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Economic lot scheduling problem with imperfect
production processes and setup times
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Deteriorating production processes are common in reality. Although every production process starts in an ‘in-control’
state to produce items of acceptable quality, it may shift to an ‘out-of-control’ state, owing to ageing, at any random time
and produce defective items. In the present article, we study the Economic Lot Scheduling Problem (ELSP) with
imperfect production processes having significant changeovers between the products. The mathematical models are
developed for the ELSP using both the common cycle approach and the time-varying lot sizes approach, taking into
account the effects of imperfect quality and process restoration. Numerical examples are cited to illustrate the solution
procedures and to compare the performances of the solution methodologies adopted to solve the ELSP.
Journal of the Operational Research Society (2002) 53, 620–629. doi:10.1057/palgrave.jors.2601350
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Introduction

The Economic Lot Scheduling Problem (ELSP) is the

problem of finding the production sequence, production

times and idle times of several products in a single facility

(machine) on a repetitive basis so that the demands are made

without stockouts or backorders and average inventory

holding and setup costs are minimized. The problem is

NP hard1,2 as it requires to satisfy simultaneously the

production capacity constraint and synchronization

constraint (only one product can be produced at a time).

Since the products must be made on the same facility,

production of each product would be in lots or batches.

The issue of batching arises because the system usually

incurs a setup cost and/or a setup time when the machine

switches from one product to another. Setup cost is the cost

of changing over production equipment among families and

within families, the cost due to cleaning or to scrap losses

when machine settings are adjusted for the next product.

Setup time is downtime during which the machine can not

produce, which in turn implies a need to carry more

inventory. The setup cost and setup time depend only on

the item going into production.

The ELSP has been studied by researchers extensively

over the past 40 years by assuming typically that the

production and demand rates of each item are known to

be product-dependent constants and setup cost and setup

times are known to be product-dependent but sequence-

independent constants. To solve the ELSP, researchers have

followed so far one of the following two approaches:3

(i) Analytic approaches that achieve the optimum of a

restricted version of the original problem. For example,

Common Cycle (CC) approach4 which restricts all the

products’ cycle times to equal length. The main advan-

tage of this approach is that it always provides a feasible

schedule. Jones and Inman5 provided a detailed analysis

of conditions under which the CC-approach provides

optimal or near-optimal solutions.

(ii) Heuristic approaches that achieve good solutions for

the original problem. These approaches have been

found to be more effective in determining the optimal

solution than analytic approaches. Two well-known

approaches for heuristic algorithm are the Basic

Period (BP) approach6 and the time-varying lot sizes

approach.7–9 The BP approach requires every item to be

produced at equally spaced intervals of time that are

integer multiples of a basic time period. Under this

approach, it is NP hard to find a feasible schedule, given

the number of production runs per cycle for each item.

Time-varying lot sizes approach allows different lot

sizes for any given products during a cyclic schedule.

It explicitly handles the difficulties caused by setup

times and always gives a feasible schedule.

Literature review

A comprehensive review of early ELSP literature up to 1976

can be found in the well-cited paper by Elmaghraby.3 Since

*Correspondence: I Moon, Department of Industrial Engineering, Pusan
National University, Pusan 609-735, South Korea.
E-mail: ikmoon@pusan.ac.kr



then numerous research articles have been published in

order to include new approaches and extensions to this

problem. Delporte and Thomas,7 Dobson8 and Roundy9

contributed to the time-varying lot sizes approach which

was introduced originally by Maxwell.10 Matthew11

proposed another approach which does not require strict

regularity of cycle lengths. Zipkin12 introduced an approach

in which some items may be produced several times during

a cycle and the different runs of an item can differ in size.

Gallego and Roundy13 extended the time-varying lot sizes

approach to the ELSP which allows backorders. Dobson14

extended his early work8 by allowing the setup times to be

sequence dependent. Gallego and Shaw2 showed that the

ELSP is strongly NP hard under the time-varying lot sizes

approach with or without the Zero Switch Rule (ZSR)

restriction, giving theoretical justification to the develop-

ment of heuristics. Allen15 modified the ELSP to allow

production rates to be decision variables. He developed a

graphical method to find the production rates and cycle

times for a two product problem. Silver,16 Moon et al,17

Gallego,18 Moon and Christy19 and Khouja20 showed that

production rate reduction is more profitable for under-

utilized facilities. Khouja21 provided a similar extension

for systems with high utilization. Gallego and Moon22

examined a multiple product factory that employs a cyclic

schedule to minimize holding and setup costs. When setup

times are reduced, at the expense of setup costs, by

externalizing internal setup operations, they showed that

dramatic savings are possible for high utilized facilities.

Gallego and Moon23 developed an ELSP with the assump-

tion that setup times can be reduced by a one-time invest-

ment. Hwang et al24 and Moon25 further showed that both

setup reduction and quality improvement can be achieved

through investment. Khouja et al26 used genetic algorithms

(GAs) for solving the ELSP which is formulated using the

BP approach. Moon et al27 developed a hybrid GA based

on the time-varying lot sizes approach to solve the

ELSP. The stabilization period (during which yield rates

gradually increase until they reach the target rates) concept

to the ELSP was introduced by Moon et al.28 For a more

recent review of the ELSP we refer interested readers to

Silver et al.29

A majority of research efforts assume that the output of

the production facility is of perfect quality, besides the

standard assumptions of the ELSP such as constant

demand and production rates, no shortages and infinite

time horizon. However, there are many production processes

where the production facility starts in the ‘in-control’ state

producing items with high or perfect quality but the facility

may deteriorate with time and shift at a random time to an

‘out-of-control’ state and begin to produce non-conforming

items. Many authors30–34 extended the classical Economic

Production Quantity (EPQ) model considering the effect of

imperfect production processes. However, recently Ben-

Daya and Hariga35 studied the effect of imperfect produc-

tion processes on the ELSP. They developed mathematical

models for the ELSP taking into account the effect of

imperfect quality and process inspection during the produc-

tion run so that the shift to an ‘out-of-control’ state can be

detected and restoration can be made earlier. In developing

the models, they did ignore the setup times for the products.

If there is a significant time required to setup the machine

then Ben-Daya and Hariga’s35 analysis is incomplete, for the

frequency of setup may impose time requirements which

would exceed the time available. If we assume that the

demand and production rates of item i are, respectively, di

and pi and the common cycle length is T, then (17 r)T is

the time available for machine setups, where r ¼
P

i

ri ¼
P

iðdi=piÞ: If the setup time for product i is assumed

to be si, then
P

i si time must be devoted to change over.

Therefore, the cycle length must satisfy the inequality:

T 5
P

si

1 � r

Ben-Daya and Hariga35 applied the CC-approach to find the

solution of the ELSP. Though the CC-approach, a simpler

version of the ELSP, always finds a feasible schedule, it

restricts the cycle times of all items to be of equal length

and provides solutions far from lower bound in some

situations.4,5,36

The purpose of this research is two fold: (i) to re-

investigate the problem of Ben-Daya and Hariga35 under

the CC-approach with the restriction on the cycle length

stated above; and (ii) to formulate and study the problem

using the time-varying lot sizes approach proposed by

Dobson.8 The organization of the paper is as follows:

assumptions and notation are presented in the next section.

The Imperfect Process Model (IPM) is developed first using

the CC-approach in the subsequent section where we

assume that the process may shift from an ‘in-control’

state to the ‘out-of-control’ state while producing a lot.

But at the end of each production run the process is restored

back to the ‘in-control’ state. This could be due to main-

tenance measures which are part of the setup of the

production process. So we assume that the setup cost of

production includes the cost of restoring the machine to the

‘good’ state. The CC-approach is also applied to deal with

imperfect process with inspection and restoration model

(IPMWIR) where the process is inspected at regular inter-

vals of time during the production of each product and if the

system is found to be ‘out-of-control’, necessary actions are

taken to restore it to the ‘in-control’ state. In the following

sections, we formulate and solve both the models (IPM and

IPMWIR) using the time-varying lot sizes approach. Then,

numerical illustrations and a comparative study based on

the outcomes of the CC-approach and the time-varying lot

sizes approach are performed. The concluding remarks

together with future research directions are given in the

last section.
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Basic assumptions and notation

The ELSP is formulated with the following basic

assumptions:

(i) Multiple items compete for the use of a single facility.

(ii) Demand rates, production rates, setup costs, holding

costs, process inspection and restoration costs for all

items are known constants. Setup times are indepen-

dent of the production sequence.

(iii) No backlogging of demand is permitted.

(iv) Production capacity is sufficient to meet the total

demand.

(v) For each product, the production process starts in the

‘in-control’ state to produce items of acceptable quality.

The process shifts to the ‘out-of-control’ state at any

random time and starts producing a constant fraction of

non-conforming items.

(vi) The time to shift (from ‘in-control’ state to ‘out-of-

control’) distribution is exponential with mean yi for

item i.

The following notation is used in developing the models:

i¼ item index, i¼ 1, 2, . . . , m

pi¼ constant production rates, i¼ 1, 2, . . . , m

di¼ constant demand rates (di < pi), i¼ 1, 2, . . . , m

ri¼ di/pi, i¼ 1, 2, . . . , m

hi¼ known holding costs, i¼ 1, 2, . . . , m

Ai¼ known setup costs, i¼ 1, 2, . . . , m

si¼ known setup times, i¼ 1, 2, . . . , m

T¼ cycle length

ai¼ constant fraction of non-conforming items,

i¼ 1, 2, . . . , m

ti¼ length of the production run for item i, i¼ 1, 2, . . . , m

ui¼ constant cost incurred by producing a defective item i,

i¼ 1, 2, . . . , m

vi¼ known inspection cost while the facility is producing

item i, i¼ 1, 2, . . . , m

Imperfect Process Model (IPM) under CC-approach

In this section, we assume that once a shift occurs the

process stays in the ‘out-of-control’ state until the setup of

the next production and the items produced are of poor

quality. Let t be the elapsed time for which the process

remains in the ‘in-control’ state before a shift occurs. Then

the expected number of non-conforming items produced

while processing the ith product is given by

EðNiÞ ¼

ðti

0

aipiðti � tÞ
1

yi

e�t=yi dt

Integrating and using the approximation

e�ti=yi � 1 �
ti

yi

þ
1

2

ti

yi

� �2

by McClaurin series when yi � ti 8 i we obtain,

EðNiÞ ¼
aipit

2
i

2yi

where ti ¼
diTi

pi

:

Therefore, the expected quality related cost per unit time

due to the production of non-conforming items is given by

EðQCÞ ¼
Xm

i¼1

ui

Ti

EðNiÞ ¼
Xm

i¼1

uiaid
2
i Ti

2piyi

:

The expected total cost (which is the sum of the setup costs,

holding costs and quality-related costs) per unit time is

given by

ETC ¼
Xm

i¼1

Ai

Ti

þ ðHi þ QiÞTi

� �
ð1Þ

where Hi ¼
1
2
hidið1�riÞ; Qi ¼uiaid

2
i =2piyi and Ti ¼piti=di;

i¼ 1, 2, . . . , m.

In the CC-approach, we have T1¼ T2¼ 	 	 	 ¼ Tm ¼ T

(say). So the above expression for the expected total cost

can be written as

ETC1;C ¼
A

T
þ ðH þ QÞT ð2Þ

where

A ¼
Xm

i¼1

Ai; H ¼
Xm

i¼1

Hi and Q ¼
Xm

i¼1

Qi

It is easy to show that ETC1,C is minimized by

T

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

H þ Q

s
ð3Þ

However, before we accept T

1 as the optimal cycle length,

we must consider the time required for setups during the

cycle. Since the total setup time per cycle plus the total

production time per cycle must be no more than the cycle

length, we have the following constraint on T:

Xm

i¼1

si þ
diT

pi

� �
4 T ð4Þ

or,

T 5
Pm

i¼1 si

k
� Tmin ðsayÞ ð5Þ

where k ¼ 1 �
Pm

i¼1 di=pi ¼ the long-run proportion of

time available for setups.

Since ETC1,C(T) is convex in T, the optimal cycle length

should be equal to maxfT

1 ; Tming: The expected total cost of

the model then can be found by evaluating Equation (2) for

this optimal cycle length. It is to be mentioned here that

Ben-Daya and Hariga35 neglected the setup times for the

production runs and considered T

1 as the optimum cycle

length.
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Imperfect Process Model With Inspection

and Restoration (IPMWIR) under CC-approach

Let us assume that ni inspections are carried out during the

production of item i. Then the process inspection cost is

equal to
Pm

i¼1 nivi and the expected quality cost per unit

time is equal to
Pm

i¼1ðTi=niÞQi. If the restoration cost is

assumed to be a linear function of its detection delay

½cðtÞ ¼ r0 þ r1t; r0 > 0; r1 5 0� and restoration time is

negligible, then the expected restoration cost per unit time

can be obtained as ½
Pm

i¼1ðr0di=piyiÞ þ
Pm

i¼1ðRiTi=niÞ� where

Ri ¼ ðr1yi � r0Þ
d2

i

2p2
i y

2
i

;

r0; r1 being the cost parameters for the process restoration

cost function (see Ben-Daya and Hariga35 for derivations).

Thus the expected total cost of the model can be obtained as

ETC ¼
Xm

i¼1

Ai

Ti

þ HiTi þ ðQi þ RiÞ
Ti

ni

þ vi

ni

Ti

þ
r0di

piyi

� �
ð6Þ

Hence, the expected total cost per unit time under the

common cycle approach is given by

ETC2;C ¼
1

T
A þ

Xm

i¼1

nivi

" #
þ T H þ

Xm

i¼1

ðRi þ QiÞ

ni

" #

þ
Xm

i¼1

r0di

piyi

ð7Þ

where

A ¼
Xm

i¼1

Ai;H ¼
Xm

i¼1

Hi ¼
1

2

Xm

i¼1

hidið1� riÞ and Qi ¼
uiaid

2
i

2piyi

:

Here the number of inspections ni(i¼ 1, 2, . . . , m) are

positive integers to be treated as the decision variables.

Therefore, our aim is to determine the values of the variables

ni (i¼ 1, 2, . . . , m) and T which minimize ETC2,C subject to

the capacity constraint

T 5
Pm

i¼1 si

k
� Tmin ð8Þ

We first ignore the constraint (8) and assume that nis are real

rather than positive integers. Then the necessary conditions

for the minimum of ETC2,C give

ni ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri þ Qi

vi

s
; i ¼ 1; 2; . . . ;m ð9Þ

and

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A þ

Pm
i¼1 nivi

H þ
Pm

i¼1 ððRi þ QiÞ=niÞ

s
ð10Þ

We now develop the following algorithm to find the optimal

values of the decision variables ni (i¼ 1,2, . . . , m) and T

satisfying constraint (8).

Algorithm I

Step 1. Start with To ¼ any positive real number.

Step 2. Determine no
i ¼ T o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRi þ QiÞ=vi

p
;

i ¼ 1; 2; . . . ; m:

Step 3. Find T 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A þ

Pm
i¼1 no

i vi

H þ
Pm

i¼1 ðRi þ QiÞ=no
i


 �
s

Step 4. Evaluate n0
i¼T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRiþQiÞ=vi

p
, i ¼ 1; 2; . . . ; m:

Step 5. If jn0
i � no

i j < e1i; for i¼ 1, 2, . . . , m go to Step 6.

Otherwise, assign no
i ¼ n0

i for i¼ 1, 2, . . . , m and

go to Step 3.

Step 6. Determine n

i ¼ Round off ðn0

iÞ; i ¼ 1; 2; . . . ;m;
T 0

2 ¼ ðT 0Þn

i

and then T

2 ¼ maxfTmin; T 0

2g:

Step 7. If T

2 ¼ T 0

2; then n

i ði ¼ 1; 2; . . . ;mÞ are the opti-

mal number of inspections. Otherwise, determine

n

i from Equation (9) by rounding off the RHS

when T¼ Tmin.

Step 8. Finally evaluate ETC

2;C ¼ ðETC2;CÞn


i
;T


2
:

Imperfect Process Model (IPM) under time-varying

lot sizes approach

We now formulate the problem under time-varying lot sizes

approach proposed by Dobson.8 We follow the notation

similar to Dobson.8 The problem can be viewed as one of

deciding on a cycle length T, a production sequence f¼ ( f 1,

f 2, . . . , f n), n5m, f j2{1, 2, . . . , m} which may contain

repetitions, productions times t¼ (t1, t2, . . . , tn) and idle

times w¼ (w1, w2, . . . , wn) so that the production sequence

is executable in the chosen cycle length, the cycle length can

be repeated indefinitely, demand is met and the inventory

cost per unit time is minimized. We will use subscripts to

refer to the ith item: pi, di, hi, Ai, si, ai, yi, ni etc. and

superscripts to refer to the data related to the item produced

at the jth position in the sequence: p j, d j, h j, A j, s j, a j, y j,

n j etc.; that is, p j ¼ pf j ; d j ¼ df j etc. Let F be the set of all

possible finite sequences of products and Ji denote the

positions in a given sequence where product i is produced,

that is, Ji ¼ jj f j ¼ i: Let Lk be the positions in a given

sequence from k, up to but not including the position in the

sequence where product f k is produced again. Using this

notation, the ELSP for the IPM can be formulated as

follows:

inf f 2F Mint5 0;w5 0;T>0

�
1

T

Xn

j¼1

A j þ
1

2

Xn

j¼1

h j p j

d j
� 1

� �
þ

u ja j

y j

� �
p jðt jÞ

2

" #

ð11Þ

subject to X
j2Ji

pit
j ¼ diT ; i ¼ 1; 2; . . . ;m ð12Þ
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X
j2Lk

ðt j þ s j þ w jÞ ¼
pktk

dk
; k ¼ 1; 2; . . . ; n ð13Þ

Xn

j¼1

ðt j þ s j þ w jÞ ¼ T ð14Þ

t5 0, w5 0, T > 0.

Constraint (12) ensures that we must allocate enough

production time to each product i to meet its demand diT

over the cycle. Constraint (13) implies that we must produce

enough of a product each time to last until the next time the

same product is produced again. Constraint (14) means that

the cycle time T must be the sum of production, setup and

idle times for all items produced in the cycle.

A lower bound on expected total cost

In order to find a lower bound, we consider the objective

function as the expected total cost (including setup cost,

holding cost, and quality related cost) per unit time, subject

to the constraint (16) given below. However, the synchroni-

zation constraint, stating that no two items can be scheduled

to produce at the same time, is ignored. Consequently, the

value of the following non-linear program results in a lower

bound on the average total cost.

MinT1;T2;...;Tm

Xm

i¼1

Ai

Ti

þ ðHi þ QiÞTi

� �
ð15Þ

subject to

Xm

i¼1

si

Ti

4k ð16Þ

Ti 5 0; i ¼ 1; 2; . . . ;m ð17Þ

where

Hi ¼
1

2
hidið1 � riÞ; Qi ¼

uiairidi

2yi

and k ¼ 1 �
Xm

i¼1

ri:

Clearly the objective function and the constraint set are

convex in Tis. So there exists a unique optimal point for the

above lower bound model. Let l1 and m1i (i¼ 1, 2, . . . , m)

be the Lagrange multipliers corresponding to the constraints

(16) and (17), respectively. Then the Karush–Kuhn–Tucker

(KKT) necessary conditions for the optimal point give

Ti ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ l1si

Hi þ Qi � m1i

s
; i ¼ 1; 2; . . . ;m: ð18Þ

For non-trivial Tis (i¼ 1, 2, . . . , m), one of the KKT condi-

tions gives m1i ¼ 0 8 i and therefore, we can apply the

following line search procedure on l to find the optimal

values of Tis (i¼ 1, 2, . . . , m).

Algorithm II

Step 1. Set l1¼ 0 and find Tis (i¼ 1, 2, . . . , m) from

Equation (18).

If
Pm

i¼1ðsi=TiÞ4k then Tis are optimal. Stop.

Otherwise, go to Step 2.

Step 2. Start with an arbitrary l1 > 0.

Step 3. Compute Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAi þ l1siÞ=ðHi þ QiÞ

p
8 i:

Step 4. If
Pm

i¼1ðsi=TiÞ4k then go to Step 5.

Otherwise, increase l1 and go to Step 3.

Step 5. If j
Pm

i¼1ðsi=TiÞ � kj < e2 then Tis are optimal.

Stop.

Otherwise, reduce l1 and got to Step 3.

In the time-varying lot sizes approach, we can think the

problem as consisting of two parts: a combinatorial part (the

specification of f) and a continuous part (the determination

of t, w and T, for given f). In the combinatorial part, we first

determine these production frequencies utilizing the lower

bound solution and then the production frequencies are

rounded off to power-of-two integers which enable us to

determine an efficient production sequence by bin-packing

heuristic suggested by Doll and Whybark37 and Dobson.8

The continuous part takes the production sequence as given

and computes the actual production times and idle times.12

Procedural steps to obtain f, t and w

1. Find the production frequencies

Let the optimal cycle lengths of the lower bound model

be T

i s. Then the relative production frequencies xis can

be determined by the relation

xi ¼
MaxifT



i g

T

i

; i ¼ 1; 2; . . . ;m

2. Round off the frequencies to power-of-two integers

The production frequencies xis can be rounded off to

power-of-two integers as

yi ¼ 2p if xi 2
1
p

2
2p;

p
22p

� �
; p ¼ 0; 1; . . .

Roundy9 showed that the additional costs when the real

values of the production frequencies are converted to

power-of-two integers do not exceed 6%.

3. Determine the production sequence by the bin-packing

heuristic

Given the frequencies yi, the bin-packing heuristic

attempts to spread them out as evenly as possible.8 For

each product i, the production time duration zi for the lots

are estimated by assuming that the lots will be equally

spaced. If there are b bins where b¼max14 i4m yi,

then yi items of height zi 8 i are to allocate in b bins with

the restriction that a product with frequency yi must have

all its lots placed in the bins equally spaced. While
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assigning the items to bins, a variation of the Longest

Processing Time (LPT) rule is used in which the items

are ordered lexicographically by ( yi, zi). By minimizing

the maximum height of the bins, the heuristic finds an

efficient production sequence f.

4. Solve for t and w, given f

We will solve equations (13) by assuming that there are

no idle times (w¼ 0). This assumption fits well for a

highly loaded facility. Consideration of positive idle

times, which is the case of an under-utilized facility,

makes the problem rather complex non-linear program-

ming. Yet the problem can be handled through the

solution of a parametric quadratic program and a few

EOQ like calculations; see reference 12.

Imperfect Process Model With Inspection

and Restoration (IPMWIR) under time-varying

lot sizes approach

The formulation of the model, in this case, is similar to the

previous section except that of the objective function which

is given by

inf f 2F Mint5 0;w5 0;T>0

�
1

T

�Xn

j¼1

A j þ
1

2

Xn

j¼1

h j p j

d j
� 1

� �
þ

u ja j

n jy j

� �
p jðt jÞ

2

þ
Xn

j¼1

n jv j þ
Xn

j¼1

ðr1y
j
� r0Þðt

iÞ
2

2ðy j
Þ
2
n j

þ
Xn

j¼1

r0t j

y j

�

ð19Þ

subject to X
j2Ji

pit
j ¼ diT ; i ¼ 1; 2; . . . ;m ð20Þ

X
j2Lk

ðt j þ s j þ w jÞ ¼
pktk

dk
; k ¼ 1; 2; . . . ; n ð21Þ

Xn

j¼1

ðt j þ s j þ w jÞ ¼ T ð22Þ

t5 0, w5 0, T > 0.

The additional terms in the objective function (19) are due

to the inspection and process restoration costs. Explanation

of the other terms and constraints are as given in the

previous section.

To find a lower bound for this model, we consider the

objective function on the expected total cost per unit time

which include setup cost, holding cost, quality related cost,

inspection cost and restoration cost and we ignore the

synchronization constraint as in the previous section.

Problem LB

MinT1;T2;...;Tm

Xm

i¼1

Ai þ nivi

Ti

þ Hi þ
Qi þ Ri

ni

� �
Ti þ

r0di

piyi

� �

ð23Þ

subject to

Xm

i¼1

si

Ti

4k ð24Þ

Ti 5 0; i ¼ 1; 2; . . . ;m ð25Þ

where

Hi ¼
1

2
hidið1 � riÞ; Qi ¼

uiairidi

2yi

Ri ¼ ðr1yi � r0Þ
d2

i

2y2
i p2

i

and k ¼ 1 �
Xm

i¼1
ri

The associated Lagrangian function L of the above

constrained optimization problem can be written as

L ¼
Xm

i¼1

1

Ti

ðAi þ niviÞ þ Ti Hi þ
Qi þ Ri

ni

� �
þ

r0di

piyi

� �

þ l2

Xm

i¼1

si

Ti

� k

 !
�
Xm

i¼1

m2iTi

where l2 and m2i (i¼ 1, 2, . . . , m) are Lagrangian multiplier

corresponding to the constraints (24) and (25), respectively.

The number of inspections ni (i¼ 1, 2, . . . , m) are positive

integers to be treated as decision variables. If we first assume

that ni (i¼ 1, 2, . . . , m) are real variables then the KKT

necessary conditions for the minimum of L give,

1

T2
i

ðAi þ nivi þ l2 siÞ � Hi þ
Qi þ Ri

ni

� �
þ m2i ¼ 0 ð26Þ

and

vi

Ti

� Ti

Qi þ Ri

n2
i

¼ 0 ð27Þ

For non-trivial Tis, i¼ 1, 2, . . . , m, we have m2i ¼ 0 8 i:
Thus from Equations (26) and (27), we get

vin
2
i

Qi þ Ri

¼
Ai þ nivi þ l2 si

Hi þ ððQi þ RiÞ=niÞ
ð28Þ

which gives,

ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAi þ l2 siÞðQi þ RiÞ

vi Hi

s
; i ¼ 1; 2; . . . ;m: ð29Þ

To determine the optimal values of Ti (i¼ 1, 2, . . . , m) and

the optimal (positive integer) values of ni (i¼ 1, 2, . . . , m),

we may develop the following algorithm:
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Algorithm III

Step 1. Set l2¼ 0 and determine ni ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððAi þ l2 siÞðQi þ RiÞ=viHiÞ

p
for i¼ 1, 2, . . . , m

and then Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvin

2
i =ðQi þ RiÞÞ

p
for i¼ 1,

2, . . . , m.

If
Pm

i¼1ðsi=TiÞ4k go to Step 6. Otherwise, go to

Step 2.

Step 2. Start with an arbitrary l2 > 0.

Step 3. Compute ni and Ti for i¼ 1, 2, . . . , m by using the

formulae given in Step 1.

Step 4. If
Pm

i¼1ðsi=TiÞ4k then go to Step 5.

Otherwise, increase l2 and go to Step 3.

Step 5. If j
Pm

i¼1ðsi=TiÞ � kj < e3 then go to Step 6.

Otherwise, reduce l2 and go to Step 3.

Step 6. Round off ni, i¼ 1, 2, . . . , m and evaluate the

average total cost. Stop.

Numerical illustration

Common cycle solution of IPM

Example I Let us first consider the following example

(Table 1) which was chosen by Ben-Daya and Hariga.35

Before finding the optimal order interval by the CC-

approach we verify by computing
P

(di/pi)¼ 0.9942 that

it is possible to meet up all the required demands. The

facility must run 99.42% of the time to meet the demands

and the remaining less than 0.6% of the time is available for

setups, maintenance, etc. As the machine schedule is very

tight, the constraint (4), in this case, is binding. However, the

situation differs when the machine schedule is less tight and

significant changeovers in between the products are

required.

Example II Table 2 shows 3-item data, a part of which is

borrowed from Silver et al,29 p 446.

Here
P

(di/pi)¼ 0.97. This means that the facility must

run 97% of the time, with the remaining 3% available for

setups, maintenance, etc. Since
P

si¼ 0.0033y, the mini-

mum cycle length Tmin¼
P

si/(17
P

(di/pi))¼ 0.0949y.

Using Equation (3) we obtain T

1 ¼ 0:0692y. As Tmin > T


1 ;
the optimal cycle length should be taken as Tmin¼ 0.0949y

or 22.7760 days, assuming one year equal to 240 days. The

expected annual total cost is obtained as $10 164.86.

For this example, if we ignore the constraint (4) (which

leads to Ben-Daya and Hariga’s35 model) we find T

1 ¼

0:0692y or 16.6080 days (infeasible) and the expected

annual total cost¼ $9678.33 which is obviously less than

the actual expected annual total cost.

Example III Table 3 presents 5-item data, a part of which

is borrowed from Johnson and Montgomery.36

For this data set,
P

(di/pi)¼ 0.94 and
P

si¼ 0.39 days.

Therefore, Tmin ¼
P

si=ð1�
P

ðdi=piÞÞ ¼ 6:8468 days.

Equation (3) gives T

1 ¼ 1:005 days. Clearly the optimal

cycle length¼ 6.8468 days, giving the expected total cost

per day¼ $2735.28. Ben-Daya and Hariga’s35 model deter-

mines 1.005 days as the optimal cycle length and $786.06 as

the expected total cost per day. Note that the huge reduction

in the expected total cost is due to infeasible cycle length

obtained as a result of violating the constraint (4).

Common cycle solution of IPMWIR

Using Algorithm-I, we obtain the following results for

Example II data: T

2 ¼ 0:0949y or 22.7760 days, assuming

one year equal to 240days, n

1 ¼ 2; n


2 ¼ 7; n

3 ¼ 2 and

ETC

2;c ¼ $8811:58:

Ben-Daya and Hariga’s35 model gives T

2 ¼ T 0

2 ¼ 0:0842 y

or 20.2080 days and the expected annual total cost¼

$8748.48.

Example III data results in T

2 ¼ 6:8469 days, n


1 ¼ 2;
n


2 ¼ 2; n

3 ¼ 2; n


4 ¼ 1; n

5 ¼ 1 and the associated expected

total cost¼ $2692.25. Ben-Daya and Hariga’s35 model

determines the expected total cost as $795.63 which is far

below the actual expected total cost.

Time-varying lot sizes solution of IPM

Algorithm-II when considered for Examples II and III data

provides the order periods and the corresponding lower

bounds as shown in Table 4.

Table 1 Example I data

Item i Ai yi pi di ui hi

1 100 10 1000 500 5 0.50
2 100 12 1800 400 7 0.40
3 100 15 2300 250 20 0.80
4 150 20 1200 100 20 1.00
5 200 10 2500 200 5 1.20

Table 2 Example II data (r0 = $10, r1 = $0.1)

Item i
Ai

($)
yi

( y) ai

pi

(units/y)
di

(units/y)
ui

($)
hi

($)
si

( y)
vi

($)

1 125 1.2 0.20 5000 1850 30 12.50 0.00068 3
2 100 0.5 0.25 3500 1150 200 87.50 0.00171 3
3 110 0.8 0.30 3000 800 50 21.25 0.00091 3

Table 3 Example III data (r0 = $10, r1 = $0.2)

Item i
Ai

($)
yi

(days) ai

pi

(units/day)
di

(units/day)
ui

($)
hi

($)
si

(days)
vi

($)

1 75 10 0.20 1550 300 8 0.5 0.05 2
2 90 12 0.25 1890 400 5 0.4 0.08 2
3 50 15 0.30 1415 250 10 0.8 0.06 2
4 100 25 0.20 1260 300 12 1.0 0.05 2
5 80 8 0.15 1625 200 6 0.6 0.15 2
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For Example II, the relative production frequencies xi

(i¼ 1, 2, 3) of the items can be obtained from lower bound

model as

x1 ¼ 1:0642; x2 ¼ 2:1876; x3 ¼ 1:0000:

Rounding off these frequencies to power-of-two integers we

find

y1 ¼ 1; y2 ¼ 2; y3 ¼ 1

For each product i, we now estimate the production time

duration zi for the lots by assuming that the lots will be

equally spaced. That is, we compute

zi ¼ si þ
diT

piyi

where T ¼

P
xisi

1 � r
;

by assuming that w¼ 0. This gives z1¼ 0.0572,

z2¼ 0.0254, and z3¼ 0.0412. Now bin-packing with

b¼maxi{yi}¼ 2 bins and yi items of height zi for all i, we

get the production sequence f¼ {2 1 2 3}. Then solving the

system of equations (13) with the help of numerical compu-

tational software MATHEMATICA, we find the production

time sequence t¼ {0.0273, 0.0533, 0.0201, 0.0384} (in

years) or equivalently t¼ {6.5520, 12.7920, 4.8240,

9.2160} (in days). This gives the required cycle length

T¼ 0.1441y, or 34.5840 days and the expected average

total cost¼

$9384.82.

Applying the similar procedure to Example III data we

find the following results:

Production sequence f ¼ f4 2 1 3 5 4 2 1 3g

Production time sequence t ¼

f1:6380; 1:3200; 1:1493; 1:0212; 1:3613; 0:9953;

1:0208; 0:9914; 0:9329g ðin daysÞ

Cycle length T ¼ 11:06 days and associated average

total cost ¼ $2573:29:

Time-varying lot sizes solution of IPMWIR

To find the lower bound on IPMWIR for Examples II and III

data we use Algorithm-III. The computed results are given

in Table 5.

The production sequence f and the production time

sequence t remain unchanged compared to IPM. However,

to evaluate the expected average total cost, we need to

determine n js. Assuming n js as real, we differentiate the

objective function (19) with respect to n j and get,

n j ¼
t j

y j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u j y j a jp j þ ðr1y

j
� r0Þ

2v j

s
; j ¼ 1; 2; . . . ; n ð30Þ

Hence, when t js are known the integral values of n js can be

determined from above by rounding off the RHS of Equa-

tion (30) to the nearest integer. Example II data evaluate

n1
¼ 7, n2

¼ 3, n3
¼ 5, n4

¼ 4 and the expected average total

cost¼ $8246.65 while Example III data find n1
¼ 9, n2

¼ 9,

n3
¼ 9, n4

¼ 9, n5
¼ 9, n6

¼ 5, n7
¼ 7, n8

¼ 8, n9
¼ 8 and the

expected average total cost¼ $2490.15.

Table 4 Lower bound for the ELSP-IPM

Data Order periods Lower bound

Example II T1 = 0.14528 y, or 34.8720 days $9289.36
T2 = 0.07067 y, or 16.9680 days
T3 = 0.15460 y, or 37.1040 days

Example III T1 = 5.7053 days $2461.8
T2 = 7.0585 days, T3 = 5.3725 days
T4 = 4.2687 days, T5 = 10.7280 days

Table 5 Lower bound for the ELSP-IPMWIR

Data
Order periods and number

of inspections
Lower
bound

Example II T1 = 0.1448 y, or 34.7520 days n1 = 3 $8185.97
T2 = 0.0708 y, or 16.9920 days n2 = 6
T3 = 0.1536 y, or 36.8640 days n3 = 4

Example III T1 = 5.7827 days, n1 = 9 $2378.06
T2 = 7.1298 days, n2 = 11
T3 = 5.3845 days, n3 = 8
T4 = 4.2327 days, n4 = 6
T5 = 10.6100 days, n5 = 9

Table 6 Example IV data (r0 = $150, r1 = $10)

Item
i

Ai

($)
yi

(days) ai

pi

(units/
day)

di

(units/
day)

ui

($)
hi

($)
si

(days)
vi

($)

1 3000 80 0.12 133 20 10 0.0461 4.0 4
2 1800 75 0.08 300 24 15 0.0312 2.4 4
3 3600 140 0.10 266 30 25 0.0651 4.8 4
4 1500 90 0.06 146 36 16 0.1180 2.0 4
5 6000 210 0.15 532 40 20 0.1190 4.0 4
6 30 000 112 0.05 373 50 30 0.0847 8.0 4

Table 7 Example V data (r0 = $10, r1 = $2)

Item
i

Ai

($)
yi

(days) ai

pi

(units/
day)

di

(units/
day)

ui

($)
hi ($)
� 10�2

si

(days)
vi

($)

1 15 12.5 0.04 3075 400 0.6500 0.0130 0.125 2
2 20 8.0 0.07 8000 400 0.1775 0.0355 0.125 2
3 30 6.5 0.10 9500 800 0.1275 0.0255 0.250 3
4 10 15.0 0.03 7500 750 1.0000 0.0200 0.125 2
5 110 14.0 0.15 2000 80 2.7850 0.5570 0.500 3
6 50 18.0 0.08 6015 80 0.2675 0.0535 0.250 2
7 310 10.0 0.14 2400 104 1.5000 0.3000 1.000 3
8 130 9.0 0.10 1300 340 3.2900 0.0580 0.500 6
9 200 16.0 0.05 2000 340 0.9000 0.1800 0.700 4

10 24 20.0 0.12 15 038 400 0.0400 0.0080 0.125 2
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A comparative study

To make a comparison of the gains between CC solution and

time-varying lot sizes solution or the gains between IPM

and IPMWIR we consider the following three additional

examples:

Example IV A part of the 6-item data shown in Table 6 is

taken from the Eilon problem, see Haessler and Houge,38

p 911.

Example IV(a) The data set is identical to Example IV

with the exception of the production rates that are decreased

by 10%.

Example V The data set given in Table 7 is constructed

from the Bomberger problem, see Haessler,39 p 339.

We choose Example IV to consider the situation where

the proportion of time available for setups is high and

Example V where as many as 10 items are to be produced

in a single machine. In Examples IV and IV(a) the propor-

tions of time available for changeovers in between the

products are 20 and 11%, respectively. Table 8 reflects

that a 10% decrease in the production rates in Example IV

(which is Example IV(a)) increases the system cost more

than 40%. It is also clear from Table 8 that the expected

average total costs in time-varying lot sizes approach in

Examples II–V are above the lower bounds by 1–7% only

whereas in the CC approach these are about 7–12% except

for IPM in Example V, where the expected total cost is

higher than the lower bound by 30%. This numerical study

clearly demonstrates the superiority of the time-varying lot

sizes approach over common cycle approach in dealing with

the ELSP.

Concluding remarks

This paper re-investigates the Economic Lot Scheduling

Problem (ELSP) with imperfect production processes,

previously studied by Ben-Daya and Hariga,35 under the

capacity constraint viz setup time per cycle plus the total pro-

duction time per cycle must be no more than the cycle length

by applying both the Common Cycle (CC) approach and the

time-varying lot sizes approach. Ben-Daya and Hariga35

assumed negligible setup times for production setups and

studied the ELSP using the CC-approach. However, when

setup time exists, ie, when time is required to change the

machine from the production of one product to another—the

question of feasibility becomes more complex. The lot sizes

must be sequenced so that the intervals of production do not

overlap and the sum of the setup times does not exceed the

time available for setups. In this regard the present effort is

significant and meaningful. In our study, we have considered

quality-related costs for possible production of non-conform-

ing items. We did not consider any rework of the defective

items either on- or off-line. So future research can investigate

the case where all the imperfect items are reworked instanta-

neously or reworked off line without affecting the utilization

of the system. Another direction may be the study of effec-

tiveness and economy of preventive maintenance on the

ELSP.
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