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Rationing policies for some inventory systems

I Moon' and S Kang?

'Pusan National University and *Seoul National University, Korea

This paper considers inventory systems which maintain stocks to meet various demand classes with different priorities.
We use the concept of a support level control policy. That is rationing is accomplished by maintaining a support level, say
K, such that when on hand stock reaches K, all low priority demands are backordered. We develop four analytical and
simulation models to improve the existing models. Firstly, multiple support levels are used instead of using a single
support level. Secondly, a simulation model with a more realistic assumption on the demand process has been provided.
Thirdly, a single period deterministic cost minimisation model has been developed analytically. Finally, we address a

continuous review (0, r) model with a compound Poisson process.
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Introduction

Distinguishing between various priority classes of demand
arises frequently in practice. For example in a hospital
emergency room blood is rationed in accordance to the
emergency levels of patients. A second example i1s a
computer monitoring system where computer codes and
blocks are allocated in accordance with the priority levels
such as professors, graduate students and undergraduate
students, etc. A third example is a military system where an
item is used in several different weapons or by units with
different missions. A fourth example is a general sales
company where different customers for the same product
yield different profits per unit sold. In addition to these
systems, we find examples of rationing in airline reserva-
tions, pre-sales of season tickets, etc.

Several researchers have dealt with inventory systems in
which there are several priority customers. Kaplan'
addresses the use of reserve levels, that is stock levels at
which to stop issuing in response to lower priority customer.
Veinott® develops a multiperiod single product nonstation-
ary inventory model where the system is reviewed at the
beginning of each of a sequence of periods of equal length.
Evans® and Topkis* independently develop conditions where
optimal rationing policy between successive procurements
of new stock is determined by a set of critical rationing
levels such that at a given time one satisfies demand of a
given class only if no demand of a more important class
remains unsatisfied and as long as the stock level does not
fall below the critical rationing level for that class at that
time. Nahmias and Demmy’ develop methods to compute
the expected number of backorders for high and low priority
customers for several inventory models. They develop
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methods to show how the support level, that is, the inventory
level that starts rationing for low priority customers, reorder
point, and order quantity behave to meet a desired fill rate.
However, they do not consider a cost optimisation model.
Haynsworth and Price® study a periodic review model with a
discrete time rationing policy with a desired service level for
high-priority demands. They model the way reserve levels
vary with remaining lead time and show that the system is
more effective than that of using a single reserve level to be
used throughout lead time. Recently Ha’ studies a rationing
problem of a make-to-stock production system with several
demand classes. A queueing model has been developed to
compare the optimal rationing policy with the FCFS policy.
Note that the reserve level, the rationing level, and the
control level are equivalent terms used in various literature.
The fill rate also has the same meaning with the service
level.

The goal of this paper is to improve and extend existing
studies, especially the models of Nahmias and Demmy".
The concept of support level control policy is used in this
paper. Rationing is accomplished by maintaining a support
level, say K, such that when on hand stock reaches K, all
low priority demands are backordered. Firstly, we extend
the single period model with two demand classes (that is a
single support level) developed by Nahmias and Demmy’
to that of multiple demand classes (that is multiple support
levels) in the next section. However, the model developed is
based on the assumption that all demands occur simulta-
neously at the end of the planning period. It is more
reasonable to use the assumption that demand occurs
uniformly during the period even though it is impossible
to obtain analytical solutions for this case. In the subsequent
section, we develop a simulation model under this better
assumption. No cost consideration is given in the two
sections. There then follows a section developing a single
period cost optimisation model under the assumption that
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the demand rate from each class is constant. However, we do
not assume, as in the second section, that all demands occur
at the end of the planning horizon. Instead, holding cost is
charged per unit per unit time. We analyse the tradeoff
between holding and shortage cost for each demand class.
We show that the total cost during the planning horizon is
convex in rationing trigger times, that is the times at which
the system starts to reject customers. We develop a simple
sequential procedure to find the optimal rationing trigger
times. We show that small changes in the available initial
inventory result in equal shifts of the optimal rationing
trigger times. The rationing policies obtained in the section
might be coupled with some safety stock strategies for the
random demand case. Finally, we extend the continuous
review model with Poisson demands developed by
Nahmias and Demmy’ to that of compound Poisson
demands. Customer fill rates are used to compare the effects
of rationing for the model. The paper concludes with a brief
summary of its main points and possible research areas.

A single period model with muitiple support levels

In this section, we extend the single period model devel-
oped by Nahmias and Demmy® to one with multiple support
levels. Suppose at the start of a single planning period, the
level of starting stock is J and the support levels are
Ki,Ky,...,Ky_y where 0 <K, <K, < --- <Ky_ £J.
Furthermore suppose that the total periodic demand, D, can
be decomposed into D = Dy + D, 4 --- + Dy where D; is
demand whose priority is i (Let priority 1 be the highest
priority). Rationing is accomplished by maintaining support
levels, K;s, such that when on hand stock reaches K, all
demand classes whose priorities are lower than i are back-
ordered. Assume that D; has a known cumulative distribu-
tion function F; and a density function f; for all , and further
that D;s occur simultaneously at the end of each planning
period. As Nahmias and Demmy’ pointed out, one can
consider this assumption as an approximation to the more
reasonable assumption that demand occurs uniformly during
the planning period.

Define Z; as the number of backorders for demand class i
at the end of the period. Then

Z, =D, - (1

and fori > 2

()

i

B { Dif J—(Dy+---+D_)) <K,
"\, +- -+ D, —J+K,_ )" otherwise

where x* = max(x, 0). Then the expected number of back-
orders for each demand class can be represented as follows:

B, = L (D, — i (Dy)dD, 3)

and fori > 2
B, = E(Z) =ED)PJ —(D; +--- + D;_y) < Ki_{]
+E[D; +- -+ D —J + K )T,
J—Di+--+D_))=2K_1] 4
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J=Dr+--+D ) =2 K]

JJ—DI 2 Ky =(Dy 44D ) = Koy Dy ++D; > =K,

i

Dy +---+D; —J +K_)fi(Dy) -+ f(D)aD; - - - dD;

—

JJ_K’l JJ—(DI +tD5)—K;

H(Dy) - . Ji1(Diy)

0

J—K;_|
J Dy+---+D;—J+ K y)
J=Ki —(Dy++Diy)
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Example 1 There is an inventory system which classifies
demand as three classes. Suppose that three priority
demands are given by independent exponential random
variables with parameter 1. The above equations give:

1 .
BZ = (J —Kl +7>€_A(J_Kl)

L

_ 2

When there is no rationing, total demand, D, will have the
Erlang-3 distribution with parameter 4. Consequently, the
expected backorders without rationing is as follows:

3%

B=E[D-NH"= (2J +=+ T)e—“
We present computational results for rationing and no
rationing for A = 0.1 and J = 50 in Table 1. Notice that

B, is independent of support levels since the model assumes
that all demands occur simultaneously at the end of the

Table 1 Expected number of backorders with rationing and
without rationing

K, K B, B, B, B
40 0 0.0674 0.4043 9.1970 1.7182
40 10 0.0674 0.9158 9.1970 1.7182
40 20 0.0674 1.9915 9.1970 1.7182
40 30 0.0674 4.0601 9.1970 1.7182
30 0 0.0674 0.4043 6.7668 1.7182
30 10 0.0674 0.9158 6.7668 1.7182
30 20 0.0674 1.9915 6.7668 1.7182
20 0 0.0674 0.4043 4.2319 1.7182
20 10 0.0674 0.9158 42319 1.7182
10 0 0.0674 0.4043 23910 1.7182
0 0 0.0674 0.4043 1.2465 1.7182
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planning period. One of the disadvantages of this model is
that we can not see the effect of changing control levels. We
will develop a simulation model which overcomes this
problem in the next section.

A single period model with Poisson demand

As stated in the previous section, Nahmias and Demmy’
developed an inventory model with a single support level
with the assumption that all demands occur simultaneously
at the end of the planning period. As a result of using this
unrealistic assumption, the expected backorders B, and B,
have no correlation as a support level, K, changes (See
Table 1). As pointed out by Nahmias and Demmy?, it is
more reasonable to use the assumption that demand occurs
uniformly during the period. It means that the arrival process
follows a Poisson process. However, we cannot obtain
analytical solutions for this case, and leave this as an open
research problem. Consequently, we develop a simulation
model under this assumption. The flowchart for the simula-
tion algorithm has been depicted in Appendix A, and the
pseudo-code of the algorithm has been presented in Appen-
dix B. The model has been coded using Microsoft Visual
Basic 5.0, and the simulation experiments have been run for
100 replications. The computational results obtained from
the simulation model are represented in Table 2 to be
compared with those of Nahmias and Demmy°. Note that
both types of expected backorders are affected by the
change of a support level. Since both types of expected
backorders are affected by changing a support level, the
results show the trade-off between high and low priority
demands and are therefore more relevant to decision makers.

A single period model with rationing trigger times

In this section, we assume the demand rate from each class
is constant. However, we no longer assume that all
demands occur at the end of the planning horizon, 7.
Instead, holding cost, A, is charged per unit per unit time.
We use rationing trigger times rather than support levels as
decision variables. This makes the mathematical deriva-
tions easier. Also, customers are interested in the time
epoch, and not in the support level, that triggers rationing.
The rationing policies obtained in this section might
be coupled with safety stocks for the random demand
case.

Let p, be the cost per unit lost sales to customer type i.
Without loss of generality, we reorder customer types so that
py < py < --- < py. The objective is to minimise the
holding and penalty costs. This model is also equivalent
to one in which demand classes are distinguished by the
prices at which the items are sold, and is recognized, for
example, as a variant of the airline overbooking problem. In
this case, the objective is to maximise net profit which
equals revenue minus holding cost. We use a rationing
policy such that demands of customer type i are satisfied
up to time 7,(€ [0, T]), i = 1, ..., N. We assume that initial
inventory J < TY 1, D, If J > TZ?IZ1 D;, then clearly
=T for all i, that is we do not ration at all. We can
prove easily that optimal rationing trigger times 7;s are
nondecreasing in i. That is, there exists no optimal rationing
trigger times such that t; > 71, where i< j. Since

j
21 Djy=J, we can eliminate 7, by noting that
= — ZJNZ_II Djt;)/Dy. We seek to find optimal ration-
ing trigger times t¥, ..., t%_, and hence 73 which mini-

mises total cost.

Table 2 Computational results for the simulation study

Nahmias and Demmy Simulation
J K B B, B, B, B,
50 0 04717 0.0674 0.4043 0.3181 0.3154
50 10 0.4717 0.0674 0.9158 0.1895 0.7431
50 20 04717 0.0674 1.9915 0.1410 1.6594
50 30 0.4717 0.0674 4.0601 0.1147 3.5348
50 40 04717 0.0674 7.3576 0.0988 6.8902
100 0 0.0054 0.0005 0.0050 0.0064 0.0056
100 10 0.0054 0.0005 0.0123 0.0046 0.0114
100 20 0.0054 0.0005 0.0302 0.0031 0.0218
100 30 0.0054 0.0005 0.0730 0.0021 0.0522
100 40 0.0054 0.0005 0.1735 0.0015 0.1265
100 50 0.0054 0.0005 0.4043 0.0008 0.3154
100 60 0.0054 0.0005 0.9158 0.0005 0.7431
100 70 0.0054 0.0005 1.9915 0.0002 1.6594
100 80 0.0054 0.0005 4.0601 0.0000 3.5348
100 90 0.0054 0.0005 0.0000 6.8902

7.3576
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Figure 1 The relationship between inventory and rationing trigger times.

We compute the holding cost as follows: (See Figure 1)
Firstly, the area of trapezoids is

N-11
2 E(Tk - Tk—l)l I:J - 2 D~ Di]
k=1 i<k—1 |

i<k izk

+|:J—Zr[Di—rk ZD,-jl}

1 [v=2
=3 [ > 1D, =t} _(Dy_y + Dy) +2ty_yJ
oy

N-2
=2ty ( ; TiDz)] (6)

The area of triangle A is

2
1
— | J - Dy — Ty _ D, )
2Dy ( i<%:—1 AR )
Consequently, the holding cost during the horizon becomes

h

N2
5{ > 1D, — t%_(Dy_ + Dy)

i=1

N-2
+ 2ty = 21y < > TiDi)

i=1

2
+_[J_ > D=ty (Dy_, +DN)] ] (8)

i<N—1

The penalty cost during the horizon is
N—1

X; piD(T — ;) + pyDy

% [T =N TiDil—) Tw_i(Dy_1 +Dy) TN—]:I

N
®
The total holding and penalty cost during the horizon
becomes
N=1hD. D. hD.D;
Clty, ..., Ty_y) = —’(1+—')rz+ X
1 N—-1 ; 2 DN i g DN j
+ 1 o)t i
Pn = Pi— T T o5
S\ Dy 2Dy
N
+TY piD; — pyJ (10)
i=l
Noting that C(ty,...,1y_;) is quadratic, we rewrite
C(ty, ..., ty_y) as $7"Hz — g"1 + constant where
h
H = h diag(D;) + —DD", 1n
Dy
and
hJ )
g= (D— - PN)Q + diag(p)D, (12)
N

where diag(D;) denotes an (N — 1) x (N — 1) diagonal
matrix, D=(D,,...,Dy_)" and 1=(1;,..., 75 ).
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First we prove that C(z") is convex in rationing trigger
times.

Property 1 C(i7) is convex in t|,...,Ty_;.

Proof Equivalently, we show that the following Hessian

matrix
D D
hD {1+ =1 hD, 2
l( +DN) ' Dy
D, D,
D D
hDy_, 5:; hDy_, D—;
D D
D, =2 ... hD, —X-1 \
Dy Dy
D D
D, =2 ... hD, Y-
Dy Dy
D D
hDy_; = ... hDy_ (1+ N‘1>
¥-1D, N-1 Dy, )
is positive definite. This follows immediately from the fact
that n, (n=1,...,N—1) principal minor is
DD, ...D, Y D;/D,., > 0. O

The unrestricted minimum of C(z7) is given by

2" = H™'g. Using the Sherman-Morrison Matrix Identity,

we obtain
1 1 eel
H'=— diag(—) - (13)
h[ D, ZN:1 D;
where e = (1, ..., 1)". Consequently,
w4+ YN (o, — p)D;
= 21 (pi = D, i=1,...,N=1 (14

Do)

Note that there are implicit lower and upper bounds on
7;. An upper bound on t;, say 1,, is obtained by allocating
what is left after rationing lower priority customers, that is
J — 3 4iDi7y, to customers of equal or higher priority;
that is to customers k > i. Thus,

_ J - qu‘Dka
“ 2usiDi

A lower bound on t;, say 7;, is obtained by allocating what
is left after rationing lower priority customers, namely
J =Y i.iDy1y, minus the total demand of higer priority
customers, namely T' ), _. D;, to customer type i. Therefore

J-TY¥ D, — D
rzizmax( Zb’l; Lisi ka’ 0) (16)

i

T

(15)

Consequently, the problem becomes

min C(ty,...,Ty_1)
Ty TNl
subject to
T, ST, €1, i=1,...,N—-1

i i

Since 7, and 7, | are independent of 7, it follows that
74—y is independent of ;. However, since 7, and 7, are
dependent on t,_,, it follows that 7, is dependent on 7,_,
forall £k =2,..., N — 1. Consequently, we can first decide
¥ and after that we can decide 1%, and so on. We also know
that

N
o J Zj:l(pj — D,

T = —y — 5 <1, a7

SD,  hYLD,

Using the above information, we present a sequential
procedure to find optimal rationing trigger times. The
idea is simple; if the unrestricted minimum is in the
range of the bounds, it is optimal. Else, either the lower
bound or upper bound is optimal.

Sequential algorithm
Step 1

N

Y (p, — p,)D:
X _ Tll lf Tu] — ‘[Il< ;J_:M
1 = h ijl D;

7] else

Step k  After we obtain 1§, ..
set

., Tk-y, and 7, and 7, we

e .0
T, i <1
% __ 0
=1 %
e 0
w HT=71

: 0
ifr, <7<,
T

Note: If any 1 =7, and 7, > 0O, then ©¥ =T forallj > k.

Now we consider two extreme cases in terms of the
holding cost. If there is no holding cost, the problem
reduces to a Linear Program and clearly it is optimal to
satisfy the demands of the highest customer first. If the
hoiding cost becomes extremely large, there is only one
feasible solution and it is not to ration. If the holding cost is
positive but finite, the solution is a combination of these
two extreme solutions.

Example 2 Let D' =(2,3,2), p" =(5,10,12), h=1,
J =350, T =30. We want to find optimal rationing trigger
times using this data.

Step I 7, =0,17, =3 Since
50 Zj]i1(/)j —pUD; 29
A
h) D
r=1"=3
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That is, we start rejecting demands of customer
type 1 at time 3.

Step 2 1'62 =0,1, =%. Since 7, < =8< Ty 13 =
7, = 8. That is, we start rejecting demands of

customer type 2 at time 8.

Obviously, we satisfy demands of customer type 3 until the
end of the planning horizon or the inventory becomes 0,
whichever comes first.

We now show that for sufficiently small changes in initial
inventory, the optimal rationing trigger times change in the
same proportion regardless of the lost sales costs and
demand rates.

Property 2
*(J + AJ) = t*(J) + constant. (18)
Proof 1If J is changed to J + AJ, then new g becomes
h(J + AJ .
g = {L - pN]Q + diag(p)D
2 DN
Then
hAJH'D
T+ A) =H g =¥+ ————
AJe

=" N+ ———
Z‘:l Dj

Since AJe/ Zszle is independent of the decision vari-
ables, the proof is completed. O

A continuous review model with compound Poisson
demand

In this section we assume that inventory levels are reviewed
continuously. Moreover, demand follows a compound
Poisson process. That is, the arrival process of customers
follows a stationary Poisson process with rate A, which can
be decomposed into two independent Poisson processes
with respective rates 2, and 1,, and the demand from each
customer is a random variable. We also make the following
assumptions:

(a) Stock is replenished according to a (Q, r) policy. That
is, when the inventory level reaches r, an order for Q
units is placed.

(b) A lead time 7 is a random variable.

(c) There is a single support level, say K, such that when
the inventory level reaches K all low priority demands
are backordered.

(d r>K>0.

Fill rates are used to compare the effects of rationing for
this model. Let p be the mean of the demand requested by

an arriving customer. Since each cycle has expected cycle
length Q/(4y), the expected number of backorders per unit
time for type 7 customer is given by B,/Q. So the fill rate for
type i customer, say F; is

AB;
1 ——=. 19
W0 (19)
The system fill rate is simply
B, + B,
| ————=. (20)
Q

Note that as the support level K increases, F; increases
(since B, decreases) and F, decreases. Also the fill rates
increase as the order quantity increases.

We develop a simulation model under these assumptions
since we cannot obtain analytical solutions for this case.
See Appendix C for a flowchart for the simulation model.
(We only provide a flowchart for the customer arrival
routine for brevity). The model has been coded using
Microsoft Visual Basic 5.0.

Example 3 There is an inventory system which uses a
continuous review (Q, r) policy with a single support level.
The arrival process of each type of customer follows a
stationary Poisson process, and the demand requested by
each customer is a Normal random variable with mean 10
and standard deviation 3. The lead time follows a uniform
distribution with the range between 9 and 11 time units. The
order quantity can be decided by the user, and here we
arbitrarily chose Q = 2r.

The fill rates for a variety of system parameters which
have been obtained by the simulation are presented in
Table 3. We ran the simulation for 100 order cycles, and
the warming-up period has been set to 5 cycles. From
Table 3 we can observe that the fill rates tend to increase as
the reorder point r increases. Also the fill rates for high
priority customers are improved when the support level K
increases.

We developed a diagram which can be designed to cover
the range of parameter values observed in any particular
system, so that both a support level and a reorder point
could be chosen by the user to satisfy specified fill rate
performance criteria. For example, Figure 2 shows the fill
rates for each type of customer as the support level
changes. (The data are r = 400, 4, = 2, A, = 3.) Suppose
the user wants to maintain 7| > 0.93 and F, > 0.80, the
support level can be chosen between 58 and 72.

Concluding remarks

We have developed both analytical and simulation models
to improve the existing study. Firstly, we have extended the
model with a single support level to the model with multi-
ple support levels. Secondly, a simulation model whose
assumption is more realistic than the one used in the
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Table 3 Fill rates for a variety of system parameters

A4 Ay K ¥ B, B, F F, F
2 2 50 300 29.10 70.40 0.9030 0.7653 0.8342
2 2 100 300 14.68 95.07 09511 0.6831 0.8171
2 2 50 400 4.60 24.69 0.9885 0.9383 0.9634
2 2 100 400 1.55 46.06 0.9961 0.8849 0.9405
2 3 50 300 49.50 142.28 0.7937 0.6048 0.6804
2 3 100 300 32.50 175.23 0.8646 0.5133 0.6538
2 3 50 400 18.31 81.54 0.9428 0.8301 0.8752
2 3 100 400 6.37 112.08 0.9801 0.7665 0.8519
Fill Rates (%)
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Figure 2 Fill rates for a variety of support levels.

analytical model has been presented. Thirdly, a single
period optimisation model using the rationing trigger time
concept has been developed. Finally, we have extended a
model with a Poisson process demand to one with a
compound Poisson process demand.

Decision makers may need to decide whether they
choose an analytical model with less realistic assumptions
or a simulation model with more realistic assumptions.
Simulation is a useful technique for many complex inven-
tory systems, such as those in this paper, which preclude
any possibility of analytical solutions. Refer to Law and
Kelton® for simulation models for some inventory systems.

Distinguishing between various priority classes of
demand occurrs in many areas such as airline and hotel
reservation, military operations, hospital emergency rooms,
computer storage allocation, sales company, etc. The
results in this paper might be used as helpful managerial
tools for these types of inventory/distribution systems. Case
studies based on the results of this paper might be inter-
esting research problems.
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Appendix A

Flowchart for the simulation algorithm

Start Simulation

C D
i

Inventory level, Amival rate for each type of

customer, Support level, Planning horizon,
Simulation replication

:

Initialize simulation run, cumulative backorder
count for each type of customer

l
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Set simulation clock =

Arrival time of type 2 customer

Inventory level >0

No
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Inventory level > Support level 2

Add 1 to the
backorder count
for type 1 customer
H

Subtract 1 from
the inventory level
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Add 1 to the
backorder count
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T

5

Schedule the next arrival event
for type 1 customer

for type 2 customer

Schedule the next arrival event

% £7
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LStore backorder count to the cumulative backorder count for each type of customer

!

Add 1 to the simulation run
T

v

Compute average backorder count for each type of customer

!

average backorder count

for each type of customer

End Simulation

C D)
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Appendix B
Pseudo-code for the simulation algorithm

begin
Initialise simulation run, cumulative backorder count for each type of customer
While simulation run < number of simulation replications do
T :=0;
backorder count for each type of customer ;= 0;
inventory level;
Generate Al, A2
While 7 < planning horizon do
If A1 < A2
then 7 := Al
if inventory level > 0
then inventory level := inventory level —1;
else backorder count for type 1 customer := backorder count for type 1 customer + 1;
Schedule Al; {arrival time of type 1 customer}
else T := A2
if inventory leve! > support level
then inventory level := inventory level —1;
else backorder count for type 2 customer := backorder count for type 2 customer + 1;
Schedule A2; {arrival time of type 2 customer}
end_while
cumulative backorder count := cumulative backorder count + backorder count for each type of customer; simulation run
:= simulation run + 1;
end_while
Compute average backorder count for each type of customer;
end
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Appendix C

Flowchart for customer arrival routine of a continuous review simulation model

< Customer arrival event)

Generate the size of the demand

requested by this customer

High priority customer?

Yes

Inventory level > Support level?

Inventory level > Demand?

Update inventory level

Inventory level > Reorder point?

Update number of backorders

Yes

Generate an order and schedule

the order arrival eivent

Schedule the next arrival event
of this type customer
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