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Abstract—Scope and Purpose

There is a rapidly growing literature on modelling the effects of investment strategies to control
givens such as setup time, setup cost, quality level and lead time. Recently, a continuous review inven-
tory model with a mixture of backorders and lost sales in which both lead time and the order quantity
are decision variables has been studied. The objectives of this paper are twofold. Firstly, we want to
correct and improve the recently studied model by simultaneously optimizing both the order quantity
and the reorder point. A significant amount of savings over the model can be achieved. We illustrate
these savings by solving the same examples in the study. Secondly, we then develop a minimax distri-
bution free procedure for the problem.

Recently, there have been some studies on lead time reduction to provide more meaningful math-
ematical models to decision makers. Ouyang ef al. study a continuous review inventory model in which
lead time is a decision variable. However, their algorithm cannot find the optimal solution due to the
flaws in the modeling and the solution procedure. We present a complete procedure to find the optimal
solution for the model. In addition to the above contribution, we also apply the minimax distribution
free approach to the model to devise a practical procedure which can be used without specific infor-
mation on demand distribution. © 1998 Elsevier Science Ltd. All rights reserved

Key words: Inventory model, lead time reduction, continuous review, distribution free approach

1. INTRODUCTION

There are a variety of assumptions inherent in any quantitative model that need to be relaxed in
a structured fashion to improve the flexibility and usefulness of the models. Silver [1] suggested
a wide variety of possible improvements to undertake (equivalently, usual givens to change) in
the operations of manufacturing, such as setup reduction, higher quality level, controllable
production rates, etc. There is a rapidly growing literature on modeling the effects of changing
the givens in the manufacturing decision situations. A detailed review up to 1997 is given by
Silver et al. [2]. Most of the models include the cost of the change, usually amortized as part of
total relevant cost per unit time.
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Recently, researchers have studied investment strategies to control givens such as setup time,
setup cost, quality level, lead time, etc. Without the self-effort to improve the givens, there
would be no success for Japanese manufacturing companies. Liao and Shyu [3] have initiated a
study on lead time reduction by presenting an inventory model in which lead time is a decision
variable and the order quantity is predetermined. Ben-Daya and Raouf [4] have extended the
Liao and Shyu [3] model by allowing both lead time and the order quantity as decision
variables. Recently, Ouyang er al. [5] have generalized the Ben-Daya and Raouf [4] model by
allowing backorders and lost sales. However, there is a critical flaw in their model which will be
explained later.

In practice, the distributional information about the demand is often limited. Sometimes all
that is available is an educated guess of the mean and of the variance. There is a tendency to
use the normal distribution under these conditions. However, the normal distribution does not
offer the best shield against the occurrences of other distributions with the same mean and same
variance. Scarf [6] addresses a newsboy problem where only the mean x and the variance ¢° of
the demand are known without any further assumptions on the form of the distribution of the
demand. Taking a conservative approach, he modeled the problem as that of finding the order
quantity that maximizes the expected profit against the worst possible distribution of the
demand with the mean u and the variance ¢. The approach is called the minimax distribution
free approach. Recently, there have been several papers related to the distribution free approach
which help disseminate the approach that has been calm for several decades. Gallego and Moon
[7] have presented very compact proof of the optimality of Scarf's ordering rules for the
newsboy problem and extended the analysis to several cases including fixed ordering cost case,
multi-product case, random yield case and recourse case. Shore [8] derives explicit approximate
solutions to the standard newsboy problem, to some (Q, r) models and to a periodic review
model in which the first three or four moments of the demand are known. Moon and Choi [9]
have applied the approach to the two-echelon stochastic production/inventory models in which
assemble-to-order (ATO), assemble-to-make (ATM) and composite policies can be adopted.
Gallego et al. [10] consider stochastic finite-horizon inventory models with discrete demand
distributions that are incompletely specified by selected moments, percentiles or a combination
of moments and percentiles.

The purposes of this paper are twofold. Firstly, we point out a flaw in the Ouyang et al. [5]
model and improve their model by simultaneously optimizing both the order quantity and the
reorder point. A significant amount of savings over their model can be achieved. We illustrate
these savings by solving the same examples they considered. Secondly, we then develop a
minimax distribution free procedure for the problem.

2. BASIC MODEL FORMULATION

We use the same notation as in Ouyang e al. {5] to avoid any possible confusion. However,
the reorder point r, which has been assumed to be given in Ouyang er al. [5], becomes a
decision variable. Note that the assumptions are exactly the same as those in Ouyang et al. [5]
except the following assumption:

The reorder point r = expected demand during lead time + safety stock (SS) and SS = k
(standard deviation of lead time demand), i.e. r = uL + ko+/L where k is the safety factor.
Here r is a decision variable.

They put a restriction that the reorder point must satisfy the following equation which
implies a service level constraint. P(X>r) = P(Z>k) = q. They made a crucial mistake by
including both the service level constraint and the shortage cost into the model in which both
are being used redundantly to determine the appropriate level of safety stocks. We should not
include the service level constraint if the shortage cost is explicitly included [2]. It is obvious that
we can obtain a better solution by allowing the reorder point as a decision variable.

Since the lead time demand X follows a normal distribution with mean pL and standard
deviation o+/L, the expected shortage at the end of the cycle is given by

B(r) = Jw(x —f(x) dx = o/ LP(K)
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where
Y(k) = ¢(k) — k[1 — ®(k)]

and ¢ and ¢ denote the standard normal probability density function and cumulative
distribution function, respectively. Then, the total expected annual cost can be represented as
follows.

C(Q, r, L) =ordering cost + holding cost + stockout cost + lead time crashing cost

=ﬁQ9+ h[%+ r—pL+(1- B)B(r)] +g[n +o(1 — B)IB(r) +§R(L)
AD

=5+ h[%+ ka«/Z] + {h(l ) +g[n + mp(1 — ,B)]}aﬁ?’(k) +g[c,-(L,~_1 -0
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We can show that equation (1) is convex with (Q, r) for a given value of L. Taking the partial
derivatives of C(Q, r, L) with respect to Q and r in each time interval (L;, L, _,), we obtain

aC(Q,r,Ly AD h D DR(L)
_jEL_ZL@+§_@h+ma—mwm- o @
__aC(Qa’r’ D _y, +h(l — BYF(r) = 1) + g-[n + mo(1 = PI(F(r) — 1) &)

As shown by Ouyang et al. [5], C(Q, r, L) is concave in Le (L;, L;_ ) for fixed (Q, r).
Therefore, for fixed (Q, r), the minimum total expected annual cost will occur at the end
points of the interval. Upon setting dC(Q, r, L)/3Q = 0 and aC(Q, r, L)/dr = 0, we get

Q;FMA+MU+M+MU—WMMTH
- h

(4)

hQ
O = o0 =B + Dl T mo1 — B ©
The optimal (Q, r) pair given L can be obtained by solving the above Equations (4) and (5)
iteratively until convergence. We can easily prove the convergence of the procedure by adopting
a similar graphical technique used in Hadley and Whitin [11]. Thus, we can use the following
overall procedure to find the optimal Q, r and L.
Step 1: Foreach L;, i = 1, ..., n, start with

0= [ZD{A -;R(L,-)}]”z

Repeat step 2 and step 3 until convergence.

Step 2: Find r from equation (5) using a line search.

Step 3: With r found in step 2, compute Q from equation (4).

Step 4: For each pair (Q;, r;, L;), compute the corresponding total expected annual cost C(Q;,

rio L), i=0,1,2, ..., n. The optimal Q, r and L will be the values for which the total expected
annual cost is minimum.

Example 1. In order to illustrate the above solution procedure, let us consider an inventory
system with the data used in Ouyang et al. [5]: D = 600 units/year, 4 = $200 per order,
h = $20 per item per year, m = $50 per shortage, no=3$150 per lost sales, ¢ = 7 units/week and
the lead time has three components as in Table 1 in Ouyang et al. [5].
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Table 1. Comparison of the two procedures (L; in week)

QOuyang et al. Moon and Choi
B service level Q. Ly) C(+) service level (Qy, 1y, Ly) () Percentage of savings
0.0 0.800 (177, 3) 3780.00 0.980 (121, 75, 4) 2991.85 20.9%
0.5 0.800 (158, 4) 3408.93 0.970 (121, 72, 4) 2941.68 13.7%
0.8 0.800 (144, 9) 3123.70 0.952 (121, 69, 4 2890.56 7.5%
1.0 0.800 (134, 4) 2917.82 0.922 (122, 66, 4) 2832.00 2.9%

We solve the cases when f = 0, 0.5, 0.8 and 1. Note that Ouyang et al. [5] set the service level
to 80% and consequently, the reorder point has been predetermined. We summarize the
computational results in Table 1. The savings range from 2.9 to 20.9% which shows significant
savings can be achieved by simultaneously optimizing over both the order quantity and the
reorder point. Note that the savings increase as f§ decreases. It is interesting to observe that our
procedure results in a higher service level for every case by spending less money.

3. DISTRIBUTION FREE APPROACH

Now, we consider the distribution free approach. We make no assumption on the distribution
F of X other than saying that it belongs to the class & of cumulative distribution functions with
mean p and variance ¢°. Since the distribution F of X is unknown we want to minimize the
total expected annual cost against the worst possible distribution in %#. We can represent the
total expected annual cost as follows:

cQ,r, L) =%+ h[%-{— r— ,uLj, + {h(l - B +g[n +mo(1 - ﬁ)]}E[X —* +—g—|:ci(L,-_1 iy

i1
+ ch(bj - aj)], Le (L, Li_y)
Jj=1

where we let x* =max{x, 0}.
The distribution free approach for this model is to find the most unfavourable distribution in
F for each (Q, r, L). Our problem is to solve:

mingso, r>pur, L=omaxrez C(Q, 1, L)
To this end, we need to use the following proposition as in Gallego and Moon [7]:
Proposition 1. For any FeF
E[X — 1" < 3{/62L + (r — uL)* — (r — uL)) (6)
Moreover, the upper bound, equation (6), is tight. In other words, we can always find a

distribution in which the above bound is satisfied with equality for every r.

Using Proposition 1, our problem is to minimize the cost function for the worst distribution

i—1
c¥©.r, 1) =14Q£+h[%+r— uL] +g[ci(L,~_l —D+Y i~ a,,-)]
J=1
VOL+(r — uLy — (r — uL
+{h(1—ﬂ)+g[n+no(1—ﬁ)]} il “2) D et @)

We can show that equation (7) is convex with (Q, r) for a given value of L. Taking the partial
derivatives of CY(Q, r, L) with respect Q and r in each time interval (L;, L; _ ), we obtain
ac¥(Q, r, L) _ AD h  Dlr+my(1 - p)]

D
7 __?juz ——2—Q2—[ 02L+(r—uL)2—(r—uL)]—@R(L) (8)



Lead time and distributional assumptions 1011

c™(Q, r, L) is concave in L e (L;, L;_ ) for fixed (Q, r), because
20 W
a*%r,_m: _%hkaL—z/z _%lh(l - B+ [n+n0(1 _ﬁ)g]]aL—s/z( N1 TR k) <0

where k = (r — uL)jo~/L

Therefore, for fixed (Q, r), the minimum total expected annual cost with worst distribution
will occur at the end points of the interval. Upon setting aCY(Q, r, L)/8Q = 0 and ac™o, r,
L)/or = 0, we get

0= [D{ZA + [+ mo(1 = By o2 L + (r — uL)* — (r — uL)] + 2R(L)}}1/2 10

h

r—uL . 2hQ

=1- 11
foLio_ny OO =B+ D+ (i — p (an

The optimal (Q, r) pair given L can be obtained by solving Equations (10) and (11) iteratively
until convergence. The convergence of the procedure can be shown. Moreover, we can use the

similar procedure used in the previous section to find the optimal Q, r, L and denote it as (Q%,
W oW
rY, LY.

Example 2. We use the same data as in Example 1. Note that the mean and the standard
deviation of the demand are all the information that we can obtain. We compare the
performance of (QV, rV, L) with Q%, ¥V, LNy where NeF represents the normal distribution.
The results are (QV, rV, LY) = (152, 57, 3) and (Q", ¥V, L™y = (121, 69, 4), and the worst case
annual expected cost CY(QW, %, LV) is $3,474.86 for the B = 0.8 case. The cost of using (QV,
W, LY) instead of the optimal (Q", #V, L™) for a normal distribution is clearly

NV, v, LYy — NN, PV, L) = $3,027.44 — $2,890.56 = $136.88

Here CY(QY, vV, L™) is the annual expected cost of using (QW, rV, LW) when the actual
demand distribution is normal. This is the largest amount that we would be willing to pay for
the knowledge of F. This quantity can be regarded as the Expected value of additional
information (EVAI) [8].

We solve the cases when ff = 0, 0.5, 0.8 and 1 as in Example 1. From the results of the above
example as well as Table 2, we can reconfirm the robustness of the distribution free approach
which has been widely proven in recent studies [7, 9, 10].

4. CONCLUDING REMARKS

We have presented a continuous review inventory model with a mixture of backorders and
lost sales in which the order quantity, the reorder point and lead time are decision variables.
This model improves the existing one, and results in both significant savings in the total expected

Table 2. Computational resulits

(ng rW! LW) CW(QW, rW’ LW) CN(QW, rW, LW) CN(QN. rN! LN) CN(QWZ rW’ LW)/
B M., L
0.0 (166, 70, 3) 4048.20 3303.64 2991.85 1.104
0.5 (158, 63, 3) 3726.30 3137.05 2941.68 1.066
0.8 (152, 57, 3) 3474.86 3027.44 2890.56 1.047

1.0 (142, 66, 4) 322561 2859.32 2832.00 1.010
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annual cost and higher service level. We have also applied the distribution free approach to the
basic model. One interesiing research area is to apply the lead time reduction concept to other
inventory models to justify the investment to reduce the lead times. The piece-wise linear crashing
cost function is widely used in project management in which the duration of some activities can be
reduced by assigning more resources to the activities. One might consider using other types of
crashing cost function as in Ben-Daya and Raouf [4] if the piece-wise linear function is not
appropriate to reflect the crashing relation.
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