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Abstract

The purpose of this paper is to study the make-to-order (MTQ), make-in-advance (MIA), and composite policies in a
single period two echelon stochastic model with more realistic assumptions. We relax the assumption that the cumulative
distribution function of demand is completely known and merely assume that its first two moments are known.
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1. Introduction

Faced with stochastic demand, managers are often
confronted with decisions on whether to hold inven-
tories in the form of raw materials, subassembles or
finished products. Two extreme policies may be excer-
cised: holding finished products or holding raw materi-
als (or components). If the demand’s realization turns
out to be smaller than the available finished products,
then some processing cost have unnecessarily been in-
curred. But if the demand’s realization turns out to be
larger than the available finished products, then some
customers might balk and their demand will be lost.

Johnson and Montgomery [1] analyzed a two-
echelon single period stochastic model consisting of a
single facility that converts a purchased material into
a finished product to capture the above tradeoff. The
model is based on a four echelon model by Bryan
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et al. {2] and another multi-stage model in Hanssman
[3]. Gerchak and Zhang [4] investigated the depen-
dence of the optimal stocks on the initial inventories.
Recently, Eynan and Rosenblatt [5] have pointed out
that Bryan et al. [2], Johnson and Montgomery [3],
and Gerchak and Zhang [4] implicitly assumed that
there is no difference (costwise) of when the product
is assembled. As they pointed out, the cost of pro-
ducing in advance (MIA) is usually less expensive
than in a rush job when customers are waiting for the
conversion of materials into finished products (due to
expediting costs). Furthermore, under make-to-order
(MTO) one may lose the advantages of economy of
scale (working in batches) and learning effects that
tend to increase the cost under MTO. Finally, one
may consider MIA as a case where finished units are
purchased from a supplier at a lower cost per unit
than if they are made to order within the plant [5].
Our model is based on that of Eynan and Rosenblatt
[5], and the distribution free approach, which will be
explained below, is applied to their model.
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In practice, the distributional information about the
demand is often limited. Sometimes all that is avail-
able is an educated guess of the mean and of the vari-
ance. There is a tendency to use the normal distribution
under these conditions. However, the normal distribu-
tion does not offer the best shield against the occur-
rences of other distributions with the same mean and
same variance. Scarf [6] addressed a newsboy prob-
lem where only the mean p and the variance ¢ of
the demand are known without any further assump-
tions about the form of the distribution of the demand.
Taking a conservative approach, he modeled the prob-
lem as that of finding the order quantity that maxi-
mizes the expected profit against the worst possible
distribution of the demand with the mean u and the
variance ¢°. He showed that the worst distribution
of the demand has positive mass at two points and
used this result to obtain a closed-form expression for
the optimal-order quantity. The approach is called the
minmax distribution free approach.

Recently, there have been several papers related to
the distribution free approach. Gallego [7] applied the
distribution free approach to a continuous review in-
ventory model. Moon and Choi [8] solved the distri-
bution free continuous review inventory model with a
service level constraint. Moon and Gallego [9] applied
the approach to several inventory models including a
periodic review model. Gallego and Moon [10] pre-
sented very compact proof of the optimality of Scarf’s
ordering rules for the newsboy problem and extended
the analysis to several cases including fixed ordering
cost case, multi-product case, random yield case, and
recourse case. Moon and Choi [11] extended the model
of Gallego and Moon [10] to the case that allows cus-
tomers balk when inventory level is low. Shore [12]
derived explicit approximate solutions to the standard
newsboy problem, to some ((, r) models, and to a pe-
riodic review model in which the first three or four
moments of the demand are known.

The basic model of this paper has been initially
studied by Eynan and Rosenblatt [5]. In this paper
we apply the distribution free approach to the basic
model, and develop a procedure that provides optimal
inventory levels against the worst distribution. In Sec-
tion 2, we briefly review the basic model and then ap-
ply the distribution free approach to the basic model.
We also compare the profit differences between MIA,
MTO, and composite model and derive an equation

which shows the relationship between inventory lev-
els from the three policies. In Section 3, we extend the
analysis to the case that there is a budget limit on the
total inventory cost. Computational experiments are
provided in Section 4.

2. Basic model and distribution free approach

The data used in this paper are as follows:
¢1 cost to purchase one unit of the finished product
¢z cost to purchase one unit of raw material (or com-

ponent)

p unit selling price of finished product

v, unit salvage value of finished product

vy unit salvage value of raw material

m cost to process one unit of raw material into one
unit of finished product

u expected demand

o standard deviation of the demand

ST on-hand inventory of the finished product at the
beginning of the period when demand follows a
distribution function F (decision variable)

S% on-hand inventory of raw material at the beginning
of the period when demand follows a distribution
function F (decision variable)

We consider a single period model with stochas-
tic demand under a two echelon production system.
Demand can be satisfied from two kinds of invento-
ries: First one is the inventory of finished products
(MIA) which have been purchased at the beginning
of the period (or processed from raw materials before
the beginning of the period). Second one is the inven-
tory of raw materials (MTO) which will be processed
into the finished products once demand is realized. For
the composite model, we use both kinds of invento-
ries to satisfy demands. Our problem is to decide the
appropriate inventory levels S, and S, to maximize
the expected profit. Unlike in the Johnson and Mont-
gomery [1] or Gerchak and Zhang [4] model, no sales
are assumed to be lost (i.e. all customers will wait
for conversion). However, the model in this paper can
easily be extended to the case in which a fraction of
customers will wait for conversion. Also, unlike in
Gerchak and Zhang [4], there are no initial invento-
ries of materials and/or finished products.

Products can be purchased or processed in advance
with a cost per unit of ¢;. If the unit is processed
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upon the receipt of an actual order, then the cost per
unit is ¢; + m which is larger than ¢, due to deviation
from the original schedule and causing some form of
system nervousness (see Carlson et al. [13]). For the
problem to be meaningful, we assume that ¢; < ¢,
a<ag+m<p v <c,v <c,andc —v; <
¢) — v;. Note that if ¢c; + m < ¢y, there is no advan-
tage to purchase finished products and we should al-
ways adopt the MTO policy. Similarly, if ¢; — v <
¢; — 17, there is no advantage to stock raw materials
and we should always adopt the MIA policy.

Let D denote the random demand with probability
density function (D) and distribution function 7. In
what follows, we let x* = max{x, 0}. Only when 5|
is exhausted, we will start to process raw materials
into the finished products. The expected profit can be
written as

S|+S_7
7 (S1,5) = p /
0

Df(D)dD + p(S) + 52)

oo S
/ﬂDND+m/GwJDﬂDND
MBS 0
S1+S$;
—m [ (D-S8)fD)dD
/

—mS2 /f(D)dD - C|S1 - CzSz
Si1+8:

M
‘H)zSz f(D) dD
/

NER K
+m/f&+&—Dvwma (1)
S

Noting that

/w-SQﬂDND=ﬂD—&F,
M

/XD—&~&M@ND=HD—&-&h
51482

we can write the expected profit as

7" (S1,8)=(p—vi)u+ (2 +m— p)
XE[D —8; — $]" —(m+ vy —vy)
XE[D — §i1" —(c1 — 01)81—(c2 — 12)85.

Note that if S; =0 or S, = 0, the above equation re-
duces to the MTO model and MIA model, respec-
tively. Evidently, maximizing 7' (Sy, S, ) is equivalent
to minimizing the expected cost C7(Sy,.5,).

CH(81,8)=(p—m—0)E[D -8 - %]

+(m+ vy — v))E[D — §i]F

+(cr —v1)S1 + (2 - 12)8). (2)
It is easy to verify that CF(S),S;) is strictly convex

in S;and S,. Upon setting 0CY(S),5,)/08) =0
and 6CF(S1,5,)/0S; =0, we get

¢+m—c¢
F(8)=—"——1, (3)
m-+vy— 0
C — U
F S$H)=1- ——7—, 4
(5 +8)=1- -2 )

The equations are due to Eynan and Rosenblatt [5],
and we can find the optimal (S, 5¢) satisfying the
above equations using a line search,

Since F(-) is nonnegative and smaller than 1 and
¢ < cp4+muvy <cy,wehavem+v, —v) 2 0and
p—m—uv; = 0. Thus, we can rewrite Eq. (2) as
follows:

Ci(S),S)=aE[D — S| — S;]" + bE[D — §]F
+ (c1 — v1)8; + (c2 — 12)8, 3

wherea=p—m—v,, b=m+ vy — v;.

Now we consider the distribution free approach.
We make no assumption on the distribution F of D
other than saying that it belongs to the class F of
distribution functions with mean p and variance o°.
Since the distribution ¥ of D is unknown we want to
minimize (5) against the worst possible distribution
in F. To this end, we need the following proposition
(10].
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Proposition 1.

V(S =12 = (S - )

5 . (6)

Moreover, the upper bound (6) is tight. That is for
every S, there exists a distribution F* € F where the
bound (6) is tight.

E[D - 5]" <

Proof. First note that
|D—S|+(D-S5)
2
Eq. (6) follows by taking expectations and using the
following Cauchy—Schwarz inequality:
E|D - S| <[E(D - S¥1"? = [¢* + (S — u)*]"".

Now we prove the tightness of the upper bound. For
every S, consider two point distribution F* assigning
weight

_ VR pP S
24/ + (S — u)?
to

[ —«
p—oy— =
o
and weight
| g VS —p)? (S —p)
2+/6% + (S — p)?
to

[ o
U+ 0oy —— =
1—x

Clearly (6) holds with equality and it is easy to verify
that F* e F. O

[D-S8]"=

o> +(S — P

a2 + (S — u)t

The distribution free approach for this model is to find
the most unfavorable distribution in F for S; and S,
and then minimize over S; and S,. Our problem is
now to minimize the upper bound

(s, Sz)—a\/az + (S 4+ —puf - (Si+5 - p)
’ - 2
Jrb\/ff2 + (81 ~ u)? — (S — p)
2
+(er — v))S) + (c2 — 02)8). @)

The expected cost function is strictly convex as shown
in the following property.

Proposition 2. C¥(Sy,5;) is strictly convex in both
S1 and S;.

Proof.
BZC (S],Sz) a 2
T 5{[ 2+ (S + 8 - w1
» [1 (S) + 8 — p)? J }
62+ (S + 85— p)
b
+5{[0 +(S - w7
(S) — p)? ] }
1 - 0,
8 [ o2 + (S — uy? g
*C¥(81,8) a 23—
s 5{0' +(S1+ 8 —py1'?
(S + 8 — p)? }
0,
8 [1 a2+ (S + 85— /1)2} g
aZCW(S1,52) af. 2
TS, 5{[ + (S + 8 — i

R
G o Bt ) ] -0
o2 + (81 + 8 — py
We can easily check that the Hessian matrix is positive

definite. Consequently, C?(S),5,) is strictly convex
in S| and Sz. O

Upon setting

aCc%(81,8,) aCY(81,5,)
PO it A —_ =0
25, 0 and 25, ,
we get
Sy —u = -2 +20+m ®)
Vi + (81— p) vrtm— ’
a S14+8—u n _lz S| —u
22+ (S1+8—puP 2y a?+ (S —p)?
a+b
=" —(c1 —ty) €))

Solving (8) for S}, we obtain a closed-form optimal in-
ventory level of the finished product against the worst
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distribution:
g m+c; — ¢y
SW = hl AL S
1 ”+2(\/Cl—02+1’2"vl
co—c+v—v
_\/ 1 -G+ 1) (10)
m+cy; — ¢y

By substituting (10) into (9) and solving for S;, we
obtain a closed-form optimal inventory level of raw
material against the worst distribution:

o p—m—-0C
¥ =pu+ - [/ /—2
2 'u+2( Cry — U
_ Cz——t’z_)_slw. (11)
p—m—q0C

If we use the quantity (S, S)) instead of (Sf,S5),
the expected loss is equal to

7" (ST, 85 ) — 775V, 8)).

This is the largest amount that we would be willing
to pay for the knowledge of F. This quantity can be
regarded as the Expected Value of Additional Infor-
mation (EVAI) [10].

Example 1. This example is taken from Eynan and
Rosenblatt [5]. Let the demand for the finished prod-
uct be uniformly distributed, U(0, 1000), and let p =
$97,¢c1 =851,c; = $40 and m = $14.6 (v, = v, = 0).
Note that a unit which is purchased, or made in ad-
vance, costs $51; while a unit which is made to order
costs $54.6.

We compare the performance of (S},S)) with
(SY,SY) where U € F represents the uniform dis-
tribution. The results are (S W,SZW )=(330,178) and
(SY,SY)=(246,268), and the worst case expected
profit 7% (S, S¥) is $9,295. The EVAI is

sV, 8 ) — n¥(SY,8Y )= $11,352 — $11,300
=$52.

Next we compare the procedure for the worst-case
distribution with that for the normal distribution. The
mean and the standard deviation of the demand are
500 and 288.7, respectively. The other data are the
same as before. The results are (S, S) ) = (302, 208)
where N € F represents the normal distribution. The

EVAlis

v (SY,8Y) — nV(S),S¥)=$12,187 — $12,180
=$7.

From the results of the above examples, we can con-
jecture the robustness of the distribution free approach.

We now test the profit differences between MIA,
MTO and composite model. When S, = 0, the com-
posite model reduces to MIA model, and the expected
profit can be written as

" (S =(p—v)p—(p—w)

X\/02+(Sl — 12— (85— u)
2
—(c1 = v1)Sh. (12)

Upon setting the derivative to zero, we obtain

S\ —u =(P—Cl)“(cl"vl)
VoI + (S — p)? p—u '

Solving (13) for S results in the following closed-
form solution:

W _ g p“‘cl_ 1 — U
STMIA) =43 (\/Cl—vl \/P—cl )

(14)

(13)

When S| = 0, the composite model reduces to MTO
model, and the expected profit can be written as

1 ($)=(p —v2 —m)u+ (v2 +m— p)

Xv02+(52—ﬂ)2‘(52—#)
2

—(c3 = 12)8,. (15)

Upon setting the derivative to zero, we obtain

S —u _p-m-ca)—(a—n)
a? + (8 — uy p—m—ut

Solving (16) for S; results in the following closed-
form solution:

, g p—m—oqc
SY(MTO) = - ,/————
2( ) 'u+2< C2y — U2
_ ez ) (17)
p—m—q<

. (16)
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Table 1
Optimal inventory levels and expected profits

Model MIA MTO Composite model
sy 485 - 330

s¥ ~ 508 178

L $9,018 $8,747 $9,295

From (11) and (17), we can obtain the following rela-
tionship. It means that the sum of the optimal inven-
tory level of raw material and the optimal inventory
level of the finished product under composite policy is
equivalent to the optimal inventory level of raw ma-
terial under make to order policy:

SY + 87 =57 (MTO). (18)

The above relationship is quite intuitive. An optimal
decision under MTO is to stock the same amount of the
finished product under composite policy as raw mate-
rial since the finished product cannot be inventoried. A
similar equation for MIA (i.e. S} + S} =S¥ (MI4))
does not hold since it requires higher inventory level
of the finished product than that of composite policy
and it is assumed that ¢c; — v; < ¢ — v (i.e. the risk
of overstocking the finished product is higer than that
of raw material).

Example 2. We use the same data as in Example 1.
And, in this example we are going to compare the ex-
pected profit of MIA and MTO with that of the com-
posite model. The optimal inventory levels against the
worst distribution and their corresponding expected
profits under the three models are summarized in
Table 1.

3. A budget constraint

In the previous section, we have determined the
optimal inventory levels without considering its bud-
getrary implications. However, there is often a space
or budget constraint on the group of items [14]. Now
we consider the composite model in the presence
of a budget constraint on the investment in inven-

tory.

In this section, we want to find the optimal inven-
tory levels that maximize the expected profit against
the worst possible distribution of the demand without
exceeding the budget limit, say B. The problem can
be formulated as follows:

Ming, 5, C¥'(5),5,)
subject to ¢15) + 28 < B. (19)

We form the Lagrangian function

YOG+ - - (S48 —p)

L(8),82,2) = 7
+b\/0‘2 + (S —g)z —(Si—w

+(c1 —v1)8) +(c2 — 12)$2
-1[015‘] + 285, — B],

where 4 is a Lagrange multiplier associated with the
budget constraint. The Lagrange multiplier, 4, has an
intersting economic interpretation; it is the value (in
terms of increased total expected profit) of adding
one more dollar to the available budget, B. By com-
puting 0L/3S, = dL/éS, = 0, we see that the solution
is of the form

Wen o, O m+(c—a )l -4)
SR =a 2(\/@. —a)l-A)+vn-u

(c1 —e)(I = A)+ v — vy
_\/ m+(cr—ci )l —2) ) (20)

W, a p—m—c(l—7)
K (;')‘““Li(\/ a(l-H—-v

1-4)—
—\/pC—Z(m . Z)) -Sd. ey

The problem is to find the smallest nonnegative A such
that S/'(1) and Sy(4) satisfies (19). A line search
algorithm can be used to find the optimal value of A.
Clearly, we first need to check whether the uncon-
strained solution obtained from the previous section
is optimal or not.
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Table 2
Distributions for randomly generated data

Table 3
Results of comparative examples

Problem p C 2 m Distribution  Ratio Minimum  Mean Maximum
data ratio ratio ratio
_ N S\S,\
Range (100,110} 50,60}  [25.35) [er—e2+5, Normal TG 00004 100127 1.00207
¢ —c2+15] sy s
Uniform S 1.00291 1.00997 1.01706
niro ————— B R .
. . . s, s
Example 3. We continue Example 1 with the modi- , ', -
fication that there is a budget limit B = $25, 000. t % 1.00097 1.00290  1.00477
. . . . 7'} .50
Using a line search algorithm, the optimal order
e W oW~y _ U Uy _ nT®(sTR sIR
quantities are (S}",S;" ) = (366,159) and (S, ) = Triangle C%0 00004 100211 1.00391

(293,252). The optimal Lagrange multiplier values
are 0.0566 for the worst distribution and 0.0615 for
the uniform distribution. Expected profit is $9266 for
the worst distribution and $11 300 for the uniform dis-
tribution. The value of the distributional information
when demand is uniformly distributed is

7Y(293,252) — 7Y(366,159) = $11,300 — $11,245
=$55.

4. Computational results

In order to investigate the robustness of the distribu-
tion free approach, 1000 test problem instances were
generated randomly from uniform distributions on the
given intervals. Table 2 shows the distributions for
the data set. The mean and the standard deviation are
fixed as 500 and 288.7, respectively. Salvage values
are assumed to be zero.

Table 3 shows the comparative results using
several different distributions including normal, uni-
form, ¢, and triangle distributions. We have re-
ported the minimum, mean, and maximum ratios of
[=F(SF,S5))/[="(S)Y,SV )] for the 1000 instances.
Most of the ratios are quite close to 1 which enables
us to use the distribution free ordering rule in the ab-
sence of the specific form of the distribution function.
It can be seen that the rule works best for the normal
distribution. Also, we know from the statistical prop-
erty that the normal distribution maximizes entropy
subject to a fixed mean and variance (see Cozzolino
and Zahner [15]). We conjecture that there are some
kinds of connections between these two facts.

kst s

5. Concluding remarks

We have derived the optimal production policy for
the composite model where only the mean and the
variance of the demand are known. Based on the nu-
merical examples and computational experiments we
conjecture that the distribution free approach is ro-
bust. Further theoretical investigation on robustness
of Scarf’s ordering rule might be an interesting re-
search problem. The model developed here extends
to the lost sales case such that only a fraction of
the customers will be waiting until the product is
made from a raw material. We hope that this paper
will help disseminate Scarf’s minmax distribution free
approach.
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