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A fast heuristic for minimising total average cycle
stock subject to practical constraints

EA Silver' and I Moon?

"The University of Calgary, Canada and *Pusan National University, Korea

We address a problem of setting reorder intervals (time supplies) of a population of items, subject to a restricted set of
possible intervals as well as a limit on the total number of replenishments per unit time, both important practical
constraints. We provide a dynamic programming formulation for obtaining the optimal solution. In addition, a simple and
efficient heuristic algorithm has been developed. Computational experiments show that the performance of the heuristic

is excellent based on a set of realistic examples.
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Introduction

Inventory managers are very concerned with the efficient
use of constrained resources. One example is the minimisa-
tion of the total number (or cost) of replenishments per unit
time across a population of items given a total budget that
can be allocated among the average inventories of the
items. Conversely, how does one keep the total average
stock (in monetary units) as low as possible subject to a
restriction on the total number of replenishments per year
(that is, for a given workload capability of the purchasing
or production department)? Under economic order quantity
assumptions the optimal solutions to these constrained
problems have been known for many years. In fact, by
varying the level of the constrained resource, one can trace
out a whole exchange curve which shows the best that one
can do on one aggregate measure as the constraint level of
the other aggregate measure is varied."* However, these
results hinge upon continuous possible values of the deci-
sion variables, for example the order quantities. In practice,
managers often prefer to restrict the decision variables to a
set of discrete possible values, for example the order
quantity of any item is restricted to a given set of time
supplies such as 1 week, 2 weeks, 1 month, 2 months, 3
months, 6 months, or 1 year. This facilitates easier under-
standing and implementation. Two related questions are: (i)
is it easy to incorporate the restriction of a discrete set of
possible values of the time supply?; and (ii) what is the cost
of degradation associated with adding this practical type of
constraint?
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This paper addresses how to deal with the above
constrained problem in a pragmatic fashion. Specifically
we treat the case where there is a set of time supplies, one
of which must be used for each of a population of items.
There is a specified upper limit on the aggregate number of
replenishments per year and we wish to choose the time
supply order quantities of the population of items, subject
to the discrete set of options and the aggregate constraint,
so as to minimise the monetary value of the total average
stock level (equivalently, to minimise the total annual
carrying charges).

In the next section we introduce the notation and math-
ematically formulate the problem, including obtaining a
useful lower bound. This is followed by the specification of
an optimal solution procedure using dynamic program-
ming. The associated computational effort required
increases substantially with the number of items involved
and with the total number of replenishments permitted.
Perhaps more important, dynamic programming is a dif-
ficult concept to explain to practitioners. Therefore, we
subsequently present a heuristic approach that overcomes
both of these drawbacks. Moreover, we present results of
computational experiments that show that very little, if any,
cost degradation occurs through the use of the heuristics.
The paper concludes with a summary section.

Problem formulation and a lower bound

The notation to be used is as follows:

n = number of items
m = number of possible discrete reorder intervals

N = maximum total number of replenishments per unit
time
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D; = the demand rate of item i, in units/unit time,

i=1,...,n

v; = the unit variable cost of item i, in monetary
units/unit, i=1,...,n
Dv.

w; = é', i=1,...,n

t; = the reorder interval of item i, i=1,...,n

(these are the decision variables)

T = the set of possible reorder intervals

I, = the jth possible reorder interval, j=1,...,m

y; = the number of orders for item i per unit time,
i=1,...,n(alternate set of decision variables)

Y = the set of possible numbers of orders per unit time

Y; = the jth possible (in increasing order) number of
orders per unit time, j=1,...,m

The assumptions are exactly the same as for the classical
multi-item economic order quantity model.” Without loss
of generality, we assume that the items are numbered such
that w; <w, <--- <w,.

Then our problem can be represented as follows:

n
(P1) min Y wt;
i=1
subject to
LI |
Y -<N ey
=14
teT={T,...,T,}Vi )

The objective function minimises the total average cycle
stock. Constraint (1) restricts the total number of replen-
ishments per unit time. In order to facilitate obtaining an
optimal solution we transform (P1) into the following
equivalent problem (P2).

(P2) min 3 4
i=1 Vi
subject to
n
2)’1‘ <N 3)

veY={1,Y,...,Y,} Vi 4
where the ¥;s are positive integers.

We can always ensure that the Y;s are all integers by
redefining the time unit as the least common denominator
of the set of 1/7;s as will be illustrated later in a numerical
example.

Numerical Hllustration
A common set of reorder intervals in practice is as follows:

T = {1 week, 2 weeks, 3 weeks, 1 month, 2 months,
3 months, 4 months, 6 months, 12 months}

Then our problem can be represented as follows:

(P1) min Y w;t;
i=1
subject to
n
YisN
i=1"

t; € {1 week, 2 weeks, 3 weeks, 1 month, 2 months,
3 months, 4 months, 6 months, 12 months} Vi

The reciprocals are (on an annual basis):

1
;€ {52,26,%,12,6,4,3,2,1,)
Therefore, the above problem is equivalent to the following

problem where we use three years as the basic time unit:

n 3 .
(P2) min ¥
i=1 Yi
subject to
n
2.y <3N

i=1

v €1{3,6,9,12, 18,36, 52,78, 156} Vi

If we solve (P2), it gives a solution for the number of orders
per three years for each item. We can transform the solution
into the selection of the reorder intervals. For example,
suppose y; = 52, which means we need to order 52 times
per three years. Then, the reorder interval will be ¢, = 535 year
or 3 weeks.

Lower bound on (P2)

We derive a lower bound on (P2) for two reasons. Firstly, it
represents the optimal value of the objective function when
the #;s are not restricted to a discrete set of values. Therefore,
it will provide an indication of the degradation (increase in
the total average stock value) caused by the introduction of
the pragmatic constraint of restricting the #;s to the discrete
set 7. The second reason is that the lower bound solution is
used as a starting point in the heuristic.

If we relax constraint (4), we get a relaxed version of
(P2) as follows.

(LB)
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subject to

If we can find a Kuhn—Tucker (KT) solution,® it will be a
global minimum due to the fact that the objective function
is convex and constraint (3) is a convex set. The Lagran-
gian function is as follows:

now. n
Loy, ooy M) = Z—'+1(Zyi —N)
i=1Yi i=1
Then, the KT conditions become as follows:
aL w;
—=——4+AiA=0Vi (5)
W
aL
_— = L= 6
= Yn=N ©

=1
If we solve (5) and (6) simultaneously, we can obtain a
lower bound for (P2) as follows:

2

=5V )
N
0=y ®

==t ©)

Finding the optimal solution using dynamic
programming

Because of the integer nature of the ¥;s we will be able to
use dynamic programming’ to solve (P2), in contrast with
(P1). The formulation is quite similar to that of the knapsack
problem due to the similarity of constraint (3) to the
knapsack constraint.® However, both constraint (4) and the
nonlinear objective function make the formulation some-
what more complicated than the knapsack problem. There-
fore, we strongly conjecture that (P2) is also an NP-hard’
problem since the knapsack problem is an NP-hard problem.
For large instances of such problems the computational time
to obtain the optimal solution becomes prohibitive. There-
fore, there is a need for an effective heuristic solution
procedure to be discussed later.

First note that from our assumption of w; < w, <

- € w,, the optimal solution has the following property.

NS <y, (10

The dynamic programming formulation consists of the
following three elements:

(1) Stage i is represented by item i, i =1,2,...,n.

(2) State x; at stage i is the total number of orders left to be
assigned to stages i, i+ 1,...,n.

(3) Alternative y; at stage i is the number of orders selected
for item i. The value of y; may be as small as Y; and as
large as y, . Let Y, < qN/n < Y, where q is the
smallest integer number of unit periods needed to
ensure that all of the Y; values are integers. Clearly,
the upper limit of y; must be Y, , and the lower limit of
v, must be Y; due to (10).

Let f;(x;) = optimal value of stages i, i+ 1, ..., n, given
the state x;. Let yf(x;) be the optimal solution at stage i given
state x;. The lower limit of x; is clearly (n — i+ 1)Y; since
the number of orders for each of the remaining items must
be at least Y;. The upper limit of x; is gN — (i — 1)Y since
the largest number of the remaining orders at stage i would
be in the case where the numbers of orders for each of the
items 1 to i — 1 is exactly Y. Then the backward recursive
equations are as follows:

&) =min{T % =¥, ¥, +1,....qN —(n— 1Y,
n\**n ¥y n 1 1

y.€Y "

n

Jilx) = Iynely{qy_vft + firr(x; _yi)}’

x=m—i+ DY, m—i+ DY +1,...
i=2,...,n—1

’qN_(l—— I)Ylf

fita) = min 4 i )|
nery Yy

Numerical example

We solve (P2) using a 48 item problem presented by
Brown.? The Dv values (sorted in increasing order) are
listed in Table 1. The individual D and v values are listed in
Brown.”

For illustrative purposes we set the maximum number of
replenishments per year at 700. The reorder intervals are
restricted to T = {1 week, 2 weeks, 3 weeks, 1 month, 2
months, 3 months, 4 months, 6 months, 12 months} which,
as shown earlier, implies that the possible numbers of
orders per three years are restricted to ¥ = {3, 6, 9, 12,
18, 36, 52, 78, 156}. Now we find an optimal solution for
the above example using dynamic programming. For brev-
ity, we provide a condensed outline of the computations.
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Table 1 The Dv values for the example

i 1 2 3 4 5 6 7 8
Dy, 20.04 21.72 37.92 54.12 61.8 81.24 94.2 1194
i 9 10 11 12 13 14 15 16
Dy, 171.6 208.8 415.27 470.23 1212 1393.2 1496 .4 1600
i 17 18 19 20 21 22 23 24
Dy, 1702.4 1714.5 1870.5 1977.8 2647.12 3143.82 4173 4347.78
i 25 26 27 28 29 30 31 32
Dy, 4917 5048.3 5397.2 6692.4 6837.6 8003.1 8449.5 9152
i 33 34 35 36 37 38 39 40
Dy, 13236.3 13970 15327.6 16368 19765 20470.3 23182.2 25026
i 41 42 43 44 45 46 47 48
Dy, 31675.6 56734.2 69040.4 75192 97066.5 998032 105984 106465
(Stage 48) (State 1)
3wyg . }159697.5
X43) = =min{—1%, . [30.06
Saleg) = { Yag } Yas { Yag } £1(2100) = nryx:n
X48 =3,4,..., 1959
1959 has been obtained from 3N —(n—1)Y, =

3 x 700 — 47 x 3.)

It is clear that yj; is the

Y; that is closest to x,g but no

larger than x,q, for example

Vig(100) =78 and f435(100) =

(Stage 47)

Jar(xg7) = min{
Yar
)C47 =6,7,...,

For example

ﬂw (200) =

14,(200) =78 and f;;(200)

f15(100) = [
)’48

159697. 5}
Yag

2047.40

158976

+ fag(x47 — ya7) } )
1 962

158976

+ f45(197),
15 8976

. {158976
miny ———

158976

+ f23(194), + f15(191), ———

158976
+ f15(182), ———

158976
+ f43(148), ———

158976
+ f15(188), ———

158976
+ f13(164), ———

158976

T f(122), 3876 +Jz8(44)}

= 4085.56

If we proceed in this way, we arrive at the final stage as

follows:

Consequently, yf = 3. After backtracking, we find the
optimal solution as follows:

Vi=33=3)=3);=3=3),=3,);=6,
Y8 =6,¥5=6,y1g=6,)1; =9, )1, = 9,)13 = 18,
Via = 18, y15 = 18,31 = 18,3]; = 18, )5 = 18,

Vio = 18,15, = 18,33, = 18,3, = 36, y3; = 36,

V4 = 36,¥35 = 36,156 = 36,5, = 36, y35 = 36,

Vo = 36,¥3 = 36,15 = 36,3, = 36,)5; = 52,

Vis = 52,¥35 = 52,356 = 52,53; = 52,4 = 52,

V3o =78, ¥4 = 78,5 = 78,51, = 78,55 =78,

Vas = 156, yis = 156, yic = 156, yi; = 156, yis = 156

As indicated above the optimal objective value is 15965.85.

If we convert the above solution to #s, we obtain the
solution summarized in Table 2.

Table 2 Optimal solution in terms of reorder intervals

Reorder interval Items
1 week 4448
2 weeks 39-43
3 weeks 33-38
1 month 22-32
2 months 13-21
4 months 11-12
6 months 7-10
1 year 1-6
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Heuristic algorithm

We develop here a heuristic algorithm for (P2) since, as
mentioned earlier, it would take too much time to solve the
dynamic program if n or N becomes quite large. Moreover,
the heuristic solution is much easier for a practitioner to
understand than is dynamic programming. Note that we can
obtain an upper bound directly from the lower bound
solution of the y;s. That is, if we round down the }¥s to
the nearest ¥;s, we obtain an upper bound (a feasible
solution) immediately. In contrast, the heuristic algorithm
is based on the lower bound (infeasible) solution and a
marginal (or greedy) allocation algorithm.'® At each step the
algorithm reduces the number of orders for the item with the
least increase of the objective value per unit decrease of the
number of orders. This is continued unti! a feasible solution
is obtained. Any capacity (number of orders) remaining is
filled in a reverse greedy fashion.

Heuristic algorithm

Step 1  Solve the lower bound problem. Let y, be the lower
bound solution for y,

Step 2 Suppose Y,i << Y, (If W= Y, orY, ., we
just leave y? as it is). Round up all y, s obtained in
solving (LB) to the nearest Y (This solution will be
always 1nfeas1b1e unless )? e Y={r,...Y,}. Vi
since the y?s satisfy the constraint as an equality).
Let the current value of y; be Y, .

Step 3 We choose the item i such that

qw;  gw;
argmin, ., 7, (1D

Y, -Y_,
where q is the smallest integer number of unit
periods needed to ensure that all of the ¥; values are
integers. Then decrease y; from Y, to ¥,_; and
update the current value of y; to Y, _;.

Step 4 If 37, y; = gN, stop. We have found a heuristic
solution.

If 37 ;¥ < gN, go to Step 5.
If > ¥ > gN, go to Step 3.
Step 5 Let the current value of y; be Y, Vi after the above

steps. We choose the item i such that

qw;  qw;
argmax; R (e (12)
Vo= Y,

Then increase y; from ¥ to Y, if ¥, Y <
gN — >, y; and update the current value of y; as Y, -
If not, eliminate item i from consideration in this step.
Repeat this step as long as we can satisfy the constraint.

Numerical example

We solve the same 48 item example as earlier, but this time
using the heuristic algorithm with q=3.

Step 1 First we compute the lower bound solution using
(7) and (8). The lower bound solution is as follows:

W =2.02,18 =2.10,3% =2.27,)% = 3.32,,% = 3.55,
9 =4.07,)5 = 438,10 = 493,35 =5.91,

Mo =6.52,3% =9.19,3%, = 9.78,9;, = 15.70,

¥, =16.83,)% = 17.44, % = 18.04, 39, = 18.61,
s = 18.67,3% = 19.50, 39, = 20.06, 9, = 23.20,
39, =25.29,39; = 29.13,39, = 29.74, 9 = 31.62,
¥96 = 32.04,3%; = 33.13, 3% = 36.89, 9, = 37.29,
3o = 40.34,33, = 41.45,3), = 43.14,)9, = 51.88,
134 = 53.30,3%5 = 55.83, % = 57.69, 3, = 63.40,
1% = 64.52, % = 68.66, %, = 71.34, 3, = 80.26,

Vi = 107.41, 5% = 118.49, 33, = 123.66, y}5 = 140.50,
V96 = 142.47, 5%, = 146.81, 1% = 147.14

The value of the lower bound is 15489.64. Note that the
value of an upper bound (by rounding down the ?s to the
nearest Ys) is 22651.18.

Step 2 We round up the 3Ps to the nearest Y;s which
provides an initial solution for the heuristic. This
solution is clearly infeasible (the sum of the y;s is
2670 which is greater than 2100).

N=3»m=3y3=3y,=6y;=6y;=6y,=6,

Vg =6, =6,y10 =9,y = 12,3, = 12,y;3 = 18,

e = 18,315 = 18,316 = 36,317 = 36,15 = 36, ;4 = 36,
Y20 = 306, ¥509 = 36,351 = 36,35, = 36,3 = 36, y, = 36,
Y25 =36, y36 = 36, y27 = 36,155 = 52,359 = 52,

Y30 =52, y31 = 52,y3 = 52,y33 = 52,334 = 78, y35 = 78,
Y16 =18, y37 =78, y35 = 78, y39 = 78, y49 = 78,

Va1 = 156,y4p = 156,43 = 156, 44 = 156, y45 = 156,
Vag = 156,y47 = 156,145 = 156

Note that the objective value of the infeasible solution is
12540.95.

Steps 3 and 4 We compute the priority ratios of the
reduction of the y values dynamically
using (11). The priority order of the

reduction of the y values is as follows:
16,41, 17, 18, 19, 4, 20, 5, 34, 28, 29, 35, 11, 10, 36, 21,
30,12,6,31,42,22,37,32, 38,7, 13, 43, 39,40, ...

It means that we first reduce y;s from 36 to 18, and check
whether ), y;, < 2,100. We iterate this procedure until we
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satisfy >, y; < 2,100. This finally occurs when we decrease
va3 from 156 to 78. Since ), y; = 2073, we move to Step 5.

Step 5 Since we have 27 orders remaining, we want to use
them up if possible. We compute the priority ratios
of the increase of the y values dynamically using
(12). The priority order of the increase of the y
values is as follows:

43,13,7,38,32,37,22,42,31, 6, 12, 30, 21, 36, 10, 11,
35,29,28,34,5,33,9,...

Since we can not increase y,4; from 78 to 156, we increase
y13 from 12 to 18. Next we increase y, from 3 to 6. Next we
try to increase ys;g from 52 to 78, but we have only 18
remaining orders. Therefore, we can not increase y;g. Then,
we increase y;, from 36 to 52. Since we have only two
remaining orders, which can not be used to increase any of
the y;s, after these assignments, we stop here. Note that the
priority order of the increases in the y values is not
necessarily in the exact reverse order of that of the Step 3
reduction of the y values (For example, in the above
numerical illustration items 20 and 4 appear just before 5
in Step 3 whereas items 33 and 9 appear just after item 5 in
Step 5.
The heuristic solution is as follows:

nN=3y»n=3y=3y=3y5=3,ys=3,y7 =6,

Vg =06,y =6,y10=06,y11 =9,y =9, 313 = 18,

Yia = 18,315 = 18,316 = 18,317 = 18, y13 = 18,y = 18,
Va0 = 18,51 = 18, ypp = 18, yp3 =36, y54 = 36, 3,5 = 36,
Y26 = 36,27 = 36, y33 = 36, y59 = 36, y3p = 36,

Y31 =36, y3p = 52, y33 = 52, y34 = 52, y35 = 52, y3¢ = 52,
Y31 =52,y38 = 52,y39 = 78, y40 = 78, 41 =78, y4p =78,
Va3 = T8, y44 = 156, y45 = 156, y45 = 156, y47 = 156,

Yag = 156

The objective value of the heuristic solution becomes
15979.51. Note that this solution is different from the
optimal solution in two elements. Specifically, y,, = 18
and y3;, = 52, compared to 33, =36 and y}, = 36. Note
also that the heuristic solution does not use up the total
number of orders. The ratio of the objective value of the
heuristic solution to the lower bound is 1.03163, and the
ratio of the objective value of the heuristic solution to that
of the optimal solution is 1.00086, an extremely small cost

penalty.

Computational experiments

First we have solved Brown’s 48 item problem varying N to
see how the computational time has been affected by N. The
program has been coded using GAUSS,'! and it has been
run on an IBM Pentium II PC with 266 Mhz clock speed.
The results are shown in Table 3. The computational time to

Table 3 Computational results for Brown’s 48 item problem with
different values of N

N/year LB  Optimum Heuristic Heu/Opt Heu/LB CPU time®

100 108427 119949 119949 1.00000 1.10627 1.5

300 36142 37499 37511 1.00032 1.03788 5.6
500 21685 22626 22626 1.00000 1.04339 9.7
700 15490 15966 15980 1.00086 1.03163  14.0
900 12048 12387 12404 1.00137 1.02955 18.1
1100 9857 10623 10648 1.00025 1.08025 22.6

2CPU time to find the optimal solution (in seconds)

find an optimal solution increases almost linearly. The
reason is that the dynamic programming formulation is
similar to that of the knapsack problem whose computa-
tional complexity is pseudo-polynomial.” The performance
of the heuristic, compared to the optimal solution, is very
encouraging. The penalty of Heu/LB can be regarded as the
penalty of restricting the reorder intervals to the finite set
with 9 elements. Obviously, if we add some more candidates
to the set 7, the ratio will be reduced. However, the system
control costs (including implementation considerations)
increase with the number of options in 7.

To investigate the performance of the heuristic further,
we have tested it using randomly generated problems
within realistic parameter ranges. Empirically, it has been
found that quite often the distribution of usage values
across a population of items can be adequately represented
by a lognormal distribution.! Consequently, we assume that
the Dv values follow a lognormal distribution. If we let Dv
be denoted by x then x follows the distribution

1 —(Inx — a)®
X) = €X]
S &) P p[ B
where a and b are the mean and the standard deviation of the

underlying normal distribution. It can be shown that the
mean value of the lognormal distribution is given by

:|0<x<oo

bZ
E(x) = exp [a + ?il

and the coefficient of variation (a measure of the relative
dispersion) of the lognormal distribution is a monotonically
increasing function of only b. According to Herron,'?
typically the inventories of merchants (wholesalers, retailers,
etc.) have bs in the range of 0.8 to 2.0; industrial producers
are in the range 2 to 3; and highly sophisticated hardware
suppliers (who are subject to rapid technological innova-
tions) have bs in the 3 to 4 range. Therefore, we set the
parameter values within these ranges. Our experiments can
be divided into three cases, each in turn having two
subcases, one with relatively low variability (denoted as
‘dense’), the other with relatively high variability (denoted
as ‘scattered’). Each subcase involved 15 randomly gener-
ated problems. The mean values are in dollars per year.
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Case I High Dv values (mean of the Dv values is 11159)

n ~ Uniform(50, 100), N ~ Uniform(5n, 10n)

Dv ~ LN(9, 0.8%) for dense set,
Dv ~ LN(6,2.577%) for scattered set

Case II Low Dv values (mean of the Dv values is 4105)

n ~ Uniform(50, 100), N ~ Uniform(5n, 10n)

Dv ~ LN(8, 0.8%) for dense set,
Dv ~ LN(5, 2.577%) for scattered set

Case III Low Dv values and small number of items (mean
of the Dv values is 4105)

n ~ Uniform(10, 30), N ~ Uniform(5n, 10n)

Dv ~ LN(8, 0.82) for dense set,
Dv ~ LN(5, 2.577?) for scattered set

The computational results for the above three cases have
been summarized in Tables 4, 5 and 6, respectively. Here
H, OPT, LB represent the objective value of the heuristic
solution, the optimal objective value, and the lower bound
value, respectively. The performances of the heuristic for
all cases are extraordinarily good. The somewhat higher
values of the maximum ratio of H/OPT for the scattered
case indicate that the heuristic is not quite as good for
relatively high variability of the Dv values. The heuristic
works well for both high and low Dv values. The perfor-
mance deteriorates somewhat as the number of items
becomes smaller. For a problem with a small number of
items, incorrect assignment of the time supply for an item,
especially for an item with a large Dv value, can signifi-
cantly affect the solution. However, in most practical appli-
cations one would expect n values larger than 10 to 30. In
fact, the n values could be well above the 50 to 100 range.
We did not test above 100 because of the work space limit of
the GAUSS software which has been used to find the
optimal solution. The H/LB ratios show that restricting
the time supplies to a discrete set, instead of permitting
any values of the #;s, on average leads to an increase of a few
percent in the total average stock level. However, there are
some instances, particularly for highly variable Dvs, where
the penalty can be considerably higher.

Table 4 Computational results for case I

Mean Max No. Mean Max
Set (H/OPT) (H/OPT) OPT (H/LB) (H/LB)
Dense 1.00010 1.00087 8 1.02848  1.03733
Scattered  1.00093 1.00951 5 1.07936  1.48929

Table 5 Computational results for case II

Mean Max No. Mean Max
Set (H/OPT) (H/OPT) OPT (H/LB) (H/LB)
Dense 1.00036 1.00199 9 1.03139  1.03954
Scattered  1.00057 1.00705 7 1.04458  1.12984

Table 6 Computational results for case III

Mean Max No. Mean Max
Set (H/OPT) (H/OPT) OPT (H/LB) (H/LB)
Dense 1.00585 1.02244 6 1.04675 1.08307
Scattered  1.00543 1.04532 10 1.06623  1.18923
Conclusions

In this paper we have analysed a problem of setting reorder
intervals (time supplies) of a population of items, subject to
a restricted set of possible intervals as well as a limit on the
total number (N) of replenishments per unit time. A
dynamic programming formulation for obtaining the opti-
mal solution has been presented. More importantly, a much
simpler heuristic solution procedure has been shown to
provide excellent results on a set of realistic examples.
Therefore we have been able to extend the concept of
appropriately allocating stock among items in a way that
incorporates the pragmatic consideration of a restricted set
of options. Also, by varying the parameter N, one could
repeatedly use the heuristic to trace out an exchange curve
of total average stock versus N.

Conceptually the same general approach should be
applicable to allocating a total available safety stock
among a population of items. Work is under way on this
safety stock allocation situation and we hope to report
useful results in the future.
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