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A B S T R A C T

Autonomous delivery robot (ADR) operation for short-range delivery purposes is becoming an increasingly
popular mode of service. Assigning orders to robots is critical in ensuring high quality in these automated
delivery operations. This paper considers a dynamic pickup and delivery problem using autonomous robots
(DPDP-AR), where a fleet of ADRs picks up desired items from stores and delivers them to customers. The
arrival time of orders is uncertain, with a hard delivery deadline for each order. This study considered the
battery consumption of ADRs, which has been less extensively covered in previous research, and devised
a battery recharging strategy for the operation. To handle this stochasticity and dynamism in the problem,
we developed a reassignment algorithm that reschedules previously assigned orders at the arrival of a new
order. Additionally, as periods of high demand can be estimated, peak time management of the battery is
proposed to enhance ADR utilization at peak periods. Computational experiments were performed on real-
world ADR food delivery service instances in an airport terminal. Test instances on various demand scenarios
demonstrated improvement in service quality when devised policies were used compared to current practice.
We substantiated that the proposed algorithms found efficient solutions within short computation times,
validating their applicability to real-world operations.
1. Introduction

The contactless trend of commerce triggered by the COVID-19
pandemic has dramatically changed delivery process. One significant
change was the introduction of alternative delivery services in various
business sectors. Online platforms had an influx of new customers
unfamiliar with online purchasing, and food delivery services had to
deal with explosive demand (Suguna, Shah, Raj, & Suresh, 2021). As a
result, last-mile service managers had to prioritize and organize huge
quantities of products of various types to meet constantly increasing
orders. Speed, efficiency, transparency, personalized experience, and
other factors were needed for a stable last-mile operation (Mangia-
racina, Perego, Seghezzi, & Tumino, 2019). As it was challenging
for many service providers to possess these qualities while satisfying
demand, there has been a constant need for innovative methods of
operation.

Implementing autonomous robots for last-mile delivery is suggested
as a way for efficient operation. The development of self-driving tech-
nology and artificial intelligence has paved the way for commercializ-
ing autonomous vehicles and robots that can navigate without human
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control. Autonomous robots were mainly used for material handling at
warehouses and distribution centers. With the help of relaxed regula-
tions related to the operation of pedestrian roads, the application of
autonomous robots has significantly expanded in the past few years.
Models specifically customized for delivery were developed, and these
so-called autonomous delivery robots (ADRs) are increasingly taking up
larger proportion of last-mile delivery tasks.

As ADRs are expected to enhance delivery productivity and reduce
delivery times, the global ADR market, estimated at 211.5 million USD
in value, is expected to grow 34.9 percent annually for the next ten
years. Various companies that can fulfill technological advancements
for ADR development are entering the business and releasing prod-
ucts. Starship Technologies, founded in 2014, developed an autonomous
delivery robot that can travel at pedestrian speed and is providing
service mainly on college campuses in the USA (Chen, Demir, Huang,
& Qiu, 2021). Other companies such as Kiwi, Nuro, and Ottonomy are
also providing delivery services using autonomous robots. One current
limitation of the industry is that the service is provided in small,
https://doi.org/10.1016/j.cie.2024.110476
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restricted areas, as there are regulations related to the travel of ADRs
on roads. There is a move toward weakening guidelines in various
countries to keep pace with technological advancement and market
expansion.

There are several competitive advantages of utilizing ADRs instead
of human drivers. Several issues arise from human traits and charac-
teristics. While using delivery personnel has played a valuable role as
the conventional delivery method, there are innate limitations such
as hour-of-service constraint and fatigue issues. Similar concerns need
not arise when considering ADRs as long as the robots are adequately
charged and supervised. In addition, there is ample possibility that hu-
man drivers can adjust to the operational decisions made by the central
system. An example can be drivers choosing delivery routes based on
empirical knowledge rather than on the optimal route suggested by
the system. Even though the assignment of orders is based on the best
routing decision, the best result cannot be guaranteed in this situation.
In a centralized control system of ADRs, on the other hand, the existing
plan can be maintained as there is no discretion by individual couriers.

The most prominent advantage of ADR operation is its flexibility.
Unforeseen events and uncertainties can disrupt predetermined deliv-
ery plans, which emphasizes the importance of the ability to adapt
readily to new changes. As communication between the dispatcher and
couriers is more nimble and straightforward using ADRs, new opportu-
nities for system improvements arise. Notably, there exist cases where
reassigning pre-assigned orders enables better solutions. Reassignment
of orders is considered impractical when utilizing human drivers be-
cause human drivers behave more like individual entities. Canceling
previous assignments and assigning orders to new drivers could lead to
systemic confusion. However, changing the delivery schedule is more
convenient for ADR-based delivery, where robot delivery schedules
are managed centrally. Consequently, the modification of the previous
assignment becomes more realistic.

Even with the competitive advantages, several challenges are
present that delay the adoption of ADR in dynamic pickup and de-
livery operations. ADR lacks the ability as a courier to respond to
emergencies through independent decision-making. While there are
certain situations where the judgment of a human courier leads to
better consequences, currently developed ADRs struggle to perform
such roles. These limitations make businesses reluctant to replace
human couriers with ADRs. Essential environmental conditions, such
as the need for environments without stairs, also limit the scope of use
of ADR operations.

Lack of practical experience and related studies are unavoidable
and critical obstacles in ADR adoption. As ADR is in the early im-
plementation phase of technology, usage cases are inevitably scarce.
The lack of comprehensive studies indicates a significant research gap
in this area. Among current literature related to ADR utilization in
delivery, not many studies incorporated unique characteristics of ADR.
The distinctive benefits of ADR, such as flexible operation, reduced
cost, and longer service time, are not harnessed sufficiently. Many
studies inadequately reflected several factors in utilizing ADR. A no-
table example is battery management, where simplified management
schemes based on unrealistic assumptions were introduced in many
articles.

In this study, we leveraged the opportunity obtained through ADR
use to make more efficient dispatching decisions in every period of
delivery. We propose a reassignment policy that reassigns previously
assigned orders with the newly arriving order. We also present a battery
management strategy applicable in practical operation and a peak time
management methodology concerning batteries. Such methodologies
are devised and implemented to increase service quality by minimizing
the number of rejected orders and reducing customer waiting times.
Through extensive experimentation results, we confirm that the two
proposed solution methodologies yield improved outcomes for the
problem.
Contributions of this study can be outlined as follows:
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1. We propose a mathematical formulation of pickup and delivery
problems with battery constraints and rejecting options included
in the formulation.

2. We incorporate relevant factors of the emerging field of ADR op-
eration into the problem definition. An easily applicable battery
management methodology for ADR operation is introduced.

3. We develop a novel dispatching policy and demonstrate im-
proved results compared to the current policy in use.

4. We constructed test instances to simulate a real operation envi-
ronment and tested the effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2
presents a literature review of related studies. In Section 3, we describe
the aspects of the problem and formulate a mathematical model for the
problem. We propose methodologies developed to achieve improved
solutions in Section 4. In Section 5, we present test results of the pro-
posed methodologies compared to benchmarks. In Section 6, the paper
concludes with a summary and suggests future research opportunities.

2. Literature review

In this section, we provide an overview of relevant research. It is
well known that optimization problems with stochastic and dynamic
characteristics are challenging. In addition, algorithmic strategies sug-
gested in the transportation field cannot usually scale up to real-
world problems (Powell, Simao, & Bouzaiene-Ayari, 2012). Various
studies emerged that sought effective solutions to practical concerns.
We review several categories regarding delivery problems in dynamic
situations and fleet management using autonomous vehicles.

2.1. Dynamic pickup and delivery

The dynamic pickup and delivery problem (DPDP) is the field most
closely related to this study. DPDP is a variant of pickup and delivery
problem, where items or people should be transported from the pickup
location to the delivery location to satisfy demand. A distinction is
made in DPDP in that demand arrives dynamically during the time
horizon. Extensive reviews of DPDP can be found in Cai et al. (2023),
Psaraftis, Wen, and Kontovas (2016) and Soeffker, Ulmer, and Mattfeld
(2022). In particular, Cai et al. (2023) presents a recent review of the
literature and several applications on this topic.

The choice of objective function varied, depending on the focus
of the study. Several studies that emphasized minimizing operational
costs aimed to reduce costs incurred while using the service. Sun, Yang,
Shi, and Zheng (2019) considered a real-time distribution strategy in
urban areas in the DPDP context to minimize the total distribution
cost of vehicles. The dynamic insertion method was adapted from the
heuristic algorithm developed in the study to expand the range of
solution searches. Arslan, Agatz, Kroon, and Zuidwijk (2019) provided
a variant of DPDP in which ad-hoc drivers participate as crowdsourcers
for the transportation service. Based on the routing solution from the
subproblem, optimal matching of jobs and drivers is obtained in every
iteration of the rolling horizon approach. Crowdsourcing improved the
system’s flexibility, with more tasks being matched to the drivers, and
decreased the total cost. Additionally, studies such as Ma, Hao et al.
(2021), Tirado and Hvattum (2017) and Zhu and Sheu (2018) proposed
frameworks for cost minimization in DPDP.

Other studies that put more emphasis on the customer side de-
veloped solutions to maximize the service level, such as the number
of accepted requests, or to minimize customer dissatisfaction, such as
customers’ waiting times. Cortés, Sáez, Núñez, and Muñoz-Carpintero
(2009) focused on minimizing the user cost, composed of users’ total
travel time and waiting time. The stochastic effect of DPDP, which has
not been considered a factor of importance, was considered with high
significance. Predicting future states was included in dynamic state
formulation to prepare for rerouting in the future. Solution method-

ology based on particle swarm optimization provided improved results
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compared to myopic models. Tao, Zhuo, and Lai (2023) aimed to satisfy
passenger welfare by minimizing travel time while minimizing the en-
ergy cost of electric vehicles (EVs). Constraints related to the charging
station, the battery status, and road conditions were considered, and
routing decisions were made to find the best routes for each EV. Other
publications, such as those by Cheng, Liao, and Hua (2017), Ghiani,
Manni, Quaranta, and Triki (2009), and Sheridan et al. (2013), also
intended to search for methodologies that could enhance the service
level provided to customers.

There have been extensive studies on dynamic pickup and delivery
in recent years to address problems related to the expanding delivery
industry. Additional conditions such as time windows, multiple depot
locations, and the use of green vehicles were dealt with in various
studies. Ghiani, Manni, and Manni (2022) introduced an anticipatory
algorithm that can be applied to real-time fleet management using
parametric policy function approximation. The estimation of instance
features was updated dynamically and applied to the base policy with
a supervised learning model. Farazi, Zou, and Tulabandhula (2022)
introduced a heuristic-embedded deep reinforcement learning (DRL)
algorithm to solve the problem in a crowdshipping circumstance. The
availability and capacity of each participant were also uncertain in
the problem, and the trained DRL model was shown to decrease the
shipping cost significantly. Xu and Wei (2023) integrated transshipment
and a last in first out constraint to the DPDP context. Several heuris-
tics and Q-learning algorithms were applied in solution methodology
to modify decisions according to dynamic demand. The results of
the bi-objective optimization problem posed the trade-off relationship
between customer satisfaction and vehicle traveling distance.

Other recent publications also addressed DPDP in various applica-
tion scenarios. Similar to Du, Zhang, Wang, and Lau (2023) and Xu
and Wei (2023) also addressed the problem with the last in first out
constraint to better represent the cases for single access point vehi-
cles. Several intuitive strategies were implemented in the hierarchical
optimization framework to minimize delay after deadline. Cai, Zhu,
Lin, Ming, and Tan (2024) proposed a decomposition-based solution
method that decomposes a multi-objective DPDP into subproblems.
A tabu search algorithm was effectively applied to excel benchmark
algorithms concerning total cost. Gao, Zhang, Zhang, and Zhao (2024)
discussed the setting with electric vehicles to serve passengers and par-
cel orders that arrive with uncertainty. A reinforcement learning-based
algorithm was developed along with two rolling horizon heuristics.

Table 1 compares relevant literature and this study. There have
been publications that modeled operations with ADR adoption. As it
is more realistic to consider deliveries to have specific deadlines in
practical delivery contexts, various studies have included constraints
related to time windows. Most of the studies assumed an environment
with sufficient resources to satisfy all demands, and the main focus was
on how to make the best use of the given resources to complete all
tasks. Given that managing the current fuel/battery level and deciding
the timing of recharge impose additional complexity on the problem,
constraints and decisions related to the battery were excluded in many
studies. In comparison, this study considered the possibility that not
enough couriers are present to meet every customer’s deadline, which
is a frequently encountered situation in newly launched services. In
addition, battery recharge constraints and a battery managing scheme
were introduced to enhance the real-world applicability of the model.

The research most similar to our study was conducted by Ulmer
et al. (2021). This research proposes a restaurant meal delivery prob-
lem, a modified version of the dynamic pickup and delivery problem.
Demand arrival is stochastic, and a dispatching decision is made at
the arrival of each order. The unknown orders that arrive in the
future makes decision-making more challenging, as the best decision
in the present may not be the best decision with newly arrived orders.
As making changes to the previous assignment is impossible in this
problem, a policy that includes the time buffer and postponement of

orders is presented to overcome this uncertainty.
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In comparison to Ulmer et al. (2021), using ADRs in this study
provides an opportunity for modification in the previous assignment,
as the entire fleet of ADRs is controlled via a centralized system.
Therefore, we harnessed the advantage of utilizing ADRs and devised
a reassignment policy that provides the potential for more flexible
operation. In order to cope with the battery constraints arising from
the use of ADR, a method for efficiently charging the battery was
proposed to minimize the impact on overall utilization. In addition,
unlike Ulmer et al. (2021), we exploited demand information from the
external demand factors and proposed methodologies to better handle
peak period demand.

2.2. Dynamic dispatching

Problems in numerous fields of study share similarities with DPDP,
namely dial-a-ride and same-day delivery problems. In same-day de-
livery problems, orders must be delivered by the day’s end and are
dispatched to a fleet of vehicles. Klapp, Erera, and Toriello (2018)
proposed the formulation of a deterministic model for the same-day
delivery system. Based on the deterministic model, an a priori solution
approach was developed, along with the creation of several dynamic
policies. An analysis explored the trade-off relationship between min-
imizing the total cost and maximizing order coverage. Van Heeswijk,
Mes, and Schutten (2019) used linear value function approximation,
and an approximate dynamic programming algorithm was proposed
to solve a delivery dispatching problem in urban consolidation cen-
ters. Voccia, Campbell, and Thomas (2019) proposed a routing strategy
considering information about future requests. Online purchases were
considered in the study, and analysis related to the distribution of time
windows was conducted.

2.3. Autonomous vehicle operation

With the adoption of autonomous vehicles rapidly influencing var-
ious fields, a growing number of studies have considered fleet man-
agement of autonomous vehicles (AVs). Srinivas, Ramachandiran, and
Rajendran (2022) provided a literature review on autonomous robot-
driven delivery. Jun, Lee, and Yih (2021) solved the pickup and de-
livery problem with autonomous mobile robots. A novel mathematical
model incorporating a recharging design was introduced, and two
heuristic algorithms were presented. Bongiovanni et al. (2019) pro-
posed a mixed-integer linear programming formulation representing
an electric autonomous dial-a-ride problem. While the study looked at
finding the most cost-effective route to serve previously arrived orders,
the study also looked at the timing of charging station visits and the
amount of necessary battery recharging.

Among the research that covered AV operations, literature on
shared-use electric vehicle (EV) operations holds significant relevance
to this study. Although EVs possess a clear advantage in environmental
aspects, facile adoption has proved challenging due to several short-
comings, such as more extended battery charging time, shorter travel
distance, and higher cost. Loeb and Kockelman (2019) concentrated
on this trade-off and analyzed the effectiveness of adopting EVs to
shared use vehicle services. As associated costs of EVs are gradually
decreasing, the adoption efficiency was tested on various cost sce-
narios. The result disclosed that enhanced performance was found
with reduced charging times and improved travel distances, although
performance fell slightly short of that exhibited by gasoline-powered
vehicles. Hyland and Mahmassani (2018) addressed the on-demand
shared-use AV mobility service (SAMS) problem in dynamic scenar-
ios, treating it as a sequential stochastic control problem. The study
emphasized dispatching decisions over routing decisions and proposed
six AV-traveler assignment strategies. Al-Kanj, Nascimento, and Powell
(2020) proposed an approximate dynamic programming method for
assigning travel requests to vehicles and deciding the timing and

amount of recharging. With the given information expressed as the
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Table 1
Comparison of related studies and this study.

Author (Year) Problem type ADR Time windows Rejection Fuel/Battery recharge

Hyland and Mahmassani (2018) Dynamic vehicle routing ✓

Bongiovanni, Kaspi, and Geroliminis (2019) Dial-a-ride ✓ ✓ ✓

Steever, Karwan, and Murray (2019) Dynamic pickup and delivery ✓

Ulmer and Streng (2019) Same-day delivery ✓

Ulmer, Thomas, Campbell, and Woyak (2021) Dynamic pickup and delivery ✓ ✓

Xu and Wei (2023) Dynamic pickup and delivery ✓

Gao et al. (2024) Share-a-ride ✓ ✓ ✓

This study Dynamic pickup and delivery ✓ ✓ ✓ ✓
n

state of a Markov decision process, the impact of decisions made in the
present on the future was examined. Compared to the myopic policy,
the approximate dynamic programming approach with hierarchical
aggregation generated more revenue, with reduced recharging events
during peak hours.

Most of the literature is based on a simulation-based approach,
suggesting heuristics applicable in real-world instances. Compared to
other fields of research concerning vehicles, research that looks at
improving and expanding the use of ADRs is limited. Mainly, research
is needed that adequately incorporates real-world decisions.

2.4. Battery recharge

Prior research on recharging has mainly been conducted on vehicle
routing problem (VRP) and pickup and delivery problem (PDP) with
electric vehicles and drones (Ma, Hu, Chen, Wang and Wu, 2021;
Messaoud, 2022). These studies can be classified into three categories
according to the recharging strategy: full recharging, partial recharg-
ing, and battery swapping. Full recharging indicates the battery being
charged to a complete level every recharge. This strategy can re-
duce the probability of incurring an empty battery during operation
and is relatively more straightforward to implement, so many studies
adopted the strategy as the battery management scheme (Chen, Zhang,
Pourbabak, Kavousi-Fard, & Su, 2016; Erdoğan & Miller-Hooks, 2012;
Hiermann, Puchinger, Ropke, & Hartl, 2016; Lin, Zhou, & Wolfson,
2016; Schneider, Stenger, & Goeke, 2014; Zhang, Zhang, Gajpal, &
Appadoo, 2019).

The partial recharging strategy recharges only a portion of the
battery at every stop. Choosing the amount of recharge varies depend-
ing on the study. Vehicles can be recharged by a fixed amount of
battery every time, or the recharging amount can be considered as
a decision variable and determined considering future requests (Bon-
giovanni et al., 2019; Cortés-Murcia, Prodhon, & Afsar, 2019; Keskin
& Çatay, 2016; Macrina, Pugliese, Guerriero, & Laporte, 2019; Sassi
& Oulamara, 2017). Because the recharging amount per recharge is
smaller than full recharging, the partial recharging strategy enables
more flexible management and improved system performance. Several
studies combined full and partial recharging to aid in making decisions
when using a more adaptable method (Felipe, Ortuño, Righini, &
Tirado, 2014; Jun et al., 2021). Lastly, the battery swapping strategy
replaces the battery with a fully charged battery at every recharge
stop. It is similar to the full recharging strategy with a shortened
recharging time. Battery swapping is being widely adopted in multiple
studies (Adler & Mirchandani, 2014; Hof, Schneider, & Goeke, 2017;
Jie, Yang, Zhang, & Huang, 2019; Masmoudi, Hosny, Demir, Genikom-
sakis, & Cheikhrouhou, 2018; Sayarshad, Mahmoodian, & Gao, 2020;
Soysal, Cimen, & Belbağ, 2020; Verma, 2018). Still, other aspects, such
as vehicle structure, battery configuration, and replacing personnel
should be suited to enable battery swapping.

To summarize the literature review, recent studies on dynamic
pickup and delivery have been actively conducted due to the increase
in related services. Studies with similar structures, such as dial-a-ride,
same-day delivery, and dynamic dispatching, are also being actively

pursued. Meanwhile, the advancement of related technologies has led
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to the widespread adoption of autonomous vehicles and robots in
various fields. Consequently, research has been conducted on incor-
porating autonomous vehicles into existing systems and applying their
unique characteristics. Finally, concerning battery charging, recharging
strategies can be categorized into three groups, and the advantages and
disadvantages of each strategy have been analyzed.

3. Problem description and mathematical model

In this section, we state the problem and propose a mathematical
formulation. A detailed explanation of the problem is presented in
Section 3.1. Section 3.2 presents the battery management methodol-
ogy applied in this study. Section 3.3 introduces the mathematical
formulation of the static version of the problem.

3.1. Problem statement

This study was initiated based on the practical implementation of
food delivery services using ADRs at Incheon International Airport. The
service is operated by Woowa Brothers Corp., a company with more
than 60 percent of market share in South Korea’s food delivery app
industry. Since 2022, the company has conducted a pilot program of
ADR-driven food delivery service at the airport terminal. The method
by which service is performed is as follows. People who arrive at the
terminal and wait for their flights use the mobile app to place an order.
These customers can choose between predefined restaurant lists. Once
the order is submitted, it is dispatched to an ADR. The dispatched ADR
departs from the station, picks up the food from the restaurant, and
arrives at the gate to wait for the customer pickup. After the delivery
terminates, the ADR returns to the station.

Based on this service, we introduce a dynamic pickup and delivery
problem using autonomous robot (DPDP-AR). This problem is a variant
of the well-known dynamic pickup and delivery problem (DPDP). Even
though DPDP and related research fields have gained considerable
attention in recent years, only a few studies address online order and
delivery issues (Cai et al., 2023). Furthermore, the need for problem
statements with realistic constraints and more implementable strategies
in the ADR-driven delivery literature has come to the forefront (Srinivas
et al., 2022). Even though battery management is essential to real-
world ADR fleet management, it is not considered in many studies.
Most previous studies considering battery constraints adopted battery
swapping, which has an implementation advantage but lacks opera-
tional efficiency. We seek inspiration from the current research gap and
aim to incorporate more realistic constraints, such as battery time and
management strategies in centralized vehicle management.

The DPDP-AR is composed of a set of orders  = {𝐽1, 𝐽2,… , 𝐽𝑙} that
eed to be served by a fleet of ADRs  = {𝑀1,𝑀2,… ,𝑀𝑚}. The time

horizon is finite  = [0, 𝑡𝑚𝑎𝑥]. A set of nodes  = {𝑁1, 𝑁2,… , 𝑁𝑛} rep-
resents locations that are visited during delivery. An order, 𝑠, comprises
four characteristics: order time (𝑡𝑠), deadline (𝑑𝑠), pickup restaurant
(𝑅𝑠), and delivery location (𝐷𝑠). The order time and deadline exist
within the time horizon 𝑡𝑠, 𝑑𝑠 ∈  . The pickup restaurant and delivery
location are elements of the set of restaurants  = {𝑅1, 𝑅2,… , 𝑅𝑜}

and the set of delivery locations  = {𝐷1, 𝐷2,… , 𝐷𝑝} respectively.
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Fig. 1. Illustrative example of DPDP-AR operation.
Every restaurant and delivery location has a corresponding node, ,
 ⊂  , and the distance between nodes is determined as the physical
distance between two locations. ADRs are located at the ADR station
before and after each delivery. The decision epoch occurs each time
an order is submitted. At every decision epoch, a decision is made
based on the decision state at the time. The elements that constitute
the decision state are the earliest available time and battery level of
each ADR and the list of orders dispatched earlier but not yet started
on deliveries. The earliest available time of an ADR indicates the fastest
time the ADR can begin delivering a new order after finishing all
the pre-assigned deliveries. With the peak time management scheme
described in Section 4.2, consideration of whether it is peak time is
also included as an element of the decision state.

The DPDP-AR operation is illustrated in Fig. 1. If an order 𝑆 is
dispatched to an ADR, the order is added to the schedule of the
ADR, and delivery starts upon reaching the delivery start time in the
schedule. The ADR launches from the station to visit the restaurant 𝑅𝑆

to pick up the order. After pickup, the ADR heads toward the delivery
location 𝐷𝑆 to deliver the food to the customer. The ADR returns to the
station once the customer order has been completed. The ADR battery is
recharged under certain charging conditions after completion of each
order. As the delivery robots follow the predetermined path to serve
orders with a fixed starting and ending location, any additional routing
decisions are not considered.

We implement the DPDP-AR in the airport food delivery service.
The elements of the problem are described below.

1. Customer orders. Every order is created from the flight schedule,
which indicates that every customer is a passenger on a certain
flight. Order arrival is stochastic and becomes known to the
system when the order is submitted.

2. Order arrival interval and deadline. Every flight has a possible
order arrival interval, which denotes the time interval in which
the passenger can submit an order. The length of a possible
order arrival interval is identical in every flight. There is also
a deadline for each order, which is a certain time before the
departure time of the corresponding flight. This deadline indi-
cates the boarding time, so it acts as a hard deadline that makes
it impossible for the customer to receive late deliveries. The
elements are depicted in Fig. 2.
5 
3. Autonomous robot delivery. The ADRs are fully charged at the
start of the operation. The battery is discharged during deliv-
ery, and the discharged amount is proportional to the distance
traveled. One order is served per trip.

4. Penalty of rejection. Each rejection of an order incurs a penalty
cost of 𝛼.

The dispatcher aims to maximize the level of customer satisfaction
provided by the service. In other words, the objective is to minimize
dissatisfaction incurred by the service. Such dissatisfaction can occur
in two ways. If an order is served, the customer’s waiting time is
calculated as the time between the order and the delivery arrival
time. As the customer waits longer for the delivery, the customer’s
dissatisfaction increases. If an order is rejected, a penalty cost of 𝛼 is
imposed per rejection. The objective is to minimize the sum of two
elements of dissatisfaction. The objective function can be written as
follows:

𝑚𝑖𝑛
∑

𝑖∈⧵
(𝑧𝑖 − 𝑟𝑖) + 𝛼 ||

|

|
|

|

(1)

 indicates a set of all orders,  indicates a set of rejected orders,
𝑧𝑖 indicates the delivery arrival time of order 𝑖, 𝑟𝑖 indicates the order
release time of order 𝑖.

One possible distortion in the objective function value is due to
the bi-objective characteristic. The delayed time for served orders has
specific time units, while the unit penalty 𝛼 for rejected orders does
not. If 𝛼 is set relatively low, the resulting solution would reject orders
even when it is possible to serve it, which is inconsistent with the goal
of this study. If 𝛼 is set relatively high, ensuring fast delivery for served
orders would not be considered as significant as needed in the objective
function value. In order to handle this issue with the parameter value,
we set 𝛼 as marginally higher than the maximum possible delay while
maintaining proximity in value. This method of parameter value choice
would balance the impact of rejection while also inducing the desired
manner of serving as many customers as possible.

In this study, the following assumptions are made.

1. Once an order is submitted, the customer cannot withdraw the
order.

2. Customers make orders only if they have enough time left to
receive delivery, considering the travel time and deadline.

3. Customers have a homogeneous preference on the choice of
restaurants to deliver to.
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Fig. 2. Illustrative example of order arrival interval and deadline.
Fig. 3. Overview of the (𝐵𝐿,𝑅𝐿) policy.
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4. The ready time of restaurants is zero. In other words, the ADR
can pick up the demanded item once it arrives at the restaurant
without any delay.

5. The travel time of ADRs for the delivery is deterministic, and is
proportional to the distance traveled. Assuming a constant speed
of the ADR and no congestion in the environment, the travel time
is the distance traveled divided by the speed of the ADR.

.2. Battery management

As the movement toward zero carbon emissions is gaining impor-
ance worldwide, electrically-powered vehicles such as autonomous
ehicles and drones are utilized in various applications. Some prelim-
nary work was carried out to design infrastructure for these vehicles,
ncluding charging station locations (Hwang & Lim, 2022; Kchaou-
oujelben & Gicquel, 2020). One common deficiency of electrically
owered vehicles is the limited capacity of batteries. The complete
attery capacity is more limited, and recharging takes longer. There-
ore, deciding on battery usage and recharging emerged as a complex
ombinatorial optimization problem.

In this study, we applied a newly devised partial recharging strategy
o perform battery management. The proposed strategy is similar to
he well-known (𝑟, 𝑄) policy used in inventory management. As in
𝑟, 𝑄) policy where a quantity of 𝑄 is ordered every time the inventory
evel reaches or falls below 𝑟, a predefined quantity 𝑅𝐿 is charged if
he battery level drops below a certain level 𝐵𝐿 after completion of
n order. This paper refers to this parameterized policy as (𝐵𝐿,𝑅𝐿)
olicy, where 𝐵𝐿 indicates base level and 𝑅𝐿 indicates recharge level.
ig. 3 illustrates how the policy operates. Battery level is reviewed after
ompletion of each order. In Fig. 3, after delivery of Order 1 and Order
, the battery level is shown as being under the base level. Therefore,
fixed amount of charge (recharge level) is recharged. In the case of
rder 2, because the battery level after completion is not below the
ase level, no recharge is performed.
6 
The (𝐵𝐿,𝑅𝐿) policy has competitive advantages over alternative
anagement policies. As this policy shares commonalities with partial

echarging, the smaller size of the individual recharge units in the
𝐵𝐿,𝑅𝐿) policy allows for greater operational flexibility than does the
ull recharging strategy. The partial recharging strategy is known to
ncrease system efficiency but comes at the expense of greater com-
utational complexity. Especially in previous studies where recharging
imes at each stop were considered as decision variables, most situa-
ions had information about the upcoming order available, making it
elatively straightforward to determine the appropriate recharge level.
owever, as the circumstances of this study are dynamic, and the
rrival of future orders is uncertain, applying previous methodologies
ay not guarantee efficiency. Charging the predefined amount of 𝑅𝐿

n every recharge in (𝐵𝐿,𝑅𝐿) policy helps use partial recharging while
itigating the drawbacks associated with partial recharging. To deal
ith uncertainties in the problem and make prompt recharging deci-

ions simultaneously, we developed and implemented a (𝐵𝐿,𝑅𝐿) policy
with an adaptability advantage and reduced complexity.

3.3. The static model

We formulate the static model of the problem. While the system
acquires information about an order at the ordering point in the actual
case, this model considers a virtual case where all the information about
demand is known before the start of the operation. As the feasible
region of the static case includes the feasible region of the dynamic
case, obtaining more efficient solutions is expected. This model is a
variation of a static pickup and delivery problem. As is the case for the
dynamic situation in this study, the routing decision is not considered.
Instead, robots follow predefined routes between locations.

This problem shares a similar structure with the job-shop scheduling
problem in that an optimal sequence of individual jobs needs to be
sought. We adopt the graph-based formulation of the identical machine
scheduling problem introduced in Yalaoui and Nguyen (2021). The
mixed-integer linear programming (MILP) formulation comprises nodes
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representing jobs and arcs indicating predecessor–successor relation-
ships between orders. An initial node exists, and nodes that represent
the first job of each machine have connecting arcs with the initial
node. We modified the formulation presented by Yalaoui and Nguyen
(2021) to suit our problem. First, a rejection node connected to the
initial node is introduced. Second, elements of the problem, such as
order placement time and a hard deadline, are added as constraints.
Lastly, the battery management scheme introduced in Section 3.2 is
also integrated into the model. Such management implementations are
battery discharge proportional to the processing time and charging
under a certain battery level. The decision about when to process orders
in which dispatch sequence is made in the model.

The indices, sets, parameters, and decision variables utilized in the
mathematical formulation are defined as follows:

Indices and sets

 Set of orders, 𝑗 ∈  = {1, 2,… , 𝑛}
 ′ Set of orders including job 𝑡, 𝑗 ∈  ′ = {1, 2,… , 𝑛, 𝑡}
 ′′ st of orders including job 0, 𝑗 ∈  ′′ = {𝑠, 1,… , 𝑛}
 ′′′ Set of orders including job 0, 𝑛 + 1, 𝑗 ∈  ′′′ = {𝑠, 1, 2,… , 𝑛, 𝑡}
 Set of robots, 𝑖 ∈  = {1, 2,… , 𝑚}

Parameters

𝑟𝑗 Order release time of order 𝑗
𝑝𝑗 Processing time of order 𝑗
𝑑𝑗 Deadline of arrival of order 𝑗
𝛼 Penalty of rejection
𝐶 Upper bound of completion time
𝛽 Full battery capacity of each robot
𝛾 Recharge rate
𝛿 Discharge rate
𝜋 Battery recharge level point
𝜌 Battery recharge quantity

Decision variables

𝑏𝑗 Battery level of the robot after completion of order 𝑗

𝑥𝑖𝑗 1 if order 𝑗 is processed right after order 𝑖 on the same
robot, 0 otherwise

𝑦𝑗 1 if battery is recharged after completion of order 𝑗, 0
otherwise

𝑧𝑗 Completion time of order 𝑗
𝑤𝑗 Completion time of order 𝑗 including recharge

The mathematical model is as follows:

min
∑

𝑗∈
(𝑧𝑗 − 𝑟𝑗 ) + 𝛼

∑

𝑗∈
𝑥𝑡𝑗 (2)

s.t. 𝑧𝑗 ≥ 𝑟𝑗 + (1 − 𝑥𝑡𝑗 )𝑝𝑗 , ∀𝑗 ∈  (3)

𝑤𝑗 = 𝑧𝑗 +
𝜌
𝛾
𝑦𝑗 , ∀𝑗 ∈  (4)

𝑧𝑗 ≥ 𝑤𝑖 + 𝑝𝑗 − 𝐶(1 − 𝑥𝑖𝑗 ) ∀𝑖 ∈  ′′∀𝑗 ∈  (5)

𝑧𝑗 ≤ 𝑑𝑗 + 𝐶𝑥𝑡𝑗 ∀𝑗 ∈  (6)
∑

𝑖∈ ′′′
𝑥𝑖𝑗 = 1 ∀𝑗 ∈  ′ (7)

∑

𝑖∈
𝑥𝑗𝑖 ≤ 1 − 𝑥𝑡𝑗 ∀𝑗 ∈  (8)

𝜋 − 𝑏𝑗 ≤ 𝛽𝑦𝑗 ∀𝑗 ∈  ′′ (9)

𝜋 − 𝑏𝑗 ≥ 𝛽(𝑦𝑗 − 1) ∀𝑗 ∈  ′′ (10)

𝑏𝑗 ≥ 𝑏𝑖 + 𝜌𝑦𝑖 − 𝛿𝑝𝑗 − 𝛽(1 − 𝑥𝑖𝑗 ) ∀𝑖 ∈  ′′,∀𝑗 ∈  ′ (11)
∑

𝑥𝑠𝑗 ≤ 𝑚 + 1 (12)

𝑗∈ ′ g

7 
𝑧𝑠 = 0 (13)

𝑧𝑡 = 0 (14)

𝑏𝑠 = 𝛽 (15)

𝑥𝑠𝑡 = 1 (16)

𝑥𝑗𝑗 = 0 ∀𝑗 ∈  ′′′ (17)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈  ′′′ (18)

𝑦𝑗 ∈ {0, 1} ∀𝑗 ∈  (19)

0 ≤ 𝑏𝑗 ≤ 𝛽 ∀𝑗 ∈  (20)

𝑧𝑗 ≥ 0 ∀𝑗 ∈  (21)

𝑤𝑗 ≥ 0 ∀𝑗 ∈  (22)

In the formulation, we added artificial nodes 𝑠 and 𝑡 in the graph
ormulation of the problem. Node 𝑠 is the start node used to ensure
he constraint related to the number of robots. Node 𝑡 is the rejection
ode, and all rejected orders are succeeding nodes of this node. By
ntroducing two artificial nodes, we formulated this problem as a tree
here each node is connected to the preceding and succeeding node of

he corresponding robot. In addition to set 𝐽 , which includes all nodes
hat correspond to proper orders, sets 𝐽 ′, 𝐽 ′′, and 𝐽 ′′′ were introduced
o include either node 𝑠 or node 𝑡 to implement constraints for the graph
odel formulation.

The objective function of the problem (2) minimizes the weighted
um of the waiting time for accepted orders and the penalty cost for
ejected orders. The waiting time indicates the time between order
lacement and delivery completion. Constraint (3) ensures the time
elation within orders. Constraint (4) expresses the balance equation in
he case of battery recharging. Constraint (5) ensures the time relation
etween consecutive orders. Constraint (6) requires order completion
efore the deadline for accepted orders. Constraint (7) requires ev-
ry order to have a preceding order. Constraint (8) ensures every
rder except for the rejected orders has at most one subsequent order.
onstraints (9) and (10) is used to apply rules related to battery
echarging. If battery falls below the predetermined level 𝜋, battery is
echarged, and otherwise it is not recharged. Constraint (11) provides

balance equation for the battery in case of recharging. Constraint
12) guarantees the number of robots. Constraints (13) and (14) ini-
ialize completion time and battery level before the start of operation.
onstraint (15) ensures that battery is fully charged at the start of
peration. Constraints (16) and (17) provide conditions for the graph
odel. Constraints (18)–(22) enforce the domain of binary variables

nd real variables.

. Solution methodology

In this section, we introduce the solution methodology for the
roposed DPDP-AR. We devised an event-based rolling horizon method
o handle the demand that arrives dynamically during the time horizon.
n this method, a dispatching decision of orders is made every time an
rder arrives. Section 4.1 presents the reassignment policy utilized in
he rolling horizon framework inspired by the beneficial characteristics
f using ADRs. Section 4.2 proposes a methodology that includes
daptive battery management to handle peak time demand.

.1. Reassignment policy

One advantage of utilizing an ADR setup is the flexibility it brings
n processing orders. Rescheduling orders can significantly burden the
ystem in human courier-based delivery, as adjustment and notification
f new schedules confuse individual drivers. Therefore, studies that
tilized human drivers in dynamic pickup and delivery problems and
ial-a-ride problems attempted to find effective dispatch methods under
iven circumstances without the possibility of rescheduling. The issues
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Fig. 4. Comparison of schedule with and without reassignment.

were handled in either of two ways. One approach is the reactive
policy, which decides based on the requested orders. Reyes, Erera,
Savelsbergh, Sahasrabudhe, and O’Neil (2018) introduced a rolling
horizon algorithm in which orders were assigned in every period with
given information. The other approach is an anticipatory policy, where
information about future requests influences decisions. Ghiani et al.
(2022) designed an anticipatory policy applicable in large instances. A
new parametric policy function approximation approach that exploits
real-time instance information was developed. Li et al. (2021) also
suggested a machine learning-based anticipatory policy that estimates
future demand distribution with arrived requests.

Considering the interval between orders, the solution time at each
period should be fast enough to maintain ongoing service in the real-
world application. In this study, we leverage the traits of ADR and
introduce the reassignment policy. In brief, the reassignment policy
dispatches multiple orders that satisfy a particular criterion, including
the new order at every decision epoch.

A comparison of assignments with and without reassignment is illus-
trated in Fig. 4. Previously assigned orders of each robot are presented
as a schedule in the timeline, and two cases of order assignment at the
arrival of order 8 are shown in Figs. 4(a) and 4(b). We introduce the
term waiting order to indicate orders that arrived and were assigned
reviously but have not yet commenced delivery at the assigned ADR.
n Fig. 4(a), orders 5, 6, and 7 are waiting orders as their delivery

start time is after the red line that indicates the arrival of order 8. If
reassignment is not considered, Order 8 is assigned to robot 1, as in
Fig. 4(a). If reassignment is considered, waiting orders and the new order
are all considered assignable, as in orders 5, 6, 7, and 8. In this case,
order 8 is assigned to robot 3, and Orders 5, 6, and 7 are transferred
to another robot compared to the original schedule. A more balanced
schedule of orders is established in Fig. 4(b).

As a result of reassignment, future operations can benefit from
increased flexibility. Considering that more orders are the subject of
assignment in the reassignment policy, more efficient solutions can
be found in every decision epoch. Moreover, a reassignment policy
can overcome the systemic congestion issue when orders with long

travel times arrive, leading to decreased utilization. These lengthy and

8 
burdensome orders can be reassigned to the most unoccupied robot in
every period, which will, in the long term, lead to an increase in the
whole system’s capacity.

Algorithm 1 illustrates the reassignment procedure that operates
every time a new order arrives. The input is the result of the algorithm
operation at the arrival of the immediately preceding order, with the
information about the newly arrived order. First, the waiting orders are
classified from the assigned order set and are added to the unassigned
order set, 𝑈 . Each ADR’s battery level and earliest available time are
updated to incorporate the exclusion of waiting orders from the assigned
order set. The new order is added to set 𝑈 , and 𝑅𝑃 , formulated by
mixed-integer linear programming (MILP), is solved to assign the orders
in 𝑈 to ADRs. The assigned order set, rejected order set, and the
ompletion time of orders are updated by using the solutions of 𝑅𝑃 .

Subsequently, the ADRs’ battery levels and earliest available times are
updated according to the reassignment solution. Lastly, the (𝐵𝐿,𝑅𝐿)
policy introduced in Section 3.2 is implemented. After the completion
of assigned orders, the ADRs with battery levels lower than 𝐵𝐿 are
recharged in the amount of 𝑅𝐿. The earliest available time and battery
level of the recharged robot are updated.

Algorithm 1 Reassignment algorithm
Input: set of assigned orders 𝐴, set of rejected orders 𝐵, completion
time of assigned orders 𝐶𝑖, status of each ADR(battery level 𝑏𝑟, charge
ime 𝑐𝑟, earliest available time 𝑒𝑟), information about the new order
(order time 𝑜𝑛, processing time 𝑝𝑛, deadline 𝑑𝑛)
utput: updated 𝐴, 𝐵, 𝐶𝑖, 𝑒𝑟, 𝑏𝑟

nitialize unassigned order set 𝑈 ;
← 𝑜𝑛;
or 𝑟 ∈  do
if 𝑐𝑟 < 𝑡 then

Add 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟𝑠 of 𝑟 to 𝑈 ;
Remove 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟𝑠 of 𝑟 from 𝐴;
Update 𝑏𝑟, 𝑒𝑟;

end
nd
dd the new order 𝑛 to  ;

Solve 𝑅𝑃 on the elements of 𝑈 and get the reassigned solution;
Update 𝐴,𝐵, 𝐶 using the 𝑅𝑃 solutions;
Update 𝑏𝑟, 𝑒𝑟 according to the 𝑅𝑃 solutions;
for 𝑟 ∈  do

if 𝑏𝑟 ≤ 𝐵𝐿 then
𝑒𝑟 ← 𝑒𝑟 +

𝑅𝐿
𝑟𝑐 ;

𝑏𝑟 ← 𝑏𝑟 + 𝑅𝐿;
𝑐𝑟 ← 𝑒𝑟;

end
end

In the MILP formulation of 𝑅𝑃 , a new parameter, 𝑒𝑖, is added to
ndicate the earliest available time of robot 𝑖. This indicates the earliest
ime robot 𝑖 can embark on the new order after completing all the
re-assigned orders, and the value is transmitted from the iteration
mmediately before. As there is a difference in the earliest available
ime of robots during operation, the identical robot scheduling of the
tatic model had to be modified. Therefore, binary decision variable 𝑓𝑖𝑗
as introduced to signify if order j is the first order of robot 𝑖.
P

min
∑

𝑗∈
(𝑧𝑗 − 𝑟𝑗 ) + 𝛼

∑

𝑗∈
𝑥𝑡𝑗 (23)

s.t. 𝑧𝑗 ≥ 𝑟𝑗 + (1 − 𝑥𝑡𝑗 )𝑝𝑗 , ∀𝑗 ∈  (24)

𝑧𝑗 ≥ 𝑧𝑖 + 𝑝𝑗 − 𝐶(1 − 𝑥𝑖𝑗 ) ∀𝑖 ∈  ′′,∀𝑗 ∈  (25)

𝑧 ≤ 𝑑 + 𝐶𝑥 ∀𝑗 ∈  (26)
𝑗 𝑗 𝑡𝑗
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∑

𝑖∈ ′′′
𝑥𝑖𝑗 = 1 ∀𝑗 ∈  ′ (27)

∑

𝑖∈
𝑥𝑗𝑖 ≤ 1 − 𝑥𝑡𝑗 ∀𝑗 ∈  (28)

∑

𝑖∈
𝑓𝑖𝑗 − 1 ≤ 1 − 𝑥𝑠𝑗 ∀𝑗 ∈  (29)

∑

𝑖∈
𝑓𝑖𝑗 − 1 ≥ 𝑥𝑠𝑗 − 1 ∀𝑗 ∈  (30)

∑

𝑗∈
𝑓𝑖𝑗 ≤ 1 ∀𝑖 ∈  (31)

𝑧𝑗 ≥ 𝑒𝑖 + 𝑝𝑗 − 𝐶(1 − 𝑓𝑖𝑗 ) ∀𝑖 ∈ ,∀𝑗 ∈  (32)
∑

𝑗∈ ′
𝑥𝑠𝑗 ≤ 𝑚 + 1 (33)

𝑧𝑠 = 0 (34)

𝑧𝑡 = 0 (35)

𝑥𝑠𝑡 = 1 (36)

𝑥𝑗𝑗 = 0 ∀𝑗 ∈  ′′′ (37)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈  ′′′ (38)

𝑧𝑗 ≥ 0 ∀𝑗 ∈  (39)

𝑓𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ ,∀𝑗 ∈  (40)

The objective function (23) and Constraints (24)–(28), (33)–(39)
are identical to the static model, with constraints related to battery
management excluded. Constraints (29) and (30) ensure that the first
orders of each robot have the corresponding 𝑓𝑖𝑗 value. Constraint (31)
expresses the necessary conditions for variable 𝑓𝑖𝑗 . Constraint (32)
guarantees new delivery starts after the earliest available time of each
robot. Constraint (40) enforces the domain of the binary variable.

4.2. Peak time management

One distinctive characteristic of this problem is that an external
source allows the estimation of demand distribution. As all the cus-
tomers are passengers waiting for their flights, information about de-
mand can be extracted from the flight schedule. The gained information
becomes the source of developing adaptive strategies for the varying
demand. Estimating peak time is especially important from an opera-
tional perspective, as marginal cost or benefit rapidly increases near the
peak hours (Wu, Yücel, & Zhou, 2022).

There are numerous actual operations where the timing of peak
demand can be estimated. One type of operation predicts peak demand
by exploiting information from an external source. The schedule of
the external source serves as a guide for demand estimation. This
presumable demand can be found in shops near public transportation
terminals, restaurants near megaplex theaters, and many other locales.
These circumstances have nearby gathering hubs with scheduled events
that influence demand, and the peak periods can be estimated from
the schedule of the influencing entity. For instance, restaurants near
megaplex theaters can be speculated to have peak demand an hour
before the peak time of the theater, as people would have a meal before
entering the theater.

Another type of operation has a structure that inherently exhibits a
significant difference in demand between peak and non-peak periods.
Examples of such operations include restaurants, coffee shops, gyms,
and e-commerce ordering platforms. Peak periods of these business
processes can be estimated from historical data and used for further
improvement in operation.

As demonstrated in the preceding examples, there are various real-
life scenarios in which the operator can predict peak periods. The
operations vary from offline shops such as restaurants and coffee
shops to online ordering systems. Management strategies specifically
adaptable for peak periods are essential, as demand in these periods
 o

9 
takes up a significant portion. With a differentiated strategy for peak
periods, the operator is expected to achieve more efficient results with
the same resources.

In this paper, we adopt peak time management to enhance vehi-
cle operation efficiency. Fig. 5 explains the process of deriving the
peak time. First, the order arrival interval is obtained from the flight
schedule. The length of the order arrival interval is identical at every
flight, ending sometime before the deadline, as shown in Fig. 2. Second,
the time horizon is partitioned into time slots of identical length. The
number of overlapping order arrival intervals is counted for each time
slot. Lastly, based on the counting results of each time slot, we derive
the peak time by selecting a certain number of time slots with the
highest counts.

In developing a flexible strategy for peak time management, we pro-
pose a parameterized management methodology for battery recharging.
The method is based on the (𝐵𝐿,𝑅𝐿) policy proposed in Section 3.2. In-
stead of applying a unique (𝐵𝐿,𝑅𝐿) pair throughout the time horizon,
we introduce another pair named (𝐵𝐿𝑃 ,𝑅𝐿𝑃 ) employed during peak
times. Fig. 6 illustrates the difference in parameter values implemented
in peak time management. 𝐵𝐿𝑃 is set lower than 𝐵𝐿 to utilize more
battery capacity and reduce the number of battery recharges during
peak times. 𝑅𝐿𝑃 is set lower than 𝑅𝐿 to allow for decreased recharging
time for individual recharges. The variations made in these parameters
are applied to increase the utilization of ADRs during peak times.
Any reduction in the objective function is expected to minimize the
possibility of ADRs being inoperative due to recharging.

5. Numerical experiments

In this section, we present the results of numerical experiments. In
Section 5.1, we explain the environment and the elements of the test
instances, including demand generation. In Section 5.2, the reassign-
ment policy proposed in Section 4.1 is compared with other benchmark
policies. In Section 5.3, the effectiveness of peak time management
methodology introduced in Section 4.2 is measured.

5.1. Description of the test instances

The experiments are performed to represent the ADR-based food
delivery service at Incheon International Airport. Components of the
service are pickup restaurants, several service regions that indicate the
gates where customers can order, and a station where ADRs return
after each delivery. The distance between locations is calculated based
on the Incheon International Airport Corporation (IIAC) airport map,
depicted in Fig. 7. Experiments were conducted on a PC with an AMD
Ryzen 5 7600X 6-Core CP, a 4.70 GHz processor, and 32 GB of RAM
with a Windows 10 64-bit system. Test instances were generated by
using Python 3.9. Solution approaches, policies, and benchmarks were
developed and tested with FICO Xpress 8.12 and Xpress-Optimizer
version 38.01.04.

We tested our proposed algorithm on randomly generated instances
based on the actual airport flight schedule. From the passenger flight
operation records of one month, from July 1, 2023, to July 31, 2023,
provided by IIAC, we generated random demand based on the flight
schedule. Demand was generated individually for each flight, and
every demand arrived between the corresponding flight’s order arrival
interval. The deadline for an order is set as 30 min before departure to
indicate boarding time. The order arrival interval starts 120 min before
departure and ends 45 min before departure, as customers are assumed
not to order delivery if the boarding time is imminent. The orders’
arrival is assumed to follow a Poisson distribution with mean 𝜆, and
therefore, the time between orders follows an Exponential distribution
with mean 1

𝜆 .
Parameter values were set for the experiment to simulate real-world

roblems more accurately. The time horizon is 480 min, as the actual

peration time is 8 h from 9 a.m. to 5 p.m. The number of ADRs
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Fig. 5. Process of peak time derivation.
Fig. 6. Illustration of peak time management.

Fig. 7. Map of service delivery area.

is set as 5. In the real-world service, 4 ADRs are operating, but the
number is expected to increase in the near future. In implementing the
(𝐵𝐿,𝑅𝐿) policy, the base level is 50 percent, and the recharge level
is 30 percent. Therefore, a battery amount of 30 percent is recharged
every time the battery level falls below 50 percent after completion of
an order. The total battery capacity is 100 percent. The discharge rate
is 0.0167 percent/s, and the recharge rate is 0.0333 percent/s, which
is consistent with the rates of ADRs in operation. In calculating each
order’s travel time, the ADR’s speed and the distance between each
node are considered. The speed of the ADR is assigned as a fixed value
of 1.5 m/s as the highest speed of the currently utilized model. The
distance between nodes was calculated based on the building outline
of Incheon International Airport. The travel time is calculated as the
distance divided by the speed of the ADR. In calculating the objective
function, the penalty of cost rejection 𝛼 is set as 100. To minimize
rejection situations, the value of 𝛼 is slightly higher than the maximum
delay for an order, which is 90 min.

5.2. Performance analysis of reassignment policy

We conducted experiments to assess the effectiveness of the reas-
signment policy on the generated problem instances. As ADR-driven
10 
Table 2
Description of demand cases.

Low Moderate High

𝜆 0.5 1 1.25
Avg. number of orders 54.6 113.8 147.2

delivery is a recently introduced service, it is hard to speculate on
variations in demand. We aim to demonstrate that our proposed pol-
icy can perform well regardless of variations in demand scenarios.
Therefore, we assigned different values for the parameter 𝜆 of Poisson
distribution and experimented on three situations: low, moderate, and
high demand. Considering the range of service regions and ADR speed
limitations, we set the parameter value while avoiding a steep rise in
rejected orders. Information about these situations is listed in Table 2.
We generated ten random instances for each demand case for each of
the 20 flight schedules, totaling 200 instances.

Benchmark algorithms are required to show the performance of
the proposed algorithm. We selected two benchmarks: 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and
𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 represents the policy that is commonly used in
practice. In the current practice, an order is assigned rather myopically;
in other words, an order is assigned to the driver that is considered the
fastest to initiate and finish the delivery (Al-Kanj et al., 2020; Ulmer
et al., 2021). Therefore, no other information except for the current
schedule and availability affects the dispatching decision in this policy.
As a variation of 𝑀𝑦𝑜𝑝𝑖𝑐𝐴, we devised 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 , where a battery-related
scheme is also examined. Instead of selecting the ADR with the best
availability, as in 𝑀𝑦𝑜𝑝𝑖𝑐𝐴, two ADRs with the best availability are
initially selected as candidates, and the ADR with a higher battery
level is dispatched. This policy is built upon the assumption that using
batteries evenly between ADRs may increase system efficiency.

In addition to two benchmarks, the static model of the problem
is also compared. The signifier “𝑆𝑡𝑎𝑡𝑖𝑐” is chosen as the result of the
model’s ability to solve the static pickup and delivery problem intro-
duced in Section 3.3. Assuming that all the information about demand
is known before the start of the operation, the result of 𝑆𝑡𝑎𝑡𝑖𝑐 provides
optimal dispatch and reject decisions for all orders with complete
information. As our problem is a dynamic version of the static problem,
we employ the 𝑆𝑡𝑎𝑡𝑖𝑐 result as a lower bound for the result of other
policies.

The performance of the reassignment policy is assessed based on
two indicators. First, we compute the objective function value and
make a comparison with benchmark algorithms. The objective function
comprises the sum of waiting time for accepted orders and the sum
of penalty cost for rejected orders, as shown in Eq. (1). Primarily, we
compute the improvement of the proposed policy over two benchmarks,
𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . The improvement is defined as the difference
in the objective function value of two policies divided by the objective
function value of the benchmark:

Improvement =
Benchmark solution − Policy solution

Benchmark solution × 100(%) (41)

Second, the number of rejected orders is compared between policies.
We measure the rate at which orders are accepted and rejected. The
acceptance and rejection rates are calculated to examine the quality of
the dispatching method in terms of service level.

We checked the computational time of each policy. Every order
was dispatched in under 20 s of computational time for the reas-
signment policy and the two dynamic benchmarks. This result makes
the policies applicable for the operation’s order dispatching/rejection
decision-making in dynamic situations. We obtained optimal solutions
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Table 3
Experiment results of low demand case.

No. Objective function Number of rejections

𝑆𝑡𝑎𝑡𝑖𝑐 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵
1 689.52 704.51 954.87 745.60 0.30 0.30 0.30
2 667.66 684.92 931.02 730.69 0.20 0.20 0.30
3 633.86 659.83 876.95 699.84 0.20 0.10 0.10
4 686.14 694.22 934.21 734.93 0.30 0.30 0.30
5 733.11 752.27 1028.34 804.52 0.20 0.20 0.10
6 672.67 686.76 953.91 752.89 0.00 0.20 0.10
7 634.91 648.95 877.94 671.40 0.10 0.00 0.00
8 666.35 703.19 942.07 713.42 0.50 0.50 0.30
9 674.20 704.80 947.06 747.57 0.30 0.30 0.40
10 688.97 711.13 983.90 762.48 0.00 0.10 0.00
11 685.07 734.18 969.77 756.10 0.20 0.10 0.10
12 607.82 618.84 819.99 633.87 0.50 0.50 0.50
13 636.59 643.55 878.24 670.93 0.00 0.00 0.00
14 697.00 737.20 988.36 767.90 0.30 0.40 0.20
15 681.54 703.55 943.70 733.45 0.40 0.40 0.30
16 776.68 820.87 1108.25 880.93 0.50 0.50 0.30
17 672.93 679.34 929.22 715.17 0.10 0.10 0.10
18 627.93 630.94 864.23 657.21 0.00 0.00 0.00
19 644.16 659.58 900.48 686.61 0.10 0.20 0.10
20 674.61 697.80 945.25 778.46 0.10 0.10 0.10
21 733.22 763.89 1031.83 810.83 0.20 0.10 0.20
22 770.77 804.52 1080.92 876.31 0.60 0.50 0.40
23 732.54 757.54 1032.16 817.26 0.10 0.10 0.20
24 606.67 611.86 817.26 645.30 0.10 0.10 0.10
25 683.43 692.11 955.25 734.11 0.00 0.00 0.00
26 703.43 773.27 1049.55 864.87 0.10 0.30 0.30
27 739.51 756.56 1052.03 798.36 0.20 0.40 0.20
28 690.75 710.59 944.55 724.91 0.40 0.40 0.30
29 664.18 688.51 905.72 692.85 0.50 0.40 0.30
30 685.01 689.99 940.11 742.91 0.20 0.20 0.20
31 657.84 663.66 906.88 707.11 0.10 0.20 0.10

Avg. 681.29 702.87 951.42 743.83 0.22 0.23 0.19

for 𝑆𝑡𝑎𝑡𝑖𝑐 in low demand cases, but it is well known that a 𝑆𝑡𝑎𝑡𝑖𝑐 prob-
lem cannot scale to a large size. Therefore, in the moderate demand
case, we replaced it with the best lower bound value of the 𝑆𝑡𝑎𝑡𝑖𝑐
roblem under a computational time limit of 600 s. In the high demand
ase, as the gap between the best lower bound and the best feasible
olution was extremely high, we excluded the 𝑆𝑡𝑎𝑡𝑖𝑐 problem in the
nalysis.

We now analyze the experiment results of the low demand case.
able 3 shows the results of experiments. The result of the reassignment
olicy is marked as 𝑅𝑃 . 𝑅𝑃 outperformed the result of 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and
𝑦𝑜𝑝𝑖𝑐𝐵 . On average, 𝑅𝑃 resulted in 26.1 percent of improvement

ver 𝑀𝑦𝑜𝑝𝑖𝑐𝐴, and 5.51 percent of improvement over 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . The 𝑅𝑃
objective function was significantly lower than the objective function
of 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 in all instances. 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 obtained a lower
objective function than 𝑀𝑦𝑜𝑝𝑖𝑐𝐴. As the demand rate is relatively low,
less than one order was rejected on average for all policies. The number
of rejections was slightly lower in 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 compared to the other two
policies.

With a low number of rejected orders, it becomes evident that in the
case of low demand, a substantial majority of orders can be handled
through available ADRs without rejection. Because the utilization of
ADRs is relatively lower than higher demand cases, the number of
recharges during operation is comparatively indifferent between poli-
cies. Under these circumstances, in low demand cases, the difference
in objective function entirely relies on the ability to dispatch orders to
ADRs more proficiently. It can be inferred that 𝑅𝑃 can develop a more
efficient decision than can benchmark policies regarding assigning
orders to ADRs.

The result of the moderate demand case is shown in Table 4. As
more demand arrives at the same time horizon, the number of rejected
orders increases greatly compared to the number in low demand cases.
The average number of rejected orders exhibited significant fluctua-
tions depending on the date, ranging from less than one rejection to
11 
Table 4
Experiment results of moderate demand case.

No. Objective function Number of rejections

𝑆𝑡𝑎𝑡𝑖𝑐 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵
1 1351.36 2416.04 3124.92 3130.12 5.10 7.30 6.70
2 1385.58 2564.09 3367.51 3214.15 6.10 7.80 7.50
3 1360.61 2278.00 3030.64 3107.19 4.50 5.60 7.00
4 1091.47 1375.97 1899.14 1933.38 0.00 0.40 0.70
5 1296.99 2028.23 2647.69 2659.58 3.50 4.60 5.00
6 1416.44 2575.33 3364.84 3376.96 6.10 8.00 8.80
7 1301.79 1911.21 2635.86 2578.68 2.70 4.30 5.00
8 1408.02 2680.76 3344.23 3303.53 6.00 7.40 7.60
9 1238.78 1908.98 2419.09 2348.10 3.40 4.82 3.56
10 1451.32 2884.59 3777.96 3829.81 7.20 10.10 11.00
11 1441.57 2358.13 3132.66 3138.94 4.70 6.30 6.70
12 1240.74 1855.19 2485.42 2368.95 3.00 3.80 3.30
13 1371.91 2345.61 3221.76 3191.57 5.20 7.60 8.50
14 1422.26 2857.54 3697.72 3703.84 6.80 9.20 8.70
15 1324.62 2153.84 2850.05 2676.99 2.70 3.90 3.80
16 1440.36 2630.10 3645.38 3602.74 5.70 9.00 8.40
17 1358.72 2165.19 2852.73 2691.46 4.40 5.70 5.60
18 1372.66 2627.06 3433.93 3503.08 5.50 7.40 8.10
19 1334.15 2129.64 2840.35 2844.21 3.60 4.60 5.30
20 1381.31 2516.47 3211.46 3295.94 5.80 6.60 7.60
21 1483.24 2855.55 3618.50 3683.09 5.80 7.00 8.10
22 1357.95 2040.01 2855.92 2843.86 3.00 4.90 5.90
23 1555.42 3360.13 4480.73 4388.93 8.40 12.60 13.50
24 1346.70 2174.01 2844.63 2684.28 4.50 5.70 5.40
25 1279.55 1941.02 2588.08 2391.13 2.80 3.60 3.30
26 1379.54 2415.52 3068.20 3038.56 5.50 6.40 6.80
27 1491.61 2847.87 3570.83 3567.42 7.40 8.30 9.00
28 1414.56 2578.90 3435.91 3348.81 5.20 7.50 7.30
29 1365.65 2373.92 3010.86 2873.47 4.80 5.60 5.70
30 1421.92 2817.23 3577.15 3554.66 6.80 8.80 9.70
31 1355.83 1938.45 2580.86 2454.11 3.50 4.40 4.40

Avg. 1369.12 2374.34 3116.61 3075.08 4.83 6.43 6.71

as high as ten or more rejections. In this high variation circumstance,
𝑅𝑃 exhibited fewer rejections than 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 , with about
wo fewer rejections per instance. The gap of the objective function
etween 𝑆𝑡𝑎𝑡𝑖𝑐 and the three dynamic policies, including 𝑅𝑃 , increased
reatly, as the objective function of two myopic policies more than
oubled the objective function of the 𝑆𝑡𝑎𝑡𝑖𝑐 model. This result indicates
he increased difficulty of the dynamic problem compared to the static
roblem as the scale and complexity increase. Similarly to the low
emand case, 𝑅𝑃 recorded a reduced objective function compared to
𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . 𝑅𝑃 showed objective function improvement of

3.8 percent and 22.8 percent over 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . Even though
he problem became more complex with increased orders, 𝑅𝑃 showed a

clear competitive advantage over two myopic policies. As more orders
arrived with shorter time between orders, more orders were classified
as 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑜𝑟𝑑𝑒𝑟𝑠. Therefore, congestion or concentration of orders was
avoided using 𝑅𝑃 , and more efficient solutions were derived.

Table 5 shows the experiment result of the high demand case.
The number of rejections increased substantially compared to low and
moderate demand cases. Therefore, rejecting an appropriate number of
orders gained more importance. When the average number of arriving
orders increased by 29.3 percent compared to moderate demand, the
average number of rejected orders increased by 231.7 percent for 𝑅𝑃 .
The objective function more than doubled for 𝑅𝑃 with the increase in
rejected orders, but still, the enhanced result was obtained compared
to benchmark policies. The improvement of the objective functions
compared to 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 were computed as 21.0 percent
and 20.9 percent, respectively. The improvements decreased compared
to the moderate demand case. The difference between the number of
rejected orders increased, where 𝑅𝑃 rejected 16 orders while myopic
policies rejected more than 20 orders.

To summarize the result, 𝑅𝑃 proved to show substantial perfor-
mance improvement compared to the two benchmarks in all demand
cases. Fig. 8 outlines the improvement shown when using 𝑅𝑃 compared
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Table 5
Experiment results of high demand case.

No. Objective function Number of rejections

𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵
1 5953.64 7179.04 7041.88 22.70 27.60 27.80
2 4658.23 5988.73 6023.39 16.00 21.60 21.80
3 4535.67 5938.61 5947.60 15.70 21.20 21.20
4 3583.47 4651.59 4886.88 9.60 12.80 14.20
5 4643.11 5736.01 5709.80 16.40 19.30 19.20
6 4673.36 5973.95 6036.58 15.90 21.10 22.20
7 3963.18 5206.58 5173.37 10.70 15.30 15.10
8 4468.54 5703.65 5837.14 15.30 20.20 20.50
9 4464.09 5645.13 5780.34 14.80 19.90 19.80
10 4268.51 5652.25 5497.69 14.10 20.00 20.00
11 4079.64 5195.83 5160.36 12.10 15.30 15.50
12 2994.95 3931.06 3936.96 6.60 9.80 9.90
13 5209.34 6474.03 6342.53 20.40 25.30 25.40
14 4744.76 6157.69 6032.91 16.00 21.70 21.90
15 4028.28 5308.64 5298.09 12.20 16.40 16.70
16 5278.54 6855.85 6807.45 19.20 25.50 25.40
17 4559.97 5931.85 6016.98 15.20 21.10 21.90
18 4857.61 6020.62 5983.67 16.70 21.20 21.60
19 4456.05 5447.36 5559.13 15.70 19.20 19.90
20 5869.76 6963.40 6833.51 24.70 29.10 28.70
21 4998.87 6453.34 6339.65 17.40 23.10 23.20
22 4185.25 5563.24 5612.60 12.60 17.40 18.10
23 6371.89 7553.24 7406.18 26.00 30.40 30.00
24 4368.08 5356.86 5291.72 15.10 18.30 17.10
25 4146.03 5143.14 5100.65 13.70 16.60 15.80
26 4319.12 5510.61 5596.50 14.00 18.70 19.20
27 5692.11 7261.75 7405.35 21.80 27.80 28.10
28 5057.46 6480.93 6515.80 18.80 25.30 26.10
29 3346.69 4334.47 4303.61 9.30 11.90 12.00
30 6014.34 7085.96 7039.21 23.10 26.60 27.50
31 4436.01 5793.12 5803.75 14.90 20.20 20.60

Avg. 4652.47 5887.05 5881.33 16.02 20.64 20.85

Table 6
Average waiting time of served orders.

Demand 𝑅𝑃 𝑀𝑦𝑜𝑝𝑖𝑐𝐴 𝑀𝑦𝑜𝑝𝑖𝑐𝐵
𝐿𝑜𝑤 12.52 17.08 13.32
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 17.36 23.04 22.45
𝐻𝑖𝑔ℎ 23.25 30.21 30.05

to when using 𝑀𝑦𝑜𝑝𝑖𝑐𝐴. The objective function showed an improved
result of more than a 20 percent decrease in the objective function
in all demand cases. The number of rejections was lower in 𝑅𝑃 , as
seen in Fig. 8(b), which lowered the penalty cost of rejected orders.
However, the reduction of the objective function of 𝑅𝑃 was higher than
the reduced objective function due to rejection. Therefore, it can be said
that there is a significant improvement in the service level for served
orders. This improvement can be attributed to efficient dispatching
decisions made in the reassignment policy. This is especially true of
orders that arrived earlier but have not yet started delivery yet, waiting
rders, which are being assigned together. More flexible adjustment to
ny imbalance or hindrance in the system could lead to faster deliveries
n the long run. Table 6 illustrates the average waiting time of served
rders. The value was compared to assess the performance for only
erved orders rather than rejected orders. It was observed that 𝑅𝑃
esulted in reduced waiting times across all demand cases compared to
𝑦𝑜𝑝𝑖𝑐𝐴 and 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 . This result indicates that the number of rejected

rders decreased, and better service quality was ensured for served
rders.

One notable experiment result is that more rejection occurred in the
ow demand case when using 𝑅𝑃 compared to when using 𝑀𝑦𝑜𝑝𝑖𝑐𝐵 .

This result is in contrast to a decrease in objective function. One
possible explanation for this outcome is that each order received mul-
tiple chances to be rejected. In myopic policies, whether an order is

dispatched to an ADR or is rejected is decided only one time when

12 
Fig. 8. Improvement on objective function and number of rejections.

the order arrives. However, as every arrived order is an input of
reassignment before delivery starts, the chance of rejection remains
even after an order is dispatched first. Orders not previously rejected
could become the subject of rejection during the following process
as a means to increase system performance. In other words, when
utilizing 𝑅𝑃 , order rejection could be used to resolve situations with
insufficient capacity. Still, the slight increase in rejection contributed
to significantly increased delivery efficiency for the remaining orders.

5.3. Performance analysis of peak time management

This section evaluates the performance of the peak time manage-
ment (PTM) strategy. As the strategy is expected to be effective in
situations with densely arriving orders, we perform experiments on
moderate demand and high demand cases. PTM strategy is applied to
the reassignment policy and compared with the basic model. The base
level was set as 50 percent, and the recharge level was set as 30 percent
before PTM strategy was applied, as explained in 5.1. With the adoption
of PTM strategy, the base level changed to 30 percent and the recharge
level changed to 15 percent. These levels have a lower value than the
base level and recharge level of non-peak times, as illustrated in Fig. 6.
The parameter values were applied in the periods that were classified as
peak periods by the demand information. This adjustment is intended
to temporarily reduce battery charging time during peak periods to
increase utilization. As in Section 5.2, we evaluate the effectiveness
of PTM based on the experiment results on data of 31 days, with ten
instances per day, by comparing objective function and number of
rejections.

In the experiment, the number of orders that arrived during peak
and non-peak periods are compared to verify the classification of
peak periods. For high demand cases, 20.86 orders arrived per hour
during peak periods, whereas 16.67 orders arrived per hour during non-
peak periods. Therefore, any strategy change for peak periods impacts

more orders compared to orders in non-peak periods. The peak time
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Table 7
Experiment results of peak time management.

No. Moderate demand High demand

Objective function Number of rejections Objective function Number of rejections

𝑅𝑃 𝑅𝑃 + 𝑃𝑇𝑀 𝑅𝑃 𝑅𝑃 + 𝑃𝑇𝑀 𝑅𝑃 𝑅𝑃 + 𝑃𝑇𝑀 𝑅𝑃 𝑅𝑃 + 𝑃𝑇𝑀

1 2416.04 2190.43 5.10 4.40 5953.64 4684.67 22.70 14.20
2 2564.09 2497.55 6.10 5.40 4658.23 4006.69 16.00 12.40
3 2278.00 2113.67 4.50 3.90 4535.67 3629.37 15.70 9.40
4 1375.97 1306.47 0.00 0.00 3583.47 3372.81 9.60 9.00
5 2028.23 1933.64 3.50 3.70 4643.11 4050.12 16.40 11.30
6 2575.33 2404.24 6.10 5.50 4673.36 3839.82 15.90 10.00
7 1911.21 2216.38 2.70 4.60 3963.18 3979.46 10.70 12.00
8 2680.76 2770.95 6.00 6.70 4468.54 4772.86 15.30 17.60
9 1908.98 1861.93 3.40 3.20 4464.09 4434.66 14.80 14.20
10 2884.59 2760.47 7.20 6.80 4268.51 4156.69 14.10 13.10
11 2358.13 2412.61 4.70 4.70 4079.64 4038.19 12.10 11.20
12 1855.19 1892.03 3.00 2.80 2994.95 2957.82 6.60 7.00
13 2345.61 2376.37 5.20 5.50 5209.34 5345.01 20.40 20.80
14 2857.54 2742.68 6.80 6.30 4744.76 4446.55 16.00 14.70
15 2153.84 2086.13 2.70 2.70 4028.28 3907.42 12.20 11.40
16 2630.10 2690.74 5.70 6.00 5278.54 5091.82 19.20 18.40
17 2165.19 2089.16 4.40 4.10 4559.97 4122.92 15.20 12.60
18 2627.06 2313.51 5.50 3.70 4857.61 4060.17 16.70 12.30
19 2129.64 2033.36 3.60 3.10 4456.05 3794.13 15.70 12.10
20 2516.47 2295.06 5.80 5.20 5869.76 4665.70 24.70 15.70
21 2855.55 2546.11 5.80 4.30 4998.87 4310.91 17.40 12.00
22 2040.01 1972.92 3.00 2.50 4185.25 3861.20 12.60 11.00
23 3360.13 3329.78 8.40 9.40 6371.89 5917.75 26.00 23.50
24 2174.01 2269.68 4.50 5.20 4368.08 4534.06 15.10 15.20
25 1941.02 2062.61 2.80 3.20 4146.03 4147.12 13.70 13.80
26 2415.52 2193.33 5.50 3.90 4319.12 3628.88 14.00 9.20
27 2847.87 2580.72 7.40 5.70 5692.11 4777.09 21.80 14.50
28 2578.90 2217.36 5.20 3.30 5057.46 4204.79 18.80 11.30
29 2373.92 2334.64 4.80 4.60 3346.69 3336.69 9.30 9.30
30 2817.23 2869.94 6.80 7.30 6014.34 5147.79 23.10 16.90
31 1938.45 2028.51 3.50 3.70 4436.01 4218.86 14.90 12.70

Avg. 2374.34 2303.00 4.83 4.56 4652.47 4240.07 16.02 13.19
i
t
i
i
t
e
a
s
p
s
o
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management strategy is expected to increase the utilization of ADRs in
the short term. However, the efficiency of the strategy during the whole
time horizon is an aspect that needs to be revealed through research, as
more recharging occasions are required to recharge ADRs during non-
peak periods. We experimented with test instances to verify if peak time
management is compelling enough to overcome the trade-off situation.

Table 7 presents the result of the experiment. By implementing
PTM, the objective function and the number of rejections are reduced
by 3.01 percent and 5.59 percent in the moderate demand case. In the
high demand case, the objective function and the number of rejections
were reduced by 8.86 percent and 17.67 percent. Compared to 𝑅𝑃 ,
𝑃 + 𝑃𝑇𝑀 showed a decrease in average objective function and
umber of rejections, especially when the demand rate was higher.
he experiment results correspond to our intuition in implementing
he PTM method. By applying PTM, we increased ADR utilization
uring peak times when demand tends to be concentrated. Recharging
requency and the time required for recharging decreased, making more
ime available for delivery of orders. A decrease in the number of
ejections in both moderate and high demand can result from this
actor.

We analyzed the results of the experiment to examine the effects of
eak time management. Fig. 9 depicts two statistics obtained from the
xperiment. First, the waiting time for orders that arrive during peak
eriods is calculated. When the peak time management strategy was
mplemented, customers had to wait three fewer minutes on average
o get the orders delivered. This fast dispatching and delivery result
ndicates that ADRs can handle more orders with a speedier process
apacity if PTM is implemented. The average number of recharges
uring the whole process is also calculated. If PTM is used, about two
ore recharges for each ADR, and nine more for the entire system

ccur. This outcome is due to applying two (𝐵𝐿,𝑅𝐿) pairs in PTM. In

non-peak period after a peak period, ADRs suddenly face a higher r

13 
base level when deciding to recharge. More ADRs are recharged under
the higher base and recharge levels in these situations. Even though
more time is spent on recharging, PTM still yielded lower objective
function values in most instances. This result can give insight into the
fact that by using PTM, ADRs are utilized more during periods of many
orders and recharged more during periods of fewer orders, indicating
an efficient operation.

In a small number of instances, the objective function of 𝑅𝑃 +𝑃𝑇𝑀
ncreased compared to the result of 𝑅𝑃 . The reason for this outcome is
wofold. First, as mentioned above, the number of recharges increases
n times after peak time as the base level that triggers recharges
ncreases. In this situation, an ADR’s total capacity decreases, leading
o an inevitable loss in processing ability. Second, PTM can have side
ffects when an extended sequence of peak time slots exists. As PTM
ims to benefit from a temporary increase in capacity with a minor
acrifice in future capacity, prolonged peak times might lead to inferior
erformance. Focusing on the rise in the objective function occurring in
everal instances from the same date, it can be seen that the distribution
f peak time impacts the performance of PTM.

. Conclusions

With the increasing utilization of ADRs in diverse domains, the
ignificance of enhancing ADR driven delivery’s effectiveness is also
n the rise. In the process, taking account of the unique character-
stics of ADRs is an essential factor in taking full advantage of this
merging technology. However, as the dynamic pickup and delivery
roblem is known initially as a complex problem, finding efficient
olutions with additional constraints related to ADR becomes chal-
enging. Furthermore, in dynamic situations, the increasing need for
imely solutions raises the complexity of finding practical policies in

eal-world scenarios.
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Fig. 9. Comparison of waiting time during peak periods and number of recharges.
C

C

D

In this study, we proposed a solution methodology to address such
hallenging situations. We defined a novel DPDP-AR problem with the
DR features included in the formulation. The reassignment policy is
resented, and the mathematical formulation is suggested based on
he formulation of the static model. A practical battery management
trategy and peak time management methodology are proposed con-
erning batteries. Experiment results verified improved solution quality
f the reassignment policy compared to the policy in practical use, and
mplementation of peak time management was shown to enhance the
olution quality even further.

This paper presents a guideline for novice operators to operate
DR and to process orders efficiently. Novice operators can utilize the
eassignment algorithm suggested in this study to effectively dispatch
ynamic orders to ADR within a short computation time. With the
ntuitive (𝐵𝐿,𝑅𝐿) policy, the operator can also easily handle battery
echarging, which is one of the few inconveniences of adopting this
ew technology. Based on the operating environment, battery-related
arameters can be adjusted to enhance efficiency. In specific environ-
ents where peak demand periods can be estimated, the peak time
anagement strategy introduced in this study can also be applied to

ncrease utilization during peak periods. Consequently, this paper can
erve as an example of harnessing the advantages of utilizing ADR while
itigating the inconvenience caused by it to increase the operational
roductivity of delivery services.

Several limitations exist in this study. The travel time of ADRs is
alculated as a deterministic value of distance divided by speed, and
ny factor that could affect travel time, such as congestion, is not
onsidered. Furthermore, the speed of ADRs is also a fixed value, in
ontrast to the varying speed of ADRs during the actual operation. In
ddition, the ready time of restaurants is assumed to be zero in the
xperiment. For further research, we aim to expand the problem with
ore practical applications. In addition to stochastic order arrivals, or-
er reservations could be added to the model. Policies that can manage
oth preannounced orders and stochastic orders could be devised to
olve the problem. ADR speed could be relaxed to be an adjustable
ariable and could be added as a decision variable considering the vary-
ng battery discharge rates. Anticipatory policies based on forecasts of
uture demand are options in terms of policy-making. Approximate dy-
amic programming and reinforcement learning methodologies could
e applied to make decisions based on future demand information.
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