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The multi-item newsvendor problem with a budget
constraint and fixed ordering costs

I Moon'* and EA Silver?

'Pusan National University, Korea and *The University of Calgary, Canada

This paper deals with a multi-item newsvendor problem subject to a budget constraint on the total value of the
replenishment quantities. Fixed costs for non-zero replenishments have been explicitly considered. Dynamic program-
ming procedures are presented for two situations: (i) where the end item demand distributions are assumed known
(illustrated for the case of normally distributed demand) and (ii) a distribution free approach where only the first two
moments of the distributions are assumed known. In addition, simple and efficient heuristic algorithms have been
developed. Computational experiments show that the performance of the heuristics are excellent based on a set of test

problems.
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Introduction

The single period stochastic inventory problem, the so-
called newsvendor problem, has been widely studied in
the literature. In its simplest form there is a single item
subject to probabilistic demand with a known, usually
continuous, distribution in the period of interest. Units
must be acquired (at a constant marginal cost) prior to the
demand being realised. There is a constant revenue per unit
sold. Any units leftover have an associated unit salvage
value. There can also be a unit penalty (above and beyond
the lost profit) associated with each unit short. The objective
is to select the replenishment quantity so as to maximise the
expected profit. Most introductory textbooks in operations
research, operations management, or inventory management
present this problem and its solution.'> One of the earliest
expositions was by Karr and Geisler.*

A wide variety of extensions to the basic newsvendor
problem have been studied. These include (with associated
illustrative references): initial usable inventory,! a fixed
cost associated with the replenishment,® quantity
discounts,”® quantity received not necessarily being equal
to the quantity requested in the replenishment,”® demand
dependent on price level,”" the repair kit problem where
sets of items are needed to satisfy specific demands,'*!> the
possibility of recourse (a second replenishment or mark-
down of merchandise after at least part of the demand is
realised),'*'® adjusting the forecasting procedure to reflect
truncated demand during stockouts,'®?* and the use of a
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different objective such as maximisation of the probability
that at least a certain profit level is achieved.>*** An
excellent review on the newsvendor problem has been
recently provided by Khouza.?’

Another important version, which is examined in this
paper, is where there are multiple items to be acquired
subject to a restriction on the total budget to be used for the
acquisitions. Previous exposes on this topic*?*3° have
ignored any fixed cost of a replenishment. In this paper
we explicitly take account of this potentially important
factor.

In practice, the distributional information about the
demand is often limited. Sometimes all that is available

~ are estimates of the mean and variance. There is a tendency

to use the normal distribution under these conditions.
However, the normal distribution does not offer the best
protection against the occurrences of other distributions
with the same mean and variance. Scarf’' addressed a
newsvendor problem where only the mean u and the
variance 62 of the demand are known without any further
assumptions about the form of the distribution of the
demand. Taking a conservative approach, he modeled the
problem as that of finding the order quantity that maximises
the expected profit against the worst possible distribution of
the demand with mean u and variance ¢2. The approach is
called the minimax distribution free approach. Recently,
there have been many related papers. Gallego and Moon'®
presented a very compact proof of the optimality of Scarf’s
ordering rules for the newsvendor problem and extended
the analysis to several cases including a fixed ordering cost,
multiple products, random yield, and the possibility of
recourse. Moon and Gallego® applied the approach to
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several inventory models including both continuous and
periodic review models. Moon and Choi*® extended the
model of Gallego and Moon'® to the case that allows
customers to balk when inventory level is low. Shore**
derived explicit approximate solutions to the standard
newsboy problem, to some (Q, r) models, and to a periodic
review model in which the first three or four moments of
the demand are known. Moon and Choi*> applied the
approach to the two- echelon stochastic production/inven-
tory models in which assemble-to-order (ATO), assemble-
to-make (ATM), and composite policies can be adopted.
Hariga®® extended the work of Moon and Choi*> to the
multi echelon case. Gallego et al’’ considered stochastic
finite-horizon inventory models with discrete demand distri-
butions that are incompletely specified by selected moments,
percentiles, or a combination of moments and percentiles.
Hariga and Ben-Daya®® and Moon and Choi’® indepen-
dently solved the continuous review inventory problem in
which lead time can be reduced by investment. Their models
generalised the distribution free model of Ouyang and Wu*®
by simultaneously optimising both the order quantity and
reorder point.

In the following section we present the notation, assump-
tions, and basic mathematical model for the case where we
have a known distribution of demand for each item. A
dynamic program is then developed to find an optimal
solution. The associated computational effort required
increases substantially with the number of items involved
and with the available budget. Perhaps more important,
dynamic programming is a difficult concept to explain to
practitioners. Therefore, we subsequently present two heur-
istic algorithms that overcome both of these drawbacks.
This is followed by computational experiments to test the
heuristics. Then we deal with the distribution free situation
where all we assume are known are the means and
variances of the demand distributions. Computational
tests to show the robustness of the distribution free solution
are also presented. Concluding remarks are provided in the
last section.

Problem formulation and optimal solution using
dynamic programming

The notation to be used is as follows:

i=index foritems (i =1,2,...,m)
A; = fixed ordering cost associated with a
replenishment of item i, in pounds
g; = salvage value of item , in pounds/unit
v; = purchase cost of item i, in pounds/unit
B; = penalty for not satisfying demand of item i,
in pounds/unit
I, = initial inventory of item 7, in units
D; = demand for end item i during the period, in units

f(D;) = probability density function of demand for item i
F{(D;) = cumulative probability distribution of demand for
item i
u; = expected value of demand for item i
o; = standard deviation of demand for end item i
W = budget available for allocation among the stocks
of the m items, in pounds

S; = order-up-to level for item i (decision variable)

Suppose that there are /; units of item i at the beginning of
the period. In addition, there is a significant fixed ordering
cost A4; if a replenishment is made for item i. Initially, we
assume that the budget is of sufficient size to permit each
item to be ordered at its optimal, independent level. Let S;
be the order-up-to level of item /. Then, S; = I, + O; where
Q; is the purchase quantity of item i. The expected cost for
item i can be written as

CE(S) = G (S) + 41554y

where

S,
GF(S) = v(S, — 1) — g L (S, — DY(DD,

1B, J (D, - S)/i(DdD,

= (v; — g)S; — vl; + g + (B; — g)EID; — S}

and 1 denotes an indicator function, and the superscript F
denotes a general distribution function of demand. Then, the
problem can be rewritten as
: F
;n;r}[Ail{Si>1i) + G (S)]

i = 4

For the normal distribution,

EID; — S]" =01 (%) +( — S,-)[l - @(%)]

i i
Let S* denote the unconstrained minimiser of Gf(S;), then

B, —v,
FiSH =5
By employing an argument similar to that used for the
classical newsvendor model with a fixed ordering cost,’
a replenishment should be made if [, <SFf and
GF (L) > 4; + GF(S¥). Since GF(S,) is strictly convex and
is not bounded from above, there exists a unique s* < S¥
satisfying

Gl (s¥) = 4;+ G (SP)

Therefore, the ordering rule becomes as follows: Order up
to S* units if ; < s¥, and do not order otherwise.

Now we assume that there is a restricted budget . We
develop a dynamic program to find an optimal solution. We
first need to check the following steps.
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Step 1 Solve a single period model with a fixed ordering
cost for each item separately. Let # be the set of

items for which it is profitable to order. That is,
# = {i such that [, < s}}
Step 2 If

Y o(SF—I) < W,

i€e?

(s}, S¥)s are optimal and we stop here. Otherwise,
we go to Step 3.

Note that we only need to consider items which
belong to 2. Without loss of generality, renumber
the items in 2 as 1 to m. The dynamic program-
ming formulation consists of the following three
elements.

Step 3

(iy Stage i is represented by item
1,2,...,m.

(ii) State x; at stage i is the amount of budget left
to be assigned to items i, i+ 1,...,m.

(iii) Alternative (; at stage i is the number of units
of item 7 purchased. The value of Q; may be as
small as 0 and as large as |x;/v;] where | y|
represents the smallest integer which is less
than or equal to y (Note that in order to avoid
a proliferation of possible states we are
restricting the order quantities to integer
values, despite the possibility of a continuous
demand distribution).

I, i=

Let f(x;) = optimal value of stages 7, i+ 1,...,m, given

the state x;. Let O¥(x;) be the optimal order quantity at stage .

i given state x;. Then the backward recursive equations are
as follows:

X )= min
Inlcon) 0< Oy < /0

J{Aml{Qm>0} + GS(Im + Qm)}

X, =0,.... W

_ i . For .
Jilx) = o< Qringlrle,/vij {Alip0+ G (L + Q)
+ fir1 (i — 0,0))
=0, W,  i=2...m—1
Hw) = min {415 .o + G (I} + Q)

0<Q < W/

+ LW —v,01)}

Example 1 We assume independent normal distributions
and that the budget is £10,000. The detailed data for this
example are given in Table 1.

First we compute independent (s, S) values:

(Sl’ Sl) = (34? 86)’
(s5,5;) = (23, 108),

(52, 8,) = (70, 89),
(54, S4) = (198, 230)

Table 1 Data for the example (W =£10,000)
Item v; A4; g B; I X; o;
Item 1 £35 £500 £15 £50 30 90 25
Item 2 £20 £100 £10 £40 10 80 20
Item 3 £28 £300 £15 £32 30 120 17
Item 4 £40 £200 £10 £70 20 230 60

From the above information, we compute 2 and the
unconstrained optimal solution with the following results:

P =1{1,2,4}, 0, =8, -1, =56,
Q=85-5L=79,
Q; =0, O =84 -1, =210
Total cost = £17,577.93

Since

> 0;0; = £11,940 > £10,000, this solution is not feasible.
ie?
Let (QF, ..., Q%) be the optimal solution for the normal

distribution. If we apply the DP, we obtain the following
results:

.95, 0, o)) =(0,79,0,210)

with a total cost of £17,636.77.

The restricted budget has increased the overall cost by
£58.84 (or approximately 0.3%).

Two heuristic approaches

We develop here two heuristic algorithms since, as
mentioned earlier, it would take too much time to solve
the dynamic program if m or W become quite large.
Moreover, a heuristic solution is typically much easier for
a practitioner to understand than is dynamic programming.
First we develop a heuristic approach based on a marginal
(or greedy) allocation algorithm.*! At each step the algo-
rithm reduces the budget with the least increase of the
objective value per unit reduction of the budget used. This
is continued until a feasible solution is obtained. Any
budget remaining (due to an undershoot) is filled in a
reverse greedy fashion. We call this approach the marginal
allocation heuristic. It is summarised as follows:

Marginal allocation heuristic

Step 1 Solve a single period model with a fixed ordering
cost for each item separately. Let £ be the set of
items for which it is profitable to order. That is,

2 = {i such that [; < s}}
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Step 2 1If

2 v(SE=L) < W,

ic?
(s, S¥)s are optimal and we stop here. Otherwise,
we go to Step 3.
From now on we only need to consider items which
belong to #. Because of the fixed cost per renplen-
ishment we consider two types of greedy options.
The first involves a unit reduction in the replenish-
ment quantity of an item, whereas the second
considers elimination of the entire replenishment
quantity (thus saving the fixed replenishment cost).
For the first option choose the item i1 with the least
increase of cost per budget pound saved:

. {Cf(si*— 1>—Cf(s,-*>]
min

Ui

Step 3

] &)

I
For the second option choose the item i2 with the
least increase of cost per budget pound saved by
reducing Q; to 0:

L [CEa) ~ s

i v(SF— 1)
If (1) < (2), reduce S% to S¥% — 1, that is Q% to
0% — 1. If (1) > (2), reduce S% to I, that is 0% to
0. Repeat Step 3 until we satisfy

DS <W

ic?

Step 4 If Y, ,(S* —I) < W, increase S* with the largest

decrease of cost per pound increase in the budget
used:

@

max
I

F(S§*) — CF(S*

U;

Repeat this step as long as we can satisfy the
budget constraint.

Now we develop another heuristic called the two stages
heuristic. The heuristic attempts to proportionally assign the
budget to the items which belong to . Note that we can
easily obtain a counter example which shows that it is
preferable to not order certain items which belong to 2.
This implies that the problem has a combinatorial character-
istic, and makes us strongly conjecture that the problem is
NP-hard.*

Two stages heuristic

Stage 1  Solve a single period model with a fixed ordering
cost for each item separately. Let & be the set of
items for which it is profitable to purchase some-
thing. That is,

2 = {i such that ; < s}}

Let S¥* be the order-up-to level for item 7 for the
unconstrained problem. If

Z Ui(Si* —Il) < W’
ie?

(s, S¥)s are optimal and we stop here. Otherwise,
we go to Stage 2.

Stage 2 Without loss of generality, we renumber the items
in £ as 1 to m, then solve the following problem.
m si
mi% Z[Ui(si —-I)—g; Jo (S; — D)fi(Dy)dD;
VoS 11
o0
+BiJ D; — $)i(D;)aD; + 4;
s,
subject to

m

2uSi—)<W “)

=
Let A be the Lagrangian multiplier associated with the
budget constraint. By computing 3L/3aS; after forming the
Lagrangian function, L(S,,...,S,,4), we obtain the
following equations:

B, — (A+ )y,

F(S) = B —g,
1 1

vi

The stage 2 is to find the smallest nonnegative A such that
S;(4)s satisfy (4). A simple line search algorithm can be
used to find the optimal value of A.

Example 2 We solve the same example as earlier, but this
time using the two heuristic algorithms.

Marginal allocation heuristic

Note that Step 1 and Step 2 are exactly the same as for the
DP. Let (Q¥, ..., O¥) be the marginal allocation heuristic
solution. Then we find

(oM, 0¥, 0¥, O}y = (36,70, 0, 183)

with a total cost of £17,837.19

Two stages heuristic

Let (O, ..., OT) be the two stages heuristic solution. If we
solve Stage 2 using a line search algorithm, we obtain
A =0.2572 with the following solution.

(1. 07,07, 00) = (36, 70,0, 183)
with a total cost of £17,837.19

Note that the 4 value implies that increasing the budget
beyond £10,000 will approximately save £0.257 per pound
increase in budget when this heuristic is used.
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Computational results

In order to investigate the performances of the two heur-
istics developed in the previous section, 25 test problem
instances were generated randomly from uniform distribu-
tions on the given intervals as shown below:

m ~ DU(5, 10)
where DU denotes a discrete uniform distribution

W~ U(0.5,0.8) x i, v(SY — I,) where SV denotes an
unconstrained order-up-to level for item i

v ~ U(30, 50),

B~ U(1.5,2.0) x v,
1~ U(50, 150),
I~ U(0.1,0.5) x u

g~ U(0.2,0.5) x v,
A ~ U(50, 300)
o~ U(0.1,0.3) x g,

We did not do tests with more than 10 items because of the
work space limit of the GAUSS* software which has been
used to find the optimal solution. The computational results
are summarised in Table 2. Here Heul, Heu2, and OPT
represent the objective value of the marginal allocation
heuristic, the objective value of the two stages heuristic,
and the optimal objective value using DP. The perfor-
mances of both heuristics are extraordinarily good, parti-
cularly when one recognises that in practice it is difficult to
estimate the values of the parameters, such as the para-
meters of the demand distribution for each item,?! needed
to obtain the optimal solution.

Distribution free model

We now consider the distribution free approach, that is we
make no assumption on the distribution F of D; other than
saying that it belongs to the class # of cumulative
distribution functions with mean u; and variance cf}.
Since the distribution F of D is unknown we want to
minimise the total expected cost against the worst possible
distribution in 4. The distribution free approach for this
model involves finding the most unfavorable distribution in

F for each (5, ..., S,,). Our problem is to solve:

jrin e 31 (5)

To this end, we need to use the following proposition as in
Gallego and Moon.'®

Table 2 Results of computational tests

Minimum ratio Maximum ratio Mean ratio
Heul /OPT 1.0000 1.0130 1.0049
Heu2/OPT 1.0000 1.0203 1.0045

Proposition 1 Forany F € &

%{\/ oF +(S; — ﬂi)z —(Si — )}

Moreover, the upper bound is tight. In other words, we can
always find a distribution in which the above bound is
satisfied with equality for every S,.

ED; - §]" <

Using the above proposition, our cost function becomes

lecf(si>=§{<v 2)S, — v, + gt

+(B; — g)EID; — S]" + 4,145}

=) {(Ui —g)S; — vl + gy

i=1

Bi - i
+___2_g_£ [ o? + (S — ) — (S, — :ui)]
'*‘Afl(sfw'.)}

= Z:{GI‘W(SI‘) + 4151}

I

where W denotes a worst case distribution function of
demand.

Let hi(x;) = optimal values of stages i, i+1,...,m,
given the state x;,. Let QX(x;) be the optimal purchase
quantity at stage i given state x;. Then the backward
recursive equations are as follows:

'hm(xm)—_o<gm un J{A 1(Q,,,>0}+GW(I + 0}
X, =0,..., W
hi(x;) = o< Qf‘n<lftxl o) {41 o0, +GP UL+ Q)
+ hip (g — 0:0)} x=0,....W,
i=2,...,m~-1
hi(N) = 0<R1 LW/ J{Al {Q1>0}+G1 L +9y)

+ (W —v,01)}

Let optimal solutions for the normal distribution and the
worst distribution be (SV,...,S¥) and (SV,...,SY),
respectively. We are interested in the Expected Value of
Additional Information (EVAI). That is,

m m

PO ED I (1))

i=1 i=1
This is the largest amount that we would be willing to pay
for the knowledge of the specific (normal) distribution in
the absence of knowledge of the specific distribution. If this
quantity is small, the use of the distribution free solution
can be justified.
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Example 3 We solve the same example as before to
compare the distribution free solution with the solution for
normal distribution.

V. Y, 0F, 0i) = (0,79,0,210)
with a total cost of £17,636.77
. 07.07.0¢)=(0,77,0,210)
with a total cost of £18,163.87
(under the worst case distribution of demand)

We compute the Expected Value of Additional Information
(EVAI) as follows.

S V@) - 30 CN(QY) = £17,637.45
i=1

i=

— £17,636.77
= £0.68
Y CNQF)  £17,63745

) Y CVQY) T £17,636.77

= 1.00004

From this example, we can conjecture that the distribution
free approach is very robust. We will confirm this using the
computational experiment described below.

Remark 1 We notice that the distribution free solution
does not use up its budget. This is quite interesting and
makes the problem much more difficult to solve. For
confirmation, if we substitute the normal solution (which
uses £40 more budget than the distribution free solution)
into the distribution free objective function, we obtain
£18,165.00 (which is larger than £18,163.87 which is the
optimal objective value under the distribution free
approach).

Remark 2 The two heuristics developed for the general
distribution can be easily modified to be used for the
distribution free case. We omit the details for brevity.

In order to further investigate the robustness of the
distribution free approach, we compute the following
ratio for the 25 randomly generated problems of the
previous section.

X G
pyaye(ey

We report the minimum, maximum and mean values of this
ratio in Table 3. The ratios are very close to 1 which
indicates that use of the distribution free solution in the
absence of the specific form of the distribution function
produces negligible penalties when the true distributions
are normal.

Table 3 Results of computational tests

Minimum ratio Maximum ratio Mean ratio
1.0000 1.0053 1.0005
Conclusions

In this paper we have considered a single period news-
vendor problem with multiple items subject to a budget
constraint on the total value of the replenishment quantities
and recognising fixed costs for non-zero replenishments. A
dynamic programming formulation was presented which
could be used for small scale problem instances. However,
for more realistic sized problems and for easier under-
standing by practitioners a heuristic approach is essential.
Two such approaches were developed and shown to
perform excellently on a set of test problems. A distribution
free analysis of the problem was also presented.
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