
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20

Transportation Letters
The International Journal of Transportation Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ytrl20

A column generation approach for a dynamic
ridesharing problem

Minsu Kim, Hyunwoo Kim & Ilkyeong Moon

To cite this article: Minsu Kim, Hyunwoo Kim & Ilkyeong Moon (2023) A column generation
approach for a dynamic ridesharing problem, Transportation Letters, 15:9, 1114-1125, DOI:
10.1080/19427867.2022.2133364

To link to this article: https://doi.org/10.1080/19427867.2022.2133364

Published online: 15 Oct 2022.

Submit your article to this journal

Article views: 186

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ytrl20
https://www.tandfonline.com/loi/ytrl20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19427867.2022.2133364
https://doi.org/10.1080/19427867.2022.2133364
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ytrl20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2022.2133364
https://www.tandfonline.com/doi/mlt/10.1080/19427867.2022.2133364
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2022.2133364&domain=pdf&date_stamp=15 Oct 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2022.2133364&domain=pdf&date_stamp=15 Oct 2022

A column generation approach for a dynamic ridesharing problem
Minsu Kima, Hyunwoo Kima and Ilkyeong Moon b

aEntrue Consulting, LG CNS, Seoul, South Korea; bDepartment of Industrial Engineering and Institute for Industrial Systems Innovation, Seoul National
University, Seoul, South Korea

ABSTRACT
Recent advances in GPS and telecommunications technologies have made ridesharing a widespread practice
around the world. By matching drivers and passengers with near-distance destinations and similar time
schedules, ridesharing saves individuals travel costs by enabling them to share vehicles. It is also an effective
way to reduce traffic congestion and greenhouse gas emissions. A ridesharing problem can be modeled as
a dial-a-ride problem with time windows. This study looks at a solution to the dynamic ridesharing problem
in which passengers share travel costs at the same ratio. We formulate the problem as a mixed-integer
programming model and suggest a column generation approach. As the system’s status is updated in real
time, riders and drivers are matched, and new paths are created via column generation. Computational
experiments show that our approach is superior to an existing algorithm when it is tested on instances of
various sizes.

KEYWORDS
Ridesharing; dynamic dial-
a-ride problems; mixed-
integer programming;
column generation

Introduction

Dynamic ridesharing refers to a system that supports an automatic
ride-matching process between participants on very short notice, or
even en-route (Agatz et al. 2012). According to a recent survey, the
average occupancy rate for private vehicles in South Korea was
1.22 per vehicle, down 7.9% from 1.32 in 2010, while the number
of private vehicles per household increased by 14.1% from 0.75 to
0.86 over the same time period (Korean Transport Database 2016).
Similar tendencies were discovered in the United States (Sivak and
Schoettle 2012). Such an increase in private vehicle usage inevitably
leads to traffic jams and increases fuel consumption and greenhouse
gas emissions. Rising oil prices, expensive traffic costs, and growing
environmental concerns have increased the interest of policymakers
and passengers in ridesharing. At the same time, increased use of
smartphones and the development of GPS systems have taken ride
sharing to a new level. Nowadays, travelers can schedule trips any-
time and anywhere using smartphone apps. When the user enters
a location and destination, the app will search for nearby drivers,
and automatically calculate the route and estimated fare. With such
advancements, transportation network companies (TNCs) such as
Uber, Lyft, and Zipcar have appeared on the market and have
succeeded. Uberpool, the ridesharing platform of Uber, reported
that by April 2016, more than 100 million rides had been taken
since it launched the service in August 2014. According to the
statistics, about 20% of rides made globally were on the Uberpool
service (Techcrunch 2016). In South Korea, a carsharing agency,
TADA, recorded 600,000 members in seven months of service
launch (JOINS 2019).

The expected economic impact of the introduction of rideshar-
ing services is tremendous and includes reduced greenhouse gas
emissions (Fagnant and Kockelman (2014), Bruck et al. (2017)),
reduced energy consumption (Chan and Shaheen 2012), mitigation
of traffic congestion (Wang, Dessouky, and Ordonez 2016), and
cost savings (Delhomme and Gheorghiu 2016). The most signifi-
cant advantage of ridesharing is that it provides additional

flexibility in transportation. According to recent research by the
South Korean Ministry of Land, Infrastructure, and Transport,
21.7% of taxis were oversupplied in South Korea (Ministry of
Land, Infrastructure and Transport 2017). However, especially in
big cities, such as Seoul, people are still suffering from lack of
transportation when demand is high, such as during rush hours.
According to a recent report by Kakao Mobility, a South Korean
TNC, the number of taxi calls at commuting hours was 205,000,
while the number of taxis supplied was 37,000, less than one-fifth of
the demand. In addition, the number of calls at midnight was
130,000, while the number of taxis in operation was only one-
third of this demand, at 41,000 (Kakao Mobility 2019). Given
such a mismatch between supply and demand for transportation,
ridesharing can be an excellent remedy by meeting excess demands
that are not served by existing taxi service.

Ridesharing problems are modeled as dial-a-ride problems
(DARPs), a field of vehicle routing problems primarily related to
human transportation. DARP focuses on designing vehicle routes
and schedules for users who specify pickup and delivery requests
between origins and destinations. Therefore, the DARP generalizes
the vehicle routing problem with time windows (VRPTW) and the
pickup and delivery vehicle routing problem (PDVRP) at the same
time (Cordeau and Laporte 2007). Depending on the matching
type, DARPs can be characterized as either one-to-one (one rider
with one driver; e.g., call taxis), many-to-one (many riders with one
driver; e.g., carpooling), and one-to-many (one rider with many
drivers; e.g., multi-hop ridesharing). General dynamic ridesharing
problems can be seen as many-to-many DARPs, which involve
heterogeneous drivers, heterogeneous riders, and multiple depots.
DARPs can also be categorized into two categories, static and
dynamic. In the case of static DARPs, all information about the
drivers and riders (e.g., arrival times and locations) is known in
advance, whereas only partial information is known in the dynamic
cases, and the rest is gradually revealed in real-time.

In this study, we consider a dynamic peer-to-peer (P2P) ride-
sharing problem in which individuals schedule one-time shared

CONTACT Ilkyeong Moon ikmoon@snu.ac.kr Department of Industrial Engineering and Institute for Industrial Systems Innovation, Seoul National University,
Seoul, South Korea

TRANSPORTATION LETTERS
2023, VOL. 15, NO. 9, 1114–1125
https://doi.org/10.1080/19427867.2022.2133364

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-7072-1351
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19427867.2022.2133364&domain=pdf&date_stamp=2023-09-29

rides to save travel costs. In our model, a driver can offer a ride to
multiple passengers simultaneously, but we do not assume multi-
hop traveling. Because we deal with a dynamic environment, we do
not assume any prior information about the fleet size and the arrival
of passengers. Moreover, we assume that when passengers travel on
the same route together, they pay an equal share of the fare for that
route.

The purpose of this study is to propose an improved algorithm
based on optimization and to provide a valid upper bound for it.
Therefore, the algorithm’s performance can be evaluated. Another
desired outcome of the dynamic ridesharing system is its capability
to match a large number of users in a short time. In practice, there
can be thousands of transportation requests in urban areas, espe-
cially with high traffic. Therefore, by differing the size of instances,
we demonstrate that our algorithm is also scalable to medium or
large amounts of data.

This study is composed as follows: In Section 2, we introduce
literature related to dial-a-ride problems (DARPs) and ridesharing.
Section 3 explains our model and provides the solution approach.
In Section 4, we show the results of computational experiments and
offer a sensitivity analysis. And finally, in Section 5, we present the
conclusions.

Literature review

The history of ridesharing goes back to World War II, when the US
government led regulatory policy to reduce fuel consumption
(Fagnant and Kockelman 2014). Since then, ridesharing has been
widely studied because of the ongoing necessity of finding efficient
models for human transportation. Dumas, Desrosiers, and Soumis
(1991) provides one of the earliest exact algorithms for multi-
vehicle pickup and delivery vehicle routing problems with time
windows (VRPPDTWs). Baldacci, Maniezzo, and Mingozzi 2004)
suggested an exact algorithm for scheduled car pooling problems
(CPPs) with bounding procedures based on Lagrangian decompo-
sition. Cordeau 2006) suggested an exact algorithm for DARPs
based on the brand-and-cut technique. However, most exact
approaches for DARPs are confined only to small-scale instances
that contain less than 300 customers. More recently, Yan and Chen
(2011) provided an algorithm based on Lagrangian relaxation and
heuristics, which can be adapted to large-scale many-to-many car-
pooling problems.

For large-scale problems, the cluster-first-routing-second strat-
egy has been successfully applied (Dumas, Desrosiers, and Soumis
1989), Ioachim et al. (1995). People who are close in terms of time
and distance are clustered together using column generation, and
then the path for each cluster is determined later. Another well-
adopted approach is based on insertion heuristics (Jaw et al. (1986),
Diana and Dessouky 2004), Xiang, Chu, and Chen (2006)). In this
type of algorithm, customers are inserted into each vehicle route by
a certain criterion (e.g., minimum cost, maximum profit). Meta-
heuristics, including tabu search approaches, are also popular
options for solving complex DARPs (Cordeau and Laporte (2003),
Nanry and Barnes (2000)). For more details on the various types
and solution approaches of DARPs, there exist numerous review
papers (Cordeau and Laporte (2007), Toth and Vigo (2014)).

Compared to the static DARPs, the dynamic DARPs have been
relatively understudied. Various types and characteristics of
dynamic DARPs are summarized in Furuhata et al. (2013).
Another study by Savelsbergh and Sol (1998) provides an iterative
algorithm based on the set-partitioning formulation and branch-
and-price technique for dynamic DARPs. Chen and Xu (2006)
proposed a dynamic column generation approach to solve dynamic
vehicle routing problems with time windows (DVRPTWs). This

study applied the column generation procedure repeatedly, com-
bined with the rolling horizon framework. Tabu search is another
well-adopted approach (Attanasio et al. (2004), Berbeglia, Cordeau,
and Laporte (2012)). Berbeglia, Cordeau, and Laporte (2010) pro-
vides an extensive review on dynamic DARPs and their solution
approaches.

Recent advances in mobile technology led to the emergence of
a new class of problems: dynamic ridesharing. Agatz et al. (2011)
is one of the earliest works on dynamic ridesharing. In real-time
ridesharing, it is necessary to match a large number of requests
and find an optimal path in a very short time. An agent-based
simulation is one of the most popular tools because it is useful for
capturing complex interactions between agents on real systems.
Several studies have shown that the simulation results fit well with
real-world data (Martinez, Correia, and Viegas (2015),
Nourinejad and Roorda (2016)). While most simulation studies
aim to achieve maximum utility for each individual from
a distributed viewpoint, there is also a centralized approach to
maximize system-wide benefits, such as a reduction in total travel
distance or the number of rides matched. Hosni, Naoum-Sawaya,
and Artail (2014) and Masoud and Jayakrishnan (2017) suggested
decomposition algorithms for large-scale problems. They formu-
lated their problems as mixed-integer programs and divided them
into smaller subproblems, which were then solved in a parallel
manner. Ma, Zheng, and Wolfson (2015) and Alonso-Mora et al.
(2017) designed heuristics for a real-time, large-scale taxi-sharing
system, while Bertsimas, Jaillet, and Martin (2019) suggested an
algorithm based on mixed-integer programming and the max-
flow heuristic.

Different objectives have been proposed, depending on the
priority of decision makers. Santos and Xavier (2015) suggested
a ridesharing system that maximizes the number of served requests
and minimizes the total cost, while Santi et al. (2014) maximized the
number of shared trips. Chen, Liu, and Chen (2010) suggested
a congestion-aware scheduling system to reduce fuel consumption.
Wang, Dessouky, and Ordonez (2016) proposed an incentive sys-
tem for high-occupancy vehicles (HOVs) by using dedicated lanes
and toll discount policies to improve time savings and matching
rates. Li et al. (2015) and Cheng, Xin, and Chen (2017) reflected the
preference of riders to drivers to promote the satisfaction and safety
of the service.

A reasonable pricing scheme is one of the main design issues of
ridesharing systems. Kleiner, Nebel, and Ziparo (2011) and Asghari
et al. (2016) designed pricing schemes based on parallel auctions to
meet the criteria of both drivers and riders. Stiglic et al. (2016)
designed an incentive system that gives more benefit to those who
offer more flexibility to the matching system. Qian et al. (2017)
solved a taxi group ride (TGR) problem and designed a discount-
incentive mechanism to maximize the total saved mileage.
Sayarshad and Chow (2015) proposed a non-myopic pricing
scheme, based on queuing theory, to make use of real-time data
and anticipation of future states. Wang, Agatz, and Erera (2018)
and Peng et al. (2018) introduced pricing policies motivated by
stable matching, ensuring some degree of satisfaction from the
perspective of both drivers and riders, while only incurring
a small degradation of the system-wide objective. However, there
are not sufficient studies for dynamic ridesharing systems that
incorporate a reasonable pricing scheme with many-to-one or one-
to-many matching and routing scheme at the same time. Table 1
summarizes the differences between this paper and other literature
on dynamic ridesharing. In the table, ridehailing refers to a specific
system in which drivers aim to maximize their profit on their own,
while ridesharing refers to a system in which participants aim to
minimize their costs by sharing rides.

TRANSPORTATION LETTERS 1115

Dynamic column generation

Introduction

In reviewing previous studies, we found a lack of research on
dynamic ridesharing problems. Among the prior studies, Santos
and Xavier (2015) is the closest to our work. The study formu-
lated the problem as a mixed-integer program, but did not
suggest a tractable solution to it. It instead solved the problem
heuristically, using the greedy randomized adaptive search pro-
cedure (GRASP). What differentiates this problem from others is
the cost structure. Santos and Xavier (2015) assumes that if
passengers have traveled together, they share the travel cost of
the trip. The amount to be paid is determined by dividing the
cost of the arc equally into the number of passengers inside the
vehicle. The objective of the problem is to find a solution that
maximizes the number of requests served, minus the amount of
the payment made by passengers. Santos and Xavier (2015)
proposes a model, namely the dynamic dial-a-ride problem with
money as an incentive (DARP-M).

In the DARP-M, the information of the ridesharing participants
is not known in advance. Instead, it is gradually updated over the
planning horizon. At the beginning of the planning horizon, there is
no request or server in the system, and therefore, both M and N are
empty. When a request, r, enters the system, the passengers list their
information ðer; lr; rþ; r� ; pr; brÞ on a mobile application. Without
loss of generality, we assume that the time at which request r is
entered is the same as that at which er is entered. Likewise, every
server, s, enters the system at time es and provides its informa-
tion ðes; ls; sþ; s� ; qsÞ.

If a server and a request are matched, the server departs from its
origin to serve the first request. If a server is not matched with any
request, we assume that each waits at its origin until being matched.
We call those servers and requests waiting to be matched idle. We
also refer to a request as idle if it was matched with a server but is
still waiting for a pickup. However, if requests cannot be matched
within the deadline of reaching their destinations, they have
become critical. When servers and passengers become critical,
they are considered to leave the system. Finally, if a server or request
is traveling on the network, we call it en-route. When a server or
a request is either idle or en-route, it is called an active server or
a request.

In Santos and Xavier (2015), the authors assumed that a route is
not allowed to be modified unless the vehicle is empty, in order to
prevent the passengers from being changed. In this study, however,
we allow a path of any server to be modified at any time, even if the
server is en-route. Any request can be added or removed, as long as
the path remains feasible, and the system-wide objective may
increase by the change. For the real-time route modification to be

possible, the position of every vehicle in the system should be
tracked at all times. Due to the advances in telecommunications
technology, we assume that this can be done without difficulty.
Also, we assume the P2P sharing environment, in which each
participant tries to minimize travel expenses, not to maximize
profit. In our model, therefore, when a server drops the last pas-
senger off, the server then heads directly to its destination, leaving
the system as soon as arriving at that destination. In Santos and
Xavier (2015), the servers do not leave the system after their
planned trips are complete because the authors regarded them as
taxi drivers whose main purpose was to maximize profit.

Framework

This section discusses the dynamic column generation framework
to solve the DARP-M. The rolling horizon is a common approach
for dynamic vehicle routing problems. Our approach is based on
the rolling horizon approach, and it was also motivated by the
method suggested by Chen and Xu (2006). Prior to a detailed
explanation of the approach, we first give some definitions. Let
MðtÞ and NðtÞ be the set of active requests and servers at time t.
Also, we denote the set of feasible paths of the server s 2 NðtÞ that
have been found by time t as PsðtÞ. The set of all the feasible paths
found can be expressed as PðtÞ ¼

S

s2NðtÞ
PsðtÞ. The key idea of the

rolling horizon approach is to divide the planning period into
multiple epochs of the same length, and solve a static snapshot of
the dynamic problem in each epoch as if it were static. Let ti be the
time at which epoch i starts, where t1 ¼ 0.

We denote the static problem of epoch i as [SPi]. Each epoch
consists of two phases: One is the column generation phase, which is
divided into several iterations, and the other is the optimization and
implementation phase. In the column generation phase, we have
several iterations where in each iteration we solve a restricted set
covering problem and with the duals of this generate new feasible
paths (columns) of the active servers. This is repeated until time
tiþ1 � τ, where τ is the time allowance for the optimization and
implementation phase. In the optimization and implementation
phase, we solve the integer program [SPi] consisting of the columns
that have been found so far. Let Si be the solution to [SPi]. Then, Si
should contain exactly one feasible path for each server, s 2 Nðtiþ1Þ.
At the end of the epoch, we implement the solution (i.e., notice all
the servers and passengers of the schedule implied by Si).

Note that in the column generation phase, servers and requests
are still entering the system while the subproblems are being solved.
Let η0 and η1 be the starting times of the previous and current
iterations of the column generation phase, where η1 equals ti if it is
the first iteration of the epoch. Let Θ η0; η1

� �
and � η0; η1

� �
be the set

of requests and servers that have arrived in time interval η0; η1
� �

.

Table 1. Literature on dynamic ridesharing.

Reference Problem
One-to-one One-to-many

Routing Pricing
Solution

matching matching approach

Savelsbergh and Sol (1998) Pickup and delivery ✓ ✓ Branch and price
Chen and Xu (2006) Pickup and delivery ✓ ✓ Column generation
Hosni, Naoum-Sawaya, and Artail (2014) Ridehailing ✓ ✓ Lagrangian relaxation
Bertsimas, Jaillet, and Martin (2019) Ridehailing ✓ MIP and heuristic
Kleiner, Nebel, and Ziparo (2011) Ridehailing ✓ ✓ Auctions
Wang, Agatz, and Erera (2018) Ridehailing ✓ ✓ Stable matching
Peng et al. 2018) Ridehailing ✓ ✓ Stable matching
Yan and Chen (2011) Ridehailing ✓ ✓ Dynamic pricing
Santos and Xavier 2015) Ridesharing ✓ ✓ ✓ Heuristic
This study Ridesharing ✓ ✓ ✓ Column generation

1116 M. KIM ET AL.

After the subproblems are solved, we update the sets of active severs
and requests (i.e., Mðη1Þ ¼ Mðη0Þ [Θ η0; η1

� �
and

Nðη1Þ ¼ Nðη1Þ [� η0; η1
� �

) and proceed to the next iteration.
Whenever a server is updated, we add an empty path for the server
to PðtÞ. This is because every server must have one path by for-
mulation [F].

After the solution, Si, is implemented, we discard all the obsolete
entities and paths. A request or a server is said to be obsolete if it has
become critical by time tiþ1. Also, if the itinerary of a server is
complete at time tiþ1 (i.e., the server has arrived at its destination),
the requests and the server associated with the route also are
considered obsolete. Let Θ̂iþ1 and �̂iþ1 each be the set of requests
and servers that have become obsolete by time tiþ1. Then, we start
the next epoch with Mðtiþ1Þ ¼ Mðtiþ1ÞnΘ̂iþ1 and
Nðtiþ1Þ ¼ Nðtiþ1Þn�̂iþ1. Let Ŝi be the set of complete routes at
time tiþ1. We also remove those complete routes from Si and we
start the next epoch with initial paths Pðtiþ1Þ ¼ SinŜi. The sequence
of events that has been described so far is illustrated in Figure 1.

Set-Partitioning reformulation

In this section, we describe the static problem [SPi] solved in epoch
i. [SPi] is formulated as a set-partitioning type problem and solved
with the column generation procedure. This is a widely used
approach to solve various types of vehicle routing problems because
the set-partitioning formulation can imply a variety of complex
constraints defining a feasible route.

Given a route l 2 PsðtÞ, let αl;r ¼ 1 if request r was served by
driver s, 0 otherwise. Also, let ρl;r be the sum of the payment made
by the passengers of request r in the vehicle. The binary decision
variable �l equals 1 if route l 2 PðtÞ is selected, or 0 otherwise. Then,
the set-partitioning reformulation [SPiðtÞ] to be solved at time t is
defined as follows:

The symbol RðlÞ in the objective function (1) represents the set of
requests contained in path l. Constraint (2) requires that every
request is contained in, at most, one feasible route, while
Constraint (3) requires that every driver is assigned exactly one
feasible route. If all the feasible paths for the servers are included in
PðtÞ, then problem [SPiðtÞ] is equal to problem [F], consisting of
MðtÞ and NðtÞ. However, there are a significant number of feasible
routes for the servers, and it is impossible to enumerate them all.
Therefore, we start initially with PðtiÞ, which contains exactly one
path for each server, s 2 NðtiÞ. If a server was not matched with any
path, it has an empty path. We call such a problem with a partial
subset of paths a restricted master problem (RMP).
[SPiðtÞ] is solved by alternating the optimization of the RMP and
the column generation procedure. By solving the linearly relaxed
RMP, we obtain the dual values required for constituting the sub-
problems. The missing paths (columns) with positive reduced costs
are generated by solving the subproblems, and then, they are added
to PðtÞ. Exactly one subproblem is defined for each server, and
therefore, there are jNðtÞj subproblems to be solved in a parallel
fashion. Let �ur and �vs be the dual variables associated with
Constraints (2) and (3), respectively. Then, the subproblem
[PPi;sðtÞ] of driver s at time t can be expressed as follows:

Figure 1. An illustration of the dynamic column generation framework.

TRANSPORTATION LETTERS 1117

By Constraint (22), the binary decision variable zr equals 1 if, and
only if, request r is included in the path of server s. Constraint (21)
represents the relation between ρr and Cr;u. If the objective is
positive, we have found a feasible path with a positive reduced
cost. Then, we define a new column corresponding to the path and
add it to PsðtÞ. If there is no path with a positive objective for every
server, the RMP is LP-optimal. To solve [SPi] exactly, we branch the
fractional variables and repeat the same procedures. Solving [SPi]
exactly, however, is not considered in this study, as we are solving
the dynamic problem. We terminate the procedure at time ti � τ,
even if the RMP is not LP-optimal. At the optimization phase, the
integer program [SPi] is solved with an IP solver. Note that the
coefficients of the variables of [SPi] are either 0 or 1, and because of
this special structure, the problem can be solved efficiently using
commercial solvers, even if PðtÞ contains thousands of columns.

Labeling algorithm

The subproblems in the previous section are the longest path ver-
sion of the elementary shortest path problem with resource

constraints (ESPPRC). A feasible path must be elementary (i.e.,
there is no cycle) because a driver cannot visit an already served
request again. The ESPPRC is known to be NP-hard (Dror 1994).
However, when the problem is highly constrained by resources
(e.g., time, budget), it can be solved efficiently with dynamic pro-
gramming. The ESPPRC is usually solved through the labeling
algorithm (Irnich and Desaulniers (2005)), which is an extension
of Dijkstra’s algorithm to a higher dimension. There can be multi-
ple Pareto optimal paths due to the different types of resources. The
algorithm aims to find a set of Pareto optimal paths, while exclud-
ing possible non-Pareto optimal ones.

Consider the subproblem defined for server s at time t. Let
UðtÞ ¼ frþ; r� : r 2 MðtÞg and VsðtÞ ¼ UðtÞ [fsþ; s� g. In the
labeling algorithm, we construct a complete directed network,
GsðtÞ ¼ ðVsðtÞ;AsðtÞÞ, where AsðtÞ ¼ VsðtÞ � VsðtÞ. The costs of
arcs in AsðtÞ are called residual costs and depend on the dual values
of Constraints (2) and (3). Moreover, they also depend on the status
of the vehicle, including the number of passengers inside, and the
budgets of those passengers, by Constraint (21).

In the labeling algorithm, partial paths are constructed on
a network progressively. Starting from sþ, partial paths are extended
along the arcs until reaching s� . Whenever a new partial path is
created to a node, we map a label that records the status of the path.
Each node, p 2 VsðtÞ, has a bucket of labels, Λp, and each label in it
corresponds to a partial path from sþ to p. We denote lth label of Λp

as Ll
p ¼ ðRl

p;Zl
p;Yl

pÞ, where Rl
p is a resource consumption vector, Zl

p

is the reduced cost of the partial path, and Yl
p is the set of unfinished

requests (i.e., those which not have arrived at their destinations).
The resource consumption vector is represented as ðSl

p;Tl
p; πl

pÞ,
where Sl

p is the set of visited nodes, Tl
p is the elapsed time, and πl

p ¼

fπl
p;r : r 2 Yl

pg is the expenditure vector, where each πl
p;r corre-

sponds to the money paid by the passengers of request r. If the
server is idle, the initial label L1

sþ is expressed as
ððfsþg;T1

p ; ;Þ; 0; fsgÞ. As the solution to [SPi] will be implemented
at time tiþ1, the initial elapsed time Tl

p equals maxftiþ1; esg. Assume
the dual variables f�ur : r 2 MðtÞg and f�vs : s 2 NðtÞg are given. For
each p 2 VsðtÞ, define σp as follows:

Suppose a partial path is located on node p. We define the number of
passengers in the vehicle as jjYl

pjj, i.e., jjYl
pjj ¼

P

r2Yl
p

hr. Then, given

a label, Ll
p, mapped to the path, the residual arc cost �tpqðLl

pÞ induced
by extending from p to another node q 2 VsðtÞ is defined as follows:

The function gð�Þ in Equation (26) can be translated as the cost-
sharing factor associated with the status of the label. It strictly
increases with respect to jYl

pj and br, resulting in an increased
residual cost.

1118 M. KIM ET AL.

Node q can be associated with either some request r0 2 MðtÞ, or
server s. Given a label, Ll

p, on node p, the extension to q yields a new
label, Ll0

q , if the following conditions hold:

1. (Precedence) q‚Sl
p and either (a) or (b) holds:

(a) ðq ¼ r0þÞ _ ððq ¼ r0 � Þ ^ ðr0 2 Yl
pÞÞ.

(b) ðq ¼ s� Þ ^ ðYl
p ¼ ;Þ

2. (Time windows) either (a) or (b) holds:

(a) ðTl
p þ tpq � lr0 Þ ^ ðq ¼ r0 � Þ

(b) ðTl
p þ tpq � lsÞ ^ ðq ¼ s� Þ

3. (Capacity) either (a) or (b) holds:

(a) ðq ¼ r0þÞ ^ ðjjYl
pjj þ hr0 � qsÞ

(b) q ¼ r0 �

4. (Budget limit) πl
p;r þ δðLl

p; tpqÞ � br;"r 2 Yl
p where

Function δð�Þ defines the cost to be charged to each passenger inside
the vehicle. When all three conditions hold, the resulting label
Ll0

q ¼ ðRl0
q;Zl0

q ;Yl0
q Þ, where Rl0

q ¼ ðSl0
q ;Tl0

q πl0
qÞ, can be expressed as

follows:

Equations (28) to (30) are also referred to as resource extension
functions (REFs). Whenever a label is extended from node p to
node q, we add it to bucket Λq. We also save the pointer of the
parent label so that we can restore the sequence of nodes constitut-
ing the feasible path by tracing the pointers backward. However, as
the size of the problem grows, the number of labels created can
become extremely large. Therefore, additional conditions must be
met to extend the label, in order to prevent excessive proliferation
of the labels. Propositions 1 and 2 are those conditions that are also

explained in Dumas, Desrosiers, and Soumis (1991) explicitly, and
therefore will not be proved here.

Proposition 1. Given a label Ll
p ¼ Rl

p;Zl
p;Yl

p

� �
, suppose r 2 Yl

p for
some r 2 N. Ll

p can be eliminated if the extension p) r�) s� is
not feasible.

Proposition 2. Given a label Ll
p ¼ Rl

p;Zl
p;Yl

p

� �
, suppose r1; r2 2 Yl

p
for some r1; r2 2 N. Ll

p can be eliminated if both the extensions p)
r1
�) r2

�) s� and p) r2
�) r1

�) s� are not feasible.

It is also common practice to exclude unnecessary labels that
cannot be considered Pareto optimal by applying dominance
rules, in order to avoid enumerating all possible paths. Label Ll

p
is said to dominate another label, Ll0

q , if all the feasible paths
that can be generated from Ll0

q can also be generated from Ll
p

with greater or equal reduced cost. Proposition 3 states this
dominance rule, and we remove a label whenever it is domi-
nated by the other.

Proposition 3. Given two labels Ll
p ¼ ðRl

p;Zl
p;Yl

pÞ and Ll0
p ¼

ðRl0
p;Zl0

p ;Yl0
p Þ where Rl

p ¼ ðSl
p;Tl

p; πl
pÞ, and Rl0

p ¼ ðSl0
p;Tl0

p ; πl0
pÞ, sup-

pose Tl
p � Tl0

p , Zl
p � Zl0

p , Yl
p ¼ Yl0

p , and πl
p;r � πl0

p;r "r 2 Yl
p. Then,

Ll
p dominates Ll0

p .

The labeling algorithm is terminated whenever any non-
dominated label is not generated. However, when the size of
the problem is big, the algorithm slows down because of the
enormous amount of labels that exist in the system. Therefore,
we adopt the truncated labeling algorithm, which sets a limit on
the maximum number of labels that we treat at a time. If the
total number of labels exceeds a predefined value, Ω, we sort
out the labels with the smallest reduced costs and remove them
from the queue until it reaches Ω. If the algorithm does not
produce a solution, we increase the size of Ω and repeat the
algorithm. We denote the labeling algorithm applied to subpro-
blem [PPi;sðtÞ] as ELPPRC(i; s; t), as described in Algorithm 1.
The function ExtendðL; qÞ returns a new label, defined on node
q, if the extension is legal. Otherwise, it is ;.Another point to be
noted is when the server is en-route at time ti. In this case, one
can expect the future position p0 of the server at time tiþ1
because servers are assumed to travel through the shortest
paths between nodes. In Figure 2, for instance, request r1 will
have arrived at its destination at time tiþ1, and therefore r1 does
not have to be considered in this case. Therefore, nodes rþ1 and
r�1 can be excluded from VsðtÞ for all s 2 NðtÞ. Request r2, on
the other hand, was picked up, but has not reached its destina-
tion at time tiþ1. It follows that node rþ2 can be ignored, but
node r�2 should be considered when solving ½PPi;sðtÞ�. We can
also calculate T1

p0
, Z1

p0
, and π1

p0
, based on the Equations (24)

to (32).

Figure 2. An example of an en-route server at time ti .

TRANSPORTATION LETTERS 1119

Computational experiments

In this section, we present the results and analyses of computational
experiments conducted on simulated data. The experimental set-
ting is an Intel i5 3.20 GHz CPU with 8.0 GB of memory, and the
code was written in JAVA language and Xpress-mp optimization
API.1 To simulate real-world ridesharing, instances were generated
based on existing node-arc data. The data was collected from the
government website2 and consists of 7,455 nodes and 19,856 arcs.
Each arc has a maximum speed limit that each vehicle can travel,
and the travel time of each arc was calculated by dividing the length
of the arc with the maximum travel speed. We computed the length
of the shortest path between every two nodes using the Floyd-
Warshall algorithm. The minimum and maximum travel time
between nodes each turned out to be 0.82 and 2,217.58 seconds,
and the average travel time was 840.33 seconds. The exact monetary
values of arc costs are not required in our problem because the arc
costs are proportionate to the distances, and we only need the
percentage of money spent from the budget.

Two categories of instances were generated: one with longer
time windows (class ‘A’), and the other with shorter time windows
(class ‘B’). Let g be the shortest travel time from a server’s or
a request’s origin to its destination. Class ‘A’ instances have rela-
tively shorter time allowances between the earliest departure times
and the latest arrival times of the servers (1:5g), and requests (1:3g),
while class ‘B’ instances have longer time allowances, 2:0g and 1:5g,
respectively. The instances and their features are described in
Table 2, where jMj and jNj represent the number of requests and
servers, and H represents the length of the planning horizon of each
instance.

To provide the relative measure on the effectiveness of our
method, the upper bound of the objective value of each instance
was computed. Let [SP] be the problem, which has the same
structure as [SP] in Section 3.2, whose MðtÞ, NðtÞ, and PðtÞ are
substituted with M, N, and P, where P is the set of all feasible paths
of all servers. Then, its objective is the same as that of the static
problem, [F], and its LP-bound is also an upper bound of the
DARP-M because the objective value of the static problem is always
at least greater than the dynamic problem. The column generation
procedure described in Section 3.3 was applied to obtain the LP-
bound of each instance. It was repeated until the increase of the
objective value after each iteration became less than 0.5% of the
previous iteration. In the standard column generation, exactly one
column with the highest reduced cost for each subproblem is added
to the master problem. However, we took the strategy of adding all
the columns generated in each iteration, in order to speed up the
convergence of the objective value.

As a default, we used 0.5 for the value of parameter λ. For the
parameter Ω, which is the maximum number of columns that can
exist in the system, we took a three-stage approach. We first tried to
solve each subproblem with Ω ¼ 100. If we found at least one
column with a positive reduced cost, we terminated the procedure
and added those columns to the RMP. If no such column was
found, we increased Ω to 500 and 2,000 gradually. This approach
has been shown to be effective in greatly reducing the computation
time required for convergence. The upper bounds (UB) and num-
ber of columns generated, nCol, are also given in Table 2.

To compare the performance of the suggested algorithm to the
existing algorithm by Santos and Xavier (2015), we conducted
experiments on each instance, differing the length of an epoch, E,
by 15, 30, and 60 seconds. We denote our algorithm as DYCOL
(dynamic column generation) and the other as GRASP. Parameter

τ, the time allowed to optimize an integer program at the end of
each period, was fixed to five seconds. Tables 3 and 4 summarize the
results of comparative experiments for class ‘A’ instances and class
‘B’ instances, respectively. Symbol Obj denotes the objective value
obtained by each method, nMat denotes the number of rides
matched, and nSer denotes the number of requests served. The
maximum values within an instance are highlighted as bold
symbols.

For class ‘A’ instances, the objective values turned out to be the
greatest when E was 15 seconds, regardless of instance sizes. In the
case of class ‘B’ instances, however, performance was better when E
was larger as the instance size grew bigger. This shows that there is
a trade-off between the responsiveness to the changes in the sys-
tem’s status and the computational opportunities for column gen-
eration. When E is short, it is possible to reflect the arrivals of
servers and requests to the decision process more quickly. When
the instance size is big, on the other hand, it is advantageous to
allow for a longer computation time because of more feasible paths,
due to large numbers of servers and requests in the system. For both
classes, DYCOL outperformed GRASP, which is almost twice as
large as the maximum objective value.

To see the impact of the balancing parameter λ, we conducted
additional experiments, differing the size of λ. We tested these on
three values of λ, 0.1, 0.5, and 0.99. The results are described in
Tables 5 and 6, where %Shared represents the percentage of shared
rides (i.e., rides that contain more than two requests at a time). For
both problem classes, %Shared increased as λ increased. On the
other hand, nMat and nSer tended to decrease as λ increased. This
phenomenon explains the role of λ; for a small value of λ, the
algorithm tries to make as many matches as possible because the
penalty for budget consumption is not very important. When λ is
bigger, however, it is more advantageous to pack as many requests
into a vehicle as possible, in order to maximize the cost-sharing
effect and thereby minimize the penalty for budget consumption,
which leads to the decrease in the number of rides matched and
requests served.

Theoretically, the upper bounds are expected to be poor because
they give only LP-bounds. They were also computed in a static
environment, which results in the introduction of an additional
gap. Overall, the LP-bounds obtained from above turned out to be
not very tight when the time windows were as narrow as class ‘A’
instances. When the time windows were as wide as class ‘B’
instances; however, the bounds were relatively tighter. We concluded
that the bound obtained by the labeling algorithm seems to be
affected by the length of time windows, and it gets tighter as time
windows get longer. In addition, we introduced the limitation on the
maximum number of labels that are considered while applying the Ω
algorithm. We believe that if we increase the size of Ω, it could yield
much larger upper bound results because there is a higher chance of
discovering more feasible paths in each iteration of the labeling
algorithm. However, we confined Ω to 2,000, at maximum, to
terminate the algorithm within the allowed computation time, E.
To improve the performance of the algorithm, we believe that
acceleration techniques, such as bidirectional search (Righini and
Salani (2006)) and decremental space relaxation (Boland, Dethridge,
and Dumitrescu (2006)), could do this. These techniques have been
proved to be effective in reducing the number of labels to be
considered, and therefore, the algorithm is terminated more quickly.
There are two parameters that should be considered. The first para-
meter, E, decides the computation time of each epoch. It was
observed that the optimal length of E depends on the size of the
problem and time windows. We tested only three values of E, but we

1120 M. KIM ET AL.

Table 3. Comparison with the GRASP heuristic, problem class ‘A’.

Obj nMat nSer

probl E (sec.) DYCOL GRASP DYCOL GRASP DYCOL GRASP

A1 15 319.5 (0.62) 131.7 (0.26) 403 218 539 245
30 289.6 111.4 386 191 497 210
60 274.5 75.4 375 132 476 143

A2 15 353.8 (0.60) 149.2 (0.25) 448 240 596 275
30 327.7 130.4 429 211 557 240
60 298.7 89.6 411 161 518 172

A3 15 547.6 (0.63) 258.4 (0.30) 669 417 913 476
30 525.4 228.8 658 366 883 419
60 487.0 159.8 636 281 831 303

A4 15 631.2 (0.61) 291.9 (0.28) 712 456 1022 531
30 603.9 253.9 696 399 984 462
60 570.3 174.7 681 295 942 326

A5 15 843.5 (0.62) 431.5 (0.32) 994 673 1386 787
30 808.4 372.3 969 604 1336 687
60 762.8 279.9 953 482 1279 527

A6 15 958.6 (0.60) 492.4 (0.31) 1076 740 1551 883
30 916.9 427.2 1064 682 1498 781
60 870.2 302.8 1045 523 1436 571

A7 15 1771.8 (0.62) 928.4 (0.32) 1977 1355 2860 1650
30 1725.0 806.8 1945 1253 2794 1463
60 1634.4 607.0 1876 1003 2660 1123

A8 15 2085.0 (0.61) 1002.9 (0.29) 2134 1471 3270 1785
30 2020.2 923.9 2102 1399 3191 1658
60 1860.7 697.0 2032 1115 2978 1274

A9 15 2198.1 (0.64) 1103.8 (0.32) 2311 1612 3485 1959
30 2090.1 1004.4 2283 1524 3348 1806
60 1971.3 762.4 2214 1214 3193 1394

A10 15 2649.4 (0.64) 1242.0 (0.30) 2504 1729 4064 2171
30 2515.2 1160.6 2464 1655 3897 2038
60 2361.6 860.3 2394 1346 3694 1560

A11 15 2457.2 (0.63) 1243.3 (0.32) 2566 1833 3888 2218
30 2363.3 1167.6 2545 1749 3771 2092
60 2202.0 854.0 2458 1367 3552 1564

A12 15 2909.8 (0.63) 1401.1 (0.30) 2808 1953 4486 2455
30 2801.0 1288.9 2761 1861 4348 2275
60 2633.5 977.3 2689 1518 4131 1769

Table 2. Problem classes (SP).

Probl SPi jNj H (hr.) UB nCol

A1 1000 1500 1.0 501.2 3525
A2 1000 2000 1.0 591.3 3735
A3 1500 2250 1.0 861.8 6437
A4 1500 3000 1.0 1040.7 7006
A5 2000 3000 1.0 1354.8 11,102
A6 2000 4000 1.0 1601.5 12,277
A7 4000 6000 1.5 2862.4 24,658
A8 4000 8000 1.5 3422.5 26,712
A9 4500 6750 1.5 3429.8 28,642
A10 4500 9000 1.5 4119.1 31,993
A11 5000 7500 1.5 3876.2 32,973
A12 5000 10,000 1.5 4643.9 35,203
B1 1000 1500 1.0 981.0 9737
B2 1000 2000 1.0 1229.0 10,575
B3 1500 2250 1.0 1581.6 15,603
B4 1500 3000 1.0 1969.7 18,163
B5 2000 3000 1.0 2145.3 22,010
B6 2000 4000 1.0 2789.1 25,292
B7 4000 6000 1.5 4462.3 44,029
B8 4000 8000 1.5 5859.0 54,383
B9 4500 6750 1.5 5011.3 49,560
B10 4500 9000 1.5 6613.7 59,837
B11 5000 7500 1.5 5632.1 56,728
B12 5000 10,000 1.5 7470.6 67,910

TRANSPORTATION LETTERS 1121

believe that it can be coordinated dynamically, according to the
traffic volume. The other parameter, λ, which balances the number
of rides matched and the penalty for budget consumption, should be
adjusted as well. It is desirable that as many drivers and riders as
possible are matched for the efficiency of the system. On the other
hand, each individual might wish to save travel costs by sharing
a ride with others. It is the manager’s decision which aspect of
ridesharing should be emphasized. By adjusting the value of λ
properly, it seems likely that balancing user satisfaction with system
efficiency would be possible. As the size of λ grew, the penalty for
travel costs was highlighted, which led to the rise of the proportion
of shared rides and the decrease in the number of matches made.
Although it was not reported in this study, the size of λ also affected
the computation time for solving subproblems. When the traffic load
is high, it is not appropriate to set the value of λ low, both for
technical and practical reasons because it will reduce the number of
rides and raise the computation burden at the same time.

Conclusions

In this study, we designed an alternative solution approach for the
dynamic ridesharing problem to the solution suggested by Santos
and Xavier (2015), the DARP-M. We formulated it as a set-
partitioning problem and applied the dynamic column generation

framework of Chen and Xu (2006), in which the planning horizon
was divided into multiple periods and static problems were solved
repeatedly. The subproblem related to the static problems was the
elementarily longest path problem with resource constraints, which
is known to be NP-hard, and we designed the labeling algorithm to
solve the subproblem. Computational experiments have proved
that our algorithm outperforms the existing algorithm by Santos
and Xavier (2015). We also conducted a sensitivity analysis to
capture the impact of the balancing parameter between the system
efficiency and the penalty for budget consumption. We concluded
that it requires managerial foresight to decide an appropriate size of
the balancing parameter.

This study offers policy implications for ridesharing operators
and governments. As the sharing economy develops, the number of
ridesharing platform operators will increase, and there are many
concerns about billing and passenger allocation. The allocation
method considering money incentives enables effective and efficient
cost calculation and settlement. In addition, as the market is grow-
ing, passengers can receive transportation services at a lower cost
because the number of drivers increases. Our model allows users to
use mobility at a fair and affordable price. On the government side,
ridesharing can flexibly change the supply of transportation options
available according to demand, unlike existing transportation
options such as buses and taxis can. Therefore, ridesharing can

Table 4. Comparison with the GRASP heuristic, problem class ‘B’.

Obj nMat nSer

probl E (sec.) DYCOL GRASP DYCOL GRASP DYCOL GRASP

B1 15 738.0 481.0 (0.49) 646 583 1128 813
30 749.2 (0.76) 446.4 646 566 1140 768
60 725.0 407.8 640 531 1110 702

B2 15 893.0 (0.72) 532.3 (0.43) 694 624 1322 891
30 886.6 505.0 702 609 1317 853
60 870.3 459.1 692 579 1295 784

B3 15 1235.4 785.8 (0.50) 994 917 1843 1324
30 1236.7 (0.78) 770.4 995 903 1845 1290
60 1204.3 665.2 989 849 1807 1141

B4 15 1458.2 885.4 (0.45) 1062 959 2126 1446
30 1467.0 (0.74) 839.8 1061 957 2135 1396
60 1431.1 758.0 1051 887 2087 1274

B5 15 1703.8 1143.6 (0.53) 1362 1299 2537 1905
30 1759.8 (0.82) 1134.6 1343 1283 2594 1879
60 1726.8 1018.9 1348 1224 2559 1712

B6 15 1916.1 987.5 1465 1134 2816 1638
30 2057.5 (0.74) 1252.8 (0.49) 1455 1334 2971 2033
60 2037.9 1130.3 1456 1279 2944 1864

B7 15 3165.6 1881.5 2714 2099 4800 3099
30 3605.8 2397.3 2700 2591 5286 3923
60 3620.5 (0.81) 2167.9 2717 2512 5317 3611

B8 15 2875.1 1527.0 2889 1773 4501 2522
30 4027.4 2569.6 (0.44) 2870 2674 5813 4147
60 4165.2 (0.71) 2350.8 2860 2604 5956 3850

B9 15 3176.2 2177.8 3112 2425 4970 3579
30 3996.9 2780.7 (0.55) 3037 2981 5884 4541
60 4123.6 (0.82) 2589.9 3064 2852 6033 4247

B10 15 3449.6 1673.0 3170 1923 5279 2759
30 4164.1 3066.3 (0.46) 3214 3066 6126 4898
60 4709.3 (0.71) 2859.8 3221 2970 6734 4601

B11 15 4229.1 2168.5 3409 2463 6389 3577
30 4454.5 3229.5 (0.57) 3428 3392 6570 5255
60 4651.6 (0.83) 3033.6 3449 3283 6816 4945

B12 15 3348.5 1853.2 3598 2158 5325 3055
30 4445.9 3530.0 (0.47) 3675 3493 6646 5630
60 5296.1 (0.71) 3287.4 3653 3392 7596 5282

1122 M. KIM ET AL.

Table 5. Sensitivity analysis on Ω, problem class ‘A’.

probl Ω nMat nSer %Shared

A1 0.1 395 516 0.51
0.5 403 539 0.58
0.99 390 520 0.61

A2 0.1 447 605 0.53
0.5 448 596 0.60
0.99 441 598 0.63

A3 0.1 664 893 0.55
0.5 669 913 0.58
0.99 649 869 0.67

A4 0.1 707 1017 0.54
0.5 712 1022 0.60
0.99 700 999 0.64

A5 0.1 980 1360 0.55
0.5 994 1386 0.57
0.99 974 1365 0.69

A6 0.1 1104 1613 0.59
0.5 1076 1551 0.60
0.99 1063 1527 0.67

A7 0.1 1981 2871 0.57
0.5 1977 2860 0.61
0.99 1936 2815 0.69

A8 0.1 2137 3317 0.62
0.5 2134 3270 0.63
0.99 2105 3244 0.70

A9 0.1 2137 3317 0.60
0.5 2311 3485 0.64
0.99 2270 3398 0.67

A10 0.1 2494 4085 0.65
0.5 2504 4064 0.64
0.99 2457 3987 0.73

A11 0.1 2589 3888 0.58
0.5 2566 3888 0.63
0.99 2424 3524 0.69

A12 0.1 2807 4483 0.62
0.5 2808 4486 0.65
0.99 2772 4454 0.72

Table 6. Sensitivity analysis on λ, problem class ‘B’.

probl λ nMat nSer %Shared

B1 0.1 652 1142 0.65
0.5 646 1140 0.67
0.99 621 1120 0.77

B2 0.1 700 1340 0.70
0.5 694 1322 0.76
0.99 681 1320 0.77

B3 0.1 1008 1849 0.68
0.5 995 1845 0.73
0.99 943 1808 0.78

B4 0.1 1062 2134 0.74
0.5 1061 2135 0.74
0.99 1011 2104 0.81

B5 0.1 1391 2601 0.70
0.5 1343 2594 0.75
0.99 1285 2541 0.79

B6 0.1 1466 3016 0.72
0.5 1455 2971 0.75
0.99 1412 2924 0.82

B7 0.1 2795 5352 0.67
0.5 2717 5317 0.70
0.99 2522 5163 0.79

B8 0.1 2874 5993 0.72
0.5 2860 5956 0.73
0.99 2751 5830 0.82

B9 0.1 3131 6181 0.71
0.5 3064 6033 0.72
0.99 2855 5816 0.80

B10 0.1 3285 7162 0.73
0.5 3221 6734 0.76
0.99 3102 6398 0.80

B11 0.1 3586 7039 0.67
0.5 3449 6816 0.73
0.99 3191 6629 0.81

B12 0.1 3669 7598 0.74
0.5 3653 7596 0.74
0.99 3538 7860 0.83

TRANSPORTATION LETTERS 1123

increase citizens’ satisfaction in a situation where the number of
public transportation options and taxis in each country has
decreased since COVID-19. Moreover, ridesharing is more effective
in reducing greenhouse gases and in boosting road efficiency than is
the transportation mode of people using their own cars. In keeping
with these social benefits, the government can also develop policies
to introduce incentives for ridesharing companies. In this way,
whether from a government’s or a platform operator’s point of
view, ridesharing is an attractive market and will expand in the
future. We expect our research to be helpful in various cost pro-
blems that may arise at that time. We believe that related research
should be conducted, and in particular, social values and incentives
are expected to be an attractive field when explored in future
research.

The limitations of this study are as follows: (1) we considered
only two main criteria to evaluate the performance-the number of
requests served and the money paid by the riders. In reality, how-
ever, there are numerous other criteria to be considered, such as
security, user satisfaction, and maximum travel time. These con-
straints can be taken care of by introducing additional constraints,
but it will affect the computation time of the column generation
procedures; (2) in recent studies on ridesharing, there have been
many concerns about the design aspect, such as ridesharing with
designated meeting points, multi-hop (one-to-many or many-to-
many) ridesharing, and multimodal ridesharing. We only consid-
ered the many-to-one ridesharing problem. Designing effective
ridesharing policies is an attractive research topic because it can
vary from city to city around the world. (3) finally, as Wang, Agatz,
and Erera (2018) pointed out, the system-wide optimum might not
coincide with each individual’s optimum because each individual
might have found better options in terms of travel cost and travel
time if they had scheduled trips on their own that were not dictated
by the centralized system. Such problems, whose objective is to
ensure the best option for every individual, are known as stable
matching problems. In our study, we did not consider stable match-
ing, and therefore, the fairness of the proposed system can be taken
into account in future studies.

Notes

1. https://www.fico.com/en/products/fico-xpress-optimization
2. https://its.go.kr/itsinfo/snl.do

Acknowledgement

The authors are grateful for the valuable comments from the editor and anon-
ymous reviewers. This research was supported by the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and
Future Planning (grant number NRF-2019R1A2C2084616).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT and Future Planning [grant
number NRF-2019R1A2C2084616].

ORCID

Ilkyeong Moon http://orcid.org/0000-0002-7072-1351

References

Agatz, N., A. L. Erera, M. Savelsbergh, and X. Wang. 2011 . “Dynamic
ride-sharing: A Simulation Study in Metro Atlanta .” Procedia-Social and
Behavioral Sciences 17: 532–550. doi:10.1016/j.sbspro.2011.04.530.

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. 2012. “. Optimization for
Dynamic ride-sharing: A Review .” European Journal of Operational Research
223 (2): 259–303. doi:10.1016/j.ejor.2012.05.028.

Alonso-Mora, J., S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, 2017 . On-
demand high-capacity ride-sharing via Dynamic trip-vehicle Assignment .
Proceedings of the National Academy of Sciences 114, 462–467. doi:10.1073/
pnas.1611675114.

Asghari, M., D. Deng, C. Shahabi, U. Demiryurek, and Y. Li, 2016 . “Price-aware
real-time ride-sharing at Scale: An auction-based Approach.” in: Proceedings
of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, San Francisco Bay Area, California, USA,
pp. 3.

Attanasio, A., J. F. Cordeau, G. Ghiani, and G. Laporte. 2004 . “Parallel Tabu
Search Heuristics for the Dynamic multi-vehicle dial-a-ride Problem.”
Parallel Computing 30 (3): 377–387. doi:10.1016/j.parco.2003.12.001.

Baldacci, R., V. Maniezzo, and A. Mingozzi. 2004 . “An Exact Method for the Car
Pooling Problem Based on Lagrangean Column Generation .” Operations
Research 52 (3): 422–439. doi:10.1287/opre.1030.0106.

Berbeglia, G., J. F. Cordeau, and G. Laporte. 2010 . “Dynamic Pickup and
Delivery Problems .” European Journal of Operational Research 202 (1):
8–15. doi:10.1016/j.ejor.2009.04.024.

Berbeglia, G., J. F. Cordeau, and G. Laporte. 2012 . “A Hybrid Tabu Search and
Constraint Programming Algorithm for the Dynamic dial-A-ride Problem.”
INFORMS Journal on Computing 24 (3): 343–355. doi:10.1287/ijoc.1110.0454.

Bertsimas, D., P. Jaillet, and S. Martin. 2019 . “Online Vehicle Routing: The Edge
of Optimization in large-scale Applications.” Operations Research 67 (1):
143–162. doi:10.1287/opre.2018.1763.

Boland, N., J. Dethridge, and I. Dumitrescu. 2006 . “Accelerated Label Setting
Algorithms for the Elementary Resource Constrained Shortest Path
Problem.” Operations Research Letters 34 (1): 58–68. doi:10.1016/j.orl.2004.
11.011.

Bruck, B. P., V. Incerti, M. Iori, and M. Vignoli. 2017. “. Minimizing co2
Emissions in a Practical Daily Carpooling Problem.” Computers &
Operations Research 81: 40–50. doi:10.1016/j.cor.2016.12.003.

Chan, N. D., and S. A. Shaheen. 2012 . “Ridesharing in North America: Past,
Present, and Future.” Transport Reviews 32 (1): 93–112. doi:10.1080/
01441647.2011.621557.

Cheng, P., H. Xin, and L. Chen, 2017. “Utility-aware Ridesharing on Road
Networks.” in: Proceedings of the 2017 ACM International Conference on
Management of Data, Chicago, Illinois, USA, pp. 1197–1210.

Chen, P. Y., J. W. Liu, and W. T. Chen, 2010 . “A fuel-saving and
pollution-reducing Dynamic taxi-sharing Protocol in Vanets.” in: 2010
IEEE 72nd Vehicular Technology Conference-Fall, Ottawa, ON, Canada,
pp. 1–5.

Chen, Z. L., and H. Xu. 2006. “Dynamic Column Generation for Dynamic
Vehicle Routing with Time Windows.” Transportation Science 40 (1):
74–88. doi:10.1287/trsc.1050.0133.

Cordeau, J. F. 2006. “A branch-and-cut Algorithm for the dial-A-ride Problem.”
Operations Research 54 (3): 573–586. doi:10.1287/opre.1060.0283.

Cordeau, J. F., and G. Laporte. 2003. “A Tabu Search Heuristic for the Static
multi-vehicle dial-A-ride Problem.” Transportation Research Part B:
Methodological 37 (6): 579–594. doi:10.1016/S0191-2615(02)00045-0.

Cordeau, J. F., and G. Laporte. 2007. “The dial-a-ride Problem: Models and
Algorithms.” Annals of Operations Research 153 (1): 29–46. doi:10.1007/
s10479-007-0170-8.

Delhomme, P., and A. Gheorghiu. 2016. “Comparing French Carpoolers and
non-carpoolers: Which Factors Contribute the Most to Carpooling?”
Transportation Research Part D: Transport and Environment 42: 1–15.
doi:10.1016/j.trd.2015.10.014.

Diana, M., and M. M. Dessouky. 2004. “A New Regret Insertion Heuristic for
Solving large-scale dial-A-ride Problems with Time Windows.”
Transportation Research Part B: Methodological 38 (6): 539–557. doi:10.
1016/j.trb.2003.07.001.

Dror, M. 1994. “Note on the Complexity of the Shortest Path Models for
Column Generation in Vrptw.” Operations Research 42 (5): 977–978.
doi:10.1287/opre.42.5.977.

Dumas, Y., J. Desrosiers, and F. Soumis. 1989. “Large scale multi-vehicle dial-
a-ride problems . École des hautes études commerciales, Groupe d’études et
de recherche en analyse des décisions.”

Dumas, Y., J. Desrosiers, and F. Soumis. 1991. “The Pickup and Delivery
Problem with Time Windows.” European Journal of Operational Research
54 (1): 7–22. doi:10.1016/0377-2217(91)90319-Q.

1124 M. KIM ET AL.

https://www.fico.com/en/products/fico-xpress-optimization
https://its.go.kr/itsinfo/snl.do
https://doi.org/10.1016/j.sbspro.2011.04.530
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.parco.2003.12.001
https://doi.org/10.1287/opre.1030.0106
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.1287/ijoc.1110.0454
https://doi.org/10.1287/opre.2018.1763
https://doi.org/10.1016/j.orl.2004.11.011
https://doi.org/10.1016/j.orl.2004.11.011
https://doi.org/10.1016/j.cor.2016.12.003
https://doi.org/10.1080/01441647.2011.621557
https://doi.org/10.1080/01441647.2011.621557
https://doi.org/10.1287/trsc.1050.0133
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1016/j.trd.2015.10.014
https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1287/opre.42.5.977
https://doi.org/10.1016/0377-2217(91)90319-Q

Fagnant, D. J., and K. M. Kockelman. 2014. “The Travel and Environmental
Implications of Shared Autonomous Vehicles, Using agent-based Model
Scenarios.” Transportation Research Part C: Emerging Technologies 40:
1–13. doi:10.1016/j.trc.2013.12.001.

Furuhata, M., M. Dessouky, F. Ordóñez, M. E. Brunet, X. Wang, and S. Koenig.
2013. “Ridesharing: The state-of-the-art and Future Directions.”
Transportation Research Part B: Methodological 57: 28–46. doi:10.1016/j.trb.
2013.08.012.

Hosni, H., J. Naoum-Sawaya, and H. Artail. 2014. “The shared-taxi Problem:
Formulation and Solution Methods.” Transportation Research Part B:
Methodological 70: 303–318. doi:10.1016/j.trb.2014.09.011.

Ioachim, I., J. Desrosiers, Y. Dumas, M. M. Solomon, and D. Villeneuve. 1995.
“A Request Clustering Algorithm for door-to-door Handicapped
Transportation.” Transportation Science 29 (1): 63–78. doi:10.1287/trsc.29.1.63.

Irnich, S., and G. Desaulniers. 2005. “Shortest Path Problems with Resource
Constraints.” In Column Generation, edited by Desaulniers G, Desrosiers J,
and Solomon M, 33–65. Boston, MA, USA: Springer.

Jaw, J. J., A. R. Odoni, H. N. Psaraftis, and N. H. Wilson. 1986. “A Heuristic
Algorithm for the multi-vehicle Advance Request dial-A-ride Problem with
Time Windows.” Transportation Research Part B: Methodological 20 (3):
243–257. doi:10.1016/0191-2615(86)90020-2.

JOINS, 2019. “Tada Achieves 600,000 Members in Just Seven Months of
Operation. How Is It Different from Regular Taxis?” https://news.joins.
com/article/23480123 . Accessed: 2019-08-27 .

Kleiner, A., B. Nebel, and V. A. Ziparo, 2011. “A Mechanism for Dynamic Ride
Sharing Based on Parallel Auctions.” in: Twenty-Second International Joint
Conference on Artificial Intelligence, Barcelona, Spain.

Korean Transport Database, 2016. Passenger Traffic Status Survey. https://www.
ktdb.go.kr/www/contents.do?key=16 . Accessed: 2019-08-27 .

Li, Y., R. Chen, L. Chen, and J. Xu. 2015. “Towards social-aware Ridesharing
Group Query Services.” IEEE Transactions on Services Computing 10 (4):
646–659. doi:10.1109/TSC.2015.2508440.

Martinez, L. M., G. H. Correia, and J. M. Viegas. 2015. “An agent-based
Simulation Model to Assess the Impacts of Introducing a shared-taxi
System: An Application to Lisbon (Portugal).” Journal of Advanced
Transportation 49 (3): 475–495. doi:10.1002/atr.1283.

Masoud, N., and R. Jayakrishnan. 2017. “. A Decomposition Algorithm to
Solve the multi-hop peer-to-peer ride-matching Problem.”
Transportation Research Part B: Methodological 99: 1–29. doi:10.1016/j.
trb.2017.01.004.

Ma, S., Y. Zheng, and O. Wolfson. 2015. “Real-time city-scale Taxi Ridesharing.”
IEEE Transactions on Knowledge and Data Engineering 27 (7): 1782–1795.
doi:10.1109/TKDE.2014.2334313.

Ministry of Land, Infrastructure and Transport, 2017. “A Study on
Complementing and Improving Taxi Total Amount System.” 3rd edition.
https://www.prism.go.kr/homepage/origin/retrieveOriginDetail.do?cond_
organ_id=1613000research_id=1613000-201600139pageIndex=1.
leftMenuLevel=120. Accessed 27 august 2019.

Mobility, K., 2019. “Kakao mobility report 2018.” https://brunch.co.kr/@kakao
mobility/19. Accessed 27 august 2019.

Nanry, W. P., and J. W. Barnes. 2000. “Solving the Pickup and Delivery Problem
with Time Windows Using Reactive Tabu Search.” Transportation Research
Part B: Methodological 34 (2): 107–121. doi:10.1016/S0191-2615(99)00016-8.

Nourinejad, M., and M. J. Roorda. 2016. “Agent Based Model for Dynamic
Ridesharing.” Transportation Research Part C: Emerging Technologies 64:
117–132. doi:10.1016/j.trc.2015.07.016.

Peng, Z., W. Shan, P. Jia, B. Yu, Y. Jiang, and B. Yao. 2018. “Stable ride-sharing
Matching for the Commuters with Payment Design.” Transportation 45 (1):
1–21. doi:10.1007/s11116-016-9716-4.

Qian, X., W. Zhang, S. V. Ukkusuri, and C. Yang. 2017. “. Optimal Assignment
and Incentive Design in the Taxi Group Ride Problem.” Transportation
Research Part B: Methodological 103: 208–226. doi:10.1016/j.trb.2017.03.001.

Righini, G., and M. Salani. 2006. “Symmetry Helps: Bounded bi-directional
Dynamic Programming for the Elementary Shortest Path Problem with
Resource Constraints.” Discrete Optimization 3 (3): 255–273. doi:10.1016/j.
disopt.2006.05.007.

Santi, P., G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz, and C. Ratti, 2014.
Quantifying the Benefits of Vehicle Pooling with Shareability Networks.
Proceedings of the National Academy of Sciences 111, 13290–13294.
doi:10.1073/pnas.1403657111.

Santos, D. O., and E. C. Xavier. 2015. “Taxi and Ride Sharing: A Dynamic
dial-A-ride Problem with Money as an Incentive.” Expert Systems with
Applications 42 (19): 6728–6737. doi:10.1016/j.eswa.2015.04.060.

Savelsbergh, M., and M. Sol. 1998. “Drive: Dynamic Routing of Independent
Vehicles.” Operations Research 46 (4): 474–490. doi:10.1287/opre.46.4.474.

Sayarshad, H. R., and J. Y. Chow. 2015. “A Scalable non-myopic Dynamic
dial-A-ride and Pricing Problem.” Transportation Research Part B:
Methodological 81: 539–554. doi:10.1016/j.trb.2015.06.008.

Sivak, M., and B. Schoettle. 2012. “Eco-driving: Strategic, Tactical, and
Operational Decisions of the Driver that Influence Vehicle Fuel Economy.”
Transport Policy 22: 96–99. doi:10.1016/j.tranpol.2012.05.010.

Stiglic, M., N. Agatz, M. Savelsbergh, and M. Gradisar. 2016. “Making Dynamic
ride-sharing Work: The Impact of Driver and Rider Flexibility.”
Transportation Research Part E: Logistics and Transportation Review 91:
190–207. doi:10.1016/j.tre.2016.04.010.

Techcrunch, 2016. Uber Says that 20% of Its Rides Globally are Now on
Uberpool. https://techcrunch.com/2016/05/10/uber-says-that-20-of-its-rides
-globally-are-now-on-uber-pool . Accessed: 2019-08-27 .

Toth, P., and D. Vigo. 2014. Vehicle Routing: Problems, Methods, and
Applications. Philadelphia, PA, USA: SIAM.

Wang, X., N. Agatz, and A. Erera. 2018. “. Stable Matching for Dynamic
ride-sharing Systems.” Transportation Science 52 (4): 850–867. doi:10.1287/
trsc.2017.0768.

Wang, X., M. Dessouky, and F. Ordonez. 2016. “A Pickup and Delivery Problem
for Ridesharing considering Congestion.” Transportation Letters 8: 259–269.

Xiang, Z., C. Chu, and H. Chen. 2006. “A Fast Heuristic for Solving A large-scale
Static dial-A-ride Problem under Complex Constraints.” European Journal of
Operational Research 174 (2): 1117–1139. doi:10.1016/j.ejor.2004.09.060.

Yan, S., and C.-Y. Chen. 2011. “An Optimization Model and a Solution
Algorithm for the many-to-many Car Pooling Problem.” Annals of
Operations Research 191 (1): 37–71. doi:10.1007/s10479-011-0948-6.

TRANSPORTATION LETTERS 1125

https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1016/j.trb.2013.08.012
https://doi.org/10.1016/j.trb.2013.08.012
https://doi.org/10.1016/j.trb.2014.09.011
https://doi.org/10.1287/trsc.29.1.63
https://doi.org/10.1016/0191-2615(86)90020-2
https://news.joins.com/article/23480123
https://news.joins.com/article/23480123
https://www.ktdb.go.kr/www/contents.do?key=16
https://www.ktdb.go.kr/www/contents.do?key=16
https://doi.org/10.1109/TSC.2015.2508440
https://doi.org/10.1002/atr.1283
https://doi.org/10.1016/j.trb.2017.01.004
https://doi.org/10.1016/j.trb.2017.01.004
https://doi.org/10.1109/TKDE.2014.2334313
https://www.prism.go.kr/homepage/origin/retrieveOriginDetail.do?cond_organ_id=1613000research_id=1613000-201600139pageIndex=1.leftMenuLevel=120
https://www.prism.go.kr/homepage/origin/retrieveOriginDetail.do?cond_organ_id=1613000research_id=1613000-201600139pageIndex=1.leftMenuLevel=120
https://www.prism.go.kr/homepage/origin/retrieveOriginDetail.do?cond_organ_id=1613000research_id=1613000-201600139pageIndex=1.leftMenuLevel=120
https://brunch.co.kr/@kakaomobility/19
https://brunch.co.kr/@kakaomobility/19
https://doi.org/10.1016/S0191-2615(99)00016-8
https://doi.org/10.1016/j.trc.2015.07.016
https://doi.org/10.1007/s11116-016-9716-4
https://doi.org/10.1016/j.trb.2017.03.001
https://doi.org/10.1016/j.disopt.2006.05.007
https://doi.org/10.1016/j.disopt.2006.05.007
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1287/opre.46.4.474
https://doi.org/10.1016/j.trb.2015.06.008
https://doi.org/10.1016/j.tranpol.2012.05.010
https://doi.org/10.1016/j.tre.2016.04.010
https://techcrunch.com/2016/05/10/uber-says-that-20-of-its-rides-globally-are-now-on-uber-pool
https://techcrunch.com/2016/05/10/uber-says-that-20-of-its-rides-globally-are-now-on-uber-pool
https://doi.org/10.1287/trsc.2017.0768
https://doi.org/10.1287/trsc.2017.0768
https://doi.org/10.1016/j.ejor.2004.09.060
https://doi.org/10.1007/s10479-011-0948-6

	Abstract
	Introduction
	Literature review
	Dynamic column generation
	Introduction
	Framework
	Set-Partitioning reformulation
	Labeling algorithm

	Computational experiments
	Conclusions
	Notes
	Acknowledgement
	Disclosure statement
	Funding
	ORCID
	References

