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We developed a delay propagation model for an airline network using a Gaussian network approach. By analyzing US flight 

data in a case study, we evaluated the effects of delay propagation within an airline network. The model has several 

advantages, such as accounting for non-independent and identically distributed delay profiles, providing a more accurate 

representation of the observed delay propagation process, and identifying weak links in an airline network. Various scenario 

studies of delay propagation revealed that the Gaussian network model could capture the effect of delay propagation more 

precisely than previous studies. Moreover, the Gaussian network model could identify weak links through a statistical 

approach in an airline network. These perspectives may be valuable in developing approaches for managing the delay 

propagation and alleviating its subsequent effect. 
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1. INTRODUCTION 
 

In December 2019, the initial case of COVID-19 was reported in Wuhan, China, and soon after, the virus rapidly spread 

beyond China, causing a global pandemic and economic difficulties across various industries. The COVID-19 pandemic has 

had severe economic ramifications worldwide and harshly hit the entire US airline industry. Statistical predictions indicated 

that the number of passengers might not return to pre-pandemic levels in 2019 for the airline industry. On April 16, 2020, at 

the beginning of the outbreak, the US Transportation Security Administration (TSA) reported that only around 95,000 

passengers were screened at US airports, a 96 percent drop compared to the same day in the year of 2019, as 2.6 million 

passengers were screened.  

However, according to the International Air Transport Association (IATA), the profitability of the airline industry in 

2023 will be recovered to its former state to achieve $8.8 billion in profits across North America in 2022 (IATA, 2023). As 

time passes, strong pent-up demand for traveling and trade will soar again, bringing up the number of passengers to 72 percent 

of pre-pandemic levels in 2022. With expectations on a post-pandemic air traffic recovery, challenges of resolving airline 

delays and congestion at airports would be highlighted again as they have always been important issues for traditional airline 

passenger transportation. 

Airline delays can have significant impacts. Economically, the costs manifest in several ways, such as the following: 

direct costs to airlines from wasted fuel, increased maintenance, and potential compensation to passengers. Indirect costs 

from missed opportunities or additional expenses, such as accommodations, also cost airlines money. Prolonged issues with 

delays could deter frequent flyers, leading to a reduction in overall demand and a subsequent loss of revenue for the industry. 

From a service-level perspective, airline delays disrupt operational efficiency. Delay propagation, the domino effect of one 

delayed flight, can lead to subsequent delays, causing scheduling and logistical challenges. This can also result in 
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overcrowded airports and increased pressure on airport facilities and staff. In the long term, delays can negatively impact an 

airline’s service level, leading to a loss of market share as customers switch to competitors perceived to be more reliable. 

From a cost perspective, the delay propagation can have a substantial financial impact. When a flight is delayed, it incurs 

additional operational costs. These can include increased fuel consumption, additional crew time, and increased maintenance 

costs due to extended aircraft use. Depending on the jurisdiction and the extent of the delay, airlines may need to provide 

passengers with compensation, which could include monetary reimbursement, accommodation, meals, and alternative 

transportation. In a real-world case, the airline Southwest canceled and delayed more than 16,700 flights between December 

23 and December 31, 2022. In a report released by the US Federal Aviation Administration (FAA), losses for the fourth 

quarter of 2022 are expected to be between $725 million and $825 million.  

The main objective of this paper is to develop a mathematical model of the way delays spread throughout an airline 

network. Delay propagation is a typical and frequent occurrence in airline networks that are interconnected, where flights 

rely on resources to be carried out. Delays by resources, such as a delayed incoming plane, can cause serial postponement for 

all of related activities and may result in further delays for other interrelated activities that exploit the same resources. 

Consequently, analyzing delay and its cause is closely related with airline scheduling and routing (Pelegrín et al., 2016). 

Delay propagation can also have a significant impact on airline operations due to the high level of synchronization 

among resources in the network (Wu, 2016). Daily airline operations are often disrupted by schedule perturbations, and delays 

can extensively spread through airports or flights vulnerable to delay, resulting in economic losses by aircraft and passenger 

delays. In this regard, various methods have been proposed to address delay propagation in airline networks. The purpose of 

modeling delay propagation is to increase the robustness of flight schedules and to supplement buffer time in the network, 

thereby improving the resilience of the airline network against unexpected disruptions by making tactical adjustments to 

flight times. 

The adjustment of flight time has played a key role as a major strategy in recent literature on robust scheduling to 

effectively manage disruptions (Mansi et al., 2012). In general, these studies assumed that the distribution of flight delay is 

independent and identically distributed (IID). Although the IID assumption simplifies delay propagation modeling and flight 

re-timing, it can lead to an overestimation of the scheduled buffer time, as demonstrated in Wu (2006). This unfavorable 

observation is due to the feature of an IID assumption assumes that each individual flight time distribution is independent of 

others and disregards the impact of delay propagation. In reality, delays or on-time performance (OTP) of preceding flights 

can affect the flight time distribution via shared resources. 

Based on the analysis of schedule operations and delay data, it is evident that flight time distributions exhibit varying 

features that depend on several key factors. These factors may include the operating environment, operating efficiency, 

probability of disruptions, flight characteristics, and the connectivity of flights in aircraft routing (Wu and Law, 2019). To 

ignore the non-independent and identically distributed (non-IID) nature of delay time profiles may result in misrepresenting 

delay models, and the opportunity to schedule optimal buffer times in an airline network would be forfeited. 

 

1.1 Delay Propagation in an Airline Network 

 

Filar et al. (2001) examined the domino effect on multiple flights and airports and discussed airport disturbance handling and 

recovery from airline schedule disruptions. AhmadBeygi et al. (2008) developed a propagation tree model to assess the impact 

of delay propagation resulting from aircraft and crew connections. This model was later used by AhmadBeygi et al. (2010) 

to optimize flight schedules by re-timing flights and adjusting schedule buffer times between flights. In Wu and Law (2019), 

the delay propagation tree model was integrated with a Bayesian network to quantify the degree of delay propagation in a 

mathematical way. However, this model based on a Bayesian network oversimplified the extent to which delays propagate 

because they discretized continuous variables (time) for the fast calculation. 

Several statistical models have examined the causal relationships between various factors, such as arrival/departure 

delays, buffer times, and schedule-related, onboard-related, and operation-related factors. Hao and Hansen (2014) and Wu 

(2016) utilized regression models, while Zhang and Nayak (2010) provided a macroscopic model for estimating a single 

airport’s delay impact. However, analytical methods may not be suitable for estimating the delay propagation of individual 

flights. Nosedal S´anchez and Piera Eroles (2018) used system dynamics to analyze causal factors in aircraft turnaround. Jia 

et al. (2022) proposed using complex network theory to examine the structure of delay propagation in an airline network. 

Delay propagation models are frequently employed to enhance the resilience of airline schedules against unforeseen 

delays that may arise during daily operations, with the aim of achieving robust airline scheduling (Ng et al., 2022). 

 

1.2 Prediction of Flight Delay 

 

Schaefer and Millner (2001) employed a simulation model to determine how delays propagate across an airline network. Wu 

(2006) utilized a simulation model based on routing to illustrate the idea of inherent delays in an airline schedule. These 
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models considered operational disruptions, stochastic operation times, and the effects of delay propagation. They showed that 

both delays and on-time performance (OTP) of flights could spread through the network. Gui et al. (2019) developed random-

forest-based and Long Short-Term Memory (LSTM)-based architectures to predict individual flight delays. 

On the other hand, flight re-timing has emerged as an effective planning method for improving the robustness of airline 

schedules in recent studies (AhmadBeygi et al., 2008; Wu, 2006; Lan et al., 2006). Specifically, Yan and Chen (2022) 

proposed a network flow approach to manage flight rescheduling and passenger transportation issues resulting from typhoon 

disruptions. Most studies have relied on aggregate statistics from historical data to model flight re-timing, such as the mean 

values of flight delays, and they followed the IID assumption for the distribution of flight delay times. Although this 

assumption simplifies delay propagation modeling and flight re-timing, it may result in overestimating buffer times could be 

an issue. Delays or OTP of previous flights can influence flight time distribution through resource connections. 

Gaussian network (GN) is a probabilistic graphical model which has nodes as continuous random variables. Several 

graphical models have been used to predict flight delays in an airline network (Xu et al., 2005; Rodriguez-Sanz et al., 2019; 

Wu and Law, 2019). These studies suggested a Bayesian network, which assumes discrete variables as graph nodes. Wu and 

Law (2019) applied a Bayesian network discretizing delay distribution by specific time intervals for computational efficiency. 

On the other hand, the GN model can handle continuous distributions and identify weak links by detecting the uncertainty of 

airline delay in a network. A weak link is a node in a probabilistic network based on a certain probability distribution with 

high uncertainty. A standard deviation, a measure of uncertainty in the probability distribution, can be a mathematical 

criterion for identifying weak links. Gaussian networks have been used to discover and predict weak links in other research 

areas (see, for example, meteorology, Cano et al. (2013), biophysics, Erman (2006), and communication problems (Kim et 

al., 2011)). 

In the cited research, probabilistic models were primarily restricted to modeling delays on individual routes or at smaller 

airports. They rather focused on delay propagation resulting from aircraft connections and other potential delay-causing 

factors. Instead, our GN model effectively captured the continuous characteristic of flight delays across multiple flights. As 

a result, we can evaluate various scheduling scenarios and concurrently determine the probability of delay/OTP propagation. 

This probability-based model can be well used for integration into future schedule optimization models.  

Table 1 comprehensively summarizes several distinctive features of our model to highlight the contribution of this study 

compared with the existing literature on flight delay and delay propagation in airline networks. This paper offers several 

advancements to the existing literature. To the best of our knowledge, we were the first to present a new probabilistic graphical 

model, a GN, to deal with airline delay propagation, considering flight delays as a continuous random variable. Second, by 

analyzing a sample dataset, we demonstrate that flight delay distributions are heterogeneous and non-IID, and different delay 

profiles result in different delay/OTP propagation patterns across flights. Third, we established a multi-airport probability 

model for delay propagation and highlighted its effectiveness in determining delay causes and probability distributions. 

Fourth, we specifically address delay propagation through aircraft connections of multiple flights using the GN model, taking 

into account non-IID delay profiles of incoming aircraft. Also, we develop a method for finding weak links suffering capacity 

fluctuation, which has the opportunity to improve efficiency in an airline network. 

 

Table 1. Relevant Studies Related to Flight Delay Prediction and Delay Propagation in an Airline Network 

 

Author (year) 
Delay 

propagation 

Heterogeneous and non-

IID delay 

Random variables on 

flight delays 
Methodology 

Schaefer and Millner 

(2001) 
  continuous Simulation model 

Wu (2006)   continuous Simulation model 

AhmadBeygi et al. 

(2008) 
  continuous Propagation tree 

Zhang and Nayak 

(2010) 
  continuous 

Multivariate 

simulation model 

Wu and Law (2019)   discrete Bayesian network 

Gui et al. (2019)   continuous 
Recurrent neural 

network 

Jia et al. (2022)   continuous Network theory 

This study   continuous Gaussian network 
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The remainder of this paper is as follows. We provide a problem description of delay propagation in an airline network 

in Section 0 and develop a GN model of the airline network in Section 3. The case study will be fully described along with 

the data source in Section 4. Lastly, Section 5 presents the result of our analysis of detecting delay sources and the 

effectiveness of heterogenous and non-IID delay with managerial insights. We conclude in Section 6. 

 

2. PROBLEM DESCRIPTION 
 

 
 

Figure 1. Gaussian Network Model Illustrating Causal Relationships 

 

In an airline network, we suppose that delay propagation occurs through consecutive flights. Many factors may contribute to 

flight delays, including weather, airline operations, passenger and cabin crew connection, except consecutive flights, etc. 

However, due to the incompleteness of connected information, the connection of aircraft on consecutive flights is only 

observed in an airline network. The GN structure shown in Figure 1. models the causal relationships in delay propagation. 

To be more specific, the delay of flight j is a function of possible delay sources, including (1) aircraft delays caused by 

circumstances within the airline’s control, such as crew problems, maintenance issues, aircraft cleaning, and baggage loading; 

(2) significant weather conditions like tornadoes, blizzards, or hurricanes; (3) National aviation system (NAS); (4) delays 

from security. Description of considered delay sources in this study will be suggested in Section 4. For the GN model, each 

node in Figure 1 represents the departure delay of a flight in a GN (e.g., the delay t of Flight 3 in Figure 1) and is affected by 

other delay variables that are represented by inbound arcs, such as those connecting to Flight 3. 

Based on the Bayes theorem, the probability of flight j being delayed by t minutes (denoted by 𝑃𝑗(𝑡)) under the influence 

of delay sources listed above and the preceding flight i can be expressed as a conditional probability as follows: 

 

𝑃𝑗(𝑡|delay sources) =
𝑃(𝑡,delay sources)

𝑃(delay sources)
=

𝑃(delay sources|𝑡)𝑃𝑖(𝑡)

𝑃(delay sources)
 ∀𝑗. 

 

We are able to infer the posterior delay probability of flight j, 𝑃𝑗(𝑡|delay sources) based on our prior belief from 

historical delay data of flight i, 𝑃𝑖(𝑡) and new observations of the presence of delay sources, P(delay sources). 

We created schedules that adjust aircraft turnaround times (buffer times) to investigate how the change in departure 

times of flights could affect delay and OTP propagation. Buffer time serves to reduce delays accumulated from prior flights 

and contributes to reducing propagated delays. Delay distributions with varying buffer times were not accessible from 

historical data. Hence, we estimated the impact of adding buffer times to the current scheduling of flights by shifting the 

departure time distribution. 
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3. ANALYTICAL FRAMEWORK 
 

3.1 Characteristics of an Airline Network 

 

Suppose we have an airline schedule that aims to maximize the use of resources, such as crew and aircraft, by minimizing 

the time between two consecutive flights. This time, also known as connection time, turn time, sit time, or ground time, must 

meet a minimum requirement. For instance, there must be sufficient time between flights for passengers to disembark, 

catering and cleaning the interior of aircraft, and for new passengers to board. It is assumed that this planned schedule adheres 

to the minimum time between assignments for all crew and aircraft. Such a schedule optimizes resource utilization and 

minimizes excessive pay for crews. However, if a flight is delayed by 30 minutes without any compensatory increase in travel 

speed, it will also arrive 30 minutes late, causing a delay to its next flight. If the crew and the aircraft do not stay together, 

then the next flight will also experience a 30-minute delay. If the cabin crew separates from the aircraft and cockpit crew, it 

could cause a third flight delay. Additionally, if flights are held for connecting passengers from this flight, these flights will 

also be delayed. 

In contrast to aircraft connections, which can be traced from data using registration numbers, identifying historical crew 

pairings was challenging due to the limited data available. Because the network in this study was only a portion of the original 

airline network, pilot and cabin crew pairings were reconstructed from the available flight data using industry-standard criteria 

outlined in Wu and Law (2019). To construct possible original crew connections within the study network, historical flight 

data were used for crew pairing to select suitable pairings with satisfying criteria. 

 

3.2 Gaussian Network 

 

A Gaussian network is a directed graph, all of whose variables and corresponding nodes are continuous. These variables can 

be either a constant or an uncertain quantity. Assign indices to the nodes and variables in the model so that the nodes are 

given by N = {1,··· ,n} and correspond to variables X1,··· ,Xn. The conditioning variables for Xj  have indices in the set of parent 

PA(Xj) ⊂ V (G). Let Y be a linear Gaussian of its parents X1,··· ,Xk: 

 

𝑝(𝑌|𝑥) = 𝒩(𝛽0 + 𝛽𝑇𝑥; 𝜎2) 

 

Assume that X1,··· ,Xk are jointly Gaussian with distribution 𝒩(𝜇; 𝛴). Then: 

 

• The distribution of Y is a normal distribution 𝑝(𝑌) = 𝒩(𝜇𝑌; 𝜎𝑌
2) where: 

 

𝜇𝑌 = 𝛽0 + 𝛽𝑇 

𝜎𝑌
2 = 𝜎2 + 𝛽𝑇𝛴 

 

• The joint distribution over {X,Y } is a normal distribution where: 

 

𝐶𝑜𝑣[𝑋𝑖; 𝑌] = ∑ 𝛽𝑗𝛴𝑖,𝑗

𝑘

𝑗=1

 

 
3.3 Inference for Continuous Variables 

 

We will show an inference with continuous variables in a Gaussian network in which the value of each variable is a linear 

function of the values of its parents. That is, if PAX  is the set of parents of X, then 

 

𝑥 = 𝑤𝑋 + ∑ 𝑏𝑋𝑍𝑧

𝑍∈PA𝑋

, 

 

where 𝑤𝑋   has density function 𝒩(w, σWX
2 ), and WX is independent of each Z. The variable 𝑤𝑋   represents the uncertainty in 

X’s value given values of X’s parents. For each root X, we specify its density function 𝒩(𝑥; 𝜇𝑋 , 𝜎𝑋
2). A density function equal 

to 𝒩(𝑥; 𝜇𝑋, 0) means we know the root’s value, while a density function equal to 𝒩(𝑥; 0, ∞) means complete uncertainty as 
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to the root’s value.  ote that σWX
2  is the variance of X conditional on values of its parents. So, the conditional density function 

of X is 

 

𝜌(𝑥|pa𝑋) = 𝒩 (𝑥,   ∑ 𝑏𝑋𝑍

𝑍∈PA𝑋

𝑧𝜎𝑊𝑋
2 ). 

 

When an infinite variance is used in an expression, we take the limit of the expression containing the infinite variance. 

For example, if 𝜎2 −∞ and 𝜎2 appears in an expression, we take the limit as 𝜎2 approaches ∞ of the expression. All infinite 

variances represent the same limit. That is, if we specify 𝒩(𝑥; 0,∞) and 𝒩(𝑦; 0,∞), in both cases ∞ represents a variable t 
in an expression for which we take the limit as t → ∞ of the expression. The assumption is that our uncertainty as to the value 

of X is exactly the same as our uncertainty as to the value of Y. The formula for X is as follows: 

 

𝑥 = 𝑤𝑋 + ∑ 𝑏𝑋𝑍𝑧

𝑍∈PA𝑋

 

 

4. CASE STUDY OF US AIRLINE NETWORK 
 

4.1 Data Sources 

 

Our case study primarily relied on the Airline On-Time Performance Database obtained from the Bureau of Transportation 

Statistics. This database comprises flight-level data submitted by US-certified air carriers that generate at least one percent 

of domestic scheduled passenger revenues. It provides information on scheduled and actual departure and arrival times for 

most commercial flights operating in US airspace, including on-time data for non-stop domestic flights operated by major 

US airlines. The Office of Airline Information defines a major carrier as a US-based airline that generates over $1 billion in 

revenue during a fiscal year. They regularly issue directives for accounting and reporting purposes, which specify the airline 

groupings for the following calendar year that each airline must comply with.  

To preprocess the data and make the set of data more manageable, we concentrate on the period between June and 

November 2022 and limit our analysis to nine major airlines. These airlines operate the majority of scheduled domestic flights 

and transport most passengers in a daily fashion. Furthermore, airlines vary in the number of hubs they utilize, their 

geographic location, the density of their routes, and the diversity of aircraft they employ. The goal of preprocessing is to 

establish a connection between these network characteristics and how delays behave across the flight network on a particular 

day. 

An example of a routing schedule is illustrated in Table 2. In total, about one million samples were collected from 

routes, and the collected data was analyzed to produce arrival and departure time distributions for each flight. Additionally, 

the likelihood of various delay causes at each airport was determined. 

 

Table 2. The Case Study Routing and Its Schedule 

 

Flight 

number 
Origin Destination 

Scheduled 

time of 

departure 

Actual time 

of departure 

Scheduled 

time of 

arrival 

Actual time 

of arrival 
Note 

FLT012 C1 C 07:35 07:39 09:10 09:25  

FLT013 A B 08:35 08:30 09:15 09:20  

FLT015 A S 10:25 10:24 11:30 11:50  

FLT017 S2 A 12:20 12:25 14:00 14:14  

FLT019 C2 B 17:10 - 20:10 - Canceled 

FLT022 B T 19:10 19:10 21:00 21:15  

 

The study assumes that flight delays on a particular route were the result of multiple factors. In this research, four 

primary categories of delay sources were considered: carrier, extreme Weather, NAS, and security. Carrier delays often stem 

from issues within an airline’s control, such as maintenance issues, crew problems, cabin cleaning, fueling and baggage 

loading. Extreme weather delays occur when aircraft operations are suspended due to severe weather conditions like 

hurricanes, blizzards, lightning storms, or tornadoes. These conditions can induce dangerous turbulence, posing risks to the 
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flight crew and passengers. The term “ ational  viation  ystem” encompasses various situations that can disrupt flight 

schedules, including airport operations, moderate weather conditions, high air traffic volume, and air traffic control setbacks. 

Among all types of flight delays, security delays are the most critical, often resulting from terminal or concourse evacuations, 

security breaches onboard an aircraft, lengthy queues at screening checkpoints, or faulty screening equipment. The percentage 

of the four categories of delay sources is illustrated in  

Figure 2. 

 
 

Figure 2. Categories of Delay Causes 

 

4.2 Descriptive Statistics of Delay Causes 

 

For turnarounds that took place at the same airport but at different times, disruption probabilities were calculated based on 

the scheduled time of each flight. Consequently, there were unique turnaround disruption profiles for MCO. These profiles 

reflect the on-time performance and efficiency of individual flights on operation at different airports. The contribution of 

delay causes at four different airports (ATL, ORD, MCO, and MSP) during one day is compared in Figure 3. Flights at ATL 

tended to have a higher likelihood of NAS delays than flights at other airports because the airport represents the hub airport 

in the airline network. Air carrier delays at ORD showed a lower chance of occurrence; a higher chance of on-time arrivals 

from other airports. This pattern is common in airports where many inbound aircraft are reported. In this case, ORD has many 

inbound aircraft that have departed from ATL. As a flight plan goes on, delays may propagate in the network and cause a 

pattern for a higher chance of propagated delays compared to other airports. This pattern is also universal in the flight 

operations of airline networks. 

In Figure 4, when comparing air carrier performance during peak hours at the four airports, we observed that operations 

at MCO and MSP were more stable (with a higher chance of having on-time flights). Because ATL and ORD serve as hub 

airports on the airline network, more airline personnel are scheduled during peak hours. There are many outbound aircraft at 

the hub network, so that the hub airport during peak hours is overflowing with departing flights. Because of air traffic control 

coordinating aircraft at an apron, we can observe the occurrence of more NAS delays at hub airports (ATL and ORD). 
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Figure 3. Categories of Delay Causes at Different Airports 

 

 
 

Figure 4. Categories of Delay Causes at Different Airports During Peak Hours 
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Figure 5. Probability Profiles of Delay (FLT002 at MCO) 

 

5. RESULTS AND DISCUSSIONS 
 

The Gaussian network was developed using a GeNIe Modeler (BayesFusion, 2017). GeNIe software has the capability of 

generating the conditional probability for a probabilistic graphical model, given that there is suitable data for learning. 

However, the software’s capacity to infer continuous variables is limited, and hence, it cannot calculate every distribution of 

delay profiles. Thus, using Python packages, we could effectively estimate the likelihood of posterior delay. 

 

5.1 Delay Causes and Inference using GN 

 

The most significant advantage of the GN model is the ability to estimate delay distribution using historical data. Hence, we 

conducted a series of scenario studies to examine how initial delays contribute to delay propagation. For this case study, we 

selected FLT002, scheduled to turn around at MCO. MCO serves as a spoke airport in an airline network, which takes many 

inbound aircraft from ORD. We compared the original aircraft turnaround performance with the inferred delay distribution 

profiles (expectations) of delay scenarios with an initial delay of 30, 60, and 90 minutes, respectively, in Figure 5. 

Figure 5 shows the difference between the original delay and expectations when initial delays (30, 60, 90 minutes) 

occur. Moreover, by inference in the Gaussian network, expectations of delay propagation are calculated in each scenario. 

Although the initial delay lengthens from 30 to 90 minutes, we can see that security and extreme weather cannot contribute 

to a portion of the delay. For 30-minute and 60-minute initial delays for FLT002, the probabilities of delays due to carrier 

decrease. However, NAS delays increase with respect to the initial delays. This observation reflects the fact that the more 

delay occurrence of inbound delays, the more air traffic control is in the NAS system in the airline network. In particular, for 

a 90-minute initial delay, the probability of NAS delays decreased. For excessive initial delay of inbound aircraft, the 

influence of air traffic control diminishes, which means that the effect of delay propagation impacts on the departure flight 

magnificently. 

To compare the effect of the delay propagation during peak time, we set another numerical experiment. The original 

delay profiles of MCO in normal (denoted by N) and in peak time (denoted by Peak) were provided in Figure 6. We can 

observe that the delay profiles at different operating times at MCO are similar with respect to the portion of delay causes. 

However, when there are 60-minute initial delays, the inferred delay cause distribution showed significantly different patterns 

during peak hours at MCO, as shown in Figure 7. It reveals that a 60-minute delay was considerably more likely to generate 

delay propagation. Moreover, air carrier delay was affected in normal operating times due to maintenance of late inbound 
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aircraft. For peak hours, the airport was not available for accepting every inbound aircraft, and delay propagation almost 

doubled that of probability in normal operating time. 

 

 
 

Figure 6. Categories of Delay Causes in Normal (N) and Peak (Peak) times at MCO 

 

 
 

Figure 7. Comparison of Delay Profiles with a 60-minute Initial Delay at MCO in N and Peak 

 

Because the likelihood of contributing factors with initial delay may differ, it is worth mentioning that a probability-

based model, for example, the proposed GN model in this paper, can be highly effective in capturing the delay propagation 

effect in airline data analytics. Based on our case study, an airline should focus on reducing potential delay propagation for 
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normal operations at MCO. In particular, the focus should shift to alleviating NAS delays to minimize delays during peak 

hours. The conventional approach, such as descriptive statistics in data analytics, cannot reveal hidden effects on the 

propagation of delay factors and initial delays. 

 

 
 

Figure 8. Propagation of OTP Improvement by Sequentially Adding a 15-minute Buffer to Each Flight 

 

5.2 Heterogeneous and Non-IID Delay on OTP Propagation 

 

To show the influence of heterogeneous and non-IID delay distributions on delay propagations, we added a 15-minute buffer 

to the first flights in the same routing. We then estimated the posterior OTP of all subsequent flights in the routing. This 

buffer allowed us to observe the delay and OTP propagation effects while accounting for the heterogeneous and non-IID 

nature of rescheduling in airline routings. Next, we sequentially added a 15-minute buffer to the subsequent flights in the 

routing while maintaining the schedule for other flights. This buffer allowed us to observe the delay and OTP propagation 

effects while accounting for the heterogeneous and non-IID nature of delay in airline routings. After these actions, we 

calculated the difference between the expected OTP and the original OTP in Figure 8.  

The results in Figure 8 indicate that adding the buffer to the starting flight in the routing has OTP propagation on 

subsequent flights. The amount of OTP improvements of subsequent flights is labeled in Figure 8 when adding a buffer to 

the first flight in the routing. Specifically, OTP improvements of each flight affected by the same starting flight are color-

coded with the same hue. In general, adding a 15-minute buffer significantly improved OTP at FLT001, FLT005, and FLT011 

with more than a 6 percent increase. These flights can boost the OTP improvement of subsequent flights with an additional 

buffer time. FLT001 is a crucial flight for OTP improvements on the routing. However, Figure 8 also reveals the diminishing 

effects of OTP propagation. We can see the effect of OTP improvement is gradually decreasing when adding a 15-minute 

buffer to FLT001, FLT005, and FLT008. 

Moreover, adding a 15-minute buffer to FLT002 did not achieve OTP improvement for all subsequent flights in the 

same routing because there was enough time to compensate for previous delays. This can explain the diminished OTP 

improvement at FLT002 when adding a 15-minute buffer to FLT001. We observed similar effects for other flights (e.g., 

FLT009) in Figure 8. 
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5.3 Comparison between IID and non-IID Profiles on Delay Propagation by Adding Buffers 

 
 

Figure 9. Potential OTP Propagation Effects with Different Scenarios 

 

To compare the effects of IID and non-IID flight time profiles on adding buffers and delay/OTP propagation, we conducted 

a series of scenario analyses. Figure 9 illustrates the comparison of the following four scenarios: 

 

1. The original delay profiles (Mean delay) 

2. Adding a 15-minute buffer to FLT001 and assuming IID initial delays 

3. Adding a 15-minute buffer to FLT001 and assuming non-IID initial delays using the GN model 

4. Adding a 15-minute buffer to both FLT001 and FLT005, assuming non-IID initial delays using the GN model 

 

Figure 9 shows that the assumption of IID (Case 2) had less effect of delay propagation compared to the current mean 

delay. For non-IID initial delay with adding buffers, the effect of delay propagation was more substantial than the effect in 

assuming IID initial delay. In other words, assumptions of non-IID initial delay have detailed explanations in the Gaussian 

network model. Adding buffers to a schedule did not reduce delays proportionally. Nevertheless, the OTP propagation 

persisted in subsequent flights on routing, and we could observe this effect in Cases 3 and 4. Moreover, delays were further 

reduced when an extra buffer was added to FLT005. 

Using the GN, we have shown how IID initial delay models overestimated the effects of adding flight buffers without 

considering the non-IID initial delay distribution, leading to an underestimation of the posterior delay distribution. This led 

to insufficient comprehension of the required buffer times for robust airline scheduling. Utilizing the GN, a probabilistic 

model considering delay profiles as continuous variables reflected the effects of non-IID initial delay distribution for routing 

in an airline network. 

In conclusion, we discovered that the OTP improvement achieved by adding a buffer had different impacts on flights, 

depending on flight time profiles. For the initial non-IID delay profiles, the effect of OTP propagation decreases in subsequent 

flights on the same routing, and the decrement is different at each flight. Therefore, the case study airline should assess the 

efficiency of adding buffers and strategically place buffer in operations. This strategy can improve the robustness of the 

airline schedule and increase the ability to respond to disruptions. 
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5.4 Identifying Weak Links in an Airline Network 

 

Using a GN, we can identify weak links in the airline network. In Section 3.2, using inference, we can estimate the conditional 

probability distribution of each node in a network. For identifying weak links, we calculated the posterior probability 

distribution of each airport in the case study of Section 5.3. 

In Table 3, we compare the original mean delay and posterior distributions assuming IID initial delay and non-IID initial 

delay at each airport. The standard deviation is a measure of the level of uncertainty in a probability distribution. When 

considering the IID initial delay, the standard deviation of ORD is greater than that of ATL, even though the mean delay is 

less. For the case study network, both are hub airports that connect other airports within the network. During turnaround 

operations, ORD experiences a more fluctuating probability of disruptions in the airport as its high standard deviation. 

However, assuming a non-IID initial delay (more realistic), Airports C and E have a high standard deviation. This suggests 

that Airports C and E are not hubs but rather vulnerable nodes in the airline network. Furthermore, airports with greater 

standard deviation have insufficient buffer times for turnaround operations and have the opportunity for improving efficiency. 

 

Table 3. Posterior Distribution of Each Airport in the Case Study 

 

Airport Original mean delay IID initial delay non-IID initial delay 

ATL 75.12 N(100.24,25.382) N(83.49,30.592) 

ORD 103.51 N(86.32,68.122) N(120.61,73.522) 

MCO 69.14 N(83.20,20.752) N(92.54,62.752) 

MSP 87.12 N(73.08,35.212) N(83.14,51.652) 

 

5.5 Managerial Implication 

 

First, our case study showed that past efforts to improve airline scheduling by adjusting flight times only assumed that flight 

delay times were IID. However, we explicitly found that both the historical data and inference of propagated delay can impact 

the robustness of flight operation. Overlooking the non-IID nature of flight delay patterns may cause an overestimation of 

on-time performance (OTP) propagation, leading to insufficient schedule buffers. 

More specifically, a probability-based approach to model delay propagation can significantly improve schedule 

robustness and enhance future operations in an airline network. Utilizing the GN model, we demonstrated how a probability-

based model could identify ‘weak links’ in a network, referring to a high standard deviation of posterior probability 

distribution. These links suffer significant operational fluctuation and can accommodate extra buffer times. With the 

capability of GN, we were able to infer the following: (1) certain behaviors of delay propagations; (2) OTP after adding extra 

buffers; (3) operation improvements; and (4) delay distribution profiles after propagation. Previous studies have mostly used 

descriptive statistics and a less explainable model, which cannot ease the comprehension of propagated delay in an airline 

network. In this paper, using a Gaussian network, we can calculate the posterior probability distribution of delay and gain the 

capability to capture the vulnerability of each node in the network. 

Furthermore, the probability-based model can be fundamental to improving schedule optimization in the future. Existing 

literature commonly assumed IID profiles for the initial delay in an embedded calculation in a linear program (Lan et al., 

2006; AhmadBeygi et al., 2008). The overestimation of OTP propagation confers the belief that incorporating buffer time to 

turnaround operations is a waste of resources. However, the proposed GN model can improve the effectiveness of estimation 

in schedule optimization models, allowing for strategic allocation of valuable airline personnel, thereby reducing scheduling 

costs while increasing OTP expectations in actual operations. 

Consequently, a probability-based delay model can assist in pinpointing the causes of delay and weak links in an airline 

network. The advantage of a GN evidently indicated its ability to infer the posterior probability distribution of delay in post-

operation analysis. As previously demonstrated, the GN model can be used to determine which factors have a higher 

probability of disruptions. These factors may include the probability distribution of inbound aircraft delay or sources of delay 

at an airport, such as carrier, NAS control, security, and weather. Scenario analyses can be conducted for a certain routing to 

identify the effect of delay propagation. This exploration can estimate propagated delays as well as delays due to specific 

ground operations at certain airports, leading to improvement of robustness of flight scheduling. 
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6. CONCLUSIONS 
 

In this paper, we highlighted the importance of considering the continuous nature of flight delays and operational uncertainties 

with real flight operation data. Historical data analyses showed that the delay distribution of a flight could be influenced by 

various factors such as air carrier, security, national airspace system, or weather. However, delays are propagated with 

connected resources in an airline network. By the probability-based model or Gaussian network, we clearly showed how 

delays propagate in the network and demonstrated the mechanism of delay propagation. 

Using the GN model, we revealed how an airline could use a probability-based model in capturing the delay propagation 

and its impact on an airline network by numerical analyses. Airline operations often experience operational disruptions daily. 

This frequency helped us infer probabilities of particular delay causes and delay propagation by allowing us to apply the 

proposed model through real-world historical data. The information and insight derived from the experiment can help airlines 

in future scheduling and also enhance the efficiency of improving their ability to adequately respond to disruptions. 

Through various scenario studies, the results showed that the GN model can capture the effect of delay propagation 

more precisely than previous studies. Moreover, propagation of delays also applies to OTP propagation. In other words, 

adding buffer of a particular flight affects the OTP of its subsequent flights in the same service route. With the help in 

estimating the probability distribution of each node by the GN model, we can distinctly identify weak links in an airline 

network. Airports with a high standard deviation of posterior probability distribution have insufficient buffer times for 

turnaround operations. Considering the non-IID initial delay, we can pinpoint hidden weak links in an airline network and 

determine where to use additional resources to prevent propagated delays. 

For future research, considering parameter learning of probabilistic graphical models might extend the scope of an 

airline network. Parameter learning is the process of using data to learn the distribution of a probabilistic graphical model 

when some data are insufficient in a network. We only focused on the sub-network in this study. However, expanding the 

study to the entire airline network or international network, which has incomplete data, might be an interesting research 

problem. Optimization problems in conjunction with the posterior probability distribution of delay are research issues derived 

from this paper. In mitigating airport congestion, optimization has been used to find the optimal solution for additional 

aircraft, network connectivity, etc. With the estimation of delay distribution at certain airports, researchers can build more 

efficient optimization models. We believe that the inference of delay distribution in an airline network proposed in this paper 

can be used as uncertainty parameters in optimization models such as airline crew pairing problems (Radman and Eshghi, 

2023) and aircraft maintenance operation problems (Abdulmalek and Savsar, 2022). 
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