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The Economic Lot Scheduling Problem (ELSP) is the problem of scheduling production of several items in a single facility, so that
demands are met without stockouts or backorders, and the long run average inventory carrying and setup costs are minimized. One
of the general assumptions in the ELSP is that the yield rates of a given manufacturing process are constant, or 100%, after setup.
However, this assumption may not be true for certain manufacturing processes, in which the yield rates are quite low just after
setup, and then increase over time. This period is called a stabilization period and yield rates gradually increase during this period
until they reach the target rates, which are set empirically or strategically. The purpose of this paper is to clarify the effect of the
stabilization period by applying the stabilization period concept to the ELSP, which has been widely applied to many production
systems. In this paper, the problem is tackled in three stages: Firstly, we formulate a model and develop an algorithm, which
provides a lower bound for a minimum cost. Secondly, we develop a heuristic procedure using the time-varying lot size approach.
Finally, we solve a special case of the ELSP to find an upper bound using the common cycle approach.

1. Introduction

The Economic Lot Scheduling Problem (ELSP) is the
problem of scheduling production of several items in a
single facility, so that demands are met without stockouts
or backorders, and the long run average inventory car-
rying and setup costs are minimized. This problem occurs
in many production situations [1] including:

* Metal forming and plastics production lines (press
lines, and plastic and metal extrusion machines), where
each product requires a different die to be set up on the
machine.

» Assembly lines, which produce several products
and/or different product models (electric appliances,
motor cars, etc.).

e Blending and mixing facilities (for paints, beverages,
animal food, etc.), in which different products are poured
into different containers.

* Weaving production lines (for textiles, carpets, etc.),
on which the main products are manufactured in different
colors, widths, and grades.

Typically, it is more economic to purchase one high-
speed machine capable of producing a number of products,
than to purchase many dedicated machines. This situation
leads to the question of how one should schedule produc-
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tion on this high-speed machine. The issue is one of se-
lecting both a sequence, in which the products will be
manufactured, and a batch size for each product run. The
issue of batching arises because the system usually incurs a
setup cost and/or a setup time when the machine switches
from one product to a different product. The cost may be
due to cleaning or to scrap losses occurring when machine
settings are adjusted for the next product. Setup times
imply a downtime during which the machine cannot pro-
duce, which, in turn, implies a need to carry more inven-
tory. This problem has attracted the attention of many
researchers, partly because it features many frequently
encountered scheduling problems, and simply because it
seems to be difficult to solve.

In the ELSP, it is typically assumed that production
and demand rates are known item-dependent constants,
while setup times and setup costs are known item-de-
pendent, but sequence-independent constants. In addition
research on the ELSP has focused on cyclic schedules,
ie., schedules that are repeated periodically. Because of
its nonlinearity and complexity, the ELSP is generally
known as an NP-hard problem [2]. Many heuristic ap-
proaches have been developed for this problem. Basically,
there are three approaches:

(1) The common cycle approach: This approach restricts
all the products’ cycle times to an equal length. Then it
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finds the optimal common cycle time. This approach has
the advantage of always finding a feasible schedule, and it
consists of a very simple procedure. This procedure,
however, gives solutions far from the lower bound in
some situations [3-5].

(2) The basic period approach: This approach allows
different cycle times for different products, but restricts
each product’s cycle time to be an integer multiple £ of a
time period called a basic period. All lots of each item are
of the same size. Under this approach, it is NP-hard to
find a feasible solution, given the number of production
runs per cycle for each of the items. This approach, in
general, gives better solutions than the Common Cycle
approach. However, its main drawback is the difficulty of
ensuring feasibility [2,6,7].

(3) The time varying lot size approach: This approach
allows the lot sizes for a given product to vary over a
cyclic schedule. It explicitly handles the difficulties caused
by setup times and always gives a feasible schedule. This
approach usually gives better solutions than the previous
two approaches [8—11].

One phenomenon that occurs in the production sys-
tem is that the yield rates are quite low just after setup,
under the influence of the process parameters. Then, the
yield rates increase over time while the process param-
eters are adjusted, until they reach the target rates,
which are set either empirically or strategically. This
period is called the stabilization period and the yield
rates gradually increase during this period. We have
observed this phenomenon for the operation of a man-
ufacturing line for color monitors in which various kinds
of panels and funnels are produced in a single facility.
However, the effect of the stabilization period has not
been seriously discussed in the published ELSP litera-
ture. It has usually been assumed that the yield rates of
a given manufacturing process are constant, or 100%,
after setup. This assumption may lead to faulty decision-
making, which may result in significant additional op-
erating costs. Recently, there have been several studies
which consider the stabilization period. The yield rate is
assumed to be an increasing function implying a learn-
ing effect. Hahm ez al. [12] have applied the stabilization
period concept to an economic production quantity
model. Bourland er al. [13] solved a product cycling
problem assuming that the yield rate is an increasing
function of the production quantity. Urban [14] has
assumed that the defect rate of the process is a function
of the run length, and investigated both positive and
negative learning effects in an economic production
quantity model.

The purpose of this research is to clarify the effect of
the stabilization period, and to develop an algorithm to
find an efficient production schedule (production se-
quence and production run times) by applying the sta-
bilization period concept to the Economic Lot Scheduling
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Problem (ELSP), which has been widely applied to many
production systems. We call an ELSP with a stabilization
period the Stabilization-ELSP.

The organization of this paper is as follows: Problem
descriptions, assumptions, and notation are presented in
the next section. In Section 3, we develop an algorithm
which provides a lower bound for the Stabilization-
ELSP. This is followed, in Section 4, by the development
of a heuristic procedure for the Stabilization-ELSP, using
the time-varying lot size approach. We solve a special
case of the Stabilization-ELSP, using the common cycle
approach, which gives an upper bound for the Stabili-
zation-ELSP in Section 5. In Section 6, computational
tests are performed to compare bounds with the heuristic
solutions. Finally, concluding remarks in Section 7 close
the paper.

2. Preliminaries

The following assumptions are used in the Stabilization-
ELSP:

(1) Multiple items compete for the use of a single fa-
cility.

(2) Demand rates, production rates, setup costs, and
inventory loss costs for all items are known constants.

(3) Backorders are not allowed.

(4) Costs (rework or scrap) are incurred for defective
units.

(5) The non-defective yield rate function increases
with time and is deterministic during the stabilization
period.

(6) The target yield rates are set strategically by man-
ufacturing process characteristics and production is con-
tinued until the given target rate is reached.

Note that the last assumption might be strong in the
make-to-order production environment. The ELSP is
more suitable for the make-in-advance production envi-
ronment, in which the demand rates are quite stable. In
addition, the fine-tuning process might be regarded as a
setup process, and it is usually undesirable to stop pro-
duction before the setup ends.

The following notation is used in the model:

i=item index i=1,2,...,m;

p; = constant production rate i =1,2,...,m;
r; = constant demand rate i=1,2,... m;
h; = known inventory holding cost i=1,2,...,m;

n; = known loss cost i=1,2,...,m;
K; = known setup cost i=1,2,...,m;
s; = known setup time i=1,2,...,m;

T = cycle length;

(; = non-defective production quantity i =1,2,...,m;
7;(t) = yield rate function i=1,2,...,m;

G; = target yield rate i=1,2,...,m;
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Inax; = maximum inventory level i=1,2,...,m;
r,-/pj-:p;» i=1,2,...,m

r/Gpr=p; i=12,...,m
I;(r) = inventory level at time 7 i=1,2,...,m.

First, we define the following time periods related to
the yield rate function y,;(¢) (see Fig. 1).

t, = elapsed time from the start of the production until
the inventory level drops to zero;

t,, = elapsed time from the start of the production until
the production rate reaches the target yield rate G;
(stabilization period);

b, =1, — 1,

If the non-defective production rate exceeds the de-
mand rate at the beginning of production, that is
v;(0)p; > r;, 1), becomes zero. However, if the non-defec-
tive production rate does not exceed the demand rate at
the beginning of production, the inventory level will be
zero during the stabilization period. Consequently, #), can
be defined as follows:

f = {“/?‘(pi), 7(0) < pi,
: 0, 7:(0) > p;.

In order to formulate the problem, we first need to
derive the total inventory for item i during a cycle length
T;, and the total of defective units incurred during the
production of item i.

Proposition 1. The total inventory for item i during a cycle
length T; (denoted as Ir), and the total of defective units
incurred during the production of item i (denoted as Lr),
can be derived as follows:

]T Ir%laxi

—__maxi__ 4 p
a0 -pon T

7(t)

pi

t, tz,

Time

v

L,

Fig. 1. Non-defective yield rate function.
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ly; 1 Slzl S%,
where B; = /0 Ii(r)dr — 3 {71‘ + Gpi — rl}'

ly;
Lr, = (G = )0 + / (1 = G ly,(1))d.

Proof: The details of the proof are described in Appendix
A. |

3. A lower bound for the stabilization-ELSP model

In order to be able to assess the performance of feasible
solutions, it is desirable to have an easily calculable lower
bound on the average cost. The procedure to find a lower
bound can be formulated as follows: the objective func-
tion denotes the average cost (including holding, setup,
and loss costs) per unit time. The capacity constraint is
explicitly considered. However, the synchronization
constraint, stating that no two items can be scheduled to
be produced at the same time, is ignored. Consequently,
the value of the program results in a lower bound on the
average cost over all cyclic schedules.

Stabilization-LLB
Ming, 7, [7 +HTi + U,} :
i=1 L1

subject to

where

ty: 2
“1 7i(1) hi (4
+n/0 p( G,-) +2ri(1—p’~+ ’

1
H; = ihi(l - piri,

Uy = mri(GT = 1) — Aihy,

t.‘/i
Si=si+t, — G </ y,(t)dt),
0

m >
I

k=1- ,

= G

max(tgi,Tm;m)pi
Ti =/ -7
0 ri

In the above program, reorder intervals (cycle times) are
decision variables. The objective function and the con-
straint set are convex. Therefore, the optimal points of the
Stabilization-LB  are points which satisfy the
Karush—-Kuhn-Tucker (KKT) conditions. The KKT
conditions are stated below. Let A and v; be the Lagrange

An)de.
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multipliers corresponding to Y. (Si/T;) <k, T; > 1;,
respectively. Then the KKT conditions for program LB
are:

Ri + 4S;

Ii=y|—m— i=12,....m. 1
H; — Zi:l Vi " ( )
4 2> 0 complementary slackness (c.s.)
with > (8,/T}) < . (2)
i~
vw>0cs.withT, >t i=12,... . m (3)

After computing a KKT point (T) satisfying the above
conditions, we obtain production frequencies and round
them off to power-of-two integers [15). These frequencies
can then be used to obtain a production sequence, using a
bin-packing heuristic [8]. The final time-varying lot sizes
can be optimally selected [11]. We present an algorithm to
find a KKT point satisfying (1)-(3). Note that it requires
only a one-dimensional line search.

Algorithm
Step 1. (Check if A=0, >, v;=0 gives an optimal
solution)
Find 7;’s from the following equations:
]-} - & 1= 1’2? 7m
H;
If -7 (S;/T;) <k and T; > 1, Vi, stop. T’s are
optlmdl

Else, go to Step 2.
Start from an arbitrary A > 0.
Solve the following equation for 7;.

Ri iS,
T,»:max{ ;l ,r,-} i=12,...,m.

If 377, (Si/T;) < «, reduce 4 and go to Step 3.
If >0, (Si/T;) > k, increase 4 and go to Step 3.
If "7 (Si/T;) = «, stop. T;’s are optimal.

Step 2.
Step 3.

Step 4.

4. Stabilization-ELSP model
4.1. Formulation

The problem is to determine a production schedule, and
to provide a complete specification of which items are to
be produced, when, and in what quantities. Some items
may be produced several times during a cycle, and we
allow different runs of an item within a cycle to differ in
size. This is known as a time-varying lot-size approach
[8]. The notation is similar to that of Dobson [8], except
for the stabilization period.
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The problem can be viewed as one of deciding on a
cycle length T, a production sequence f',f2, ... f"
(f7 €1,2,...,n), n > m, production times (which do not
1nclude stabllization period) #',#2,... ¢, and idle times
u',u?,...,u", so that the production sequence is execut-
able in the chosen cycle length. The cycle length can be
repeated indefinitely, demand is met and the total cost per
unit time (setup plus holding plus loss) is minimized.

We will use subscripts to refer to the ith item:
Di,Sistg,, Kiy i, etc. Over the cycle n > m, setups and
stabilization periods will occur, producing items
S 2 f" We will use superscripts to refer to the data
related to the item produced at the jth position in this
sequence: p/,s/,t,/,K/ W, etc. That is, p/ = Priree o W
= hy;. Consider the Jjthitemin the productlon sequence: its
production involves a setup time s/, production time ex-
cluding the stabilization period té some subsequent idle
time 1/, and then some other items are produced before the
productlon of item f7 resumes (see Fig. 2).

Let J; be the positions in a given sequence within which
item i is produced thatis, J; = {j : f/ = i}. Let L; be the
positions in a given sequence from k (when f* is pro-
duced), up to, but not including the position in the se-
quence where item f* is produced again. The definition of
Ly assumes that the sequence f!, f2,..., /" is viewed as
circular (f! follows 7). We define ,/ to be the set of all
possible finite sequences of items. With this notation, the
Stabilization-ELSP can be represented as follows:

Stabilization-ELSP
. . 1 " ) nooo. noo.
mfnyMtho_uzojzo ? (Z K + Z hjlg- —+ Z TE/LJT> R
J=1 =1 =

subject to

6o ”
Jjed;

Inventory
A

—p Time

PSR

others

Fig. 2. Inventory for a single product.
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" "()dt+G"tA i

k=1,2,...,n. (3)

S +th+s +u) =

JEL

It s +w) =T. (6)

where
ty S
1»;:/ P()de + 1285 + (G — )L
0
L ISL (G — PP S]]

2r/ ’
1= [*p0 -y

Gt

Constraint (4) implies that we must allocate enough
time for each product i to meet its demand, 7, over the
cycle The total production time consists of two parts: one
is the stabilization period ( ;> and the other is the
amount of time from the end of/ the stabilization period to
the end of production #, that is (t’ ) 3);—- Constraint (5)
says that we must produce enough of product i each time
to last until the next time product i is produced. Con-
straint (6) means that a cycle consists of setup times,
production times, and idle times. In the above model, the
decision variables are t = (t’)] pu=(u )j »and T.

yde+ (1 —

4.2. A heuristic algorithm

To solve the program Stabilization-ELSP, we use the
time-varying lot size approach proposed by Dobson [8&].
The basic idea of the time-varying lot size approach is to
decompose the problem into a combinatorial part and a
continuous part. In the combinatorial part, we first de-
termine production frequencies. Then the production
frequencies are rounded off to power-of-two integers
using an algorithm proposed by Roundy [15]. Finally, the
items are bin packed with respect to frequencies and av-
erage loads, resulting in a production sequence. The
continuous part takes the production sequence as given
and computes actual production times and idle times [11].
The heuristic algorithm can be described as follows:

Algorithm

Step 1. Find the production frequencies by solving the
LB. In Section 3, we suggested an algorithm to
solve the program LB. Let the optimal cycle
length for program LB be T, and the relative
production frequency be x; for item i. Then x; is
determined by the following equation:
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_ Max(7y})

P = =1,2,...,m.
T[* 1 m

Step 2. Round off the frequencies to power-of-two inte-
gers. It has been shown by Roundy [15] that
additional costs do not exceed 6% when we
convert the real value of production frequencies
to power-of-two integers. The converion of pro-
duction frequencies to power-of-two integers
enables the determination of the production se-
quences to be easily accomplished in Step 3. Let
y; be the production frequency for item 7, which is
a power-of-two integer. Then y; is determined as
follows:

Ifx, € Hizp,zpfz), then yy = 2° p=0,1,....

Step 3. Find a production sequence using the bin-pack-
ing heuristic suggested by Dobson [8]. Given
these new frequencies (y;).,, the bin-packing
heuristic attempts to spread them out as evenly
as possible. By minimizing the maximum height
of the bin, the heuristic finds an efficient pro-
duction sequence (f7)}_; (see Dobson [8] for
details). ’

Solve for t and u, given f. If we assume that there

are no idle times (that is, (#/)7_, = 0) for a given

production sequence (f7)7_;, we can find ()7,
using Equation (5). This approximation is good
for a highly-loaded facility.

Step 4.

5. A special case: common cycle model

If the cycle times of all items are restricted to be of equal
length (that is, each item is produced once in the common
cycle), then the problem is reduced to finding an optimal
common cycle time. This is clearly a simpler version of the
ELSP, and is known as the Common Cycle approach [3].
We demonstrate that we can obtain a closed-form solution
for this problem. This approach provides an upper bound
on the average cost for the Stabilization-ELSP.

Stabilization-CC

. (K; L1 + hilt
Minz( Hmbn )

mn i ",'»t)

S (km [ o (1210,
Z( —I—n/ p< Gi>
h [ A2

+2—r,-(1— + 2B ))/T

+Z< PrT + (G 1v1)~A,-h,->,
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subject to

r> (iséméﬁ%@dﬁ/(l _Zm;r“»
(7)

i=1,2,...m. (8

max(Yy,, Taini) 5.
T> / By,
0

¥

The total amount of time to produce a batch consists of
the setup plus production times. We need a constraint on
the total time in a cycle. Constraint (7) has been derived

as follows:
Z(Si + tpi) <T,
i—1

u ” " T — Jo i (0)dip:
DEES DI gt FUL
i=1 i=1 i=1

iPi

Consequently,

ty
T> <;Si+;tgi—;fo 727,» h>/<1—;th‘>.

Constraint (8) reflects the assumption (6), that the
production is continued until the given target rate is
reached. ¢, Tiin; satisfy the following equations:

Tmini
/ pyi(t)dt = riTin; i=1,2,...m,
0

y(tgi) - Gi

The solution to the Stabilization-CC satisfies the syn-
chronization constraint, stating that no two items can be
scheduled to be produced at the same time. It is therefore
feasible, and consequently the optimal solution among
common cycle schedules. It can be shown that the ob-
jective function, say K(T), is a convex function. Conse-
quently, if we ignore constraints (7) and (8), an
unconstrained optimal solution, say 7¢, is obtained by:

i=12,...m.

dK(T) ’” fn 7i(?)
—_— = - Ki i i 1_1— dt
it Zl< o o1
4 4 + 2B T?
a5 FiDj
2]’,‘ 1 - p;
.1
+ thi(l _P;)’i =0.
i=1
Consequently:
<Z,m=| (K["—TC,’ Ot‘“p,'<1 —%>dt+2h*;l(lA—i):+2rlBl))>
T¢ = :
S k(1= ppr;

Since we ignored constraints (7) and (8), this 7¢ may
not be optimal. If we include constraints (7) and (8), we
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obtain additional conditions on the optimal cycle length
as follows:

T>7 = (isﬂritm_iﬁf“%@d?/(l _iL)

= Gipi

. t.th . Tmmi .
T>7 = max{ / Py (1), / Pro (0,
0 0

F; ¥

i= 1,2,...m}.

Consequently, the optimal cycle length 7* and the
corresponding economic production quantities QF’s, are
as follows:

T* = Max{T", T*, T},

O =nT* i=12,...m

6. Computational experiments

We replicated Dobson’s experiments with an inventory
holding cost rate of 20%. The non-defective yield rate
function was assumed to be a linear function (that is:
7:(t) = a;t + b; where, a;, b; are constants). We also ap-
plied the heuristic procedure to two sets of problems (100
problems in each set). The data sets were generated ran-
domly from uniform distributions on the given intervals
(See Table 1). In two sets of experiments, the loss costs
were randomly selected at 10 times the holding cost. We
report the mean and the maximum ratio of the average
cost of the heuristic to the lower bound (See Table 2). The
results are as reliable as those reported by Dobson [8].

Table 1. Distributions for randomly generated data for test
problems

Parameters Set 1 Set 2
Number of items (units) [3, 10] [3, 10]
Production rate (units/day) {4000, 20000] [1500, 30 000]
Demand rate (units/day) [1000. 2000] [500, 2000]
Setup times (hours) [1, 4] [1, 8]
Setup cost ($) [50, 100] [10, 350]
Holding cost ($/day) [0.2, 1] [0.001, 1.4]
Loss cost () [2, 10] [0.01, 14]
Target yields rate [0.8, 1] [0.8, 1]
Yields rate function (a;) [20, 70] [20, 70]
Yields rate function (b;) [0.1, 0.5] [0.1, 0.5]
Table 2. Computational results for test problems

Model Set [ Set 2

Mean Maximum Mean Maximum
Stabilization-CC 1.032 1.078 1.041 1.094
Stabilization-ELSP 1.014 1.040 1.016 1.060
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The error in the heuristic solution, compared to the lower
bound, was only a few percent on average and 4-6%
maximum.

7. Concluding remarks

The Economic Lot Scheduling Problem has been studied
by many researchers. It captures many important features
of real and frequently encountered scheduling problems.
Because of the non-linearity and combinatorial properties
of the problem, most researchers have focused on the
development of a heuristic algorithm to find a near-opti-
mal solution, which is commonly compared against a
lower bound. Unfortunately only a few researchers have
paid attention to the basic assumptions of the ELSP which
is important since they may not be appropriate when ap-
plied to many real production environments. As pointed
out by Silver [16] in his review, if the quantitative models
are to be more useful as aids for managerial decision-
making, they must represent and formulate more realistic
problems. This paper has been motivated by the need for
such problem formulation. We have applied the stabili-
zation period concept to the ELSP.
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Appendix A

Proof of Proposition |

First, we derive the total inventory for item i during a
cycle length 7; (denoted as I7.). We define the following
notation (See Fig. 3):

t;, = amount of time from the end of the stabilization
period to the end of production;
t, = total production time during a cycle length T

(thatis, t, =1, +t, + 13,);
ts,= amount of time from the end of production to the
beginning of the next production;

S1, = inventory level at the beginning of the stabiliza-
tion period;

S, = inventory level at the end of the stabilization
period.

Inventory

.

man 1

»Time

T

Fig. 3. Inventory level associated with the yield rate function.



1016

Clearly, the following equations will hold using the
above definitions:

O; =nT.

l|i
S|, =t —/ piy;(t)de.
0

ly;
f;
Sy, is an inventory level, at which production must be
started in order to prevent backorders. If production is
started when the inventory level is lower than S|, the non-
defective production rate does not exceed the demand
rate and backorders are incurred. S,, is an inventory level,
at which the non-defective production rate reaches the
target rate.
Next, we derive 3, from the definition:

[I?l
Qi:/ piv:(t)de
0
Ly; Ip;
= / piyi()de + / pivi(t)de
0 ty;

Iy,
:/ pyi(t)dt + Gipits,.
0

Consequently,

_9i- féq piy;(t)de

13
Gip;

i

(A1)

Equation (A1) means that #; is determined by the non-
defective production quantity Q;.

The maximum inventory level Imax; is equivalent to S,
plus the amount of inventory accumulation during f3,.
Using Equation (A1), we obtain the following Equation
(A2):

[max[ = Szl + 13| (Glpl - rl)
Qi — Jo" piyi(t)de

=5 iPi = Ti),
25 + Gipi (Gp }")
t!lr
= (1= )0+ S — (1= p) / pin(1)de
= (l - p;’)Qi _Ah (AZ)

ly;
where 4, = (1 — p;)/ piyi(H)dt — 8.
0

I;(t), inventory level at time #, is given as:

Y
L(t) = 8, +/ piv(H)det — rit;.
0

The level of inventory accumulated during the stabili-
zation period ¢, is obtained by integrating /;(¢), and the
level of inventory accumulated during #;, and # is
obtained by computing the areas of two trapezoids in

Moon et al.

Fig. 3. Therefore, the total inventory /7, can be derived as
follows:

Iy; 1 |
Iy = / 10t 4 5 (naxi +82,)3, + 5 (i + 51, )14,
0

foi 1 (Imaxi — S2,)
= L()dt 4+ = (Imax; + S2,) ——— 2
|10+ 5 = 52) tor
1 ]m'xi_S,-
+ E(Imuxi + Sl,)(drﬁil)y

K 1 (Gipi)

- Iitdl —[2 ; ——
[ +2max,{(Gl_pi_,i)ri}
1[S? S2

) ST TR
21 Gp—n

1 2. fa; 1 (S?, S2.

_ max; +/ L(nde — = hal VAU 2i ,
2(1=p))r; 0 2 m Gipi —ri
1
2

Lysi . 83
here B; = L(n)dt — ¢ — 4+ —=— 3.
where /0 (t) 3\ + re—

Now, we derive the total number of defective units in-
curred during the production of item i (denoted as Lyz).
We obtain the following equation using Equation (A1):

tél[
L= [ p =)+ (- Gopus,
0

I e (Q = S pndr
_/0 pi(1 =y ()de + (1 G,)p,< G )

=@ =ng e+ { [0 - noa

ly;
(G- /0 y,-<r>dt}p,»,

— (G =)o+ /O "1 = G0
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