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Accounting for idle capacity cost in the scheduling of economic lot sizes

B. C. GIRIy and I. MOONz*

This paper considers the issue of idle capacity cost in determining economic lot
sizes. Two mathematical models are developed for the economic lot scheduling
problem (ELSP). In Model I, the ELSP with fixed production rates is formulated
under both the common cycle and time-varying lot sizes approaches. The asso-
ciated constrained optimization problem in the time-varying lot sizes approach is
reduced to solving a parametric quadratic programming problem. In Model II,
the modified ELSP (or MELSP) is treated with variable production rates and unit
production cost of each item as a function of its production rate. An upper bound
and a lower bound on the MELSP are derived. Lot-sizing decisions of the pro-
posed models are obtained and their dependencies on the idle capacity cost are
examined with numerical examples.

1. Introduction

The classical economic lot scheduling problem (ELSP) assumes that a single
facility is dedicated to the production of a family of products with the restriction
that it can be used to produce only one product at a time. The demand and produc-
tion rates of the products are deterministic and uniform. The objective is to deter-
mine a feasible production schedule which is repeatable over an infinite planning
horizon so that the demands are met without stockouts in each cycle and the long-
run average inventory cost is minimized.

Most of the studies in the ELSP literature assume that the production rates of the
products are predetermined and inflexible. In order to reduce the effective produc-
tion rates in the facility, Sheldon (1987) employed an idle time insertion strategy that
divides the production runs into two parts. In the first part idle times are inserted to
produce at the demand rate and in the second part no idle time is inserted to produce
at the nominal rate. Inman and Jones (1989) studied the ELSP by slowing down the
production rate uniformly over a run by inserting small and identical idle times
between production of each consecutive unit. Silver (1990) showed that under certain
circumstances significant cost savings can be achieved by slowing down the produc-
tion rate of just one key item in the family. He used a common cycle interval to all
the items to analyse the rigid case in which production rates cannot be changed
during the production runs. Moon et al. (1991) generalized Silver’s (1990) work by
analysing the flexible case in which the production rates are controllable during the
production run. They showed that the optimal production schedule would be the one
in which the products are to be produced first to meet the demands and then to
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produce at the maximum rates, that is, larger idle time would be allowed initially and
then none at all. Gallego (1993) reconsidered both the rigid and flexible cases but did
not adopt the common cycle approach like Silver (1990). In the rigid case, he showed
that it is optimal to reduce the rate of at most one item while minimizing a sharp
lower bound on the average cost and the results of this lower bound solution can be
utilized to obtain an optimal or near-optimal cyclic schedule in the time-varying lot
sizes heuristic. In the flexible case, he suggested a cyclic schedule in which additional
savings are possible by first producing at the demand rate and then resuming at the
nominal rate.

The primary aim of all the above research is to slow down the production rates
by inserting the idle time especially when the utilization of the facility is not high
because reduced production rate can decrease accumulation of inventories which
results in a decrease in inventory holding cost. But these works did ignore the
likely effects of increased unit production costs resulting from the reduced produc-
tion rates on the lot scheduling decision. Khouja (1997) provided an extension to the
ELSP in which the production rates are treated as decision variables and the average
unit cost of each item as a function of its production rate. He studied the problem
using the common cycle approach. Moon and Christy (1998) extended the work of
Silver (1990) by considering upper and lower limits of production rates and mold
cost. Later, Khouja (1999) analysed an ELSP in which the production rates are
controllable prior to the start of the production run and quality levels deteriorate
with increased production rates and lot sizes.

In a single-machine multi-product situation, if adequate capacity is available to
produce all the products (i.e. any left over or idle capacity is not needed to satisfy any
other demand), then the cost of idle equipment and/or labour needs to be accounted
for in the total cost of the ELSP in order to have an accurate analysis. The issue of
idle capacity on lot-sizing decisions was studied by Eiamkanchanalai and Banerjee
(1999) who developed a model for simultaneously determining the optimal run
length and production rate for a single-product case. They assumed that the total
idle capacity cost is linear in the idle time. When the capacity is relatively tight, they
defined the cost of idle capacity as negative (benefit); otherwise, the cost is positive
(penalty). In the present article, we extend the work of Eiamkanchanalai and
Banerjee (1999) to a single-machine multi-product case and develop two mathema-
tical models under two different scenarios. In Model I, the production rates of the
products are assumed to be fixed and the lot scheduling problem is studied under
both the common cycle and time-varying lot sizes approaches. The constrained
minimization problem in the time-varying lot sizes approach is reduced to solving
a parametric quadratic programming problem. Model II is concerned with the mod-
ified ELSP (or MELSP) in which the production rates are treated as decision vari-
ables and the unit production cost of each item as a function of its production rate.
An upper bound and a lower bound on the MELSP are derived. Lot-sizing decisions
of the proposed models are obtained and their dependencies on the idle capacity cost
are examined with numerical examples.

2. Basic assumptions and notation

The following assumptions are made in developing the models:

. Several items compete for the use of a single machine and only one item can
be produced at a time.
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. Demands are deterministic and uniform.

. Production rates are fixed in Model I and flexible in Model II.

. Set-up costs and times are product dependent but independent of the
production sequence.

. Shortages are not permitted.

. At time zero, there is just enough on-hand inventory of each product to satisfy

. demand until the first scheduled production of the product.

The following notation is used throughout the paper:

i: item index, i ¼ 1, 2, . . . ,m
Di: constant demand rate of item i
P1i: (fixed) production rate of item i in Model I
P2i: (flexible) production rate of item i in Model II

T1i, T2i: cycle lengths for item i
T1, T2: fundamental cycle lengths

Ai: fixed set-up cost for item i
si: known set-up time for item i
ti: production run time for item i
r: inventory holding cost rate

Ci: unit production cost of item i in Model I
Ci (P2i): unit production cost (which is a function of the production rate P2i) of

item i in Model II
P0
2i: production rate that minimizes the unit production cost for item i in

Model II
Cd: cost of idle or left-over capacity per unit idle time
Ui: upper bound of the production rate P2i

TC2i: total cost per unit time for item i in Model II
TC1, TC2: total costs per unit time for all items.

3. Model I: The ELSP with fixed production rates and idle capacity cost

We will develop the model incorporating the idle capacity cost but ignoring the
production cost because every production schedule will have the same production
cost over the infinite time horizon, namely the sum of CiDi over all i.

3.1. Common cycle approach
In this approach, the cycle times of all the products are assumed to be equal. The

products are produced once in each cycle and between the times of production of any
of the products every other product is produced (Hanssmann 1962). As the products
are produced only once, the production sequence is not important. Figure 1 shows a
common cycle for three products, assuming that the items are produced in the order
1-2-3.

The cost function of the ELSP can be obtained as

TC1ðT1Þ ¼
Xm
i¼1

Ai

T1

þ
1

2
rCiDi 1�

Di

P1i

� �
T1

� �
þ Cd 1�

Xm
i¼1

si
T1

þ
Di

P1i

� �" #
: ð1Þ

Since 1�
Pm

i¼1ðDi=P1iÞ
� �

is the proportion of time available for machine set-ups andPm
i¼1ðsi=T1Þ

� �
is the proportion of time actually needed for set-ups of all the pro-

ducts, therefore 1�
Pm

i¼1 si=Ti þDi=P1ið Þ
� �

is the proportion of time the machine
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remains idle. Let �1ið¼ ðDi=P1iÞÞ represent the machine utilization or load due to the
product i. Then obviously �1 ¼

Pm
i¼1 �1i < 1. The necessary condition for the mini-

mum of TC1ðT1Þ gives

T1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðAi � CdsiÞ

1
2
r
Pm

i¼1 CiDi 1� �1ið Þ

s
:

This implies that Cd <
Pm

i¼1 Ai=
Pm

i¼1 si for the existence of a real optimal point T1

and in that case any local minimum is indeed the global minimum as TC1ðT1Þ is
convex when Cd <

Pm
i¼1 Ai=

Pm
i¼1 si. We will consider T1 as the optimal cycle length

provided it satisfies the following feasibility constraint:

T1 �
Xm
i¼1

si þ
DiT1

P1i

� �
ð2Þ

that is, T1 �
Pm

i¼1 si=� ¼ ðT1Þmin (say), where � ¼ 1� �1: Hence the optimal cycle
length would be maxfT1, ðT1Þming provided a real T1 exists for optimality.

3.2. Time-varying lot-sizes approach
In the time-varying lot-sizes approach, some items may be produced several times

during a cycle and their production runs within a cycle may be different giving
different lot sizes. The problem requires us to specify the production sequence first
and then to determine the production times, idle times and the cycle time of the
sequenced products. Dobson (1987) showed that given a production sequence f ,
there always exists a feasible solution of the problem if and only if �1 < 1. To
obtain the production sequence f , we use the bin-packing heuristic which will be
outlined in the next section.

Let n be the number of positions in the production sequence f ¼ ð f 1, f 2, . . . , f n
Þ

where f j ¼ i, if the item i is produced in position j. Let Ji ¼ f j : f j ¼ ig, production
time vector t ¼ ðt1, t2, . . . , tnÞ and idle time vector w ¼ ðw1,w2, . . . ,wn

Þ: We use the
subscripts to refer to the data related to the ith item and superscripts to the data
related to the item produced at the jth position in the sequence. Thus

IIIInnnnvvvveeeennnnttttoooorrrryyyy lllleeeevvvveeeellll 
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common cycle 

Setup time

Production time

Idle time

2 

1 3 1

Figure 1. Production schedule for three items in the common cycle approach.
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Aj
¼ Af j ,D

j
¼ Df j , etc. Let F be the set of all possible finite sequences of the

products and Lk denote the positions in a given sequence from k up to but not
including the position in the sequence where the product f k is produced again.
With these definitions and notation, the ELSP can be formulated as given below:

inf f2FMint�0,w�0,T1>0

1

T1

Xn
j¼1

Aj
þ

r

2

Xn
j¼1

Cj Pj
1

Dj
� 1

 !
Pj
1ðt

j
Þ
2
þ Cd

Xn
j¼1

w j

" #
ð3Þ

subject to
. sufficient production time for each product i to meet its demand over the cycleX

j�Ji

P1it
j
¼ DiT1, i ¼ 1, 2, . . . ,m ð4Þ

. sufficient production of product f k to meet its demand until the next time the
same product is produced again

X
j�Lk

t j þ s j þ w j
� �

¼
P k

1t
k

Dk
, k ¼ 1, 2, . . . , n ð5Þ

. fundamental cycle time

Xn
j¼1

t j þ s j þ w j
� �

¼ T1 ð6Þ

. non-negativity restrictions on the variables

t � 0,w � 0,T1 > 0:

Equations (4) are redundant, since if we substitute (6) into (4) we obtain

X
j�Ji

P j
1

Dj
� 1

 !
t j �

X
j=2Ji

t j ¼
Xn
j¼1

ðs j þ w j
Þ

which is the sum of (5) over k�Ji. We now define the vectors a ¼ ðAj
Þ
n
j¼1, s ¼ ðs jÞnj¼1.

Let w ¼ e0w and a ¼ e0a where e denotes the n-vector of ones. Let

bjk ¼
1, for k ¼ j, j +1,..., next( j)-1
0, otherwise




where nextð jÞ denotes the next position k in f such that f k ¼ f j.
Let B ¼ ðbjkÞ

n
j, k¼1: We define the diagonal n� n matrices E ¼ diagð�j1Þ,

H ¼ diagðrCjPj
1ð1� �j1Þ=�

j
1Þ: If A ¼ EB then the problem described in (3)�(6) can

be stated as

inf f2FMint�0,w�0,T1>0

1

T1

1

2
t0Htþ Cdwþ a

� �

subject to

t ¼ Aðsþ tþ wÞ

e0ðsþ tþ wÞ ¼ T1

t,w � 0,T1 > 0:

The constraints w � 0 and t ¼ Aðsþ tþ wÞ imply that
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t ¼ ðI � AÞ�1Aðsþ wÞ � 0

as ðI � AÞ�1
¼
P/

i¼0 A
i and all the entries of A are non-negative. So the constraints

t � 0 are redundant. Our problem thus reduces to determine T1 which minimizes

ZðT1Þ ¼
1

T1

½zðT1Þ þ a�

where

zðT1Þ ¼ min
1

2
t0Ht

� �
þ Cdw

� �
ð7Þ

subject to

t ¼ Aðsþ tþ wÞ

e0ðsþ tþ wÞ ¼ T1

w � 0;T1 > 0:

Thus we are now left to solve the above parametric quadratic programming prob-
lem in which the parameter T1 appears in the problem linearly. Any pivotal-based
technique can be applied for this purpose. Zipkin (1991) applied a complementary
pivotal algorithm to solve such a problem. There is also commercial software,
e.g., LINDO (Schrage 1991), GINO (Liebman et al. 1986) and Optimization
Subroutine Library (OSL) IBM (1991) which can be applied to solve the problem.

3.3. Algorithm to find the production sequence f

Step 1. Determine the relative production frequencies xi from the lower bound
solution (to be discussed in the next section) by the following relation:

xi ¼
MaxifT

�
1ig

T�
1i

, i ¼ 1, 2, . . . ,m:

Step 2. Round off the relative production frequencies to power-of-two integers yi
where

yi ¼ 2p if xi �

�
1
p
2
2p,

p
22p

�
, p ¼ 0, 1, . . .

Roundy (1989) showed that the additional costs due to the conversion of the
real values of the production frequencies to power-of-two integers do not
exceed 6%.

Step 3. Using the frequencies yi, allocate the items in b bins where b ¼ max1�i�m yi,
with the aim of spreading them out as evenly as possible. While assigning the
items to bins, a variation of the longest processing time (LPT) rule can be
used in which the items are to be ordered lexicographically by ðyi, viÞ, vi being
the estimated processing time of item i. By minimizing the maximum height
of the bins, an efficient production sequence f can be determined.

Remarks: The above heuristic (which may be called the modified Dobson (1987)
heuristic) is not the only heuristic to find the production sequence f . Recently,
Moon et al. (2002) successfully implemented genetic algorithms (GAs) to find a
production sequence where they rounded the relative production frequencies to
nearest integers to use a genetic scheme.
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3.4. A lower bound on cost
A lower bound on the total cost of the problem can be found by considering the

products as if they are scheduled on m facilities rather than on a single one. This
leads to finding the individual cycle times, or equivalently, the economic lot sizes as
in the classical deterministic inventory problem. Since no method of solving for an
optimal feasible schedule exists, the purpose of developing such a model is to com-
pare the non-optimal feasible solutions obtained previously in sections 3.1. and 3.2.
with a lower bound on the total cost.

Problem LB

MinimizeT11,T12,...,T1m

Xm
i¼1

Ai

T1i

þ
1

2
rCiDi 1� �1ið ÞT1i


 �"

þ Cd 1�
Xm
i¼1

�1i þ
si
T1i

� �( )#
ð8Þ

subject to

Xm
i¼1

si
T1i

� 1� �1 ð9Þ

T1i � 0, 8i ¼ 1, 2, . . . ,m: ð10Þ

Proposition 1. There exists a unique optimal point for the lower bound model
provided Cd < Ai=si 8i ¼ 1, 2, . . . ,m.

Proof: The Hessian matrix of the associated objective function (8) is positive definite
when Cd < Ai=si 8i. The proof follows as the constraint set is convex in the T1i’s.

The optimal points of the lower bound model are, therefore, those points which
satisfy the Karush–Kuhn–Tucker (KKT) conditions

Ai �
1

2
rCiDið1� �1iÞT

2
1i þ ð�� CdÞsi ¼ 0, i ¼ 1, 2, . . . ,m ð11Þ

� 1� �1 �
Xm
i¼1

si
T1i

" #
¼ 0, ð12Þ

� � 0 complementary slackness with
Pm

i¼1ðsi=T1iÞ � 1� �1.
The above conditions are derived assuming that the T1i’s are non-trivial.

Equation (11) yields

T1i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � Cdsi þ �si
1
2
rCiDi 1� �1ið Þ

s
, i ¼ 1, 2, . . . ,m: ð13Þ

Proposition 2. There exists a unique value of � for the optimal T1i’s.

Proof: If the values of T1i ði ¼ 1, 2, . . . ,mÞ for � ¼ 0 in (13) satisfy the capacity
constraint (9), then they are optimal. Otherwise, if possible, let there exist two
values of �, say �1, �2 ð> 0Þ, which satisfy equations (11) and (12). If �1 > �2 then
we have from (13),

ðT1iÞ�1 > ðT1iÞ�2 8i ¼ 1, 2, . . . ,m: ð14Þ
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Since �1, �2 > 0, the capacity constraint is binding and hence

Xm
i¼1

si
ðT1iÞ�1

¼
Xm
i¼1

si
ðT1iÞ�2

¼ 1� �1:

This contradicts the relation (14). Hence, a unique value of � gives the optimal T1i’s.

We can, therefore, apply a simple line search technique on � to find the optimal

values of the T1i’s ði ¼ 1, 2, . . . ,mÞ that determine the minimum total cost per unit

time from (8).

4. Model II: The ELSP with variable production rates and idle capacity cost

In many real production situations, production capacity of the machine can be

changed easily within its designed limit. If the production rates are considered as

decision variables then the unit production cost of each item becomes a function of

its production rate. In this section, we consider the ELSP with variable production

rates and call it the modified ELSP or MELSP. We first solve the problem ignoring

the synchronization constraint which means that no two items can be produced at

the same time. The problem can be formulated as

Minimize TC2 ¼
Xm
i¼1

TC2i

¼
Xm
i¼1

Ai

T2i

þ
r

2
DiT2i 1� �2ið ÞCiðP2iÞ þDiCiðP2iÞ

� �

þ Cd 1�
Xm
i¼1

�2i þ
si
T2i

� �" #
, �2i ¼ Di=P2i ð15Þ

subject to the constraints

Xm
i¼1

�2i þ
si
T2i

� �
� 1 ð16Þ

Di � P2i � Ui, i ¼ 1, 2, . . . ,m ð17Þ

T2i � 0, i ¼ 1, 2, . . . ,m: ð18Þ

The assumption of P2i’s as decision variables makes it hard to prove the convexity

of the objective function (15). However, if ðP21,P22, . . . ,P2m;T21,T22, . . . ,T2mÞ is an

optimal solution to the optimization problem (15)�(18), then there must exist multi-

pliers �; �1, �2, . . . , �m; �1,�2, . . . ,�m; �1, �2, . . . , �m satisfying the following

Karush–Kuhn–Tucker (KKT) conditions:

�
Ai

T
2
2i

þ
r

2
Di 1� �2ið ÞCiðP2iÞ þ Cd

si

T
2
2i

" #
�

�si

T
2
2i

� �i ¼ 0, i ¼ 1, 2, . . . ,m ð19Þ
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r

2
T2i�

2
2iCiðP2iÞ þDiC

0
iðP2iÞ 1þ

r

2
T2i 1� �2ið Þ

n o
þ Cd

Di

P
2
2i

" #

�
�Di

P
2
2i

� �i þ �i ¼ 0, i ¼ 1, 2, . . . ,m ð20Þ

� 1�
Xm
i¼1

�2i þ
si

T2i

� �" #
¼ 0 ð21Þ

�i P2i �Di

� �
¼ 0, i ¼ 1, 2, . . . ,m ð22Þ

�i Ui � P2i

� �
¼ 0, i ¼ 1, 2, . . . ,m ð23Þ

�iT2i ¼ 0, i ¼ 1, 2, . . . ,m ð24Þ

where � � 0; �2i ¼ ðDi=P2iÞ, �i � 0, �i � 0, �i � 0, 8i ¼ 1, 2, . . . ,m.
If P2i ¼ Di8i ¼ 1, 2, . . . ,m then from (19) we get, Ai � Cdsi þ �si þ �iT

2
2i ¼ 0

which is impossible when Cd < Ai=si. Therefore, P2i > Di8i and this gives �i ¼ 0
from (22), for i ¼ 1, 2, . . . ,m. Moreover, for non-trivial T2i’s, equations (24) implies
that �i ¼ 0 8 i. Thus the KKT conditions (19)�(24) reduce to (25)�(28) as given
below:

Ai �
r

2
Di 1� �2ið ÞT

2
2iCiðP2iÞ þ ð�� CdÞsi ¼ 0 ð25Þ

r

2
T2iD

2
i CiðP2iÞ þDiP

2
2iC

0
iðP2iÞ 1þ

r

2
T2i 1� �2ið Þ

n o

þ ðCd � �ÞDi þ �iP
2
2i ¼ 0, i ¼ 1, 2, . . . ,m ð26Þ

� 1�
Xm
i¼1

�2i þ
si

T2i

� �" #
¼ 0 ð27Þ

�i Ui � P2i

� �
¼ 0, i ¼ 1, 2, . . . ,m

� � 0;�i � 0, 8i ¼ 1, 2, . . . ,m: ð28Þ

If P2i < Ui then from (28) �i ¼ 0 8 i and from (26) we have

r

2
T2iDiCiðP2iÞ þ P

2
2iC

0
iðP2iÞ 1þ

r

2
T2i 1� �2ið Þ

n o
þ Cd � � ¼ 0, i ¼ 1, 2, . . . ,m:

Thus for � � 0, we have to determine the optimal point ðP21,P22, . . . ,
P2m;T21,T22, . . . ,T2mÞ satisfying the equations

Ai �
r

2
Di 1� �2ið ÞT

2
2iCiðP2iÞ þ ð�� CdÞsi ¼ 0, i ¼ 1, 2, :::,m

r

2
T2iDiCiðP2iÞ þ P

2
2iC

0
iðP2iÞ 1þ

r

2
T2i 1� �2ið Þ

n o
þ Cd � � ¼ 0, i ¼ 1, 2, . . . ,m

� 1�
Xm
i¼1

�2i þ
si

T2i

� �" #
¼ 0:
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Similarly, if P2i ¼ Ui, i ¼ 1, 2, . . . ,m, then for � � 0, the T2i’s can be obtained
from the following system of equations

Ai �
r

2
Di 1�

Di

Ui

� �
T

2
2iCiðP2iÞ þ ð�� CdÞsi ¼ 0, i ¼ 1, 2, . . . ,m

� 1�
Xm
i¼1

Di

Ui

þ
si

T2i

� �" #
¼ 0, i ¼ 1, 2, . . . ,m:

4.1. An upper bound on the MELSP
The total cost in the common cycle solution is actually an upper bound on

the MELSP. In the common cycle approach, the objective function which is to be
minimized is given by

MinTC2ðT2;P21,P22, . . . ,P2mÞ ¼
Xm
i¼1

Ai

T2

þ
r

2
T2Di 1� �2ið ÞCiðP2iÞ þDiCiðP2iÞ

� �

þ Cd 1�
Xm
i¼1

�2i þ
si
T2

� �" #
ð29Þ

subject to

Di � P2i � Ui, i ¼ 1, 2, . . . ,m ð30Þ

T2 � 0: ð31Þ

For non-trivial T2, the KKT conditions for the minimum of TC2 give

Xm
i¼1

Ai �
r

2
T2
2

Xm
i¼1

Di 1� �2ið ÞCiðP2iÞ � Cd

Xm
i¼1

si ¼ 0 ð32Þ

r

2
T2 DiCiðP2iÞ þ ðP2i �DiÞP2iC

0
iðP2iÞ

� �
þ P2

2iC
0
iðP2iÞ þ Cd þ �i

P2
2i

Di

¼ 0 ð33Þ

where �i ð� 0Þ are the Lagrange multipliers associated with the constraints
P2i � Ui 8 i. Arguing as before it can be shown that Di < P2i � Ui 8 i ¼ 1, 2, . . . ,m.
If equations (32) and (33) provide a solution ðT�

2 ;P
�
21,P

�
22, . . . ,P

�
2mÞ then T�

2 can be
taken as the optimal cycle length if

T�
2 �

Pm
i¼1 si

1�
Pm

i¼1ðDi=P
�
2iÞ

� ðT2Þmin (say):

If the cost function TC2ðT2; P21,P22, . . . ,P2mÞ is convex then the optimal cycle length
would be equal to maxfT�

2 , ðT2Þming.

5. Numerical examples

Example 1. For numerical study we consider a five-item batch production system.
The data for the items taken from Banerjee et al. (1996) are shown in table 1.
The common cycle solutions of the ELSP for different values of the idle capacity
cost Cd are presented in table 2 and the lower bounds of the corresponding total
costs in table 3. It is found that for the idle capacity cost structure given in table 2 the
left-over capacity in the common cycle approach is about 4%.
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Following the algorithm outlined in section 3.3, the production sequence of the
model can be determined as f=f3, 2, 1, 5, 3, 2, 1, 4g. To find the solution of the para-
metric quadratic programming problem (7), we use the commercial software package
LINDO. The objective function of the quadratic programming problem is not
directly input to LINDO as it requires all rows to be linear. The input procedure
in LINDO is LP based and requires an objective function simply to identify the order
of the variables which in turn determines the correspondence between variables and
rows, see Schrage (1991) for the programming technique in detail. We take
Cd ¼ 10 000 and search for the minimum value of zðT1Þ starting from
T1 ¼ ðT1Þmin þ �. After a few iterations we find the following required results:

t = (0.006 28, 0.005 76, 0.003 01, 0.008 02, 0.005 47, 0.005 35, 0.002 89, 0.004 38) year
w = (0, 0, 0, 0, 0, 0, 0, 0.002 26) year
T1 = 0.049 98 year or 18.24 days
ZðT1Þ = $241 076/year.

Applying the same procedure for Cd = 0, 1000, 5000 and 50 000, we obtain the time-
varying lot-sizes solutions of the ELSP as shown in table 4. In each case we observe
that the idle time is only allowed at the end of the production of the last item in the
sequence and the idle capacity proportion is nearly 0.002. So the capacity utilization

Cd T11 T12 T13 T14 T15 Lower bound
($/year) (year) (year) (year) (year) (year) ($/year)

0 0.027 59 0.023 23 0.028 76 0.046 69 0.044 03 238 955
1000 0.027 58 0.023 22 0.028 74 0.046 68 0.044 01 239 001
5000 0.027 51 0.023 17 0.028 68 0.046 60 0.043 91 239 185

10 000 0.027 43 0.023 10 0.028 60 0.046 51 0.043 78 239 413
50 000 0.026 79 0.022 56 0.027 93 0.045 74 0.042 76 241 172

Table 3. Lower bound solutions for different values of Cd.

Product Di P1i si Ai Ci

i (units/year) (units/year) (hours) ($) ($)

1 18 050 153 120 4 400 275
2 34 026 153 120 6 600 350
3 35 980 153 120 10 1000 366
4 13 404 153 120 8 800 250
5 24 576 153 120 12 1200 250

Table 1. Data for the numerical example 1 (r ¼ 0.24).

Cd T�
1 TC1

($/year) (year) ($/year)

0 0.032 31 247 604
1000 0.032 29 247 648
5000 0.032 22 247 822

10 000 0.032 14 248 039
50 000 0.031 43 249 704

Table 2. Common cycle solutions for different values of Cd.
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in the time-varying lot-sizes approach is higher than the capacity utilization in the
common cycle approach. The annual average total cost increases with the idle capa-
city cost in both the approaches. But the annual average total cost in the time-
varying lot-sizes approach always remains less than that of the common cycle
approach, see tables 2 and 4. A comparison of the results given in tables 2, 3 and
4 indicates that the annual total cost in the common cycle approach is above the
lower bound by more than 3% whereas in the time-varying lot-sizes approach, it is
only less than 0.7%.

Recall that in Model II the production rates are taken as decision variables and
the unit production cost of the individual item as a function of its production rate.
To obtain the numerical solution of the MELSP we consider the following unit
production cost function which was suggested by Khouja (1997).

CiðP2iÞ ¼ ri þ
gi
P2i

þ biP2i, 8i ¼ 1, 2, . . . , 5

ri, gi and bi all being real numbers to be chosen to provide the best fit for the
estimated unit production cost function. Explanations of the terms forming the
above unit production cost function are given in Khouja (1997). Each production
cost function CiðP2iÞ has a unique minimum at P0

2i ¼
ffiffiffiffiffiffiffiffiffiffi
gi=bi

p
. The values of the

parameters involved in CiðP2iÞ are given in table 5. These parameters are constructed
so that the nominal production rates are P0

2i ¼ P1i, 8 i ¼ 1, 2, . . . , 5, the minimum
unit cost is the same as Ci, i ¼ 1, 2, . . . , 5 and a 20% increase in Po

2i results in a 5%
increase in unit production cost Ci. We also assume that Ui = 155 000 units/year,
for i ¼ 1, 2, . . . , 5.

Comparing the results given in tables 2 and 6 we see that consideration of the
flexible production rates in the ELSP does not improve the common cycle solution
and the lower bound significantly. So for the current data set the time-varying lot

Cd T1 Z(T1)
($/year) (year) ($/year)

0 0.050 80 240 623
1000 0.050 68 240 688
5000 0.050 32 240 850

10 000 0.049 98 241 076
50 000 0.048 78 242 812

Table 4. Time-varying lot-sizes solution for different values of Cd.

Product i gi bi ri

1 (15 312)2� 0.2694 0.002 694 �550
2 (15 312)2� 0.3429 0.003 429 �700
3 (15 312)2� 0.3585 0.003 585 �732
4 (15 312)2� 0.2449 0.002 449 �500
5 (15 312)2� 0.2449 0.002 449 �500

Table 5. Parameter values of the unit production cost function.
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sizes solution of the ELSP can be regarded a good approximate solution to the

MELSP even though we are not able to find the time-varying lot sizes solution of

the MELSP. To study further the impact of left-over capacity on the ELSP and

MELSP we consider the following 10-item example which is based on Bomberger’s

(1966) problem.

Model I Model II

TC1 Z(T1) LB1 TC2 LB2

Cd ($/day) ($/day) ($/day) ($/day) ($/day)

0 847.75 767.65 760.40 847.59* 760.30*
(0.574 48) (0.640 12) (0.573 25) (0.624 46)

50 876.41 798.20 791.59 876.08* 791.33*
(0.571 96) (0.636 55) (0.568 97) (0.619 02)

150 933.34 859.13 853.31 932.19* 852.27*
(0.566 62) (0.626 90) (0.559 72) (0.605 22)

250 989.72 919.54 913.70 986.96* 911.13*
(0.560 85) (0.609 06) (0.549 28) (0.582 373)

350 1047.49 979.55 970.28 1039.98* 965.01*
(0.554 58) (0.506 57) (0.536 67) (0.472 10)

*indicates the total cost per day excluding the production cost.

Table 8. Computaional results of example 2. Figures in parentheses indicate the proportion
of idle capacity. LB1¼ a lower bound on the ELSP, LB2¼ a lower bound on the MELSP.

Product Di P1i si Ai Ci

i (units/day) (units/day) (hour) ($) ($)

1 100 30 000 1 20 0.0065
2 100 8000 1 80 0.1775
3 200 9500 2 120 0.1275
4 400 7500 1 80 0.1000
5 20 2000 4 440 2.7850
6 20 6000 2 180 0.2675
7 6 2400 8 120 1.5000
8 85 1300 4 720 5.9000
9 85 2000 6 800 0.9000
10 100 15 000 1 20 0.0400

Table 7. Data for the numerical example 2 (r ¼ 0.2).

Cd

Common cycle solution
Lower bound

($/year) T2(year) UB# ($/year) LB# ($/year)

0 0.032 31 247 590.76 238 940.87
1000 0.032 29 247 634.16 238 986.67
5000 0.032 22 247 806.25 239 169.04

10 000 0.032 14 248 021.05 239 395.11
50 000 0.031 43 249 657.04 241 126.00

Table 6. Upper and lower bounds of the MELSP UB#/LB#: Upper bound/lower bound
excluding the production cost.
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Example 2. The data for a 10-item problem are shown in table 7 and the computa-
tional results in table 8. Similar to example 1, to estimate the values of the param-
eters involved in the unit production cost function in Model II we assume that a 20%
increase in production rate results in a 5% increase in the unit production cost.

From the numerical results of example 2 we observe that

(i) the optimal production rates which minimize the average total cost in
Model II are slightly reduced from the fixed production rates of Model I;

(ii) the impact of idle capacity cost on the lot scheduling decision is prominent
for higher values of Cd ;

(iii) the improvements of the upper and lower bounds on the MELSP in
comparison to those on the ELSP are low; and

(iv) the total cost per day in the common cycle approach varies over the lower
bound by 8�11% whereas this variation in the time-varying lot-sizes
approach is less than 1%.

6. Conclusion

Capacity utilization is an important factor in today’s competitive manufacturing
environment. A manufacturing setting with low-capacity utilization may look better
equipped to handle demand variability than a facility with high capacity utilization.
The analysis of such a manufacturing system would be incomplete if the cost of idle
capacity (idle equipment and/or labour) is significant and is not included in the
model. In this paper we have studied the economic lot scheduling problem with
both fixed and variable production rates under the framework of an idle capacity
cost structure. We have assumed that the idle capacity cost is linearly related to the
left-over capacity, though in practice it is hard to get an exact relationship. The
ELSP with fixed production rates is formulated in Model I under both the
common cycle and the time-varying lot-sizes approaches. The constrained minimiza-
tion problem in the time-varying lot-sizes approach is solved by reducing it to a
parametric quadratic programming problem. The modified ELSP (or MELSP) with
variable production rates is formulated in Model II. The complexities in solving non-
linear programming problem in the time-varying lot-sizes approach restrict us to
deal the MELSP under the common cycle approach only. It is evident from the
numerical study that the cost of left-over capacity (idle equipment and/or labour)
has a significant impact on the economic lot scheduling decision.
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