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Abstract

We deal with the joint replenishment and delivery scheduling of the one-warehouse, n-retailer system in this paper. We
suggest a more flexible policy for the joint replenishment and delivery scheduling of a warehouse compared with the exist-
ing researches. We introduce the mathematical model and two efficient algorithms for the joint replenishment and delivery
scheduling of the warehouse. Subsequently, we develop the hybrid genetic algorithm (GA) and compare it with two effi-
cient heuristic algorithms for extensive computational experiments. Further, we show the advantages of our GA in dealing
easily with resource restrictions.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Supply chain management (SCM) refers to the management of material and information flow both in and
between facilities, such as retailers, warehouses/distribution centers, and suppliers. SCM is an area that has
recently received a great deal of attention in the business community. In recent years, many companies have
realized that considerable cost savings can be achieved by integrating inventory control and delivery policies
throughout their supply chains.

In this paper, we focus on a two-stage supply chain comprising one warechouse and n-retailers. This one-
warehouse, n-retailer problem has received considerable attention from researchers (Silver et al., 1998). Sch-
warz (1973) determined the properties of an optimal solution to the one-warehouse, n-retailer problem and
provided lower bounds on the average cost of the optimal policy. He showed that an optimal policy can be
very complex in form; in particular, it requires that the order quantity at one or more of the locations vary
with time despite all the relevant demand and cost factors being time-invariant. Maxwell and Muckstadt
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(1985) restricted their policy to the stationary-nested one. A policy is considered as stationary if each facility
always orders the same quantity at equally spaced points in time. A nested policy is one wherein each time that
any stage orders, all of its successors follow suit and order. Roundy (1985) demonstrated that nested policies
can have rather low effectiveness in the worst case, and he introduced two simple policies: g-optimal integer-
ratio and optimal power-of-two policies. He proved that for any data set, the effectiveness of g-optimal inte-
ger-ratio and optimal power-of-two policies is at least 94% and 98%, respectively. Roundy (1986) extended his
study to the multi-item problem. Viswanathan and Mathur (1997) presented a new heuristic algorithm for a
stationary-nested joint replenishment policy. They incorporated the vehicle routing problem to the multi-item
one-warehouse, n-retailer one. Recently, Abdul-Jalbar et al. (2003) compared a centralized and a decentralized
case for the one-warehouse, n-retailer problem. In the latter case, retailers make decisions independently. In
the former case, they proposed two heuristic algorithms, one considering a common replenishment time,
and the other different reorder times. Hong and Park (2006) presented a mixed integer program for the ven-
dor-managed inventory policy with vehicle routing problems which consists of a single supplier and multiple
retailers. Eum et al. (2005) developed a neural network algorithm to decide the allocation policy for the pro-
ducer which has multiple retailers.

Graves (1979) showed that the joint replenishment problem (JRP) is closely related to the one-warehouse,
n-retailer problem. During the last three decades following the early work of Shu (1971), the JRP has attracted
the attention of many researchers. Goyal (1974) proposed an enumeration approach to obtain an optimal
solution. Van Eijs (1993) proposed a similar optimal algorithm suggested by Goyal (1974). Viswanathan
(1996, 2002) proposed a fast algorithm obtaining the optimal cyclic policy for the JRP compared with those
of Goyal (1974) and Van Eijs (1993). Silver (1975, 1976) discussed the advantages and disadvantages of coor-
dinating replenishments and presented an extremely simple non-iterative procedure for solving the JRP. Kaspi
and Rosenblatt (1991) proposed an approach based on trying several values of the basic cycle time between the
minimum and maximum values. Then, they applied the heuristic of Kaspi and Rosenblatt (1983) to each value
of the basic cycle time, which is a modified version of the algorithm of Silver (1975). They demonstrated that
their procedure (known as the RAND method) outperforms all the available heuristics. Later, Goyal and
Deshmukh (1993) proposed an improvement of the lower bound used by Kaspi and Rosenblatt (1991).
Wildeman et al. (1997) presented a new optimal solution approach based on Lipschitz optimization to obtain
a solution with an arbitrarily small deviation from the optimal value. Khouja et al. (2000) applied genetic algo-
rithms (GAs) to the JRP and compared the performance of their GA with the heuristic algorithm of Kaspi and
Rosenblatt (1991). Recently, for the multi-buyer joint replenishment problem, Chan et al. (2003) proposed a
modified genetic algorithm and Li (2004) developed an efficient RAND method.

However, the joint replenishment of multi-items was not considered in the above one-warehouse, n-retailer
models discussed above. Our objective is to investigate the effectiveness of the joint replenishment policies of a
warehouse as shown in Fig. 1.
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Fig. 1. Joint replenishment and delivery scheduling of a warehouse.
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Fig. 2. Comparison between existing models and our model.

The warehouse delivers to an individual manufacturer or retailer after it replenishes jointly from the sup-
pliers by taking into account the demand for each item at the manufacturer or retailer. The warehouse or dis-
tribution center that has many associated manufacturers or retailers can decrease the logistics cost significantly
by replenishing jointly. The reduction effects will be higher in the case of the high procurement cost incurred
from importing materials or parts from overseas. In this paper, we will introduce a more flexible joint replen-
ishment policy for the warehouse (or third-party logistics company) that procures multiple items for multiple
manufacturers or retailers.

Following the assumptions of Lu and Posner (1994), we consider # different types of items and assume that
all items can be stored at the warehouse. Further, we assume that item i is stocked and sold only by retailer .
The warehouse replenishes item 7 at every integer multiple (k;) of the basic cycle time (7) and delivers it to
retailer i. Lu and Posner (1994) provided two heuristic algorithms for the one-warehouse, n-retailer problem
and mentioned that the problem can be extended to the JRP. Our model is more flexible than those of Lu and
Posner (1994) in terms of the joint replenishment to the suppliers and individual distribution policies to the
retailers as shown in Fig. 2. For example, the policy for k; = 2 and f; = 2 could not be represented in the exist-
ing models. Moreover, the minor cost for individual item has not been considered in the joint replenishment of
the warehouse in the existing models.

Section 2 introduces the mathematical model and two different heuristic algorithms for the joint replenish-
ment and delivery scheduling problem. We develop a hybrid GA in Section 3. In Section 4, we perform com-
putational experiments in order to analyze the effectiveness of our GA. Further, in Section 5, we show the
extension ability of our GA in dealing with resource restrictions. Finally, we summarize the conclusions of
the present work.

2. Joint replenishment and delivery scheduling

In order to discuss the joint replenishment and delivery scheduling problem in the one-warehouse, n-retailer
problem, the following notations are defined:

i index of item, i=1,2,...,n

D; demand rate of item i

sV warehouse’s major ordering cost

sV warehouse’s minor ordering cost of item i

nY warehouse’s inventory holding cost of item i per unit per unit time
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sR warehouse’s outbound transportation cost of item i

mR retailer’s inventory holding cost of item 7 per unit per unit time

T warehouse’s basic cycle time (decision variable)

k; integer number that decides the replenishment schedule of item i (decision variable)
fi integer number that decides the outbound schedule of item i (decision variable)

The stationary policy is that a warehouse delivers item i to retailer i at the same time interval as shown in
Fig. 3 (where the order quantity does not change with time). The warehouse replenishes item i at every integer
multiple k; of the basic cycle time 7. The total cost function is composed of the sum of the ordering (major and
minor) cost, inventory holding cost, and outbound transportation cost of a warehouse and as well as the total
of the inventory holding costs of retailers.

According to the above definition, the total relevant cost per unit time to be minimized is given by

W n SW
it - (i kTDhW kTDh
oy >
To find the T, k;s, and f;s that minimize the total relevant cost per unit time, Cha and Moon (2004) used the
following optimality condition of each decision variable.

For a given set of k;s and f;s, the optimal basic cycle time 7 can be easily obtained from the first order deriv-
ative of the total cost function since the total cost function is convex in 7. T is obtained from Eq. (2).

n o sWifisR
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> i kiD; (hyv + h‘R;,h'w)

For a given set of f;s and 7, we can derive the optimality condition of k; from the following two conditions:
TC(kj)) <TC(k;+1) and TC(k;)) < TC(k;—1)

Therefore, the optimality condition of k; is defined as Eq. (3).
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Fig. 3. Replenishment and delivery cycle of item i for the stationary policy.
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For a given set of k;s and T, we can derive the optimality condition of f; from the following two conditions:
TC(f;) < TC(f; +1) and TC(f;) < TC(f; — 1)

The optimality condition of f; is defined as Eq. (4).

T Di(hY — hY)
2sR

Lilfi—=1) < <Silfi+1) (4)
If hlw = h?, f: =1 since the total cost function is an increasing step function in f;.

Using the above optimality conditions, we develop two efficient algorithms. One is a simple recursive algo-
rithm, and the other is a modified RAND algorithm that adopts the research idea of Kaspi and Rosenblatt
(1991). The procedure of each heuristic algorithm is as follows:

Joint replenishment and delivery — Simple heuristic (JRD-SH )

Step 1. Set the iteration number r = 0.
Put (ki(7).kz (1), ... .ku(1)) = 1, (f1(r)f2(7), - - . fu(r)) =1 and T(r) = 0. Go to Step 2.

Step 2. Set r=r+ 1, and go to Step 3.

Step 3. For a given set of k(r — 1)s and fi(r — 1)s, find the optimal value of 7T using Eq. (2).
Set T(r) = T. If T(r) = T(r — 1), stop. Otherwise, go to Step 4.

Step 4. For a given value of 7(7) and a given set of f(r — 1)s, find the optimal values of k; using Eq. (3). Set
k{r)=k;, and go to Step 5.

Step 5. For a given value of 7(r) and a given set of k(r)s, find the optimal values of f; using Eq. (4). Set
f{r)=/f;, and go to Step 2.

Joint replenishment and delivery — RAND algorithm (JRD—RAND )

Step 1. Compute Tmax = \/2(S + Y1 15:)/> 0 Dihi and Trin = min \/2s;/D;h; for each i.

Step 2. Divide the range [Timin, Tmax] into m different equally spaced values of T(T},. .., T},...,T,,). The value
of m is to be decided by the decision maker. Set j = 0.

Step 3. Set j=j+ 1 and r =0. Put T(r) = T; and (fi(7), f2(r), ... Su(r)) = 1.

Step 4. Setr=r+1.

Step 5. For a given value of T(r — 1) and a given set of f(r — 1)s, find the optimal values of k; using Eq. (3).

Put ki(}’) — ki.
Step 6. For a given value of T(r — 1) and a given set of k(r)s, find the optimal values of f; using Eq. (4). Put
Jir) = fi.

Step 7. For a given set of k{(r)s and f{(r)s, find the optimal value of T using Eq. (2). Put Ty(r) = T.
Step 8. If T{r)# T{r — 1), go to Step 4.

Otherwise, put 7 = T,(r), k;; = k; (r), and f;; = f7(r).

Compute T'C; for this (T’f ks, f;s)

Jr g
Step 9. If j #m, go to Step 3.

Otherwise, stop and select (77, k;;s, f;;s) with the minimum 7°C.

3. Hybrid GA

In this section we present a new GA approach for solving the JRP of the one-warehouse, n-retailer system.
The main ideas of the GA have been introduced, and we will demonstrate how we apply this GA to our prob-
lem. The GA introduced by Khouja et al. (2000) is suitable for solving the JRP that has the important feature
that it can be formulated as a problem having one continuous decision variable (basic cycle 7) and a set of
integer decision variables (n integer multiples k; of a basic cycle 7).

GAs, which have been widely used to solve operations management problems during the last decade (Aytug
et al., 2003), are stochastic search algorithms based on the mechanism of natural selection and natural genet-
ics. Unlike conventional search techniques, GAs start with an initial set of (random) solutions known as a
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population. Each individual in the population is called a chromosome that represents a solution to the prob-
lem at hand. The chromosomes evolve through successive iterations, known as generations. During each gen-
eration, the chromosomes are evaluated by using some measures of fitness. In general, the GA is applied to
spaces that are too large to be exhaustively searched. It is generally accepted that any GA that is used to solve
a problem must have basic components; however, it can have different characteristics depending on the prob-
lem under study.

We explain our overall strategies including chromosome style based on the following:

e Representation and initialization.
o Objective and fitness functions.
e Reproduction, crossover, and mutation.

3.1. Representation and initialization

The appropriate representation of a solution plays a key role in the development of a GA. Unlike the
method for solving a general JRP that is presented in Khouja et al. (2000), solving the JRP of the one-ware-
house, n-retailer system involves the determination of the basic cycle 7, the replenishment schedule variables
(k;s), and the outbound schedule variables (f;s). In our GA, we can search k;s and f;s through the operations of
the GA and determine the basic cycle T through the optimality condition of T for the given k;s and f;s.

As shown in Fig. 4, our decoding chromosome is composed of two parts. One is for the replenishment sche-
dule, and the other for the outbound schedule of each item. The ith gene of the first part of the chromosome
indicates the integer value of k; that decides the replenishment schedule of item i. The ith gene of the second
part of the chromosome indicates the integer value of f; that decides the outbound schedule of item i. There-
fore, we can determine the values of k; and f; by using this chromosome. Our chromosome requires only 2n
genes to decide the replenishment schedule variables (k;s) and the outbound schedule variables (f;s). In our
study, we use a random number representation for the following reasons:

(1) Our GA is always searching for a suitable feasible region without being influenced by any crossover and
mutation.

(i1) It is very easy to decode a chromosome expressed by a random number representation to a feasible
solution.

3.2. Objective and fitness function

In this subsection, we will demonstrate how our chromosome can be decoded to a feasible solution. Each
chromosome of the population is evaluated by the following steps:

Step 1. Each chromosome is decoded to a feasible solution (ks, f;s).
Step 2. The optimal basic cycle T is determined for a given (k;s, f;s) from Eq. (2).
Step 3. The total relevant cost 7C is computed for a given (7, k;s, and f;s).

Our decoding process for each gene of the first part of our chromosome is as follows:

ki =k® + | (k® — k® 4+ 1) x Gene(i)|

1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 2 2 4 4 3 2 3 2 2

Replenishment schedule variables Outbound schedule variables

Fig. 4. Decoding chromosome.



726 B.C. Cha et al. | Transportation Research Part E 44 (2008) 720-730

| G| is the function that finds the integer number that is less than or equal to G. For each gene of the second
part of our chromosome, the decoding process is as follows:

fi=fB 4+ [(FV® — fB 4+ 1) x Gene(i)]

By setting a suitable range of k;s and f;s, we can define the solution space including the optimal solution. It is
evident that considerably smaller k;s and f;s lead to a better solution space, as far as it contains the optimal
solution.For solving the general JRP, Khouja et al. (2000) used (k;® =1,k;® = [TN/Twn]), where
TﬁN = /2(S + 5;)/D;h; is the individual optimal cycle time for product i, which is obtained from the EOQ
model. Moon and Cha (2006) defined tighter lower and upper bounds of k; from the well-known optimality
condition (Goyal, 1973):

ki(k; — 1) < < ki(ki+1)

In other words, they used the lower and upper bounds of k; from the following two equations:
2Sl'

KPS —1) < —— < kPP + 1

i ( i ) Dithrznax i ( i + )
2s;

kP — 1) < ——— < kP (kP + 1

i ( I ) D[hl‘Tz i ( i + )

min

where T = \/Z(S + Z?:ls,-)/Z?le,»hi and T, = min («/2s,</D,»h,»).

However, in this problem, it is difficult to define the lower and upper bounds of the variables k; and f; since
the two variables influence each other. Therefore, we use k-° = 1 and ' = 1, which are clearly the lower
bounds of item i. To obtain the upper bounds of k; and f;, we use values of one and a half times the optimal
values obtained from JRD-RAND.

3.3. Reproduction, crossover and mutation

Various evolutionary methods can be applied to this problem. We use the (u + 1) selection for selecting
individuals for reproduction. With this strategy, u parents and A offsprings compete for survival, and the u
best of the offsprings and parents are selected as parents of the next generation. Further, we produce offsprings
through a one-point crossover. Whenever an offspring is produced, mutation is applied with probability P,,.
The operation of mutation replaces one gene of the chromosome that is chosen at random with a new random
number between (0,1).

We use a numerical example to compare the three algorithms. The data and results of the example are given
in Tables 1 and 2. Both JRD-RAND and genetic algorithm found an optimal solution.

Table 1

Data for the example (SV = $200)

Item i 1 2 3 4 5 6
D; 10,000 5000 3000 1000 600 200
sV 45 46 47 44 45 47
hY 1 1 1 1 1 1
sR 5 5 5 5 5 5
hR 1.5 1.5 1.5 1.5 1.5 1.5
Table 2

Comparison between two heuristic algorithms and GA

Algorithm T ki fi TC %
JRD-SH 0.1973 1,1,1,1,2,3 4,3,2,1,2,2 $4850.39 0.45
JRD-RAND 0.1881 1,1,1,2,2, 4 4,3,2,3,2,2 $4828.89 -
GA 0.1881 1,1,1,2,2, 4 4,3,2,3,2,2 $4828.89 -
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4. Computational experiments

In this section we compare the performances of three algorithms for a number of randomly generated prob-
lems. The problem data are generated from a uniform distribution of the ranges presented in Table 3.

To determine the appropriate values of the GA parameters, we conducted experiments on 30 randomly gen-
erated problems (S = 100, » = 50). Four different probabilities of crossover (0.4, 0.6, 0.8 and 1.0) and four
different probabilities of mutation (0.05, 0.10, 0.15 and 0.20) are considered. The termination condition is
to stop if no improvement is made in 100 generations. Computational results for the test problems are shown
in Table 4.

Table 4 shows that the mean error is best when the probabilities of crossover and mutation are 0.8 and 0.1,
respectively. Therefore, we determine the probabilities of crossover and mutation to be 0.8 and 0.1,
respectively.

Four different values of n (10, 20, 30 and 50) and four different values of S (100, 200, 300 and 400) are con-
sidered. For n = 10, three algorithms are compared with the optimal solution from full enumeration. We com-
pare them with their best solution for other values of # since it took too much time to find an optimal solution
using full enumeration. For each combination of n and S, 100 problems are generated and solved using the
JRD-SH, GA, and JRD-RAND for a total of 1600 problems. A value of m = n is used in the JRD-RAND.
In the GA, the population size of 27 is used. A summary of the computational results for 1600 randomly gen-
erated problems is shown in Tables 5 and 6.

As shown in Tables 5 and 6, the JRD-RAND is superior to the other two algorithms. However, Table 6
also shows that the performance of the GA is extremely good as compared with the best solution of each prob-
lem (the maximum error found is 0.3660% and the average error found is only 0.0268%). In addition, the GA
can be easily expanded to more complex problems with several constraints while it would be difficult to extend
the JRD-RAND.

Table 3
The ranges of parameters
D; slw is hlw hll.{
[500, 5000] (30, 50] [0.1s)Y, 0.35)V] [0.5, 3.0] [1.24Y, 2.0n"]
Table 4
Computational results for test problems
Pn/P. Mean errors (%) Mean generation numbers
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
0.05 0.0569 0.0964 0.0677 0.0470 471 421 413 365
0.10 0.0450 0.0518 0.0413 0.0416 399 351 333 296
0.15 0.0496 0.0568 0.0480 0.0417 381 296 280 265
0.20 0.0804 0.0626 0.0515 0.0474 336 292 257 244
Table 5
Comparison between three algorithms and the optimal solution (% error)
n S Number of finding an optimal solution JRD-SH GA JRD-RAND
JRD-SH GA JRD-RAND Max. Avg. Max. Avg. Max. Avg.
10 100 58 81 93 1.1713 0.0907 0.4208 0.0230 0.0603 0.0018
200 67 82 94 0.6467 0.0463 0.6088 0.0188 0.0119 0.0002
300 74 68 97 0.3997 0.0302 0.3255 0.0228 0.0644 0.0007
400 77 75 92 0.4308 0.0230 0.4102 0.0273 0.0384 0.0006
Max. 1.1713 0.6088 0.0644

Avg. 69 77 94 0.0475 0.0230 0.0222
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Table 6

Comparison of three algorithms (% error)

n S Number of finding the best solution JRD-SH GA JRD-RAND

JRD-SH GA JRD-RAND Max. Avg. Max. Avg. Max. Avg.

20 100 29 63 96 0.8601 0.1789 0.2246 0.0306 0.0159 0.0002
200 38 65 97 0.6776 0.0747 0.3248 0.0291 0.0689 0.0010
300 51 77 97 0.5185 0.0408 0.2038 0.0112 0.0031 0.0001
400 60 66 95 0.3060 0.0226 0.1964 0.0159 0.0485 0.0008

30 100 7 48 86 1.0772 0.2673 0.3660 0.0379 0.0880 0.0035
200 13 58 92 0.6656 0.1269 0.2823 0.0194 0.0771 0.0012
300 26 57 93 0.3777 0.0753 0.2606 0.0269 0.0125 0.0004
400 35 63 95 0.2602 0.0455 0.1512 0.0179 0.0333 0.0006

50 100 1 38 87 1.1011 0.3661 0.3299 0.0507 0.0832 0.0025
200 2 34 87 0.8082 0.2344 0.2183 0.0311 0.0589 0.0023
300 8 42 92 0.4663 0.1551 0.1980 0.0284 0.0455 0.0017
400 5 45 87 0.3389 0.1095 0.1496 0.0221 0.0352 0.0018

Max. 1.1011 0.3660 0.0880

Avg. 23 55 92 0.1414 0.0268 0.0013

5. Resource restrictions

Most real life JRPs exist under conditions of limited resources such as storage, transport equipment capac-
ity, and budget. Goyal (1975) considered a JRP with one resource constraint and developed a heuristic algo-
rithm using the Lagrangian multiplier. Khouja et al. (2000) introduced the advantage of GA in handling
constrained JRPs. Moon and Cha (2006) compared their GA with Goyal’s algorithm and showed the exten-
sion ability of their GA to easily deal with many constraints.

It is difficult for recursive heuristic algorithms to deal with many constraints. However, we can easily extend
our GA to solve the problems with resource restrictions. The following two types of transportation restrictions
can be considered. One is the joint replenishment restriction, and the other the outbound delivery restriction.
The former can be represented as follows:

> DikiTh; < BY (5)
i=1

where b, is the unit weight of item i and BY is the maximum weight capacity of a full-ship load for the joint
replenishment of all items. Similarly, the latter can be represented as follows:
Dik;Th;
Ji
where BR is the maximum weight capacity of a full truck load for the outbound delivery of item i.

We can easily apply our GA to these types of problems by only changing Eq. (2) to find the optimal 7 that
satisfies the resource restriction.

< B} (6)

Proposition 1. For a given set of k;s and f;s, the optimal basic cycle time T is T* = min(T°,T") where

n Slw +/ i’-Y,R
2 (SW + Ziil ki )
W

Z;@a@?+w%

Ji

N—

and

BY  fB®

ZDikibi Dikibi
i=1

7' = min
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Table 7
Result for the resource restriction
k; fi T TC
No. Restriction 1,1,1,2,2, 4 4,3,2,3,2,2 0.1881 $4828.89
Resource restriction 1,1,1,2,2, 4 6,3,2,3,2,2 0.1818 $4843.83

for all i. T" is obtained from the restriction of both Egs. (5) and (6).

Proof. If 7° < T', TC(T) is a convex function in the interval [0,7"]. In this case, the optimal basic cycle time
T" = T°. Otherwise, T° > T', as TC(T) is a decreasing function in the interval [0,7"]. It is clear that the opti-
mal basic cycle time 7% = 7". O

After adding a resource restriction to the previous example (we assume B = 25,000 and all b, = 6.25 and
BR = 2000), we obtain the following result, in comparison with the case without the resource restriction. (See
Table 7).

6. Concluding remarks

In this paper, we considered a more flexible policy compared with the existing JRP models for the one-
warehouse, n-retailer system. We introduced the mathematical model and two efficient algorithms for the joint
replenishment and delivery scheduling of the warehouse. These algorithms use optimality conditions of each
decision variable and determine the best solution recursively. We also developed the hybrid GA and compared
it with two recursive algorithms for 1600 randomly generated problems. Despite the fact that our GA is
slightly inferior to the JRD-RAND, we showed the extension ability of our GA in dealing with resource
restrictions- an important ability from the practical viewpoint. This policy can be extended to the joint inven-
tory and routing problem for the one-warehouse, n-retailer system (Anily and Federgruen, 1993; Herer and
Roundy, 1997). In this case, we expect that our GA can be modified and applied more easily to this problem
compared with the two heuristic algorithms.
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