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A column generation approach for a dynamic ridesharing problem
Minsu Kima, Hyunwoo Kima and Ilkyeong Moon b

aEntrue Consulting, LG CNS, Seoul, South Korea; bDepartment of Industrial Engineering and Institute for Industrial Systems Innovation, Seoul National 
University, Seoul, South Korea

ABSTRACT
Recent advances in GPS and telecommunications technologies have made ridesharing a widespread practice 
around the world. By matching drivers and passengers with near-distance destinations and similar time 
schedules, ridesharing saves individuals travel costs by enabling them to share vehicles. It is also an effective 
way to reduce traffic congestion and greenhouse gas emissions. A ridesharing problem can be modeled as 
a dial-a-ride problem with time windows. This study looks at a solution to the dynamic ridesharing problem 
in which passengers share travel costs at the same ratio. We formulate the problem as a mixed-integer 
programming model and suggest a column generation approach. As the system’s status is updated in real 
time, riders and drivers are matched, and new paths are created via column generation. Computational 
experiments show that our approach is superior to an existing algorithm when it is tested on instances of 
various sizes.
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Introduction

Dynamic ridesharing refers to a system that supports an automatic 
ride-matching process between participants on very short notice, or 
even en-route (Agatz et al. 2012). According to a recent survey, the 
average occupancy rate for private vehicles in South Korea was 
1.22 per vehicle, down 7.9% from 1.32 in 2010, while the number 
of private vehicles per household increased by 14.1% from 0.75 to 
0.86 over the same time period (Korean Transport Database 2016). 
Similar tendencies were discovered in the United States (Sivak and 
Schoettle 2012). Such an increase in private vehicle usage inevitably 
leads to traffic jams and increases fuel consumption and greenhouse 
gas emissions. Rising oil prices, expensive traffic costs, and growing 
environmental concerns have increased the interest of policymakers 
and passengers in ridesharing. At the same time, increased use of 
smartphones and the development of GPS systems have taken ride 
sharing to a new level. Nowadays, travelers can schedule trips any-
time and anywhere using smartphone apps. When the user enters 
a location and destination, the app will search for nearby drivers, 
and automatically calculate the route and estimated fare. With such 
advancements, transportation network companies (TNCs) such as 
Uber, Lyft, and Zipcar have appeared on the market and have 
succeeded. Uberpool, the ridesharing platform of Uber, reported 
that by April 2016, more than 100 million rides had been taken 
since it launched the service in August 2014. According to the 
statistics, about 20% of rides made globally were on the Uberpool 
service (Techcrunch 2016). In South Korea, a carsharing agency, 
TADA, recorded 600,000 members in seven months of service 
launch (JOINS 2019).

The expected economic impact of the introduction of rideshar-
ing services is tremendous and includes reduced greenhouse gas 
emissions (Fagnant and Kockelman (2014), Bruck et al. (2017)), 
reduced energy consumption (Chan and Shaheen 2012), mitigation 
of traffic congestion (Wang, Dessouky, and Ordonez 2016), and 
cost savings (Delhomme and Gheorghiu 2016). The most signifi-
cant advantage of ridesharing is that it provides additional 

flexibility in transportation. According to recent research by the 
South Korean Ministry of Land, Infrastructure, and Transport, 
21.7% of taxis were oversupplied in South Korea (Ministry of 
Land, Infrastructure and Transport 2017). However, especially in 
big cities, such as Seoul, people are still suffering from lack of 
transportation when demand is high, such as during rush hours. 
According to a recent report by Kakao Mobility, a South Korean 
TNC, the number of taxi calls at commuting hours was 205,000, 
while the number of taxis supplied was 37,000, less than one-fifth of 
the demand. In addition, the number of calls at midnight was 
130,000, while the number of taxis in operation was only one- 
third of this demand, at 41,000 (Kakao Mobility 2019). Given 
such a mismatch between supply and demand for transportation, 
ridesharing can be an excellent remedy by meeting excess demands 
that are not served by existing taxi service.

Ridesharing problems are modeled as dial-a-ride problems 
(DARPs), a field of vehicle routing problems primarily related to 
human transportation. DARP focuses on designing vehicle routes 
and schedules for users who specify pickup and delivery requests 
between origins and destinations. Therefore, the DARP generalizes 
the vehicle routing problem with time windows (VRPTW) and the 
pickup and delivery vehicle routing problem (PDVRP) at the same 
time (Cordeau and Laporte 2007). Depending on the matching 
type, DARPs can be characterized as either one-to-one (one rider 
with one driver; e.g., call taxis), many-to-one (many riders with one 
driver; e.g., carpooling), and one-to-many (one rider with many 
drivers; e.g., multi-hop ridesharing). General dynamic ridesharing 
problems can be seen as many-to-many DARPs, which involve 
heterogeneous drivers, heterogeneous riders, and multiple depots. 
DARPs can also be categorized into two categories, static and 
dynamic. In the case of static DARPs, all information about the 
drivers and riders (e.g., arrival times and locations) is known in 
advance, whereas only partial information is known in the dynamic 
cases, and the rest is gradually revealed in real-time.

In this study, we consider a dynamic peer-to-peer (P2P) ride-
sharing problem in which individuals schedule one-time shared 
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rides to save travel costs. In our model, a driver can offer a ride to 
multiple passengers simultaneously, but we do not assume multi- 
hop traveling. Because we deal with a dynamic environment, we do 
not assume any prior information about the fleet size and the arrival 
of passengers. Moreover, we assume that when passengers travel on 
the same route together, they pay an equal share of the fare for that 
route.

The purpose of this study is to propose an improved algorithm 
based on optimization and to provide a valid upper bound for it. 
Therefore, the algorithm’s performance can be evaluated. Another 
desired outcome of the dynamic ridesharing system is its capability 
to match a large number of users in a short time. In practice, there 
can be thousands of transportation requests in urban areas, espe-
cially with high traffic. Therefore, by differing the size of instances, 
we demonstrate that our algorithm is also scalable to medium or 
large amounts of data.

This study is composed as follows: In Section 2, we introduce 
literature related to dial-a-ride problems (DARPs) and ridesharing. 
Section 3 explains our model and provides the solution approach. 
In Section 4, we show the results of computational experiments and 
offer a sensitivity analysis. And finally, in Section 5, we present the 
conclusions.

Literature review

The history of ridesharing goes back to World War II, when the US 
government led regulatory policy to reduce fuel consumption 
(Fagnant and Kockelman 2014). Since then, ridesharing has been 
widely studied because of the ongoing necessity of finding efficient 
models for human transportation. Dumas, Desrosiers, and Soumis 
(1991) provides one of the earliest exact algorithms for multi- 
vehicle pickup and delivery vehicle routing problems with time 
windows (VRPPDTWs). Baldacci, Maniezzo, and Mingozzi 2004) 
suggested an exact algorithm for scheduled car pooling problems 
(CPPs) with bounding procedures based on Lagrangian decompo-
sition. Cordeau 2006) suggested an exact algorithm for DARPs 
based on the brand-and-cut technique. However, most exact 
approaches for DARPs are confined only to small-scale instances 
that contain less than 300 customers. More recently, Yan and Chen 
(2011) provided an algorithm based on Lagrangian relaxation and 
heuristics, which can be adapted to large-scale many-to-many car-
pooling problems.

For large-scale problems, the cluster-first-routing-second strat-
egy has been successfully applied (Dumas, Desrosiers, and Soumis  
1989), Ioachim et al. (1995). People who are close in terms of time 
and distance are clustered together using column generation, and 
then the path for each cluster is determined later. Another well- 
adopted approach is based on insertion heuristics (Jaw et al. (1986), 
Diana and Dessouky 2004), Xiang, Chu, and Chen (2006)). In this 
type of algorithm, customers are inserted into each vehicle route by 
a certain criterion (e.g., minimum cost, maximum profit). Meta- 
heuristics, including tabu search approaches, are also popular 
options for solving complex DARPs (Cordeau and Laporte (2003), 
Nanry and Barnes (2000)). For more details on the various types 
and solution approaches of DARPs, there exist numerous review 
papers (Cordeau and Laporte (2007), Toth and Vigo (2014)).

Compared to the static DARPs, the dynamic DARPs have been 
relatively understudied. Various types and characteristics of 
dynamic DARPs are summarized in Furuhata et al. (2013). 
Another study by Savelsbergh and Sol (1998) provides an iterative 
algorithm based on the set-partitioning formulation and branch- 
and-price technique for dynamic DARPs. Chen and Xu (2006) 
proposed a dynamic column generation approach to solve dynamic 
vehicle routing problems with time windows (DVRPTWs). This 

study applied the column generation procedure repeatedly, com-
bined with the rolling horizon framework. Tabu search is another 
well-adopted approach (Attanasio et al. (2004), Berbeglia, Cordeau, 
and Laporte (2012)). Berbeglia, Cordeau, and Laporte (2010) pro-
vides an extensive review on dynamic DARPs and their solution 
approaches.

Recent advances in mobile technology led to the emergence of 
a new class of problems: dynamic ridesharing. Agatz et al. (2011) 
is one of the earliest works on dynamic ridesharing. In real-time 
ridesharing, it is necessary to match a large number of requests 
and find an optimal path in a very short time. An agent-based 
simulation is one of the most popular tools because it is useful for 
capturing complex interactions between agents on real systems. 
Several studies have shown that the simulation results fit well with 
real-world data (Martinez, Correia, and Viegas (2015), 
Nourinejad and Roorda (2016)). While most simulation studies 
aim to achieve maximum utility for each individual from 
a distributed viewpoint, there is also a centralized approach to 
maximize system-wide benefits, such as a reduction in total travel 
distance or the number of rides matched. Hosni, Naoum-Sawaya, 
and Artail (2014) and Masoud and Jayakrishnan (2017) suggested 
decomposition algorithms for large-scale problems. They formu-
lated their problems as mixed-integer programs and divided them 
into smaller subproblems, which were then solved in a parallel 
manner. Ma, Zheng, and Wolfson (2015) and Alonso-Mora et al. 
(2017) designed heuristics for a real-time, large-scale taxi-sharing 
system, while Bertsimas, Jaillet, and Martin (2019) suggested an 
algorithm based on mixed-integer programming and the max- 
flow heuristic.

Different objectives have been proposed, depending on the 
priority of decision makers. Santos and Xavier (2015) suggested 
a ridesharing system that maximizes the number of served requests 
and minimizes the total cost, while Santi et al. (2014) maximized the 
number of shared trips. Chen, Liu, and Chen (2010) suggested 
a congestion-aware scheduling system to reduce fuel consumption. 
Wang, Dessouky, and Ordonez (2016) proposed an incentive sys-
tem for high-occupancy vehicles (HOVs) by using dedicated lanes 
and toll discount policies to improve time savings and matching 
rates. Li et al. (2015) and Cheng, Xin, and Chen (2017) reflected the 
preference of riders to drivers to promote the satisfaction and safety 
of the service.

A reasonable pricing scheme is one of the main design issues of 
ridesharing systems. Kleiner, Nebel, and Ziparo (2011) and Asghari 
et al. (2016) designed pricing schemes based on parallel auctions to 
meet the criteria of both drivers and riders. Stiglic et al. (2016) 
designed an incentive system that gives more benefit to those who 
offer more flexibility to the matching system. Qian et al. (2017) 
solved a taxi group ride (TGR) problem and designed a discount- 
incentive mechanism to maximize the total saved mileage. 
Sayarshad and Chow (2015) proposed a non-myopic pricing 
scheme, based on queuing theory, to make use of real-time data 
and anticipation of future states. Wang, Agatz, and Erera (2018) 
and Peng et al. (2018) introduced pricing policies motivated by 
stable matching, ensuring some degree of satisfaction from the 
perspective of both drivers and riders, while only incurring 
a small degradation of the system-wide objective. However, there 
are not sufficient studies for dynamic ridesharing systems that 
incorporate a reasonable pricing scheme with many-to-one or one- 
to-many matching and routing scheme at the same time. Table 1 
summarizes the differences between this paper and other literature 
on dynamic ridesharing. In the table, ridehailing refers to a specific 
system in which drivers aim to maximize their profit on their own, 
while ridesharing refers to a system in which participants aim to 
minimize their costs by sharing rides.
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Dynamic column generation

Introduction

In reviewing previous studies, we found a lack of research on 
dynamic ridesharing problems. Among the prior studies, Santos 
and Xavier (2015) is the closest to our work. The study formu-
lated the problem as a mixed-integer program, but did not 
suggest a tractable solution to it. It instead solved the problem 
heuristically, using the greedy randomized adaptive search pro-
cedure (GRASP). What differentiates this problem from others is 
the cost structure. Santos and Xavier (2015) assumes that if 
passengers have traveled together, they share the travel cost of 
the trip. The amount to be paid is determined by dividing the 
cost of the arc equally into the number of passengers inside the 
vehicle. The objective of the problem is to find a solution that 
maximizes the number of requests served, minus the amount of 
the payment made by passengers. Santos and Xavier (2015) 
proposes a model, namely the dynamic dial-a-ride problem with 
money as an incentive (DARP-M).

In the DARP-M, the information of the ridesharing participants 
is not known in advance. Instead, it is gradually updated over the 
planning horizon. At the beginning of the planning horizon, there is 
no request or server in the system, and therefore, both M and N are 
empty. When a request, r, enters the system, the passengers list their 
information ðer; lr; rþ; r� ; pr; brÞ on a mobile application. Without 
loss of generality, we assume that the time at which request r is 
entered is the same as that at which er is entered. Likewise, every 
server, s, enters the system at time es and provides its informa-
tion ðes; ls; sþ; s� ; qsÞ.

If a server and a request are matched, the server departs from its 
origin to serve the first request. If a server is not matched with any 
request, we assume that each waits at its origin until being matched. 
We call those servers and requests waiting to be matched idle. We 
also refer to a request as idle if it was matched with a server but is 
still waiting for a pickup. However, if requests cannot be matched 
within the deadline of reaching their destinations, they have 
become critical. When servers and passengers become critical, 
they are considered to leave the system. Finally, if a server or request 
is traveling on the network, we call it en-route. When a server or 
a request is either idle or en-route, it is called an active server or 
a request.

In Santos and Xavier (2015), the authors assumed that a route is 
not allowed to be modified unless the vehicle is empty, in order to 
prevent the passengers from being changed. In this study, however, 
we allow a path of any server to be modified at any time, even if the 
server is en-route. Any request can be added or removed, as long as 
the path remains feasible, and the system-wide objective may 
increase by the change. For the real-time route modification to be 

possible, the position of every vehicle in the system should be 
tracked at all times. Due to the advances in telecommunications 
technology, we assume that this can be done without difficulty. 
Also, we assume the P2P sharing environment, in which each 
participant tries to minimize travel expenses, not to maximize 
profit. In our model, therefore, when a server drops the last pas-
senger off, the server then heads directly to its destination, leaving 
the system as soon as arriving at that destination. In Santos and 
Xavier (2015), the servers do not leave the system after their 
planned trips are complete because the authors regarded them as 
taxi drivers whose main purpose was to maximize profit.

Framework

This section discusses the dynamic column generation framework 
to solve the DARP-M. The rolling horizon is a common approach 
for dynamic vehicle routing problems. Our approach is based on 
the rolling horizon approach, and it was also motivated by the 
method suggested by Chen and Xu (2006). Prior to a detailed 
explanation of the approach, we first give some definitions. Let 
MðtÞ and NðtÞ be the set of active requests and servers at time t. 
Also, we denote the set of feasible paths of the server s 2 NðtÞ that 
have been found by time t as PsðtÞ. The set of all the feasible paths 
found can be expressed as PðtÞ ¼

S

s2NðtÞ
PsðtÞ. The key idea of the 

rolling horizon approach is to divide the planning period into 
multiple epochs of the same length, and solve a static snapshot of 
the dynamic problem in each epoch as if it were static. Let ti be the 
time at which epoch i starts, where t1 ¼ 0.

We denote the static problem of epoch i as [SPi]. Each epoch 
consists of two phases: One is the column generation phase, which is 
divided into several iterations, and the other is the optimization and 
implementation phase. In the column generation phase, we have 
several iterations where in each iteration we solve a restricted set 
covering problem and with the duals of this generate new feasible 
paths (columns) of the active servers. This is repeated until time 
tiþ1 � τ, where τ is the time allowance for the optimization and 
implementation phase. In the optimization and implementation 
phase, we solve the integer program [SPi] consisting of the columns 
that have been found so far. Let Si be the solution to [SPi]. Then, Si 
should contain exactly one feasible path for each server, s 2 Nðtiþ1Þ. 
At the end of the epoch, we implement the solution (i.e., notice all 
the servers and passengers of the schedule implied by Si).

Note that in the column generation phase, servers and requests 
are still entering the system while the subproblems are being solved. 
Let η0 and η1 be the starting times of the previous and current 
iterations of the column generation phase, where η1 equals ti if it is 
the first iteration of the epoch. Let Θ η0; η1

� �
and � η0; η1

� �
be the set 

of requests and servers that have arrived in time interval η0; η1
� �

. 

Table 1. Literature on dynamic ridesharing.

Reference Problem
One-to-one One-to-many

Routing Pricing
Solution

matching matching approach

Savelsbergh and Sol (1998) Pickup and delivery ✓ ✓ Branch and price
Chen and Xu (2006) Pickup and delivery ✓ ✓ Column generation
Hosni, Naoum-Sawaya, and Artail (2014) Ridehailing ✓ ✓ Lagrangian relaxation
Bertsimas, Jaillet, and Martin (2019) Ridehailing ✓ MIP and heuristic
Kleiner, Nebel, and Ziparo (2011) Ridehailing ✓ ✓ Auctions
Wang, Agatz, and Erera (2018) Ridehailing ✓ ✓ Stable matching
Peng et al. 2018) Ridehailing ✓ ✓ Stable matching
Yan and Chen (2011) Ridehailing ✓ ✓ Dynamic pricing
Santos and Xavier 2015) Ridesharing ✓ ✓ ✓ Heuristic
This study Ridesharing ✓ ✓ ✓ Column generation
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After the subproblems are solved, we update the sets of active severs 
and requests (i.e., Mðη1Þ ¼ Mðη0Þ [ Θ η0; η1

� �
and 

Nðη1Þ ¼ Nðη1Þ [ � η0; η1
� �

) and proceed to the next iteration. 
Whenever a server is updated, we add an empty path for the server 
to PðtÞ. This is because every server must have one path by for-
mulation [F].

After the solution, Si, is implemented, we discard all the obsolete 
entities and paths. A request or a server is said to be obsolete if it has 
become critical by time tiþ1. Also, if the itinerary of a server is 
complete at time tiþ1 (i.e., the server has arrived at its destination), 
the requests and the server associated with the route also are 
considered obsolete. Let Θ̂iþ1 and �̂iþ1 each be the set of requests 
and servers that have become obsolete by time tiþ1. Then, we start 
the next epoch with Mðtiþ1Þ ¼ Mðtiþ1ÞnΘ̂iþ1 and 
Nðtiþ1Þ ¼ Nðtiþ1Þn�̂iþ1. Let Ŝi be the set of complete routes at 
time tiþ1. We also remove those complete routes from Si and we 
start the next epoch with initial paths Pðtiþ1Þ ¼ SinŜi. The sequence 
of events that has been described so far is illustrated in Figure 1.

Set-Partitioning reformulation

In this section, we describe the static problem [SPi] solved in epoch 
i. [SPi] is formulated as a set-partitioning type problem and solved 
with the column generation procedure. This is a widely used 
approach to solve various types of vehicle routing problems because 
the set-partitioning formulation can imply a variety of complex 
constraints defining a feasible route.

Given a route l 2 PsðtÞ, let αl;r ¼ 1 if request r was served by 
driver s, 0 otherwise. Also, let ρl;r be the sum of the payment made 
by the passengers of request r in the vehicle. The binary decision 
variable �l equals 1 if route l 2 PðtÞ is selected, or 0 otherwise. Then, 
the set-partitioning reformulation [SPiðtÞ] to be solved at time t is 
defined as follows: 

The symbol RðlÞ in the objective function (1) represents the set of 
requests contained in path l. Constraint (2) requires that every 
request is contained in, at most, one feasible route, while 
Constraint (3) requires that every driver is assigned exactly one 
feasible route. If all the feasible paths for the servers are included in 
PðtÞ, then problem [SPiðtÞ] is equal to problem [F], consisting of 
MðtÞ and NðtÞ. However, there are a significant number of feasible 
routes for the servers, and it is impossible to enumerate them all. 
Therefore, we start initially with PðtiÞ, which contains exactly one 
path for each server, s 2 NðtiÞ. If a server was not matched with any 
path, it has an empty path. We call such a problem with a partial 
subset of paths a restricted master problem (RMP).
[SPiðtÞ] is solved by alternating the optimization of the RMP and 
the column generation procedure. By solving the linearly relaxed 
RMP, we obtain the dual values required for constituting the sub-
problems. The missing paths (columns) with positive reduced costs 
are generated by solving the subproblems, and then, they are added 
to PðtÞ. Exactly one subproblem is defined for each server, and 
therefore, there are jNðtÞj subproblems to be solved in a parallel 
fashion. Let �ur and �vs be the dual variables associated with 
Constraints (2) and (3), respectively. Then, the subproblem 
[PPi;sðtÞ] of driver s at time t can be expressed as follows: 

Figure 1. An illustration of the dynamic column generation framework.
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By Constraint (22), the binary decision variable zr equals 1 if, and 
only if, request r is included in the path of server s. Constraint (21) 
represents the relation between ρr and Cr;u. If the objective is 
positive, we have found a feasible path with a positive reduced 
cost. Then, we define a new column corresponding to the path and 
add it to PsðtÞ. If there is no path with a positive objective for every 
server, the RMP is LP-optimal. To solve [SPi] exactly, we branch the 
fractional variables and repeat the same procedures. Solving [SPi] 
exactly, however, is not considered in this study, as we are solving 
the dynamic problem. We terminate the procedure at time ti � τ, 
even if the RMP is not LP-optimal. At the optimization phase, the 
integer program [SPi] is solved with an IP solver. Note that the 
coefficients of the variables of [SPi] are either 0 or 1, and because of 
this special structure, the problem can be solved efficiently using 
commercial solvers, even if PðtÞ contains thousands of columns.

Labeling algorithm

The subproblems in the previous section are the longest path ver-
sion of the elementary shortest path problem with resource 

constraints (ESPPRC). A feasible path must be elementary (i.e., 
there is no cycle) because a driver cannot visit an already served 
request again. The ESPPRC is known to be NP-hard (Dror 1994). 
However, when the problem is highly constrained by resources 
(e.g., time, budget), it can be solved efficiently with dynamic pro-
gramming. The ESPPRC is usually solved through the labeling 
algorithm (Irnich and Desaulniers (2005)), which is an extension 
of Dijkstra’s algorithm to a higher dimension. There can be multi-
ple Pareto optimal paths due to the different types of resources. The 
algorithm aims to find a set of Pareto optimal paths, while exclud-
ing possible non-Pareto optimal ones.

Consider the subproblem defined for server s at time t. Let 
UðtÞ ¼ frþ; r� : r 2 MðtÞg and VsðtÞ ¼ UðtÞ [ fsþ; s� g. In the 
labeling algorithm, we construct a complete directed network, 
GsðtÞ ¼ ðVsðtÞ;AsðtÞÞ, where AsðtÞ ¼ VsðtÞ � VsðtÞ. The costs of 
arcs in AsðtÞ are called residual costs and depend on the dual values 
of Constraints (2) and (3). Moreover, they also depend on the status 
of the vehicle, including the number of passengers inside, and the 
budgets of those passengers, by Constraint (21).

In the labeling algorithm, partial paths are constructed on 
a network progressively. Starting from sþ, partial paths are extended 
along the arcs until reaching s� . Whenever a new partial path is 
created to a node, we map a label that records the status of the path. 
Each node, p 2 VsðtÞ, has a bucket of labels, Λp, and each label in it 
corresponds to a partial path from sþ to p. We denote lth label of Λp 

as Ll
p ¼ ðRl

p;Zl
p;Yl

pÞ, where Rl
p is a resource consumption vector, Zl

p 

is the reduced cost of the partial path, and Yl
p is the set of unfinished 

requests (i.e., those which not have arrived at their destinations).
The resource consumption vector is represented as ðSl

p;Tl
p; πl

pÞ, 
where Sl

p is the set of visited nodes, Tl
p is the elapsed time, and πl

p ¼

fπl
p;r : r 2 Yl

pg is the expenditure vector, where each πl
p;r corre-

sponds to the money paid by the passengers of request r. If the 
server is idle, the initial label L1

sþ is expressed as 
ððfsþg;T1

p ; ;Þ; 0; fsgÞ. As the solution to [SPi] will be implemented 
at time tiþ1, the initial elapsed time Tl

p equals maxftiþ1; esg. Assume 
the dual variables f�ur : r 2 MðtÞg and f�vs : s 2 NðtÞg are given. For 
each p 2 VsðtÞ, define σp as follows: 

Suppose a partial path is located on node p. We define the number of 
passengers in the vehicle as jjYl

pjj, i.e., jjYl
pjj ¼

P

r2Yl
p

hr. Then, given 

a label, Ll
p, mapped to the path, the residual arc cost �tpqðLl

pÞ induced 
by extending from p to another node q 2 VsðtÞ is defined as follows: 

The function gð�Þ in Equation (26) can be translated as the cost- 
sharing factor associated with the status of the label. It strictly 
increases with respect to jYl

pj and br, resulting in an increased 
residual cost.
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Node q can be associated with either some request r0 2 MðtÞ, or 
server s. Given a label, Ll

p, on node p, the extension to q yields a new 
label, Ll0

q , if the following conditions hold:

1. (Precedence) q‚Sl
p and either (a) or (b) holds:

(a) ðq ¼ r0þÞ _ ððq ¼ r0 � Þ ^ ðr0 2 Yl
pÞÞ.

(b) ðq ¼ s� Þ ^ ðYl
p ¼ ;Þ

2. (Time windows) either (a) or (b) holds:

(a) ðTl
p þ tpq � lr0 Þ ^ ðq ¼ r0 � Þ

(b) ðTl
p þ tpq � lsÞ ^ ðq ¼ s� Þ

3. (Capacity) either (a) or (b) holds:

(a) ðq ¼ r0þÞ ^ ðjjYl
pjj þ hr0 � qsÞ

(b) q ¼ r0 �

4. (Budget limit) πl
p;r þ δðLl

p; tpqÞ � br;"r 2 Yl
p where 

Function δð�Þ defines the cost to be charged to each passenger inside 
the vehicle. When all three conditions hold, the resulting label 
Ll0

q ¼ ðRl0
q;Zl0

q ;Yl0
q Þ, where Rl0

q ¼ ðSl0
q ;Tl0

q πl0
qÞ, can be expressed as 

follows: 

Equations (28) to (30) are also referred to as resource extension 
functions (REFs). Whenever a label is extended from node p to 
node q, we add it to bucket Λq. We also save the pointer of the 
parent label so that we can restore the sequence of nodes constitut-
ing the feasible path by tracing the pointers backward. However, as 
the size of the problem grows, the number of labels created can 
become extremely large. Therefore, additional conditions must be 
met to extend the label, in order to prevent excessive proliferation 
of the labels. Propositions 1 and 2 are those conditions that are also 

explained in Dumas, Desrosiers, and Soumis (1991) explicitly, and 
therefore will not be proved here. 

Proposition 1. Given a label Ll
p ¼ Rl

p;Zl
p;Yl

p

� �
, suppose r 2 Yl

p for 
some r 2 N. Ll

p can be eliminated if the extension p) r� ) s� is 
not feasible.

Proposition 2. Given a label Ll
p ¼ Rl

p;Zl
p;Yl

p

� �
, suppose r1; r2 2 Yl

p 
for some r1; r2 2 N. Ll

p can be eliminated if both the extensions p)
r1
� ) r2

� ) s� and p) r2
� ) r1

� ) s� are not feasible.

It is also common practice to exclude unnecessary labels that 
cannot be considered Pareto optimal by applying dominance 
rules, in order to avoid enumerating all possible paths. Label Ll

p 
is said to dominate another label, Ll0

q , if all the feasible paths 
that can be generated from Ll0

q can also be generated from Ll
p 

with greater or equal reduced cost. Proposition 3 states this 
dominance rule, and we remove a label whenever it is domi-
nated by the other. 

Proposition 3. Given two labels Ll
p ¼ ðRl

p;Zl
p;Yl

pÞ and Ll0
p ¼

ðRl0
p;Zl0

p ;Yl0
p Þ where Rl

p ¼ ðSl
p;Tl

p; πl
pÞ, and Rl0

p ¼ ðSl0
p;Tl0

p ; πl0
pÞ, sup-

pose Tl
p � Tl0

p , Zl
p � Zl0

p , Yl
p ¼ Yl0

p , and πl
p;r � πl0

p;r "r 2 Yl
p. Then, 

Ll
p dominates Ll0

p .

The labeling algorithm is terminated whenever any non- 
dominated label is not generated. However, when the size of 
the problem is big, the algorithm slows down because of the 
enormous amount of labels that exist in the system. Therefore, 
we adopt the truncated labeling algorithm, which sets a limit on 
the maximum number of labels that we treat at a time. If the 
total number of labels exceeds a predefined value, Ω, we sort 
out the labels with the smallest reduced costs and remove them 
from the queue until it reaches Ω. If the algorithm does not 
produce a solution, we increase the size of Ω and repeat the 
algorithm. We denote the labeling algorithm applied to subpro-
blem [PPi;sðtÞ] as ELPPRC(i; s; t), as described in Algorithm 1. 
The function ExtendðL; qÞ returns a new label, defined on node 
q, if the extension is legal. Otherwise, it is ;.Another point to be 
noted is when the server is en-route at time ti. In this case, one 
can expect the future position p0 of the server at time tiþ1 
because servers are assumed to travel through the shortest 
paths between nodes. In Figure 2, for instance, request r1 will 
have arrived at its destination at time tiþ1, and therefore r1 does 
not have to be considered in this case. Therefore, nodes rþ1 and 
r�1 can be excluded from VsðtÞ for all s 2 NðtÞ. Request r2, on 
the other hand, was picked up, but has not reached its destina-
tion at time tiþ1. It follows that node rþ2 can be ignored, but 
node r�2 should be considered when solving ½PPi;sðtÞ�. We can 
also calculate T1

p0
, Z1

p0
, and π1

p0
, based on the Equations (24) 

to (32).

Figure 2. An example of an en-route server at time ti .
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Computational experiments

In this section, we present the results and analyses of computational 
experiments conducted on simulated data. The experimental set-
ting is an Intel i5 3.20 GHz CPU with 8.0 GB of memory, and the 
code was written in JAVA language and Xpress-mp optimization 
API.1 To simulate real-world ridesharing, instances were generated 
based on existing node-arc data. The data was collected from the 
government website2 and consists of 7,455 nodes and 19,856 arcs. 
Each arc has a maximum speed limit that each vehicle can travel, 
and the travel time of each arc was calculated by dividing the length 
of the arc with the maximum travel speed. We computed the length 
of the shortest path between every two nodes using the Floyd- 
Warshall algorithm. The minimum and maximum travel time 
between nodes each turned out to be 0.82 and 2,217.58 seconds, 
and the average travel time was 840.33 seconds. The exact monetary 
values of arc costs are not required in our problem because the arc 
costs are proportionate to the distances, and we only need the 
percentage of money spent from the budget.

Two categories of instances were generated: one with longer 
time windows (class ‘A’), and the other with shorter time windows 
(class ‘B’). Let g be the shortest travel time from a server’s or 
a request’s origin to its destination. Class ‘A’ instances have rela-
tively shorter time allowances between the earliest departure times 
and the latest arrival times of the servers (1:5g), and requests (1:3g), 
while class ‘B’ instances have longer time allowances, 2:0g and 1:5g, 
respectively. The instances and their features are described in 
Table 2, where jMj and jNj represent the number of requests and 
servers, and H represents the length of the planning horizon of each 
instance.

To provide the relative measure on the effectiveness of our 
method, the upper bound of the objective value of each instance 
was computed. Let [SP] be the problem, which has the same 
structure as [SP] in Section 3.2, whose MðtÞ, NðtÞ, and PðtÞ are 
substituted with M, N, and P, where P is the set of all feasible paths 
of all servers. Then, its objective is the same as that of the static 
problem, [F], and its LP-bound is also an upper bound of the 
DARP-M because the objective value of the static problem is always 
at least greater than the dynamic problem. The column generation 
procedure described in Section 3.3 was applied to obtain the LP- 
bound of each instance. It was repeated until the increase of the 
objective value after each iteration became less than 0.5% of the 
previous iteration. In the standard column generation, exactly one 
column with the highest reduced cost for each subproblem is added 
to the master problem. However, we took the strategy of adding all 
the columns generated in each iteration, in order to speed up the 
convergence of the objective value.

As a default, we used 0.5 for the value of parameter λ. For the 
parameter Ω, which is the maximum number of columns that can 
exist in the system, we took a three-stage approach. We first tried to 
solve each subproblem with Ω ¼ 100. If we found at least one 
column with a positive reduced cost, we terminated the procedure 
and added those columns to the RMP. If no such column was 
found, we increased Ω to 500 and 2,000 gradually. This approach 
has been shown to be effective in greatly reducing the computation 
time required for convergence. The upper bounds (UB) and num-
ber of columns generated, nCol, are also given in Table 2.

To compare the performance of the suggested algorithm to the 
existing algorithm by Santos and Xavier (2015), we conducted 
experiments on each instance, differing the length of an epoch, E, 
by 15, 30, and 60 seconds. We denote our algorithm as DYCOL 
(dynamic column generation) and the other as GRASP. Parameter 

τ, the time allowed to optimize an integer program at the end of 
each period, was fixed to five seconds. Tables 3 and 4 summarize the 
results of comparative experiments for class ‘A’ instances and class 
‘B’ instances, respectively. Symbol Obj denotes the objective value 
obtained by each method, nMat denotes the number of rides 
matched, and nSer denotes the number of requests served. The 
maximum values within an instance are highlighted as bold 
symbols.

For class ‘A’ instances, the objective values turned out to be the 
greatest when E was 15 seconds, regardless of instance sizes. In the 
case of class ‘B’ instances, however, performance was better when E 
was larger as the instance size grew bigger. This shows that there is 
a trade-off between the responsiveness to the changes in the sys-
tem’s status and the computational opportunities for column gen-
eration. When E is short, it is possible to reflect the arrivals of 
servers and requests to the decision process more quickly. When 
the instance size is big, on the other hand, it is advantageous to 
allow for a longer computation time because of more feasible paths, 
due to large numbers of servers and requests in the system. For both 
classes, DYCOL outperformed GRASP, which is almost twice as 
large as the maximum objective value.

To see the impact of the balancing parameter λ, we conducted 
additional experiments, differing the size of λ. We tested these on 
three values of λ, 0.1, 0.5, and 0.99. The results are described in 
Tables 5 and 6, where %Shared represents the percentage of shared 
rides (i.e., rides that contain more than two requests at a time). For 
both problem classes, %Shared increased as λ increased. On the 
other hand, nMat and nSer tended to decrease as λ increased. This 
phenomenon explains the role of λ; for a small value of λ, the 
algorithm tries to make as many matches as possible because the 
penalty for budget consumption is not very important. When λ is 
bigger, however, it is more advantageous to pack as many requests 
into a vehicle as possible, in order to maximize the cost-sharing 
effect and thereby minimize the penalty for budget consumption, 
which leads to the decrease in the number of rides matched and 
requests served.

Theoretically, the upper bounds are expected to be poor because 
they give only LP-bounds. They were also computed in a static 
environment, which results in the introduction of an additional 
gap. Overall, the LP-bounds obtained from above turned out to be 
not very tight when the time windows were as narrow as class ‘A’ 
instances. When the time windows were as wide as class ‘B’ 
instances; however, the bounds were relatively tighter. We concluded 
that the bound obtained by the labeling algorithm seems to be 
affected by the length of time windows, and it gets tighter as time 
windows get longer. In addition, we introduced the limitation on the 
maximum number of labels that are considered while applying the Ω 
algorithm. We believe that if we increase the size of Ω, it could yield 
much larger upper bound results because there is a higher chance of 
discovering more feasible paths in each iteration of the labeling 
algorithm. However, we confined Ω to 2,000, at maximum, to 
terminate the algorithm within the allowed computation time, E. 
To improve the performance of the algorithm, we believe that 
acceleration techniques, such as bidirectional search (Righini and 
Salani (2006)) and decremental space relaxation (Boland, Dethridge, 
and Dumitrescu (2006)), could do this. These techniques have been 
proved to be effective in reducing the number of labels to be 
considered, and therefore, the algorithm is terminated more quickly. 
There are two parameters that should be considered. The first para-
meter, E, decides the computation time of each epoch. It was 
observed that the optimal length of E depends on the size of the 
problem and time windows. We tested only three values of E, but we 
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Table 3. Comparison with the GRASP heuristic, problem class ‘A’.

Obj nMat nSer

probl E (sec.) DYCOL GRASP DYCOL GRASP DYCOL GRASP

A1 15 319.5 (0.62) 131.7 (0.26) 403 218 539 245
30 289.6 111.4 386 191 497 210
60 274.5 75.4 375 132 476 143

A2 15 353.8 (0.60) 149.2 (0.25) 448 240 596 275
30 327.7 130.4 429 211 557 240
60 298.7 89.6 411 161 518 172

A3 15 547.6 (0.63) 258.4 (0.30) 669 417 913 476
30 525.4 228.8 658 366 883 419
60 487.0 159.8 636 281 831 303

A4 15 631.2 (0.61) 291.9 (0.28) 712 456 1022 531
30 603.9 253.9 696 399 984 462
60 570.3 174.7 681 295 942 326

A5 15 843.5 (0.62) 431.5 (0.32) 994 673 1386 787
30 808.4 372.3 969 604 1336 687
60 762.8 279.9 953 482 1279 527

A6 15 958.6 (0.60) 492.4 (0.31) 1076 740 1551 883
30 916.9 427.2 1064 682 1498 781
60 870.2 302.8 1045 523 1436 571

A7 15 1771.8 (0.62) 928.4 (0.32) 1977 1355 2860 1650
30 1725.0 806.8 1945 1253 2794 1463
60 1634.4 607.0 1876 1003 2660 1123

A8 15 2085.0 (0.61) 1002.9 (0.29) 2134 1471 3270 1785
30 2020.2 923.9 2102 1399 3191 1658
60 1860.7 697.0 2032 1115 2978 1274

A9 15 2198.1 (0.64) 1103.8 (0.32) 2311 1612 3485 1959
30 2090.1 1004.4 2283 1524 3348 1806
60 1971.3 762.4 2214 1214 3193 1394

A10 15 2649.4 (0.64) 1242.0 (0.30) 2504 1729 4064 2171
30 2515.2 1160.6 2464 1655 3897 2038
60 2361.6 860.3 2394 1346 3694 1560

A11 15 2457.2 (0.63) 1243.3 (0.32) 2566 1833 3888 2218
30 2363.3 1167.6 2545 1749 3771 2092
60 2202.0 854.0 2458 1367 3552 1564

A12 15 2909.8 (0.63) 1401.1 (0.30) 2808 1953 4486 2455
30 2801.0 1288.9 2761 1861 4348 2275
60 2633.5 977.3 2689 1518 4131 1769

Table 2. Problem classes (SP).

Probl SPi jNj H (hr.) UB nCol

A1 1000 1500 1.0 501.2 3525
A2 1000 2000 1.0 591.3 3735
A3 1500 2250 1.0 861.8 6437
A4 1500 3000 1.0 1040.7 7006
A5 2000 3000 1.0 1354.8 11,102
A6 2000 4000 1.0 1601.5 12,277
A7 4000 6000 1.5 2862.4 24,658
A8 4000 8000 1.5 3422.5 26,712
A9 4500 6750 1.5 3429.8 28,642
A10 4500 9000 1.5 4119.1 31,993
A11 5000 7500 1.5 3876.2 32,973
A12 5000 10,000 1.5 4643.9 35,203
B1 1000 1500 1.0 981.0 9737
B2 1000 2000 1.0 1229.0 10,575
B3 1500 2250 1.0 1581.6 15,603
B4 1500 3000 1.0 1969.7 18,163
B5 2000 3000 1.0 2145.3 22,010
B6 2000 4000 1.0 2789.1 25,292
B7 4000 6000 1.5 4462.3 44,029
B8 4000 8000 1.5 5859.0 54,383
B9 4500 6750 1.5 5011.3 49,560
B10 4500 9000 1.5 6613.7 59,837
B11 5000 7500 1.5 5632.1 56,728
B12 5000 10,000 1.5 7470.6 67,910
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believe that it can be coordinated dynamically, according to the 
traffic volume. The other parameter, λ, which balances the number 
of rides matched and the penalty for budget consumption, should be 
adjusted as well. It is desirable that as many drivers and riders as 
possible are matched for the efficiency of the system. On the other 
hand, each individual might wish to save travel costs by sharing 
a ride with others. It is the manager’s decision which aspect of 
ridesharing should be emphasized. By adjusting the value of λ 
properly, it seems likely that balancing user satisfaction with system 
efficiency would be possible. As the size of λ grew, the penalty for 
travel costs was highlighted, which led to the rise of the proportion 
of shared rides and the decrease in the number of matches made. 
Although it was not reported in this study, the size of λ also affected 
the computation time for solving subproblems. When the traffic load 
is high, it is not appropriate to set the value of λ low, both for 
technical and practical reasons because it will reduce the number of 
rides and raise the computation burden at the same time.

Conclusions

In this study, we designed an alternative solution approach for the 
dynamic ridesharing problem to the solution suggested by Santos 
and Xavier (2015), the DARP-M. We formulated it as a set- 
partitioning problem and applied the dynamic column generation 

framework of Chen and Xu (2006), in which the planning horizon 
was divided into multiple periods and static problems were solved 
repeatedly. The subproblem related to the static problems was the 
elementarily longest path problem with resource constraints, which 
is known to be NP-hard, and we designed the labeling algorithm to 
solve the subproblem. Computational experiments have proved 
that our algorithm outperforms the existing algorithm by Santos 
and Xavier (2015). We also conducted a sensitivity analysis to 
capture the impact of the balancing parameter between the system 
efficiency and the penalty for budget consumption. We concluded 
that it requires managerial foresight to decide an appropriate size of 
the balancing parameter.

This study offers policy implications for ridesharing operators 
and governments. As the sharing economy develops, the number of 
ridesharing platform operators will increase, and there are many 
concerns about billing and passenger allocation. The allocation 
method considering money incentives enables effective and efficient 
cost calculation and settlement. In addition, as the market is grow-
ing, passengers can receive transportation services at a lower cost 
because the number of drivers increases. Our model allows users to 
use mobility at a fair and affordable price. On the government side, 
ridesharing can flexibly change the supply of transportation options 
available according to demand, unlike existing transportation 
options such as buses and taxis can. Therefore, ridesharing can 

Table 4. Comparison with the GRASP heuristic, problem class ‘B’.

Obj nMat nSer

probl E (sec.) DYCOL GRASP DYCOL GRASP DYCOL GRASP

B1 15 738.0 481.0 (0.49) 646 583 1128 813
30 749.2 (0.76) 446.4 646 566 1140 768
60 725.0 407.8 640 531 1110 702

B2 15 893.0 (0.72) 532.3 (0.43) 694 624 1322 891
30 886.6 505.0 702 609 1317 853
60 870.3 459.1 692 579 1295 784

B3 15 1235.4 785.8 (0.50) 994 917 1843 1324
30 1236.7 (0.78) 770.4 995 903 1845 1290
60 1204.3 665.2 989 849 1807 1141

B4 15 1458.2 885.4 (0.45) 1062 959 2126 1446
30 1467.0 (0.74) 839.8 1061 957 2135 1396
60 1431.1 758.0 1051 887 2087 1274

B5 15 1703.8 1143.6 (0.53) 1362 1299 2537 1905
30 1759.8 (0.82) 1134.6 1343 1283 2594 1879
60 1726.8 1018.9 1348 1224 2559 1712

B6 15 1916.1 987.5 1465 1134 2816 1638
30 2057.5 (0.74) 1252.8 (0.49) 1455 1334 2971 2033
60 2037.9 1130.3 1456 1279 2944 1864

B7 15 3165.6 1881.5 2714 2099 4800 3099
30 3605.8 2397.3 2700 2591 5286 3923
60 3620.5 (0.81) 2167.9 2717 2512 5317 3611

B8 15 2875.1 1527.0 2889 1773 4501 2522
30 4027.4 2569.6 (0.44) 2870 2674 5813 4147
60 4165.2 (0.71) 2350.8 2860 2604 5956 3850

B9 15 3176.2 2177.8 3112 2425 4970 3579
30 3996.9 2780.7 (0.55) 3037 2981 5884 4541
60 4123.6 (0.82) 2589.9 3064 2852 6033 4247

B10 15 3449.6 1673.0 3170 1923 5279 2759
30 4164.1 3066.3 (0.46) 3214 3066 6126 4898
60 4709.3 (0.71) 2859.8 3221 2970 6734 4601

B11 15 4229.1 2168.5 3409 2463 6389 3577
30 4454.5 3229.5 (0.57) 3428 3392 6570 5255
60 4651.6 (0.83) 3033.6 3449 3283 6816 4945

B12 15 3348.5 1853.2 3598 2158 5325 3055
30 4445.9 3530.0 (0.47) 3675 3493 6646 5630
60 5296.1 (0.71) 3287.4 3653 3392 7596 5282
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Table 5. Sensitivity analysis on Ω, problem class ‘A’.

probl Ω nMat nSer %Shared

A1 0.1 395 516 0.51
0.5 403 539 0.58
0.99 390 520 0.61

A2 0.1 447 605 0.53
0.5 448 596 0.60
0.99 441 598 0.63

A3 0.1 664 893 0.55
0.5 669 913 0.58
0.99 649 869 0.67

A4 0.1 707 1017 0.54
0.5 712 1022 0.60
0.99 700 999 0.64

A5 0.1 980 1360 0.55
0.5 994 1386 0.57
0.99 974 1365 0.69

A6 0.1 1104 1613 0.59
0.5 1076 1551 0.60
0.99 1063 1527 0.67

A7 0.1 1981 2871 0.57
0.5 1977 2860 0.61
0.99 1936 2815 0.69

A8 0.1 2137 3317 0.62
0.5 2134 3270 0.63
0.99 2105 3244 0.70

A9 0.1 2137 3317 0.60
0.5 2311 3485 0.64
0.99 2270 3398 0.67

A10 0.1 2494 4085 0.65
0.5 2504 4064 0.64
0.99 2457 3987 0.73

A11 0.1 2589 3888 0.58
0.5 2566 3888 0.63
0.99 2424 3524 0.69

A12 0.1 2807 4483 0.62
0.5 2808 4486 0.65
0.99 2772 4454 0.72

Table 6. Sensitivity analysis on λ, problem class ‘B’.

probl λ nMat nSer %Shared

B1 0.1 652 1142 0.65
0.5 646 1140 0.67
0.99 621 1120 0.77

B2 0.1 700 1340 0.70
0.5 694 1322 0.76
0.99 681 1320 0.77

B3 0.1 1008 1849 0.68
0.5 995 1845 0.73
0.99 943 1808 0.78

B4 0.1 1062 2134 0.74
0.5 1061 2135 0.74
0.99 1011 2104 0.81

B5 0.1 1391 2601 0.70
0.5 1343 2594 0.75
0.99 1285 2541 0.79

B6 0.1 1466 3016 0.72
0.5 1455 2971 0.75
0.99 1412 2924 0.82

B7 0.1 2795 5352 0.67
0.5 2717 5317 0.70
0.99 2522 5163 0.79

B8 0.1 2874 5993 0.72
0.5 2860 5956 0.73
0.99 2751 5830 0.82

B9 0.1 3131 6181 0.71
0.5 3064 6033 0.72
0.99 2855 5816 0.80

B10 0.1 3285 7162 0.73
0.5 3221 6734 0.76
0.99 3102 6398 0.80

B11 0.1 3586 7039 0.67
0.5 3449 6816 0.73
0.99 3191 6629 0.81

B12 0.1 3669 7598 0.74
0.5 3653 7596 0.74
0.99 3538 7860 0.83
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increase citizens’ satisfaction in a situation where the number of 
public transportation options and taxis in each country has 
decreased since COVID-19. Moreover, ridesharing is more effective 
in reducing greenhouse gases and in boosting road efficiency than is 
the transportation mode of people using their own cars. In keeping 
with these social benefits, the government can also develop policies 
to introduce incentives for ridesharing companies. In this way, 
whether from a government’s or a platform operator’s point of 
view, ridesharing is an attractive market and will expand in the 
future. We expect our research to be helpful in various cost pro-
blems that may arise at that time. We believe that related research 
should be conducted, and in particular, social values and incentives 
are expected to be an attractive field when explored in future 
research.

The limitations of this study are as follows: (1) we considered 
only two main criteria to evaluate the performance-the number of 
requests served and the money paid by the riders. In reality, how-
ever, there are numerous other criteria to be considered, such as 
security, user satisfaction, and maximum travel time. These con-
straints can be taken care of by introducing additional constraints, 
but it will affect the computation time of the column generation 
procedures; (2) in recent studies on ridesharing, there have been 
many concerns about the design aspect, such as ridesharing with 
designated meeting points, multi-hop (one-to-many or many-to- 
many) ridesharing, and multimodal ridesharing. We only consid-
ered the many-to-one ridesharing problem. Designing effective 
ridesharing policies is an attractive research topic because it can 
vary from city to city around the world. (3) finally, as Wang, Agatz, 
and Erera (2018) pointed out, the system-wide optimum might not 
coincide with each individual’s optimum because each individual 
might have found better options in terms of travel cost and travel 
time if they had scheduled trips on their own that were not dictated 
by the centralized system. Such problems, whose objective is to 
ensure the best option for every individual, are known as stable 
matching problems. In our study, we did not consider stable match-
ing, and therefore, the fairness of the proposed system can be taken 
into account in future studies.

Notes

1. https://www.fico.com/en/products/fico-xpress-optimization
2. https://its.go.kr/itsinfo/snl.do
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