap between two B&P algorithms, as

shown in Table 5 . Both EBP and PCBP had strong root node LP

bounds, considering that both algorithms had an integrality gap of

root node near 1 for almost every problem class. Notably, many

problems had an integrality gap of root node equal to 1, which

meant that the value of the root node LP bound was the same

as for the BFS. Likewise, the number of columns generated and

the computation times were highly concentrated on root nodes.

Table 6 shows the change of the LP bound over branching for a

detailed analysis of the performances of the CG algorithm on the

root node. The EBP and the PCBP provided a small integrality gap

as the nominal set covering problem and had a minimal number of

branches. Furthermore, after the root node CG was finished, a lim-

ited number of problems (32 of 150 problems in the EBP and 48
f 150 problems in the PCBP) had branching. Even if the branch-

ng occurred, many problems did not have any improvement of LP

ounds (11 of 32 problems in the EBP and 32 of 48 problems in

he PCBP) until the algorithm found its optimal solution. For dense

roblem classes, as the computation times of PCBP increases, the

umber of the generated columns followed. It is analogized that

n the dense problems, the possible combination of the demand

oints satisfying Constraint (21) increased quickly and slacked the

omputation speed. 

For the third analysis, we provided insights for the decision

akers of disaster management. In the realistic-scale dataset, the

ize of the xy-plane was not limited, so the sparsity of the prob-

em was more related to the | N | than Rd . In the real-world, we

ecommend the authorities to use the PCBP in the sparse disas-

er situations, sparsely distributed survivors or UAVs of smaller ra-

ius. For the dense situations, the EBP or the DA with a small

rid size is recommended. Table 7 lists the number of demand

oints assigned to one UAV (#DM), which is directly related to the

parsity of the problem. At the same time, it can be used to pre-

ict the scale of the network traffic and to estimate capacity. In a

ealistic-scale dataset, even though the average number of demand

oints covered by one UAV maintained a reasonable size, the max-

mum #DM exceeded the realistic limitation of the traffic. How-

ver, considering that the distribution of #DM was skewed to the
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eft, the solution would not change dramatically even if we were

o consider an additional constraint of an upper bound of #DM.

e could further speculate that in a real disaster, survivors are

istributed sparsely enough for the network transmission capac-

ty to be immaterial; in that case, the solution of the USCP could

e used without the capacity constraint. The sparsity of demand

oints also hinders the improvement effect of network coverage.

he increase of Rd did not bring the same amount of increase of

DM. Even though Rd increased fivefold, from 200 m to 1,0 0 0 m,

DM increased only around twofold. On the other hand, for in-

reased | N |, #DM also grew, even though Rd did not change. Thus,

he number of UAVs required increased, but the growth rate was

ess than 1. The results in Tables 2 and 7 can be used to plan the

ost-effective development objective of UAVs and wireless network

outer. Based on the specifics of the developed system, the decision

aker can scale the required number of UAVs and make a response

lan. 

. Conclusions 

This paper introduced the problem of developing a flight plan

or UAVs to provide a wireless network in the shadowed area of

 disaster environment. We defined the USCP as a set covering

roblem with a fixed coverage radius constraint in Euclidean dis-

ance and without predefined candidates of positions. Due to the

uadratic constraints, a standard formulation of the USCP was not

olvable even for the smallest problems. A simple discrete approx-

mation model is proposed, and the approximation ratio of the

A model with the grid size equal to the coverage radius is ana-

yzed. An extended formulation and the associated B&P algorithm,

hich were developed for the stronger LP bound, showed faster

omputation speed. Based on the Ryan-Foster branching strategy

sed for the B&P algorithm, we implemented Jung’s theorem to

pproximate the quadratic coverage constraint of the USCP into

he linear pairwise-conflict constraint. The approximation decom-

osed the decisions of the USCP into two separate decisions-UAV

osition and set partition-and made only the set partition decision

elevant. The computational results showed that the EBP and the

CBP were applicable for both small-sized artificial and realistic-

cale problems within a proper time limit. For sparse problems,

he PCBP provided the near-optimal solution faster than the EBP,

nd for dense problems, the DA could find a better solution faster

han the PCBP. 
For future research, a heuristic algorithm to develop a power-

ul initial column is expected to increase the computation speed,

onsidering the effective LP bounds provided by B&P algorithms.

o use the full capacity of UAVs, practical restrictions and possible

xtensions should be applied in the USCP. The overlap interference

mong UAVs, transmission capacity, and shadowing effects by ob-

tacles should be considered when creating the flight plan. There is

lso an additional freedom of the flight altitude, which will change

he network coverage radius and the aforementioned effects. Fur-

her research in different directions is also required, to address un-

ertainty or incomplete information on demand points because of

he importance of the robust solution in disaster management. 
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ppendix A. Comparison of the computation times and 

bjective value of the proposed algorithms 

Figs. A .5 –A .8 illustrate the effects of the DA model’s grid size on

he computation times and objective value. In each figure, either

ine or six problem classes are arranged in matrices, showing the

erformance of the DA model over the different grid sizes; that are

uxtaposed with the outputs of the EBP and the PCBP. The compu-

ation times increase exponentially when the grid size decreases.

s is shown, it is difficult to find a universal value or a standard-

zed way to decide an appropriate grid size. However, for dense

roblems, the DA model with a grid size of one-fourth of the cov-

rage radius could find near-optimal solutions within a reasonable

ime. 
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Fig. A.5. Computation time of small-sized artificial problems. 
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Fig. A.6. Objective value of small-sized artificial problems. 
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Fig. A.7. Computation time of realistic-scale problem. 
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Fig. A.8. Objective value of realistic-scale problem. 



18 Y. Park, P. Nielsen and I. Moon / Computers and Operations Research 119 (2020) 104936 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J  

 

 

J  

K  

 

K  

M  

 

M  

 

M  

M  

 

M  

 

O  

 

P  

 

P  

 

R  

 

S  

 

S  

 

S  

T  

V  

 

V  

 

V  

 

 

 

W  

 

W  

 

 

 

Z  

 

 

 

References 

Ahmadi-Javid, A., Seyedi, P., Syam, S.S., 2017. A survey of healthcare facility location.

Comput. Oper. Res. 79, 223–263. doi: 10.1016/J.COR.2016.05.018 . 

Aida, S. , Shindo, Y. , Utiyama, M. , 2013. Rescue activity for the great east japan earth-
quake based on a website that extracts rescue requests from the net. In: Pro-

ceedings of the Workshop on Language Processing and Crisis Information 2013.
Asian Federation of Natural Language Processing, pp. 19–25 . 

Aringhieri, R., Bruni, M., Khodaparasti, S., van Essen, J., 2017. Emergency medical ser-
vices and beyond: addressing new challenges through a wide literature review.

Comput. Oper. Res. 78, 34 9–36 8. doi: 10.1016/J.COR.2016.09.016 . 

Beasley, J.E., 1990. OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41 (11), 1069–1072. doi: 10.1057/jors.1990.166 . 

Bélanger, V., Ruiz, A., Soriano, P., 2019. Recent optimization models and trends in
location, relocation, and dispatching of emergency medical vehicles. Eur. J. Oper.

Res. 272 (1), 1–23. doi: 10.1016/J.EJOR.2018.02.055 . 
Boonmee, C. , Arimura, M. , Asada, T. , 2017. Facility location optimization model for

emergency humanitarian logistics. Int. J. Disaster Risk Reduct. 24, 4 85–4 98 . 
Borndörfer, R., Weismantel, R., 20 0 0. Set packing relaxations of some integer pro-

grams. Math. Program. 88 (3), 425–450. doi: 10.10 07/PL0 0 011381 . 

Brotcorne, L., Laporte, G., Semet, F., 2003. Ambulance location and relocation mod-
els. Eur. J. Oper. Res. 147 (3), 451–463. doi: 10.1016/S0377- 2217(02)00364- 8 . 

Brunkard, J., Namulanda, G., Ratard, R., 2008. Hurricane Katrina deaths, Louisiana,
2005. Disaster Med. Public Health Prep. 2 (4), 215–223. doi: 10.1097/DMP.

0b013e31818aaf55 . 
Calik, H., Labbé, M., Yaman, H., 2015. p-center problems. In: Laporte, G., Nickel, S.,

Saldanha da Gama, F. (Eds.), Location Science. Springer, pp. 79–92. doi: 10.1007/

978- 3- 319- 13111-5 _ 4 . 
Capoyleas, V., Rote, G., Woeginger, G., 1991. Geometric clusterings. J. Algorithms 12

(2), 341–356. doi: 10.1016/0196-6774(91)90 0 07-L . 
Chand, G.S.L.K., Lee, M., Shin, S.Y., 2018. Drone based wireless mesh network for

disaster/military environment. J. Comput. Commun. 6 (4), 44–52. doi: 10.4236/
jcc.2018.64004 . 

Chandrashekar, K. , Dekhordi, M.R. , Baras, J.S. , 2004. Providing full connectivity in

large ad-hoc networks by dynamic placement of aerial platforms. In: IEEE MIL-
COM 2004. Military Communications Conference, 2004.. IEEE, pp. 1429–1436 . 

Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S.G., Bian, L., 2017. Drones
for disaster response and relief operations: a continuous approximation model.

Int. J. Prod. Econ. 188, 167–184. doi: 10.1016/j.ijpe.2017.03.024 . 
Comley, W.J. , 1995. The location of ambivalent facilities: use of a quadratic zero-one

programming algorithm. Appl. Math. Model. 19 (1), 26–29 . 

Daskin, M.S., Maass, K.L., 2015. The p-median problem. In: Laporte, G., Nickel, S.,
Saldanha da Gama, F. (Eds.), Location Science. Springer, pp. 21–45. doi: 10.1007/

978- 3- 319- 13111-5 _ 2 . 
Desaulniers, G. , Desrosiers, J. , Solomon, M.M. , 2006. Column Generation. Springer . 

Drezner, Z., Klamroth, K., Schöbel, A., O. Wesolowsky, G., 2001. The weber problem.
In: Drezner, Z., Hamacher, H.W. (Eds.), Facility Location: Applications and The-

ory. Springer, pp. 1–36. doi: 10.1007/978- 3- 642- 56082- 8 _ 1 . 

Elzinga, J. , Hearn, D. , Randolph, W.D. , 1976. Minimax multifacility location with eu-
clidean distances. Transp. Sci. 10 (4), 321–336 . 

Gendreau, M., Manerba, D., Mansini, R., 2016. The multi-vehicle traveling pur-
chaser problem with pairwise incompatibility constraints and unitary demands:

a branch-and-price approach. Eur. J. Oper. Res. 248 (1), 59–71. doi: 10.1016/j.ejor.
2015.06.073 . 

Grötschel, M., Wakabayashi, Y., 1989. A cutting plane algorithm for a clustering

problem. Math. Program. 45 (1), 59–96. doi: 10.1007/BF01589097 . 
Gu, Y., Zhou, M., Fu, S., Wan, Y., 2015. Airborne WiFi networks through directional

antennae: an experimental study. In: 2015 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, pp. 1314–1319. doi: 10.1109/WCNC.2015.

7127659 . 
Heinzelman, J. , Waters, C. , 2010. Crowdsourcing crisis information in disaster-af-

fected Haiti. Technical Report. United States Institute of Peace . 
Ho, D.-T. , Grøtli, E.I. , Sujit, P.B. , Johansen, T.A. , Sousa, J.B. , 2015. Optimization of

wireless sensor network and UAV data acquisition. J. Intell. Robot. Syst. 78 (1),

159–179 . 
Hoffman, K.L., Padberg, M., 1993. Solving airline crew scheduling problems by

branch-and-cut. Manag. Sci. 39 (6), 657–682. doi: 10.1287/mnsc.39.6.657 . 
Holley, P., 2017. Water is swallowing us up: In Houston, desperate flood victims turn

to social media for survival, The Washington Post. (accessed 9 September 2019).
https://wapo.st/2vw1F4X? . 

Ji, X. , Mitchell, J.E. , 2005. Finding optimal realignments in sports leagues using a

branch-and-cut-and-price approach. Int. J. Oper. Res. 1 (1–2), 101–122 . 
Ji, X., Mitchell, J.E., 2007. Branch-and-price-and-cut on the clique partitioning prob-

lem with minimum clique size requirement. Discrete Optim. 4 (1), 87–102.
doi: 10.1016/J.DISOPT.2006.10.009 . 

Johnson, E.L., Mehrotra, A., Nemhauser, G.L., 1993. Min-cut clustering. Math. Pro-
gram. 62 (1), 133–151. doi: 10.1007/BF01585164 . 
onkman, S.N., Maaskant, B., Boyd, E., Levitan, M.L., 2009. Loss of life caused by
the flooding of new orleans after hurricane Katrina: analysis of the relation-

ship between flood characteristics and mortality. Risk Anal. 29 (5), 676–698.
doi: 10.1111/j.1539-6924.2008.01190.x . 

ung, H. , 1901. Ueber die kleinste Kugel, die eine räumlic he Figur einschliesst.. J.
Reine Angew. Math. 123, 241–257 . 

im, D., Lee, K., Moon, I., 2018. Stochastic facility location model for drones
considering uncertain flight distance. Ann. Oper. Res. 1–20. doi: 10.1007/

s10479- 018- 3114- 6 . 

im, S., Moon, I., 2019. Traveling salesman problem with a drone station. IEEE Trans.
Syst. Man. Cybern. 49 (1), 42–52. doi: 10.1109/TSMC.2018.2867496 . 

aaskant, B., Jonkman, S.N., Boyd, E., 2018. Fatalities due to hurri-
cane Katrina (2005). Technical Report. TU Delft doi: 10.4121/UUID:

CC5A95BB- 69AF- 4174- 80C2- 61C69E6109AF . 
anerba, D., Mansini, R., 2016. The nurse routing problem with workload con-

straints and incompatible services. IFAC-PapersOnLine 49 (12), 1192–1197.

doi: 10.1016/j.ifacol.2016.07.670 . 
ehrotra, A. , Trick, M.A. , 1998. Cliques and clustering: a combinatorial approach.

Oper. Res. Lett. 22 (1), 1–12 . 
ozaffari, M. , Saad, W. , Bennis, M. , Debbah, M. , 2016. Efficient deployment of multi-

ple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett.
20 (8), 1647–1650 . 

ozaffari, M. , Saad, W. , Bennis, M. , Debbah, M. , 2016. Unmanned aerial vehicle with

underlaid device-to-device communications: performance and tradeoffs. IEEE
Trans. Wirel. Commun. 15 (6), 3949–3963 . 

sman, I.H., Christofides, N., 1994. Capacitated clustering problems by hybrid sim-
ulated annealing and tabu search. Int. Trans. Oper. Res. 1 (3), 317–336. doi: 10.

1016/0969-6016(94)90032-9 . 
eriyasamy, S., Khara, S., Thangavelu, S., 2016. Balanced cluster head selection based

on modified k-means in a distributed wireless sensor network. Int. J. Distrib.

Sens. Netw. 12 (3), 1–11. doi: 10.1155/2016/5040475 . 
lastria, F., 2001. Continuous covering location problems. In: Drezner, Z.,

Hamacher, H.W. (Eds.), Facility Location: Applications and Theory, pp. 37–79.
doi: 10.1007/978- 3- 642- 56082- 8 _ 2 . 

yan, D.M. , Foster, B.A. , 1981. An integer programming approach to scheduling. In:
Wren, A. (Ed.), Computer Scheduling of Public Transport: Urban Passenger Ve-

hicle and Crew Scheduling. North-Holland, pp. 269–280 . 

adykov, R., Vanderbeck, F., 2012. Bin packing with conflicts: a generic branch-and-
Pprice algorithm. INFORMS J. Comput. 25 (2), 244–255. doi: 10.1287/ijoc.1120.

0499 . 
asikumar, P. , Khara, S. , 2012. K-means clustering in wireless sensor networks. In:

2012 Fourth International Conference on Computational Intelligence and Com-
munication Networks. IEEE, pp. 140–144 . 

imchi-Levi, D. , Chen, X. , Bramel, J. , 2005. The Logic of Logistics: Theory, Algorithms,

and Applications for Logistics and Supply Chain Management. Springer . 
oregas, C. , Swain, R. , ReVelle, C. , Bergman, L. , 1971. The location of emergency ser-

vice facilities. Oper. Res. 19 (6), 1363–1373 . 
ance, P.H., 1998. Branch-and-price algorithms for the one-dimensional cut-

ting stock problem. Comput. Optim. Appl. 9 (3), 211–228. doi: 10.1023/A:
1018346107246 . 

ance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L., 1994. Solving binary cutting
stock problems by column generation and branch-and-bound. Comput. Optim.

Appl. 3 (2), 111–130. doi: 10.10 07/BF0130 0970 . 

anderbeck, F., Wolsey, L.A., 2010. Reformulation and decomposition of integer
programs. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulley-

blank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (Eds.), 50 Years of Integer Pro-
gramming 1958–2008. Springer, pp. 431–502. doi: 10.1007/978- 3- 540- 68279- 0 _

13 . 
allop, H., 2011. Japan earthquake: how Twitter and Facebook helped, The Tele-

graph. (accessed 9 September 2019). https://www.telegraph.co.uk/technology/

twitter/8379101/Japan- earthquake- how- Twitter- and- Facebook- helped.html . 
elzl, E. , 1991. Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (Ed.),

New Results and New Trends in Computer Science. Springer, pp. 359–370 . 
Wu, Q. , Zeng, Y. , Zhang, R. , 2018. Joint trajectory and communication design for

multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 17 (3),
2109–2121 . 

Zeng, Y. , Xu, X. , Zhang, R. , 2018. Trajectory design for completion time minimization

in UAV-enabled multicasting. IEEE Trans. Wirel. Commun. 17 (4), 2233–2246 . 
eng, Y. , Zhang, R. , Lim, T.J. , 2016. Throughput maximization for UAV-enabled mobile

relaying systems. IEEE Trans. Commun. 64 (12), 4 983–4 996 . 
Zhan, C. , Zeng, Y. , Zhang, R. , 2018. Energy-efficient data collection in UAV enabled

wireless sensor network. IEEE Wirel. Commun. Lett. 7 (3), 328–331 . 
Zorbas, D., Di Puglia Pugliese, L., Razafindralambo, T., Guerriero, F., 2016. Optimal

drone placement and cost-efficient target coverage. J. Netw. Comput. Appl. 75,

16–31. doi: 10.1016/J.JNCA.2016.08.009 . 

https://doi.org/10.1016/J.COR.2016.05.018
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0002
https://doi.org/10.1016/J.COR.2016.09.016
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1016/J.EJOR.2018.02.055
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0006
https://doi.org/10.1007/PL00011381
https://doi.org/10.1016/S0377-2217(02)00364-8
https://doi.org/10.1097/DMP.0b013e31818aaf55
https://doi.org/10.1007/978-3-319-13111-5_4
https://doi.org/10.1016/0196-6774(91)90007-L
https://doi.org/10.4236/jcc.2018.64004
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0013
https://doi.org/10.1016/j.ijpe.2017.03.024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0015
https://doi.org/10.1007/978-3-319-13111-5_2
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0017
https://doi.org/10.1007/978-3-642-56082-8_1
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0019
https://doi.org/10.1016/j.ejor.2015.06.073
https://doi.org/10.1007/BF01589097
https://doi.org/10.1109/WCNC.2015.7127659
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0024
https://doi.org/10.1287/mnsc.39.6.657
https://wapo.st/2vw1F4X?
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0026
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0026
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0026
https://doi.org/10.1016/J.DISOPT.2006.10.009
https://doi.org/10.1007/BF01585164
https://doi.org/10.1111/j.1539-6924.2008.01190.x
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0030
https://doi.org/10.1007/s10479-018-3114-6
https://doi.org/10.1109/TSMC.2018.2867496
https://doi.org/10.4121/UUID:CC5A95BB-69AF-4174-80C2-61C69E6109AF
https://doi.org/10.1016/j.ifacol.2016.07.670
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0035
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0035
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0035
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0036
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0036
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0036
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0036
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0036
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0037
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0037
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0037
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0037
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0037
https://doi.org/10.1016/0969-6016(94)90032-9
https://doi.org/10.1155/2016/5040475
https://doi.org/10.1007/978-3-642-56082-8_2
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0041
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0041
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0041
https://doi.org/10.1287/ijoc.1120.0499
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0043
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0043
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0043
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0044
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0044
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0044
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0044
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0045
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0045
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0045
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0045
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0045
https://doi.org/10.1023/A:1018346107246
https://doi.org/10.1007/BF01300970
https://doi.org/10.1007/978-3-540-68279-0_13
https://www.telegraph.co.uk/technology/twitter/8379101/Japan-earthquake-how-Twitter-and-Facebook-helped.html
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0049
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0049
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0050
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0050
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0050
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0050
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0051
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0051
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0051
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0051
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0052
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0052
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0052
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0052
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0053
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0053
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0053
http://refhub.elsevier.com/S0305-0548(20)30053-8/sbref0053
https://doi.org/10.1016/J.JNCA.2016.08.009

	Unmanned aerial vehicle set covering problem considering fixed-radius coverage constraint
	1 Introduction
	2 Problem definition
	2.1 Problem description
	2.2 Mathematical formulation
	2.3 Discrete approximation model

	3 Branch-and-price approach for the USCP
	3.1 An extended formulation of the USCP
	3.2 Branching strategies
	3.3 Pairwise-conflict constraint approximation model based on Jung’s theorem
	3.4 Comparison of the approximation models
	3.5 Framework of the solution algorithm for the PCBP model

	4 Computational experiments
	4.1 Datasets used in the experiments
	4.2 Algorithmic performances

	5 Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Comparison of the computation times and objective value of the proposed algorithms
	References


