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Abstract

The items that incur a gradual loss in quality or quantity over time while in inventory are usually called deteriorating

items. In reality, there are some items whose value or utility or quantity increase with time and those items can be

termed as ameliorating items. In this paper, an effort has been made to incorporate these two opposite physical

characteristics of stored items into inventory model. We develop models for ameliorating/deteriorating items with time-

varying demand pattern over a finite planning horizon, taking into account the effects of inflation and time value of

money. Optimal solutions of the proposed models are derived and the effects of amelioration/deterioration on the

inventory replenishment policies are studied with the help of numerical examples.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades, the replenishment scheduling problems were typically attacked by developing proper
mathematical models that consider practical factors in real world situations, such as non-stationary

demand, physical characteristics of inventoried goods, effects of inflation and time value of money, partial

backlogging of unsatisfied demand, etc. It is usually observed in the marketplace that the demand for

inventory items increases with time in the growth phase, and decreases in the decline phase. So researchers

commonly use a time-varying demand pattern to reflect sales in different phases of product life cycle. In the

early 1970s, Silver and Meal [27] derived an approximate solution procedure for the general case of a

deterministic, time-varying demand pattern. Donaldson [12] then considered an inventory model with a
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linear trend in demand. After Donaldson [12], numerous research works have been carried out incorpo-
rating time-varying demand into inventory models under a variety of circumstances.

The assumption that the goods in inventory always preserve their physical characteristics is not true in

general because there are some items which are subject to risks of breakage, evaporation, obsolescence etc.

Decay, change or spoilage that prevent the items from being used for its original purpose are usually termed

as deterioration. Food items, pharmaceuticals, photographic film, chemicals and radioactive substances, to

name only a few items in which appreciable deterioration can take place during the normal storage of the

units. The first attempt to obtain optimal replenishment policies for deteriorating items was made by Ghare

and Schrader [13], who derived a revised form of the economic order quantity (EOQ) model assuming
exponential decay. Thereafter, a great deal of research efforts have been devoted to inventory models of

deteriorating items, the details can be found in the review articles by Raafat [25] and Goyal and Giri [14].

One of the assumptions in most derivations of the inventory model has been a negligible level of

inflation. But in recent times many countries have been confronted with fluctuating inflation rates that often

have been far from negligible [22]. Silver et al. [28] investigated the impact of inflation on the choice of

replenishment quantities in the basic EOQ model. The pioneer in this field was Buzacott [5], who developed

the first EOQ model taking inflation into account. Several researchers have extended their approach to

various interesting situations by considering the time value of money, different inflation rates for the
internal and external costs, finite replenishment rate, shortages, etc. The models of Mishra [21], Bierman

and Thomas [2], Aggarwal [1], Chandra and Bahner [6], Hariga and Ben-Daya [17], Ray and Chaudhuri

[26], Mangiameli et al. [20], Brahmbhatt [4], Dohi et al. [11], Moon and Yun [24], and Moon and Lee [23]

are worth mentioning in this direction.

Bose et al. [3] first explored a deteriorating inventory model under inflation and time value of money.

Unfortunately, their model contains some mathematical errors in the formulation of the holding cost and

the purchase cost which lead to incorrect total cost function [22]. Chen [8] proposed a generalized dynamic

programming model over a finite planning horizon for items with Weibull distribution deterioration where
the demand rate is assumed to be time-proportional, shortages are allowed and are completely backordered

and the effects of inflation and time value of money are taken into consideration. This model permits

variation in both the replenishment intervals and the service levels between the order cycles. Chung et al.

[10] discussed the inventory replenishment policy over a finite planning horizon for a deteriorating item

taking account of time value and presented a line search technique to decide the optimal interval which has

positive inventories. Recently, Chung and Lin [9] extended the inventory replenishment model of Chung

et al. [10] to the situation where shortages are allowed in each replenishment cycle (the model starts with

inventory, and ends with shortages). They considered the demand rate to be known and constant and
applied the DCF approach to determine the optimal number of replenishments and the corresponding cycle

length, consisting of positive and negative inventories.

Although degradation (or loss) of value or utility or quantity of some physical goods is a common

experience in reality, there are some items whose value or utility increase over time by ameliorating acti-

vation, e.g. wine. It is a practical experience in wine manufacturing industry that utility or value of some

kind of wine increases by age. Other examples can be high breed fishes in breeding yard (fish culture facility)

or fast growing animals like broiler, pig, etc. in farming yard. In this paper, the term ‘‘amelioration’’ means

to make better or increase goods in quantity or amount in an inventory. Hwang [18,19] for the first time
developed EOQ models for items which are ameliorating in nature. In the present article, our attempt is to

incorporate both the opposite physical characteristics viz. amelioration and deterioration of stored items

into inventory model. We develop models with zero-ending inventory for fixed order intervals over a finite

planning horizon allowing (A) shortages in all but not in the last cycle and (B) shortages in all cycles [15],

taking into account the effects of inflation and time value of money. Optimal solutions of the proposed

models are derived and the effects of amelioration/deterioration on the inventory replenishment policies are

studied with the help of numerical examples.
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2. Assumptions and notation

The following assumptions and notation are used in developing the models:

(a) H is taken to be the fixed time horizon.

(b) n orders are placed during the time horizon H and the replenishment rate is infinite i.e. replenishment is
instantaneous.

(c) Shortages are allowed to occur in inventory and lead time is zero.
(d) The demand f ðtÞ at time t is a continuous function of time.
(e) A constant fraction að06 a < 1Þ of on-hand inventory ameliorates or deteriorates per unit of time.
(f) r is the discount rate representing the time value of money.
(g) At time t ¼ 0, c11 and c12 are internal and external holding costs per unit item per unit time; c21 and c22

are internal and external shortage costs per unit item per unit time.

(h) At time t ¼ 0, A is the fixed internal ordering cost per order and p is the external purchase cost.
(i) Internal and external inflation rates are denoted by i1 and i2, respectively.
(j) Co, Ch, Cs and Cp are, respectively, the present worth of total replenishment cost, total inventory hold-
ing cost, total shortage cost and total purchase cost during the fixed time horizon H .

We also assume that r > i1; i2, i.e. the interest rate is larger than the internal and external inflation rates,
which is a practical assumption.
3. Model development

3.1. Model A with shortages in all but not in the last cycle

We assume that the replenishment cycles are of equal length and the no-shortage period in each cycle is a

constant fraction Kð0 < K < 1Þ of each replenishment interval. Let tj ¼ ðj� 1ÞH=n be the time of the jth
replenishment, j ¼ 1; 2; . . . ; n and sj ¼ tj þ KH=n ¼ ðK þ j� 1ÞH=n be the time at which the inventory level
in the jth replenishment cycle drops to zero, j ¼ 1; 2; . . . ; n� 1 and sn ¼ H .

3.1.1. Formulation of the basic model

The amount of ameliorated or deteriorated units during a given time interval depends on the on-hand

inventory and the elapsed time in the system. Therefore, if I1ðtÞ denotes the inventory level at any time t in
the jth replenishment cycle in ½tj; sj�, j ¼ 1; 2; . . . ; n during the period of positive inventory, then the
instantaneous state of I1ðtÞ can be described by the following differential equation:
dI1ðtÞ
dt

¼ �f ðtÞ � adI1ðtÞ; tj 6 t6 sj; j ¼ 1; 2; . . . ; n ð1Þ
with the boundary condition I1ðsjÞ ¼ 0, where
ad ¼
a in case of deteriorating items;
�a in case of ameliorating items:

�

The differential equation governing the system during the period of shortage is given by
dI2ðtÞ
dt

¼ f ðtÞ; sj 6 t6 tjþ1; j ¼ 1; 2; . . . ; n� 1 ð2Þ
with the initial condition I2ðsjÞ ¼ 0, where I2ðtÞ is the shortage level at time t in the jth replenishment cycle,
j ¼ 1; 2; . . . ; n� 1.
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The solutions of the differential equations (1) and (2) are given by
I1ðtÞ ¼
Z sj

t
eadðu�tÞf ðuÞdu; tj 6 t6 sj; j ¼ 1; 2; . . . ; n; ð3Þ

I2ðtÞ ¼
Z t

sj

f ðuÞdu; sj 6 t6 tjþ1; j ¼ 1; 2; . . . ; n� 1: ð4Þ
The total inventory cost, during the fixed time horizon H , consists of replenishment or ordering cost,
holding cost, shortage cost, and purchase cost.

The present worth of the total replenishment cost during H is given by
Co ¼ A
Xn

j¼1
e�R1tj ¼ A

Xn

j¼1
e�R1ðj�1ÞH=n ¼ Að1� e�R1H Þ

1� e�R1H=n
; where R1 ¼ r � i1:
The present worth of the total inventory holding cost during H is
Ch ¼
Xn

j¼1

X2
m¼1

c1m

Z sj

tj

I1ðtÞe�Rmt dt ¼
Xn

j¼1

X2
m¼1

c1m

Z sj

tj

Z sj

t
eadðu�tÞf ðuÞdu

� �
e�Rmt dt

¼
Xn

j¼1

X2
m¼1

c1m
Rm þ ad

Z sj

tj

eadðt�tjÞ�Rmtj
�

� e�Rmt
�
f ðtÞdt; where Rm ¼ r � im;m ¼ 1; 2:
Similarly, the present worth of the total shortage cost during H is
Cs ¼
Xn�1
j¼1

X2
m¼1

c2m

Z tjþ1

sj

I2ðtÞe�Rmt dt ¼
Xn�1
j¼1

X2
m¼1

c2m

Z tjþ1

sj

Z t

sj

f ðuÞdu
" #

e�Rmt dt

¼
Xn�1
j¼1

X2
m¼1

c2m
Rm

Z tjþ1

sj

e�Rmt



� e�Rmtjþ1
�
f ðtÞdt:
And the present worth of the total purchase cost during H is
Cp ¼ p
Xn

j¼1
I1ðtjÞe�R2tj

"
þ
Xn�1
j¼1

I2ðtjþ1Þe�R2tjþ1

#

¼ p
Xn

j¼1
e�R2tj

Z sj

tj

eadðt�tjÞf ðtÞdt
"

þ
Xn�1
j¼1
e�R2tjþ1

Z tjþ1

sj

f ðtÞdt
#
:

Hence, the present worth of the total variable cost of the inventory system during the entire time period H is
given by
TCðn;KÞ ¼ Co þ Ch þ Cs þ Cp ¼
Að1� e�R1H Þ
1� e�R1H=n

þ
Xn

j¼1

X2
m¼1

c1m
Rm þ ad

Z sj

tj

eadðt�tjÞ�Rmtj
�

� e�Rmt
�
f ðtÞdt

þ
Xn�1
j¼1

X2
m¼1

c2m
Rm

Z tjþ1

sj

e�Rmt



� e�Rmtjþ1
�
f ðtÞdt þ p

Xn

j¼1
e�R2tj

Z sj

tj

eadðt�tjÞf ðtÞdt
"

þ
Xn�1
j¼1
e�R2tjþ1

Z tjþ1

sj

f ðtÞdt
#
; where tj ¼ ðj� 1ÞH=n; sj ¼ ðK þ j� 1ÞH=n;

Rm ¼ r � im; m ¼ 1; 2: ð5Þ

Our objective is to determine the optimal values of n and K that minimize TCðn;KÞ.
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3.1.2. Solution procedure

Since TCðn;KÞ is a function of a discrete variable n and a continuous variable K (0 < K < 1), therefore,
for any given n, the necessary condition for the minimum of TCðn;KÞ is
dTCðn;KÞ
dK

¼ 0;
which gives
Gðn;KÞ �
Xn�1
j¼1

X2
m¼1

c1m
Rm þ ad

ead
H
nK�Rmðj�1ÞHn

h
� e�Rm

H
n ðKþj�1Þ

i

�
Xn�1
j¼1

X2
m¼1

c2m
Rm

e�Rm
H
n ðKþj�1Þ

h
� e�Rm

jH
n

i
þ p

Xn�1
j¼1

ead
H
nK�R2ðj�1ÞHn

h
� e�R2

jH
n

i
¼ 0: ð6Þ
Case (i) ad ¼ a

Proposition 1. For any given nP 2, there exists a solution of Eq. (6) provided the condition (7) given below is
satisfied.

Proof. Clearly Gðn; 1Þ is strictly positive for a given value of n. In order to guarantee the existence of a
solution K	ð0 < K	 < 1Þ of Eq. (6), Gðn; 0Þ should be strictly negative and that the condition can be sim-
plified to the following:
p
�

� c22
R2

�
1

�
� e�R2n�1n H

�
<

c21
R1

1
�

� e�R1n�1n H
�
: ð7Þ
Especially, when p < c22
R2
, the above condition is always satisfied. The possibility of satisfying this condition

increases when r ! i2. h

Proposition 2. If there exists a solution of Eq. (6) then it is the unique global optimal solution.
Proof. Differentiating Gðn;KÞ with respect to K we get
dGðn;KÞ
dK

¼ H
n

Xn�1
j¼1

X2
m¼1

c1m
Rm þ a

aea
H
nK�Rmðj�1ÞHn

n"
þ Rme

�Rm
H
n ðKþj�1Þ

o

þ
Xn�1
j¼1

X2
m¼1

c2m e�Rm
H
n ðKþj�1Þ þ pa

Xn�1
j¼1
e�R2ðj�1ÞHnþaHnK

#
> 0;

since Rm þ aP 0; m ¼ 1; 2 and K 2 ð0; 1�:
Therefore, for any given nP 2, Gðn;KÞ is a strictly increasing function of K and consequently the solution
K	 of Eq. (6) is unique. Moreover, it can be easily verified that the second-order derivative d

2TCðn;KÞ
dK2 jK¼K	 is

strictly positive. Hence the proof is complete. h
Remarks. (i) When ad ¼ a the proposed model is identical to Bose et al. [3] and moreover, if there is no
inflation and time discounting, the model reduces to that of Hariga [16]. Unfortunately, Bose et al.�s [3]
model contains mathematical errors in the formulation of the holding cost and purchase cost, as pointed
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out by Moon and Giri [22]. (ii) It is clear from Eq. (6) that the optimal value of K does not depend on the
demand function parameters which is in contrast to the value obtained by Bose et al. [3].

Case (ii) ad ¼ �a

Proposition 3. If p < c22
R2
and Rm � aP 0 for m ¼ 1; 2. then there exists at least a local optimal solution of

Eq. (6).

Proof. If Rm � aP 0 for m ¼ 1; 2 then by (7) clearly the condition p < c22
R2
guarantees the existence of a

solution K	 in Eq. (6). It is not straightforward to show that for any given n, Gðn;KÞ is an increasing
function of K under the conditions stated above. However, after a little simplification, the second-order
derivative of TCðn;KÞ at K ¼ K	 can be obtained as
d2TCðn;KÞ
dK2

jK¼K	 ¼
Xn�1
j¼1

X2
m¼1

ðc1m þ c2mÞe�Rm
H
n ðK	þj�1Þ

� a
Xn�1
j¼1

X2
m¼1

c2m
Rm

e�Rm
H
n ðK	þj�1Þ

n"
� e�Rm

jH
n

o
þ p

Xn�1
j¼1
e�R2

jH
n

#
> 0; ð8Þ
when p < c22
R2
and Rm � a P 0, m ¼ 1; 2. This proves that K	 is a local minimizer of TCðn;KÞ.

When Rm � a < 0 for m ¼ 1; 2 or R1 � a > 0, R2 � a < 0 (the situation R1 � a < 0, R2 � a > 0 is not
possible since i2 > i1 in general) the condition Gðn; 0ÞGðn; 1Þ < 0 must hold for the existence of a solution
K	 in (6) and condition (8) for verifying it as a minimizing solution. In any case, if a solution of Eq. (6)

exists, it can be obtained numerically by any one-dimensional search technique. We outline below a simple

algorithm based on line search technique. h

Algorithm

Step 1. Set n ¼ 1, TC0¼ a very large positive value.
Step 2. Set n ¼ nþ 1, Klow ¼ 0 and Khigh ¼ 1.
Step 3. Set K	 ¼ ðKlow þ KhighÞ=2.
Step 4. If Gðn;K	Þ ¼ 0, go to Step 6. Otherwise, go to Step 5.
Step 5. If Gðn;K	Þ > 0, set Khigh ¼ K	 and go to Step 3.

If Gðn;K	Þ < 0, set Klow ¼ K	 and go to Step 3.

Step 6. Compute tj ¼ ðj� 1ÞH=n, j ¼ 1; 2; . . . ; n; sj ¼ ðK	 þ j� 1ÞH=n, j ¼ 1; 2; . . . ; n� 1 and then TCðn;
K	Þ from (5).

Step 7. If the condition (8) is satisfied, then go to Step 8. Otherwise, K	 is not a minimizing solution. Stop.

Step 8. If TC0PTCðn;K	Þ, assign TC0 ¼ TCðn;K	Þ and go to Step 2. Otherwise, the minimum total cost is
TC0, n	 ¼ n� 1 and the corresponding value of K	 is the required solution.
3.2. Extended cases

3.2.1. Model A1 with unequal periods of positive inventory

We now extend the basic Model A by relaxing the assumption of equal no-shortage interval in each

cycle. Let Kj be the fraction of the jth replenishment interval (j ¼ 1; 2; . . . ; n� 1) for which there is no-
shortage in inventory. Then the shortage points sj�s would be sj ¼ tj þ KjH=n ¼ ðKj þ j� 1ÞH=n,
0 < Kj < 1, j ¼ 1; 2; . . . ; n� 1.
As a result, the necessary conditions for the minimum of the total variable cost TCðn;K1;K2; . . . ;Kn�1Þ

give
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G1jðn;KjÞ �
X2
m¼1

c1m
Rm þ ad

ead
H
nKj�Rmðj�1ÞHn

h
� e�Rm

H
n ðKjþj�1Þ

i
�
X2
m¼1

c2m
Rm

e�Rm
H
n ðKjþj�1Þ � e�Rm

jH
n

h i

þ p ead
H
nKj�R2ðj�1ÞHn � e�R2

jH
n

h i
¼ 0; j ¼ 1; 2; . . . :; n� 1: ð9Þ
The above equations show that the value of j influences the value of K in each replenishment cycle.
Similar to the previous section, the existence and uniqueness of Kj�s, j ¼ 1; 2; . . . ; n� 1 can be examined
when ad ¼ a or �a. The condition (7), in this case, would take the form
p
�

� c22
R2

�
ð1� e�R2H=nÞe�R2ðj�1ÞH=n <

c21
R1

ð1� e�R1H=nÞe�R1ðj�1ÞH=n j ¼ 1; 2; . . . ; n� 1: ð10Þ
3.2.1.1. Model A1 with partial backlogging. The backlogging rate in many inventory systems depends on the

length of the waiting time for the next replenishment. The longer the waiting time is, the smaller the

backlogging rate would be. The proportion of customers who would like to accept backorder at time t
decreases with the waiting time ðtjþ1 � tÞ before the next replenishment. Considering this situation, the
backlogging rate can be defined as
backlogging rate ¼ 1

1þ bðtjþ1 � tÞ ; sj 6 t6 tjþ1;
where bðP 0Þ is called the backlogging parameter.
There are relevant particulars related to the above definition in Chang and Dye [7].

In this case, the differential equation governing the system during the period of shortages is given by
dI2ðtÞ
dt

¼ f ðtÞ
1þ bðtjþ1 � tÞ ; sj 6 t6 tjþ1 ð11Þ
with the initial condition I2ðsjÞ ¼ 0, where I2ðtÞ is the shortage level at time t.
Solving (11) we get
I2ðtÞ ¼
Z t

sj

f ðuÞ
1þ bðtjþ1 � uÞ du; sj 6 t6 tjþ1: ð12Þ
Then the present worth of the total shortage cost during H is
Cs ¼
Xn�1
j¼1

X2
m¼1

c2m

Z tjþ1

sj

I2ðtÞe�Rmt dt ¼
Xn�1
j¼1

X2
m¼1

c2m

Z tjþ1

sj

Z t

sj

f ðuÞ
1þ bðtjþ1 � uÞ du

" #
e�Rmt dt

¼
Xn�1
j¼1

X2
m¼1

c2m
Rm

Z tjþ1

sj

e�Rmt � e�Rmtjþ1

1þ bðtjþ1 � tÞ f ðtÞdt:
If c31 and c32 are internal and external opportunity costs due to lost sales per unit item per unit time, the
present worth of the total lost sales during H is given by
Cl ¼
Xn�1
j¼1

X2
m¼1

c3m

Z tjþ1

sj

1

�
� 1

1þ bðtjþ1 � tÞ

�
f ðtÞe�Rmt dt ¼ b

Xn�1
j¼1

X2
m¼1

c3m

Z tjþ1

sj

ðtjþ1 � tÞe�Rmt

1þ bðtjþ1 � tÞ f ðtÞdt:
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Also the present worth of the total purchase cost during H becomes
Cp ¼ p
Xn

j¼1
I1ðtjÞe�R2tj

"
þ
Xn�1
j¼1

I2ðtjþ1Þe�R2tjþ1

#

¼ p
Xn

j¼1
e�R2tj

Z sj

tj

eadðt�tjÞf ðtÞdt
"

þ
Xn�1
j¼1
e�R2tjþ1

Z tjþ1

sj

f ðtÞ
1þ bðtjþ1 � tÞ dt

#
:

We can formulate the present worth of the total inventory cost as the sum of the replenishment cost,

holding cost, shortage cost, opportunity cost due to lost sales, and purchase cost. Therefore,
TCðn; fKjgÞ ¼ Co þ Ch þ Cs þ Cl þ Cp

¼ Að1� e�R1H Þ
1� e�R1H=n

þ
Xn

j¼1

X2
m¼1

c1m
Rm þ ad

Z sj

tj

eadðt�tjÞ�Rmtj
�

� e�Rmt
�
f ðtÞdt

þ
Xn�1
j¼1

X2
m¼1

c2m
Rm

Z tjþ1

sj

e�Rmt � e�Rmtjþ1

1þ bðtjþ1 � tÞ f ðtÞdt þ b
Xn�1
j¼1

X2
m¼1

c3m

Z tjþ1

sj

ðtjþ1 � tÞe�Rmt

1þ bðtjþ1 � tÞ f ðtÞdt

þ p
Xn

j¼1
e�R2tj

Z sj

tj

eadðt�tjÞf ðtÞdt
"

þ
Xn�1
j¼1
e�R2tjþ1

Z tjþ1

sj

f ðtÞ
1þ bðtjþ1 � tÞ dt

#
; ð13Þ
where tj ¼ ðj� 1ÞH=n, j ¼ 1; 2; . . . ; n; sj ¼ ðKj þ j� 1ÞH=n, j ¼ 1; 2; . . . :; n� 1; Rm ¼ r � im, m ¼ 1; 2;
fKjg ¼ K1;K2; . . . ;Kn�1.

The total variable cost (13) is a function of discrete variable n and continuous variables K1;K2; . . . ;Kn�1.

Therefore, for any given n, the values of K1;K2; . . . ;Kn�1 that minimize TCðn; fKjgÞ can be obtained by
solving the following non-linear equations:
G2jðn;KjÞ �
X2
m¼1

c1m
Rm þ ad

ead
H
nKj�Rmðj�1ÞHn

h
� e�Rm

H
n ðKjþj�1Þ

i
� n

X2
m¼1

c2m
Rm

e�Rm
H
n ðKjþj�1Þ � e�Rm

jH
n

nþ bHð1� KjÞ

" #

� b
X2
m¼1

c3mHð1� KjÞe�Rm
H
n ðKjþj�1Þ

nþ bHð1� KjÞ
þ p ead

H
nKj�R2ðj�1ÞHn

"
� ne�R2

jH
n

nþ bHð1� KjÞ

#
¼ 0;

j ¼ 1; 2; . . . ; n� 1: ð14Þ
Eqs. (14) can be solved for a unique fKjg provided G2jðn; 0ÞG2jðn; 1Þ < 0 and G2jðn;KjÞ is monotone in
½0; 1�, for each j. When ad ¼ a or �a and Rm þ ad P 0 for m ¼ 1; 2, it is easy to verify that G2jðn; 1Þ is strictly
positive and G2jðn; 0Þ would be strictly negative provided n and j satisfy the following relation:
n p
�

� c22
R2

�
e�R2ðj�1ÞHn
h

� e�R2
jH
n

i
þ bHðp � c32Þe�R2ðj�1ÞHn

<
nc21
R1

e�R1ðj�1ÞHn
h

� e�R1
jH
n

i
þ bHc31e�R1ðj�1ÞHn ; j ¼ 1; 2; . . . ; n� 1: ð15Þ
For uniqueness of the solution, the relevant Hessian matrix (which is a diagonal matrix) should be

positive definite implying that
@G2jðn;fKjgÞ

@Kj
should be strictly positive for all j. When b ¼ 0 (complete back-

logging), the condition (15) reduces to (10).
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3.2.2. Model B with shortages in all cycles

In the previous sections, we have developed inventory models allowing shortages to follow inventory in

all but not in the last cycle. Here we allow inventory to follow shortages in every cycle. In order to develop

the model, we redefine the stock-out points sj ¼ ðj� 1ÞH=n, j ¼ 1; 2; . . . ; nþ 1 and the reorder points
tj ¼ sj þ KjH=n ¼ ðKj þ j� 1ÞH=n, j ¼ 1; 2; . . . ; n, where Kj (0 < Kj < 1) is the proportion of time in the jth
replenishment interval during which there are shortages in inventory. The differential equations that

describe the instantaneous states of positive inventory and negative inventory (i.e. shortages) are given,

respectively by
dI1ðtÞ
dt

¼ �f ðtÞ � adI1ðtÞ; tj 6 t6 sjþ1; j ¼ 1; 2; . . . ; n ð16Þ
with the boundary condition I1ðsjþ1Þ ¼ 0, and

dI2ðtÞ
dt

¼ f ðtÞ; sj 6 t6 tj; j ¼ 1; 2; . . . ; n ð17Þ
with the initial condition I2ðsjÞ ¼ 0.
The solutions of the differential equations (16) and (17) are
I1ðtÞ ¼
Z sjþ1

t
eadðu�tÞf ðuÞdu; tj 6 t6 sjþ1; j ¼ 1; 2; . . . ; n; ð18Þ

I2ðtÞ ¼
Z t

sj

f ðuÞdu; sj 6 t6 tj; j ¼ 1; 2; . . . ; n: ð19Þ
Similar to the previous sections, the present worth of the total variable cost of the system during the entire
time period H can be derived as
TCðn; ftjgÞ ¼ A
Xn

j¼1
e�R1tj þ

Xn

j¼1

X2
m¼1

c1m
Rm þ ad

Z sjþ1

tj

eadðt�tjÞ�Rmtj
�

� e�Rmt
�
f ðtÞdt

þ
Xn

j¼1

X2
m¼1

c2m
Rm

Z tj

sj

e�Rmt



� e�Rmtj
�
f ðtÞdt þ p

Xn

j¼1
e�R2tj

Z sjþ1

tj

eadðt�tjÞf ðtÞdt
"

þ
Z tj

sj

f ðtÞdt
#
where ftjg ¼ t1; t2; . . . ; tn: ð20Þ
For any given n, the necessary criteria for the minimum of TCðn; ftjgÞ yield
F ðn; tjÞ � �AR1e�R1tj �
X2
m¼1

c1m

Z sjþ1

tj

eadðt�tjÞ�Rmtj f ðtÞdt

þ
X2
m¼1

c2m

Z tj

sj

e�Rmtj f ðtÞdt � pðR2 þ adÞ
Z sjþ1

tj

eadðt�tjÞ�R2tj f ðtÞdt � pR2

Z tj

sj

e�R2tj f ðtÞdt ¼ 0;

j ¼ 1; 2; . . . . . . ; n: ð21Þ

We see from above that the optimal values of tj and hence Kjðj ¼ 1; 2; . . . ; nÞ are dependent on the

demand function parameters. When ad ¼ a or �a and R2 þ ad P 0, F ðn; sjÞ < 0 and therefore, for the
existence of tj�s in Eq. (21) the following condition must hold:
F n; sj

�
þ H

n

�
¼ �AR1e�R1

jH
n þ

X2
m¼1

c2m

Z jH=n

ðj�1ÞHn
e�Rm

jH
n f ðtÞdt � pR2

Z jH=n

ðj�1ÞHn
e�R2

jH
n f ðtÞdt > 0;

j ¼ 1; 2; . . . ; n:
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Simplifying, we get
Table

The va

j

1

2

3

4

5

6

7

8

9

10

11

12
p
�

� c22
R2

�
e�R2

jH
n

Z jH
n

ðj�1ÞHn
f ðtÞdt < R1

R2
e�R1

jH
n

c21
R1

Z jH=n

ðj�1ÞHn
f ðtÞdt

"
� A

#
j ¼ 1; 2; . . . ; n:
It is not easy to verify analytically the existence of a solution ftjg in (21) when ad ¼ �a, R1 � a > 0,
R2 � a < 0 or when Rm � a < 0, m ¼ 1; 2. In such a case, any commercial software package would be useful
to obtain the optimal solution numerically.
4. Numerical examples

Example 1. For numerical experiment, we choose the following data taken from Bose et al. [3].

f ðtÞ ¼ 20þ 50t, p ¼ 5, c11 ¼ 0:2, c12 ¼ 0:4, c21 ¼ 0:8, c22 ¼ 0:6, A ¼ 80, r ¼ 0:2, i1 ¼ 0:08, i2 ¼ 0:14,
H ¼ 10, a ¼ 0:01 (in appropriate units).
Using these parameter values, the optimal solution of the basic Model A for deteriorating items (ad ¼ a)

is obtained as n	 ¼ 13, K	 ¼ 0:497381 and TCðn	;K	Þ ¼ 17219:14. Bose et al. [3] found n	 ¼ 15,
K	 ¼ 0:288911 and TCðn	;K	Þ ¼ 17648:09. This means that 2.43% overestimation in the total cost occurs in
their model due to incorrect formulation of the total cost function. The optimal solution of the basic model

for ameliorating items (ad ¼ �a) is n	 ¼ 13, K	 ¼ 0:527385 and TCðn	;K	Þ ¼ 17177:92. Tables 1 and 2
show the values of K	

j �s that minimize the total cost functions in Model A1 and Model B, respectively.
A comparison of the output of the proposed models is shown in Table 3. Clearly the total cost in Model

A1 is less than that of Model A, but the difference is negligible while Model B provides the least cost, as

expected.

It is also noted that as the rate of amelioration increases, total costs in Models A, A1 and B decrease

monotonically. The effects of amelioration on the total costs can be observed from Table 4. # indicates the

result when the optimal values of n and K or Kj�s for a ¼ 0 are substituted in the objective function. To
examine the outcome of Model A1 with partial backlogging, we take c31 ¼ 1:0, c32 ¼ 0:8 and b ¼ 0:1 in
addition to the other parameter values already mentioned at the beginning of this section. The total costs

for deteriorating and ameliorating items reduces to 17082.26 and 17051.52, respectively. This indicates that
the partial backlogging option, in the present situation, is highly desirable over complete backlogging from

management�s point of view.
1

lues of K	
j �s in Model A1

K	
j

ad ¼ �a ad ¼ 0 ad ¼ a

0.553284 0.538589 0.524629

0.547739 0.532873 0.518769

0.542198 0.527170 0.512928

0.536667 0.521484 0.507112

0.531152 0.515821 0.501326

0.525660 0.510188 0.495576

0.520195 0.504588 0.489869

0.514763 0.499031 0.484209

0.509369 0.493519 0.478602

0.504019 0.488057 0.473052

0.498718 0.482651 0.467566

0.493471 0.477307 0.462146



Table 2

The values of K	
j �s in Model B

j K	
j

ad ¼ �a ad ¼ 0 ad ¼ a

1 0.488350 0.502480 0.515885

2 0.485891 0.500334 0.514024

3 0.485775 0.500486 0.514415

4 0.487146 0.502093 0.516230

5 0.489513 0.504673 0.518995

6 0.492572 0.507926 0.522415

7 0.496126 0.511658 0.526297

8 0.500037 0.515733 0.530509

9 0.504209 0.520056 0.534956

10 0.508571 0.524556 0.539570

11 0.513068 0.529181 0.544296

12 0.517658 0.533888 0.549095

Table 3

A comparison of the results of the proposed models

ad (n	;TC	)

Model A Model A1 Model B

�a (13, 17177.92) (13, 17177.20) (12, 17103.30)

0 (13, 17198.94) (13, 17198.20) (12, 17120.28)

þa (13, 17219.14) (13, 17218.30) (12, 17136.28)

Table 4

Effects of amelioration on the total inventory cost

a Total cost (TC	)

Model A Model A1 Model B

0.0 17198.94 17198.20 17120.28

0.01 17177.92 17177.20 17103.30

17178.02# 17103.83#

0.03 17132.55 17131.94 17066.02

17136.37# 17071.06#

0.05 17078.45 17077.98 17020.16

17095.00# 17038.52#
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Example 2. We take r ¼ 0:1, i1 ¼ 0:06, i2 ¼ 0:08 and keep the other parameter values same as in Example
1. In this example, we have for ameliorating items, R1 � a > 0, R2 � a < 0 when a ¼ 0:03 and R1 � a < 0,
R2 � a < 0 when a ¼ 0:05. In both the situations, the optimality and uniqueness of the solution have been
verified. For deteriorating items, the total costs and the number of replenishments are found in increasing

trend with a whereas for ameliorating items those are in decreasing trend. The results are shown in Tables 5
and 6.

It is clear from the numerical study (Tables 4 and 6) that failure to include an ameliorating factor in
inventory may result in significant additional cost.



Table 5

Impacts of a on the optimal results for deteriorating inventory (ad ¼ a)

a (n	;TC	)

Model A Model A1 Model B

0.0 (12, 21597.98) (12, 21597.94) (12, 21539.80)

0.01 (13, 21636.96) (13, 21636.91) (12, 21573.32)

0.03 (13, 21706.24) (13, 21706.17) (12, 21635.26)

0.05 (14, 21768.43) (14, 21768.36) (13, 21688.98)

Table 6

Impacts of a on the optimal results for ameliorating inventory (ad ¼ �a)

a (n	;TC	)

Model A Model A1 Model B

0.0 (12, 21597.98) (12, 21597.94) (12, 21539.80)

0.01 (12, 21556.17) (12, 21556.13) (11, 21501.93)

21556.94# 21503.03#

0.03 (11, 21463.49) (11, 21463.47) (11, 21418.05)

21475.36# 21428.43#

0.05 (10, 21353.81) (10, 21353.80) (10, 21315.88)

21394.43# 21354.40#
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5. Conclusion

In reality the value or utility of goods, while in stock, may decrease (in case of deteriorating items) or

increase (in case of ameliorating items) over time. In this paper, inventory models have been developed

considering both the opposite physical characteristics (amelioration and deterioration) of stored items. The

study has been conducted under the Discounted Cash Flow (DCF) approach as it permits a proper rec-

ognition of the financial implication of the opportunity cost in inventory analysis. As the goal of the paper

is to incorporate the amelioration and deterioration phenomenon together into an inventory model over a
finite planning horizon, we have restricted our study in the simplest inventory ordering policy viz. the equal

order-interval policy. Of course, better results could be obtained upon relaxation of this restriction.
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