
The Distribution Free Newsboy Problem: Review and Extensions
Author(s): Guillermo Gallego and Ilkyeong Moon
Source: The Journal of the Operational Research Society, Vol. 44, No. 8 (Aug., 1993), pp. 825-
834
Published by: Palgrave Macmillan Journals on behalf of the Operational Research Society
Stable URL: http://www.jstor.org/stable/2583894 .

Accessed: 29/10/2014 20:09

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Palgrave Macmillan Journals and Operational Research Society are collaborating with JSTOR to digitize,
preserve and extend access to The Journal of the Operational Research Society.

http://www.jstor.org 

This content downloaded from 147.46.199.247 on Wed, 29 Oct 2014 20:09:57 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=pal
http://www.jstor.org/action/showPublisher?publisherCode=ors
http://www.jstor.org/stable/2583894?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


J. Opi Res. Soc. Vol. 44, No. 8, pp. 825-834 0160-5682/93 $9.00+0.00 
Printed in Great Britain. All rights reserved Copyright ( 1993 Operational Research Society Ltd 

The Distribution Free Newsboy Problem: 
Review and Extensions 

GUILLERMO GALLEGOl and ILKYEONG MOON2 
1 Columbia University, USA, and 2Pusan National University, Korea 

We present here a new, very compact, proof of the optimality of Scarf's ordering rule for the newsboy 
problem where only the mean and the variance of the demand are known. We then extend the analysis 
to the recourse case, where there is a second purchasing opportunity; to the fixed ordering cost case, where 
a fixed cost is charged for placing an order; to the case of random yields; and to the multi-item case, where 
multiple items compete for a scarce resource. 

Key words: inventory, lot sizing, lost sales, newsboy problem 

INTRODUCTION 

The newsboy problem is to decide the stock quantity of an item when there is a single purchasing 
opportunity before the start of the selling period and the demand for the item is random. The trade- 
off is between the risk of overstocking (forcing disposal below the unit purchasing cost) and the 
risk of understocking (losing the opportunity of making a profit). The newsboy model is often used 
to aid decision making in the fashion and sporting goods industries, both at the manufacturing and 
at the retail level. In most cases, the distributional information of the demand is very limited. 
Sometimes all that is available is an educated guess of the mean and of the variance. There is a 
tendency to use the normal distribution under these conditions. However, the normal distribution 
does not provide the best protection against the occurrence of other distributions with the same 
mean and the same variance. 

In 1958 Scarf1 addressed the newsboy problem where only the mean i and the variance a2 of 
the demand are known without any further assumptions about the form of the distribution of the 
demand. Taking a conservative approach, he modelled the problem as that of finding the order 
quantity that maximizes the expected profit against the worst possible distribution of the demand 
with the mean i and the variance a2. He showed through a beautiful, but lengthy, mathematical 
argument that the worst distribution of the demand has positive mass at two points and used this 
result to obtain a closed form expression for the optimal order quantity. Unfortunately, Scarf's 
ordering rule is not well known as is evidenced by its absence in modern Operations Management 
and Operational Research textbooks 27. 

The purpose of this paper is twofold. The first is to disseminate Scarf's ordering rule; the second 
is to extend Scarf's ideas in several directions. 

We feel that Scarf's ordering rule is of practical value because it is optimal under the conservative 
approach outlined above when the distributional information is limited to the mean and the 
variance. Scarf's ordering rule is also easy to use since it only requires the computation of square 
roots, rather than the inverse of a cumulative distribution function. As we shall see, Scarf's rule 
is also very easy to remember and, perhaps more importantly, Scarf's rule provides us with an 
intuitive explanation of when it is profitable (in expectation) to order more (or less) than the 
expected demand. 

Our presentation differs from Scarf's in the choice of the parameters and in the method of 
proof. We think that our choice of parameters makes Scarf's ordering rule easier to understand and 
easier to remember. Based on a simple observation relating the positive part of a number to its 
absolute value, we considerably simplify the proof of Scarf's rule. We also present, in closed form, 
an extremely simple lower bound on the expected profit with respect to all possible distributions 

Correspondence: L Moon, Department of Industrial Engineering, Pusan National University, Pusan 609-735, Korea 

825 

This content downloaded from 147.46.199.247 on Wed, 29 Oct 2014 20:09:57 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Journal of the Operational Research Society Vol. 44, No. 8 

of demand. This lower bound is of interest because it indicates how the parameters influence 
expected profits, in the worst case. 

The rest of the paper is organized as follows. We extend Scarf's ideas to the recourse case, where 
there is a second purchasing opportunity after observing the demand; to the fixed ordering cost 
case, where a fixed cost is charged for placing an order; to the case of random yields; and to the 
multi-item case, where multiple items compete for a scarce resource. 

Other works related to the min-max approach include Gallego8 and Gallego and Moon9. 

NEW PROOF OF SCARF'S ORDERING RULE 

The data for the newsboy problem are as follows. 

c > 0 the unit cost, 
p = c(l + m) > c the unit selling price, 
s = (1 -d)c < c the unit salvage value, 

the expected demand, 
a the standard deviation of the demand, 
Q the order quantity. 

Note that the mark-up m and the discount d are positive parameters that indicate the return 
(loss) per dollar on units sold (unsold). Let D denote the random demand. We make no assumption 
on the distribution G of D other than saying that it belongs to the class g of cumulative distribution 
functions with mean i and variance a2. In what follows we let x+ = max x, 01. 

The expected profit can be written as 

7rG(Q) = pEmin(Q, D) + sE(Q-D)+ -cQ, 

since min (Q, D) units are sold, (Q - D) + are salvaged, and Q units are purchased. Observing 
that 

min (Q, D) = D -(D -Q) +, 

and that 

(Q-D)+ = (Q-D) + (D-Q)+, 

we can write the expected profits as 

i G(Q) = (p - S) -(c - s)Q - (p - s)E(D -Q)+, 

or, using the definition of m and d, as 

7G (Q) = cl (m + d)A - dQ -(m + d)E(D -Q)+ }*(1) 

Evidently, maximizing 7rG(Q) is equivalent to minimizing 

dQ+ (m+d)E(D-Q)+, (2) 

so we concentrate on the latter problem. 
Since the distribution G of D is unknown we want to minimize (2) against the worst possible 

distribution g. To this end, we need the following two lemmas. 

Lemma I 

r 2[ + (Q -_ ,2]1/2 - (Q - 
E (D - Q) 

+ 2.. (3) 

Proof 

Notice that 
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(D Q) - ID-QI + (D-Q) 
2 

The result follows by taking expectations and by using the Cauchy-Schwarz inequality 

EI - 
D QlI <. [E(D - Q)2] 112 = [Or2 + ( Q _ I)2] 1/2. 

Lemma 2 

For every Q, there exists a distribution G* E 9 where the bound (3) is tight. 

Proof 

For every Q, consider the two-point cumulative distribution G* assigning weight 

[o2 + (Q _ ,)2]1/2 + (Q _ 

2[O2 + (Q_ A) 2 ]1/2 

to 

ita or 
12 

= Q _[Or2 + ( Q _ I)2] 1/2, 

and weight 

o[ 2 + (Q _ )]1/2 _ (Q _ - 

2[Or2 + (Q _ A)2]1/2 

to 

F~11/2 
it + a 1a Q + Ia or 0Q_ 2]1/2. 

Clearly (3) holds with equality and it is easy to verify that G* E 9 

Lemma 1 and Lemma 2 originally appeared in Gallego8 where it was also shown that the 
distribution achieving bound (3) is unique. The compact proof of Lemma 2 is due to Gallego"?. 

Combining (2) and (3), our problem is now to minimize the upper bound 

dQ + (m +Id)r 2 + (Q 
_ 

/1)2] 1/2 _ (Q _ A dQ +(m +d) 24 

It is easy to verify that (4) is strictly convex in Q. Upon setting the derivative to zero and solving 
for Q we obtain Scarfs ordering rule: 

or[m] 1/2 [d] 1/2) 

Thus (5) minimizes (4), and consequently maximizes (1) against the worst possible distribution 
of the demand. It is worth observing that the order quantity is independent of the unit cost c. This 
is because the expected profit (1) is homogeneous of degree 1 on the unit cost. Also, notice that 
(5) calls for an order larger (smaller) than the expected demand if and only if the ratio mid > 1 
(mid < 1). Consequently, in the typical formulation where the salvage value is zero (d = 1), the 
optimal order size is larger (smaller) than the expected demand if and only if the mark-up is larger 
(smaller) than one. 

Substituting (3) and then (5) into (1) we obtain, for all G E 9, the following lower bound on the 
optimal expected profit 

cm/I[1- u[d]m)2] 
? 

G(S)<cmyi (6) 
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Remark I 

The lower bound is linearly increasing (decreasing) in y (a) and increasing (decreasing) convex 
in the mark-up m (the discount d). 

Remark 2 

The lower bound is achieved by the distribution G* exhibited in Lemma 2 with Q replaced 
by Qs. This distribution has weight ml (m + d) at yi - aor~7li and weight dl (m + d) at 
i + a(m/d)"2. 

Noting that cm,i is the maximum profit when demand is deterministic, we can regard 
or 

as the maximal fractional cost of randomness. Note also that if we were to order it units, then 
from (1) and (3), the expected profit would be at least 

cm/i i 
m+da. ~ 1 m d 

cmll 2m 
IA_ 

So if the fraction 
m 

- is small, then no great loss is incurred by simply ordering It units, 
2m it 

i.e. by ordering as if the problem were deterministic. 
We normally expect demand to be a non-negative random variable. In this case, an order of size 

zero leads to an expected profit equal to zero. This is a consequence of the fact that for non-negative 
random variables ED+ = it. Thus, we prefer to order zero units whenever ordering may lead to 
an expected loss in the worst case, i.e. to a negative value in the left side of (6). This happens if 
mid < (,//)2. In this case, the ordering rule is modified to order 

Qs = Qs if (7) 

holds, and to order Qs = 0 otherwise. 
To see that this rule is, in fact, optimal note that the two-point distribution exhibited in Lemma 

2 is non-negative for 
y2 + or2 

Q 
21i 

Over the interval 
2 

+o2 0 <. Q <1 21 + 
2/i 

the worst distribution of the demand is the one exhibited in Lemma 2 for 

A 2+ or2 

2 2 

Over this interval, and under this two-point distribution, (2) is linear in Q. If condition (7) holds, 
the slope is negative, so by convexity Qs = Qs. Conversely, if condition (7) fails to hold, the slope 
in (2) is positive, so the mininium of (2) is attained at Qs = 0. In the presence of the modifica- 
tion, the lower bound on the expected profit is given by the positive part of the lower bound in 
(6). 

The above subsumes Scarf's results. The reader should contrast (5) with Scarf's original 
formula': 

a 1 -2a 
QS =/i+ 2 [a(l -a)]"'2 

wherea= (c-s)/(p-s). 
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So far we have ignored the constraint Q > 0. We would like to show that if condition (7) is 
satisfied then Qs > 0. We will show slightly more. To this end let QG be the optimal order 
quantity when the distribution of the demand is G E 9 

Proposition I 

If (7) holds, then 7rG(QG) > 0 and QG > 0 for all G e 

Proof 

If condition (7) holds then 

i7rG(QG) > 7G(QS) > cmii - ca(md) > 0 

So 

irG(QG) = ct (m + d) - dQG _ (m + d)E(D-QG)+ }0. 

Assume for a contradiction that QG < 0; then, using Jensen's inequality 

E(D - QG)+ > E(D - QG) = - QG, 

we obtain the following contradiction 

0 <. r (QG) < cl (m + d)l/ - dQG - (m + d) (/ - QG) = cmQG < 0. 

If we use the order quantity Qs instead of QG, the expected loss is equal to 

7rG(QG) _ XrG(QS) 

This is the largest amount that we would be willing to pay for the knowledge of G. This quantity 
can be regarded as the Expected Value of Additional Information (EVAI). 

Example I 

This problem is taken from Silver and Peterson7. The unit cost is $35.10, the unit selling price 
is $50.30, and the unit salvage value is $25.00. The mean and the standard deviation of the demand 
are 900 and 122, respectively. We compare the performance of QS with QN where Ne g repre- 
sents the normal distribution. The results are (normal in parenthesis) QS - 925 (931) and a worst 
case expected profit of $12 168 ($12 488). The EVAI (calculated with the exact values of QS and 
QN) is 

T N(QN) _ TNN(QS) = $12 488.13 - $12 486.66 = $1.47 

Example 2 

The unit cost is $40, the unit selling price is $60, and there is no salvage value. The mean and 
the standard deviation of the demand are 300 and 200, respectively. Again, we compare the per- 
formance of QS with QN. The results are (normal in parenthesis) QS - 229 (214) and a worst case 
expected profit of $343 ($1636). The EVAI is 

irN(QN) _ XN(QS) = $1636.80 - $1623.67 = $13.13 

For the normal distribution, Ne 9, we have found through tabulations that IQN-QS 
0.0975a over the set of problems with 1/9 < mid < 9. So, for most practical problems where the 
normal distribution is used, the difference between Scarfs ordering quantity and QN is no more 
than O1/ou. In fact, we have found through tabulations that 

7r N(QN) _ 7rN(QS) < 0.0036car(md) 12, 

over the set of problems with 1/9 S mid < 9. Most real life problems will satisfy condition (7), 
so over those problems the guarantee is 

rrN (QN ) - TrN( QS) < 0.0036cmyt, 
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hence using Qs when the demand is normal will result in a loss no larger than in 0.36W/o of the 
deterministic profit. 

THE RECOURSE CASE 

In certain problems, we may have the recourse of placing a second order to satisfy the part of 
the demand not covered by the first order. Thus, if after ordering Q units we observe D and find 
that D > Q, an additional order is placed for D - Q, units. Let c' = c( 1 + e) denote the unit cost 
for items ordered after observing the demand. We assume that 0 < e < m because the solution to 
the other cases are trivial. Indeed, if e < 0 then the first order should be of size zero since the items 
can be purchased after the demand is known at a unit cost not higher than c. On the other hand, 
if e > m then the second order should be of size zero since the unit cost c' is at least as large as 
the unit selling price p. 

It is clear that under our assumption all the demand will be met. Thus the expected profit, is given 
by 

TiG(Q) = pit + sE(Q-D)+ -cQ-c'E(D-Q)+. 

Using again the fact that (Q -D) + = (Q - D) + (D - Q) + and the definition of m, d and e 
we can write the expected profit as 

1rG(Q) = cl (m + d),u-dQ- (e + d)E(D-Q) +. (8) 

Note that the only difference between (1) and (8) is that e appears instead of m in the part involving 
E(D - Q) +. This is intuitively correct since (1) and (8) must agree when e = m. This is because 
if e = m there is no economic incentive to purchase units after observing the demand. 

Our goal, as before, is to maximize the expected profit against the worst possible distribu- 
tion of D. Solving this problem determines what part of the demand should be purchased to 
stock at unit cost c and what part should be purchased to order at unit cost c'. Using inequal- 
ity (3) in (8) and following the logic of the previous section, we find that the optimal size of the 
initial order is given by (5) with e replacing m. Since e < m the size of the first order is smaller 
when there is a second purchasing opportunity. The lower bound on the expected profit is given 
by Proposition 2. 

Proposition 2 

irG(QS) > c(mA - a(ed)12). (9) 

Note that the lower bound in (9) is strictly larger than that in (6) so the lower bound on the expected 
profit is larger when there is a second purchasing opportunity. 

If the demand is known to be non-negative, an initial order of size zero, followed by an order 
equal to the demand, leads to a positive expected profit equal to c(m - e),t. Thus, the first order 
should be of size zero unless the expected profit given in (9) is larger than c(m - e),t. This happens 
when (7) holds with e replacing m. 

To summarize, in the recourse case with non-negative demand, the optimal size of the initial 
order is 

-s =/l + ([e]1/2 [d]1] if e []2 

holds and Qs = 0 otherwise. 
The size of the second order is, of course, (Dd QS)+. By Proposition 1 the condition 

e/d > (u/li)2 implies that QG > 0 and 1rG(QG) > c(m -e),i for all G e9S Note that m does not 
enter into the formula of the optimal order size but enters in the lower bound given in (9). 
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Example 3 

The data is as in Example 1. We assume that the items can be purchased after observing the 
demand at $40 per unit. The results are (normal in parenthesis) Qs - 855 (845) and a worst case 
expected profit of $12 820 ($13 019). The EVAI is 

7rN (845) - rN (855) = $13 019 - $13 017 = $2 

Example 4 

The data is as in Example 2. We assume that the items can be purchased after observing the demand 
at $50 per unit. The results are (normal in parenthesis) Qs - 150 (132) and a worst case expected 
profit of $2000 ($3188). The EVAI is 

7N (132) - TrN(150) = $3200 - $3188 = $12. 

THE FIXED ORDERING COST CASE 

Let I > 0 denote the initial inventory and suppose a fixed cost, say A, is charged for placing an 
order. Let S = I + Q > I, then the expected profit can be written as 

7rG(S) =-AIt S>I + cI (m + d) i + I-dS-(m + d)E (D-S)+} 

where 1 denotes the indicator function. 
Using Lemma 1 and 2, the problem reduces to 

min [A1 s,>1 + K(S)] 
S)>I 

where 

K(S) = c dS+ m +d (S _ A)2 + a2]1/2 _ (S _ A) ( + d)} 

Let S* denote the unconstrained minimizer of K(S). From the result of the previous section we 
know that 

or m 1[ d 1/2] 

and that 

K(S*) = -c(I + m,u-a(md) 12). 

Clearly, an order should be placed if I < S* and K(I) > A + K(S*) . Since K(S) is strictly convex 
and is not bounded from above, there exists a unique s* < S* satisfying 

K(s*) =A +K(S*). 

After some algebra we obtain 

S* + (m d)A-(m + d) [A2 - mda ] (10) 
2md 

where 

A=a(md) +cA 

The ordering rule is: order up to S* ( Q* = S- I) units if I < s* and do not order otherwise. 
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Example S 

We continue Example 1. Suppose there is a fixed ordering cost, say A = $500, then 
(s*, S*) = (824,925) using (10). That is, the optimal policy is to order up to 925 units if the initial 
inventory is less than 824 and not to order otherwise. 

THE RANDOM YIELD PROBLEM 

Consider a production environment where the decision to release Q units for production results 
in G (Q) good units, where G(Q) is a random variable. We are particularly interested in the situa- 
tion where each unit released for production has the same probability, say p, of being good. Thus, 
if Q is an integer, the yield G (Q) is a binomial random variable with mean Qp and variance Qpp 

where;5 1 - p. This model can also be used in a non-manufacturing setting, when an order for 
Q units results in the delivery of exactly Q units, each of which is good with probability p. 

We are interested in determining the optimal order quantity to maximize expected profit against 
the worst possible distribution of the demand. As before, we transform the profit maximization 
problem into one of cost minimization. To do this, we define the mark-up m, and the discount d, 
relative to the expected unit cost c- c/p. Thus, p = c(l + m) and s = c(1 - d). With this 
notation, the resulting cost minimization problem is equivalent to 

min jdQ+ (m+d)!E(D - G(Q))+j. (11) 
Q P 

We assume that the yield G(Q) is independent of the demand D. Since we know the distribu- 
tion of G (Q), our knowledge of the distribution of D -G (Q) is more than just its mean y - Qp 
and its variance a2 + Qpjp. However, the upper bound on (11) obtained by conditioning on 
G (Q) = q, and applying Lemma 1 for each value of q, exceeds the upper bound on (11) resulting 
from a direct application of Lemma 1. Thus, applying Lemma 1 to D - G(Q), we obtain 

(- G(Q) )+ < [a2 + Qpp + (pQ_ A)2]1/2 _ (pQ-_ (12) 

2 

Minimizing the resulting upper bound on the expected cost with respect to Q, we obtain 

QS. fj2+1[[(][d] - ] L 2+/2[ ( f1/2li (13) 

Following the development as before, we obtain a lower bound on the expected profit over all 
possible distributions of demand. 

- 2] 1/2 

Am - 0,2 + A2 _ 1_) /m)2 _ c(m -d)p. (14) cm Lc[2UA+(md) 

Notice that (13) and (14) reduce to (5) and (6) when p = 1. 

THE MULTI-PRODUCT CASE (STOCHASTIC PRODUCT MIX PROBLEM) 

Consider now a multi-item problem in the presence of a budget constraint. This is typically the 
problem faced at the time when purchasing or production decisions are made in the fashion and 
sporting goods industries where the purchasing manager must allocate his budget among competing 
items. Note that in the case of production, there may be a capacity constraint rather than a budget 
constraint. See Silver and Peterson7 for the description of this problem. This problem is some- 
times called a stochastic product mix problem (Johnson and Montgomery5). 

Let c-,Api = cI( 1 + in), and s, = cI( - d -) be the unit cost, the unit selling price, and the unit 
salvage value where m, and d, denote the mark-up and the discount on item i = 1, .. . .,N. Let s, 

and oi2 denote the mean and the variance of the demand for item i = 1, ... .,N. Suppose that the 
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cost of purchasing all the items cannot exceed a predetermined budget of B dollars. We want 
to find the order quantities that maximize the expected profit against the worst possible distribu- 
tion of the demand without exceeding the budget constraint. The problem can be formulated as 
follows: 

rnin Lc {dQi + (mi + di) 
- Q i (Qi H i)] 

Ql, 
Z 

QN f [2 
N 

subject to E ciQi B. (15) 
i = 1 

We form the Lagrangian function 

L(Ql,..QN,) Zci 4dlQi + (mi + di) ( + ( 2Q - - (Q1 - ) 

[N] -X ciQi ~B] 

where X is a Lagrange multiplier associated with the budget constraint. By computing a= 0 

for all i, we see that the solution is of the form: 

Q+i (m - x 1/2 di + X1/2 i mj - r2a 
Qi( )=ti~ L diXiLm iJ if > 1(16) 

and 0 otherwise. 
The problem is to find the smallest non-negative X such that Qi(X) satisfies (15). The following 

algorithm is essentially a line search to find the optimal value of X. 

Algorithm 

Step 1. Check if Qi(0) (X = 0) satisfies the budget constraint (15). If it satisfies the constraint, 
the solution is optimal, stop. Else go to Step 2. 

Step 2. Start from an arbitrary X > 0, set e > 0. 
m.X or 

Step 3. If md + I 
-, set Qi(X) as in (16). Else set Qi(X) = 0. 

N 

Step 4. If Il c Qi(X) < B -c , decrease X and go to Step 3. 
IyN 

If E _ ciQX > B + c, increase X and go to Step 3. 

If-e c_ Q c -Q-B <e, stop. 

Example 6 

Consider the problem of a merchandise manager for a department store who must purchase items 
for a special sale. He is considering four different items for stock, but is not certain of the sales 
potential for any item. In establishing his inventory levels prior to the start of the sale, he cannot 
exceed his budget of $80 000. The sale is of short duration, so there is no opportunity to reorder. 
The relevant data are as follows: c = (35.1, 25.0, 28.0, 4.8), p = (50.3, 40.0, 32.0, 6.1), s = (25.0, 
12.5, 15.1, 2.0), i = (900, 800, 1200, 2300), a = (122, 200, 170, 200). 

Using the algorithm, the optimal order quantities are (normal in parenthesis) 881 (871), 772 (758), 
698 (729), and 2123 (2094). The optimal Lagrangian value is 0.127 (0.141). The worst case expected 
profit is $26 391 ($27 622). The value of the distributional information when demand is normally 
distributed is 

7rN(871, 758, 729, 2094) - 7rN(881,772, 698, 2123) $27 622 - $27 333 = $289. 
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CONCLUDING REMARKS 

We have presented a new, compact proof of the optimality of Scarf's ordering rule. We have also 
extended Scarf's approach in several directions. We hope that this paper will help disseminate 
Scarf's ordering rule and that it will stimulate new research on robust inventory policies. It can be 
conjectured from numerical examples that Scarf's ordering rule is robust. Both theoretical and 
experimental investigations on the robustness of Scarf's ordering rule might be an interesting 
research problem. Another interesting extension of this paper would be to study (s, S) policies over 
an infinite horizion where only the mean and the variance of the demand are known. 
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