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Scope and Purpose—We 'dress both existence and optimization problems related to stockouts in a multi-
item single facility settis hen initial inventories, setup times, production and demand rates are known.
For a given planning hc  n T, we ask: does there exist a schedule that avoids stockouts up to time T?
Given stockout penalties, we want to find a schedule that minimizes weighted stockout cost. We
characterize certain properties of the optimal schedules and develop a MIP formulation for both
problems. We have also developed a method to phase into a target cyclic schedule for infinite horizon
problems. These can be used as a practical scheduling tool for temporarily overloaded facilities or to
reschedule production after a disruption.

Abstract—This paper considers the Multiple Product Single Facility Stockout Avoidance Problem (SAP).
That is the problem of determining, given initial inventories, whether there is a multiple product single
facility production schedule that avoids stockouts over a given time horizon. The optimization version of
the SAP where stockouts are penalized linearly is also studied. We call this problem the Weighted Stockout
Problem (WSP). Both problems are NP-hard in the strong sense. Mixed Integer Linear Programming (MIP)
formulations for both the SAP and the WSP are developed. We show that there exist polynomial algorithms
for some special cases of the SAP and the WSP. We have also developed heuristics and computational
results.

1. INTRODUCTION

We consider the Multiple Product Single Facility Stockout Avoidance Problem (SAP), which was
proven NP-hard for the finite horizon by Anderson [1]. The SAP is the problem of finding a schedule
that avoids stockouts over a given finite horizon. We also consider an optimization version of the
SAP, in which demands which are not met are lost, and where stockouts are penalized linearly in
their duration. We call this the Weighted Stockout Problem (WSP). The WSP can be easily proven
to be NP-hard in the strong sense by reduction to the Weighted Tardiness Problem. (See Baker [2]
for the definition of the Weighted Tardiness Problem.)

Both the SAP and the WSP are closely related to the widely studied Economic Lot Scheduling
Problem (ELSP). The ELSP is the problem of scheduling the production of several items in a single
facility to minimize the long run average inventory carrying and setup costs. See Dobson {3],
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Gallego [4], Gallego and Moon [5, 6], Gallego and Roundy {7], Moon [8], and Zipkin [9] for the
recent studies on the ELSP.

Research on the ELSP has concentrated on finding cost effective cyclic schedules, i.e. schedules
that repeat periodically. An implicit assumption, universally imposed, is that the inventories
required to start a cyclic schedule can be acquired instantly and at no cost. This assumption is
almost never satisfied in practice. In fact, if inventories are low, the primary concern of management
is not cost effectiveness, but rather to avoid stockouts (as far as it is possible) until emergency relief
becomes available, say at time 7', through overtime, temporary use of an additional machine, or
external procurement. The problem of avoiding stockouts also emerges after a schedule disruption,
such as a machine breakdown, which leaves the inventory levels critically low.

This gives rise to the SAP. The WSP is an optimization version of the SAP, and occurs when a
single facility feeds different production lines and the stockout costs are proportional to the length
of the stockout period during which the lines are starved. The main reason for this is that with lost
sales customers may not return and the future demand may be lower. One way out is by stating that
we are not producing to satisfy final demand, but rather producing to feed production lines, and that
during the time we run out of stock we have to procure from other sources at a linear cost. When
stockouts are expensive and inventories are low, managers may want to minimize the cost of
stockouts up to a time, say, T, when inventories can be replenished, for instance during a weekend,
or when demand ceases to exist, e.g. at the end of a model year. The WSP is sometimes encountered
in metal stamping in the automobile industry.

For a long time horizon, we are also concerned with minimizing the holding and setup costs. We
show how the finite horizon WSP can be modified to produce an initial schedule that phases into an
efficient (in terms of holding and setup costs) cyclic schedule. In this way the modified finite horizon
WSP can be used as a scheduling tool for temporarily overloaded facilities until the normal load
condition is recovered. For example, if there is a sudden increase in demand or if a facility
temporarily takes the burden of another facility while the latter is being repaired.

We develop a Mixed Integer Linear Programming (MIP) formulation of the WSP. The output of
the MIP is a production schedule consisting of the sequence, say f, in which the products are to be
setup and produced in the machine, and of the length of the production runs, as well as any
scheduled idle times. A slightly different formulation works for the SAP after some necessary
conditions are verified. We show that some special cases of the SAP and the WSP can be solved in
polynomial time. For instance, given a production sequence, both problems can be solved by Linear
Programming (LP). When the production sequence is restricted to product permutations, a
production sequence where each product is produced at most once, the SAP can be solved in
polynomiial time. But the WSP remains NP-hard.

The rest of this paper is organized as follows. In Section 2, we prove some basic properties of
optimal schedules and formulate the WSP. We formulate the WSP when the sequence is restricted to
permutations and give a solution procedure for the SAP. In Section 3, we explore special cases where
the problems are polynomially solvable. Heuristics for the WSP are developed in Section 4. In
Section 5, we show how the WSP can be modified so that target inventory levels are achieved at a
given future point in time. We also present a method to phase into a cyclic schedule after a finite
horizon.

2. FORMULATION

The Weighted Stockout Problem (WSP) can be formally stated as follows. There is a single facility
on which m distinct products are to be produced. We assume that demands which are not met are
lost. The problem is that of finding a production sequence f = ( fi,/5,..., fy) (the sequence may
contain repetitions) and a vector of production times t = (¢1,15,...,fy), so that the weighted
stockout times over the planning horizon T are minimized. Here y;, =1 if f, =i, and zero
otherwise (y;;’s are defined below).

The data for the WSP and the SAP are:

the index for the products i=1,..., m
constant demand rates (units/day) d i=1....m
constant production rates (units/day) pi i=1,..., m
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known setup times (day) s i=1,....m
known initial inventories (units) J, i=1,....m
known stockout penalties ($/unit, day) =, i=1,...,m.
length of planning horizon (day) T

The demand rates can be normalized to one by dividing the original p;’s, J;’s and d;’s by d; for all i.
This generates an equivalent problem, but simplifies the mathematical derivations. So, we assume all
d; = 1 from this point on

Letr=(1/py,...,1/p) . d=(J,,...,J,) and e = (1,...,1). Define k = 1 —€'r. & is the long
run proportion of time available for setups. For infinite horizon problems « > 0 is a necessary but
not sufficient condition for the existence of a feasible schedule [3]. Over a finite horizon, however, we
do not require k > 0. Thus our procedures can be used when a facility is overloaded, for instance,
when two parallel facilities are used to produce a given set of items, and the entire burden falls on
one of them when the other suffers a breakdown.

We make three assumptions

JI<T i:1,...,m
T>5>0 i=1,...,m
pi>1 i=1,...,m

If a product’s initial inventory is enough to satisfy demand over the horizon, i.e. J; = T, then it
need not be produced to avoid stockouts. If 5; = 0 for all i and k > 0, both the WSP and the SAP are
trivial. If s; > T we can not avoid stockouts for item i. If p; < 1, then the facility cannot keep up with
the demand of product /, much less with the demands of other products, thus it is natural to assume
pi > 1forall i

Throughout, we have followed the ELSP paradigm of a facility capable of producing only one
item at a time. For this reason we have excluded from consideration the case where some of the
setup times are zero. In fact, if two or more setup times are zero, the facility can effectively produce
several items at a time by continuously switching production. Although this type of problem could
be studied, the resulting schedules are likely to have an undesirably high setup cost because setups
are likely to occur very frequently, in fact continuously, and because setup costs are ignored in the
short run. One could, of course, add an upper bound on the number of setups for each item to
prevent this from happening. We prefer, however, to keep things simple to facilitate the exposition.

2.1. Weighted Stockout Problem (WSP)

The following simple lemma, which we give without proof, states that we do not need to consider
idle times except possibly after the last production run. So we do not need to include idle times in the
formulation.

Lemma 1. There exists an optimal schedule that does not idle except possibly after the last
production run.

Constraints

Let N be an upper bound on the number of positions in the sequence f. Later we will show how to
compute N.

Let y;, be a binary decision variable to determine whether product / is produced in the kth
position of the sequence

yir € {0,1} k=1,...,N,i=1,...,m (1)
Let

I

wk:Zyik's kzl,,N (23)

i=1
To ensure that a production sequence is well defined and uniquely represented, we impose
wy =1, Wi < We_q, k=2,...,N. (2b)
Let #;; be the production run time of product i in the kth position of the sequence, then
tix 20, k=1,...,N,i=1,...,m. (3a)
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For convenience, define

tip =0, i=1,...,m. (3b)
Since no production can take place without a setup, we impose
tir — Ty <0, k=1,...,N. (3¢)

Also, the total time spent in setups and production runs must be at most equal to T

>

k=11

(siyik +ti) < T. (4)
1

Let S* be the starting time of the kth production run after the setup. Then
m
S =8> gy +siva),  k=1,...N (5a)

i=1

where for convenience, we let

s°=o0, sVti=T (5b)
Let x| be the stockout duration of the product i in the time interval [S¥71. $%; of course
x>0, k=1,... N+l i=1,...,m (6)
Let J/ be the inventory on hand of the product i at time S¥; by definition
JE20, k=0,...N+1,i=1,...,m. (7)

Clearly J? = J; for all i and J,-N 1 is the ending inventory of product i.
From the balance of inventory, stockouts, production, and demand (see Fig. 1), we have

T X gk it —(S*TY =85, k=0,...N,i=1,....m (8)

We now present some structural results for this MIP. The following lemma states that there exists
an optimal schedule in which every production run for an item, except perhaps the first, starts from
zero inventory.

inventory

Jik + pitik _
Sk Sk+1

Fig. 1. Relationship between inventory, stockout, production, and demand.
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Lemma 2. (Zero Switch Rule) There exists an optimal solution in which J& = 0 whenever y;; = 1
and 312 yy = 1.
Lemma 3. There exists an optimal solution with final inventories equal to zero, i.e.

JNT =0  i=1,...,m (9)
Corollary 1. Equation (4) is redundant.
Proof. Let i be the last item to be produced in the sequence. Since J; N>o,

n

JiN+SN Zzslylk+tlk = lin.

i=1k=1
Since xM 1 = (VT 4 SV — (N 4 SN) — ity 2 0,

IV L SN s N+ Sy 4 pitiy = SN + bty

m

N
Z(Slylk+tlk Zzsyll\+tll\)

k=1 i=lk=1

Ms

By Lemma 3 and SV *1 = T, the above inequality reduces to equation (4) O

Objective function
For the WSP, the objective is to minimize the weighted stockout times during the planning

horizon {0, 7' v
m
minimize E T, E Xl
i=1 k=

<

i
Ms
B
M=
o~
=
e}
*

N
+ 8 — (I 4+ 5y - Z Pitik
k=0

Il
=~
I
(=)

m
Zﬂ—l Zﬂ—pzztlk

i=1 i=1

The last equality follows from Lemma 3 and the telescoping sum. So, given N, the WSP becomes

(MIP-WSP)
maximize Z T, Pi Z tik (10)

i=1
subject to (1)—(3), (5)-(9).

Perhaps, a simpler way of understanding (10) is to note that because of the lost sales assumption,
the zero ending inventory property, and the unit demand rate transformation, the total stockout
time for an item is equal to the cycle length T, minus its initial inventory J;, minus its total
production p; ¥ 4 ik

We now obtain an upper bound on N.

Lemma 4. Assume without loss of generality that s; < s, < ... <s,,. An upper bound on the total
number of positions in the sequence for the WSP is N = max(N,, N,) where Ny = 2{T/(sy + 52)]
and N, =2|(T +52)/(s1 + 82)] — L.

Proof. Similar to the proof of Lemma 5.

2.2. WSP-permutation

We restrict to the class of schedules which allow at most one setup for each product. The problem
remains NP-hard. The MIP formulation is similar with the additional constraints

m
Zy,-ksl i=1,...,m. (11)
k=1

An upper bound on the total number of positions in the MIP under 11 is clearly m.
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2.3. Stockout Avoidance Problem (SAP)

A slight modification of the MIP formulation MIP_WSP for the WSP can be used to solve the
SAP. The idea is as follows. Use equal stockout penalties, say «; = 1 for all i. Solve the LP-
relaxation of MIP_WSP. If the objective value of the LP-relaxation is less than YT - J)), stop,
there is no feasible schedule, since the optimal value of the LP relaxation is an upper bound on the
optimal value of MIP_WSP. Else, solve MIP_WSP. If the optimal objective value is Y L (T — J,),
then we have a scb :dule that avoids stockout up to time 7. Else, there exists no feasible schedule. An
upper bound on N can be obtained using the following Lemma.

Lemma 5. Assume without loss of generality that s, < $2 € ... £5,. An upper bound on the total
number of positions in the sequence for the SAP is N = max(N;, N,) where
T+7r)— .
W, :2{{#; +r'J— (53 + +s,,,)}J m2,
(s1 +52)
N, =2[{/€T+r'J— (534 =+ S) +52}J w3
(51 +52)

Proof. From Lemma 3, we only need to seek a feasible schedule such that JNTY =0 for all i. Also
the production time required to avoid stockouts is independent of the number of setups needed to
avoid stockouts. Indeed, ¢; = (T — J,)/p; is the production time required to avoid stockouts for item
i. Consequently, the maximum time available for setups is

m m T _ J m 1 m J
T- 1= T-y — = T(l —Z—) > L= kT +r.
iz =1 Pi i=1Pi)  iSPi

We consider how many setups can fit into 7. Let a; and o, be the maximum number of
repetitions of s; and s, which follows a certain pattern. Each product must setup at least once. The
largest possible number of setups is given by a pattern in which the two products with the smallest
setups are alternatively produced, and all others are produced only once.

There are two possible cases.

(@) {s1,52,51,52,...,5),52,53,5,...,5,}. The order of the setups for the products 3,...,m is
arbitrary. Let «; be the maximum number of repetitions of s, in the above pattern. Then,
ar(s;+5)+s3+-+s5, <kT +rJand ay is an integer. Consequently,

a = WNT+r’J—(s3+---+sm)]J
b (s1+52) .

This pattern requires at most Ny = 2a; + m ~ 2 positions in the sequence.

(b) {sl,sz,sl,...,32,51,s3,s4,...,s,,,}. The order of the setups for the products 3,...,mis
arbitrary. Let o, be the maximum number of repetitions of s, in the above pattern. Then,
azs) +(ay — 1)sy + 53+ -+, < kT +r'J and o is an integer. Consequently,

o [[KTH’J—<s3+~-+s,,,>+sz1J
2= .

(s1 4 52)
This pattern requires at most N, = 2a, +m — 3 positions in the sequence.

From (a) and (b), an upper bound on the total number of positions in the MIP formulation is
N = max(Ny, N,). O

Remark. We can add the following constraint for the SAP since the maximum time available for
setups is explicitly calculated. The constraint can be used to eliminate all sets of frequencies for
which there is not enough time to avoid stockouts

N
Zsiyik <KT +r.
T k=1

m

il

Example 1. We use Anderson’s [1] example with 7 = 40. The data are shown in Table 1. From
Lemma 5, an upper bound on the total number of positions in the sequence is 8. Solving MIP_WSP,
we get an objective value of 68 which corresponds to 0 for the minimization problem. The schedule
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Table 1. Data for Anderson’s example

Product Demand Production Setup Initial
number rate rate time inventory
1 1.0 6.0 3.0 14.0
2 1.0 2.0 1.0 11.0
3 1.0 10.0 5.0 27.0

is given by f = (1,2,3,2) and t = (4.333,4.633,1.300,9.866). So, we have a schedule that avoids
stockouts up to T =40. For T =70, a feasible schedule is f=(1,2,3,1,2,3,1,2) and t=
(2.451,11.722,2.536,4.736,12.911,1.764,2.147,4.867).

3. SPECIAL CASES OF THE SAP AND THE WSP
3.1. Given a production sequence, both problems can be solved by LP

Given a production sequence, the problem is that of finding production run times. We can
formulate this as a LP by assigning specific values to the zero-one variables in the MIP_WSP. The
LP can be used to test if a particular sequence is feasible (SAP) or if its associated cost is within a
reasonable bound (WSP).

3.2. Solving the SAP when production sequences are restricted to permultations

From Lemma 3 in the preceding section, we only need to seek a feasible schedule such that the
inventory at time T is 0. Consequently, a necessary condition for the existence of a feasible schedule
is to produce each product t; = (T — J;)/p; time units. Also, the sum of production and setup times
must be at most 7. Thus, a necessary condition for feasibility is 7 > (e's — r'J)/x. If this condition
is satisfied, we show that the resulting problem is equivalent to the m/1/ T, scheduling problem
[2]. The m/1/ Tpay scheduling problem is a single machine scheduling problem whose objective is to
minimize the maximum tardiness of m jobs. This idea was used by Anderson [1] to develop a
heuristic for the SAP. A similar transformation is used to prove the NP-hardness of the WSP, by
reduction to the Weighted Tardiness Problem.

Proposition 1. Given J,s;, p;,t;,i = 1,...,m, there exists a feasible permutation schedule that
avoids stockouts if and only if the minimum value of the m/1/T,;,, problem is 0, where the due dates
are J; + t; and the job lengths are s, + ¢, i=1,...,m.

Proof. Assume, without loss of generality, that a feasible sequence is {1,2,...,m} and let S; be the
start time for run i. Then from the feasibility of this cyclic schedule, we have S; < J; forall i. Arrange
the jobs according to the sequence {1,...,m}. Obviously S; + t; < J; + ¢; for all i, implying that the
jobs are completed before their due dates. Now assume, without loss of generality, that the sequence
{1,...,m} has no tardy jobs. Let F; be the finishing time of job i. Then, from the fact that tardiness is
0, we have F; < J;+¢; for all i. Obviously F; —¢; < J; for all i which means that the initial
inventories do not run out before the start of their production runs. O

To check the existence of a feasible cyclic schedule we solve an m/1/T ., problem with the
appropriate transformation. This is done by sorting the products according to the Earliest Due Date
(EDD) rule (see Baker [2]). It takes linear time to transform the data. Also, sorting using the EDD
rule takes O(mlogm), and checking the minimum value of maximum tardiness takes linear time.
Consequently, the overall complexity is O(mlogm). The overall algorithm is:

Algorithm SAP-Permutation
Step 1. If T = (€'s — ¥'J)/k, go to Step 2. Else stop, there is no feasible schedule.
Step 2. Transform into m/1/Ty,, scheduling problem via

Di(duedate) = J; + t;, L;/{ job length) = s; + t;, i=1,...,m.
Solve m/1/ Ty, problem by the EDD rule.

If optimum objective value of m/1/T . = 0,

there exists a feasible schedule.

Else, there is no feasible permutation schedule.
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In practice, one should first run this algorithm. If it stops at Step 1, there is no feasible schedule.
At this point, one may select stockout penalties and use a heuristic for the WSP. If in Step 2, the
maximum tardiness is positive, then only a non-permutation sequence may be feasible.

Example 2. The data are as in Example 1 with 7 = 40. We restrict to permutation sequences. Step 1
is satisfied since (¢'s — r'J)/x < T. The transformation to m/1/T,,, yields D = (18.3,25.5,28.3)
and L = (7.3,15.5,6.3). Using the EDD rule, the optimum value is 0.863, so at least one job is tardy.
Consequently, there exists no feasible permutation schedule. O

4. HEURISTICS FOR THE WSP

Since the WSP is NP-hard, the MIP cannot be used when the number of products is large. We
present two heuristics for the WSP that generate permutation schedules and then extend the ideas to
a general heuristic for the WSP. Note that the LP formulation in Section 3 could also be used to
obtain optimal production runs for the resulting sequence.

4.1. Heuristics for the WSP under permutation schedules
Since each product is setup at most once, the key role of the heuristic is the choice of the
production sequence. We give two heuristics which are similar except in the choice of the product to

be produced next. After we obtain a sequence, we perform adjacent pairwise interchanges to squeeze
out better schedules.

Heuristic 1 (Savings Heuristic)

This heuristic chooses the next product by selecting the one with largest value of (savings for the
product — total loss for other products)/(invested time). By savings we mean the weighted stockout
if the product is not setup immediately. The total loss for the other products is the sum of their
weighted stockouts. The invested time is the setup plus the production time for the selected product.
The complexity of this heuristic is O(mz) before the adjacent pairwise interchanges and O(m’) after
the adjacent pairwise interchanges.

Step 0. (Initialization.)
Ji=J, T'=T, C={1,...,m}, Vi

Step 1. (Compute the production time for each product.)
4 ={T" — max(J/,s,)}/p;, Vi. If, <0, C—C\ {i}.

Step 2. (Choose the product to be produced.)
i* = argmax;e c{(m; p; 1; - Yjecizim max[0,s;+ 1, +s5;— J)) /(s + 1) }.
Produce product i* for ..

Step 3. (Update the inventories, the time horizon, and the set of unscheduled products.)
J = Max(J) =50 — 1;,0), j#i Jte— Max(Jl - s5;.,0) + (pi- — Dt;-.
T — T —(s; +1;-). C—C\{i"}.

Step 4. (Stopping criteria.)
IfT"<0 or C=¢, then go to Step 5. Else go to Step 1.

Step 5. (Adjacent pairwise interchanges.)
Perform adjacent pairwise interchanges and find a better solution.

Heuristic 2 (Greedy Heuristic)

This heuristic is the same as Heuristic 1 except for Step 2. This heuristic chooses the product
which has the largest value of (savings/invested time). The meanings of savings and invested time are
as those in Heuristic 1.

For the WSP, the objective is to minimize the weighted stockout times during the planning
horizon [0, T]. The problem is equivalent to maximizing STy i p S8 tix. This heuristic can be
called greedy, since our objective is to maximize > impit; in the MIP formulation without
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Table 2. Distributions for data and computational results for test problems

Problem data Dense Scattered
Setup time [1,2] [0,3]
Production rate (4,5] 13.6]
Initial inventory [1,3] [0.4]
Stockout penalty [10,20] {10, 50]
Computational Heuristic 1 Heuristic 2
results before a.p.i.  after a.p.i. before a.p.i. after a.p.i.
Mean ratio 1.006 1.001 1.008 1.001
Maximum ratio 1.059 1.057 1.085 1.031
Number of problems 53 72 48 75

with ratio = 1
among 80 problems

considering the effects of the constraints. The complexity of this heuristic is O(m) before the
adjacent pairwise interchanges and 0(m3) after the adjacent pairwise interchanges.

Step 2. (Choose the product to be produced.)
i* = argmax;c o{m; p; t;/(s; + 1;) }. Produce product i* for ¢;..

We used the above two heuristics on 16 sets of problems (5 problems in each set). As in a factorial
design, different distributions of s;, p;,J;, and m; were used. The number of products in the test
problems was 4. The length of the planning horizon was generated from uniform distribution on
(10, 30]. The data sets were generated randomly from uniform distributions on the given intervals.
Table 2 shows distributions for the data sets.

The different factor distributions were mixed in all possible combinations to yield 16 problem
types. An example of one problem type is: 4 products, each with dense setup time distribution,
production rate distribution, and initial inventory distribution, and with scattered stockout penalty
distribution.

Table 2 also shows the results for these runs. Several tables would be required to display the 16
different distributions that were used in the study. For the sake of brevity the detailed results are
omitted here. The ratio in the table is (total weighted stockout costs using heuristic/minimum
weighted stockout costs using MIP). In order to see the performance of the heuristics without
adjacent pairwise interchange (a.p.i.), we also show the results before we apply the a.p.i. The last
row in the table tells the number of problems (among 80 test problems) in which the heuristic
solution is optimal.

The results are fairly good even before we apply the a.p.i. Even though the a.p.i. does not improve
performances significantly in the 4 product case, its impact is expected to be greater when the
number of products is large. Moreover, the LP can be run on the resulting sequence to obtain the
minimum weighted stockout.

4.2. Heuristics for the WSP '

The problem is more involved than the WSP-permutation because of the need to compute
production frequencies. We vary the frequencies within a range and compute the cost of a schedule
based on each set of frequencies. We then use the LP formulation developed in Section 3 on the
production sequence of the least cost schedule to obtain optimal run times for that sequence.

Heuristic 3

This heuristic is a generalization of Heuristic 1 for the WSP. The complexity from Step 1 to Step 5
is O(m*). An upper bound on the repetition of / is § = [T(1 — ) — r'J]/e's. Consequently, the total
complexity is determined by maximum of O(6m*) and the complexity of LP.

Step 0. (Initialization)
J'=J, T'=T, C={l,....m}, ¢
Do /= [(kT +r'J)/e's| + 1 to |[T/e's]

(T —max(Jy;,s))/pi, Vi
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Table 3. Distributions for data and computational results for
test problems

Dense Scattered

Problem data

Setup time 12.4] [1,5]
Production rate 4. 5] [3.6]
Initial inventory [1.3] [0.4)
Computational results

Mean ratio 1.117 1.105
Minimum ratio 1.001 1.025
Maximum ratio 1.284 1.175

Step 1. (Compute the production time for each product.)
til = Mln{[T, _maX(‘Ii/vsi)}/piati/l}a vi.
Step 2. (Choose the product to be produced.)

" =argmax;c {(mipit] = Y jecpim max(0,s; + 1 + sp=JD/(si + 1)}
Produce product i* for 1/

Step 3. (Compress.)
Combine consecutive setups if they exist.

Step 4. (Update the inventories, compute the cumulative stockout cost, the time horizon, and the
set of unscheduled products.)

J,-,<—MaX(J/,~S,w _[,'/-70)7 j#l Jf{HMaX(J,-i—S,-*,O)-i—(pi« - l)til*.
Compute cumulative stockout costs.
T'—T — (s +1/). If max(J/,s;) = T', then C — C\ {i}.

Step 5. (Stopping criteria.)
IfT">0 and C # ¢, then go to Step 1.

end

Step 6. (Optimization for the given sequence.)
Choose the sequence with smallest cost. Solve LP using the sequence to squeeze out a best
solution for the sequence.

We used the above heuristic on 2 sets of problems (10 problems in each set). The number of
products in the test problems was 3. The length of the planning horizon and the stockout penalty
were generated from uniform distributions on [10, 30] and [10, 20], respectively. The reason that we
do not use a spread distribution for stockout penalty such as [10,50] is to avoid trivial situations
which result in permutation schedules. The data sets were generated randomly from uniform
distributions on the given intervals. Table 3 shows the distributions for the data sets.

Table 3 also shows the results for these runs. The ratio in the table is (total weighted stockout
costs using heuristic/minimum weighted stockout costs using MIP). The mean and minimum ratios
are similar for both the dense and the scattered cases. The maximum ratio is larger for the dense case
suggesting that those problems are harder.

5. PHASING INTO A CYCLIC SCHEDULE
5.1. WSP when the target inventories are given
Suppose that we want to phase into a target cyclic schedule by time 7". The cyclic schedule can be
either an optimal rotation (Common Cycle) schedule or any heuristic schedule, for instance a
schedule obtained by a time-varying lot size heuristic [3]. In either case, we can compute the target

inventories, say I;’s, for the cyclic schedule. Then MIP formulation for this problem is nearly
identical to MIP_WSP, except that equation (9) is modified to read

JNT =1 i=1,....m.
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5.2. Phasing into a rotation schedule with minimum aggregate inventory

When the facility suffers a disruption that results in inventory levels that are lower than desirable,
our main concern over the short run is to avoid stockouts. Over a longer time horizon, we are also
concerned about the holding and setup costs. In this section we address the problem of scheduling
the facility to minimize stockout penalties over a transition period, say [0, T], and thereafter follow
an optimal (with respect to holding and setup costs) rotation schedule. There are m! different
average cost optimal rotation schedules, one for every order in which the products are setup for
production in the facility. During the transition period, we need to bring the product’s inventory
levels up to levels from which one of these m! optimal rotation schedules can be followed. Phasing
into different rotation schedules will impose different production requirements over the transition
period. If stockouts are to be avoided, and we are to effect a transition from the initial inventories
Ji’s, to the target inventories, say [;’s, of a rotation schedule, then the facility must produce the set
of products for Zj”_l ri(T — J; + I;) units of time during the transition period. Since r;’s, J,’'sand T
are data, minimizing the required production times is equivalent to minimizing >/~ r;I;. This
is accomplished by sorting the items in ascending order of the production rates multiplied by the
setup times; see Proposition 2 below. We call this the Slowest Processing Rate (SPR) rule since
it schedules the slowest production first when everything else is equal. One may argue that this
choice may not be adequate if by chance the J;’s are already in the inventory path traced by an
optimal rotation schedule. However, this is unlikely if the J;’s are the inventories that result from a
disruption that throws the inventories off from such a cyclic schedule. Moreover, even if this were
not the case, checking whether the J;’s lie in the path of an optimal rotation schedule can be very
difficult. In any case, what we propose here is a sensible selection of one of the m! rotation schedules.
This selection is based on minimizing the burden on the facility over the transition period.
Furthermore, such selection need only be done once, since sorting of the items is independent of
T and of J.

Proposition 2. (SPR Rule) Aggregate inventory is minimized by the SPR sequence
S PN S SIPRS e S S Pl

Proof. We use a pairwise interchange argument. Without loss of generality, let § = {1,2,...,m} be
a sequence. Suppose S is not following the SPR rule. That is, somewhere in S there exists a pair of
adjacent products i and j, with j following i, such that s;) p;) > s:;) p|;;- Now construct a new
sequence, S', in which jobs i and j are 1nterchanged in sequence and all other jobs are the same as in
S. We adopt the notations 4(S) and A(S’) to represent the aggregate inventory under schedule S
and S, respectively. We then show that A(S’) is smaller than A(S)

i}’l\lk Zrkh +Z”\Ik + ¥ <Z Sk + TZr,\)

k<i k>j k<i k<i

+r (Zxk + TZ;’A).

k<j k<j

= Zr,l, = Zr,l,+2)‘,1, +;‘/<Zs, + TZr,)

=1 1<y 1> 1<y 1< j
—H’,-(Zs,%— TZI‘/).
I<i 1<i
Therefore
A(S) — A(Sl) = r/'S,‘ + Tl‘/-r,- — V,'S/' — Tr,«r/ = r/S,' — "I‘S/' > 0

In other words, the interchange of products i and j reduces the value of 4. Therefore any sequence
that is not the SPR sequence can be improved with respect to 4 by such an interchange of an
adjacent pair of products. It follows that the SPR sequence itself must be optimal. ]
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After we sequence the items, the target inventories /s are easily computed. Then we can apply a
modified Mixed Integer Program to solve the WSP for the finite horizon and we can follow a
rotation schedule thereafter. We summarize the procedure as follows:

Algorithm Phase

Step 1. Sort the items by the SPR rule.

Step 2. Find an optimal rotation schedule based on the sequence of step 1.

Step 3. Compute the initial inventories of the rotation schedule found in Step 2.
Step 4. Solve the WSP using the modified Mixed Integer Program.

Example 3. We want to find a schedule which minimizes stockout penalties (if any) during 30 days.
After that we will follow a rotation schedule. The data are as follows: m = 3, p=(6,2,10),
s=(3,1,5), J=1(8,20,17), m=(1,1,1), a (= setup cost) = (20, 10,100), h (= holding cost) =
(0.1,0.2,0.3).

Using the SPR rule, we obtain a rotation schedule with sequence (2, 1,3). The target inventories
are easily computed using the common cycle length and rotation schedule: I = (23.285,1,29.713).
Solving the modified MIP, we obtain a schedule that avoids stockout during 30 days starting from
given initial inventories J and recovers to the target inventory levels I. The sequence and production
times are: f = (1,3,2,1), t = (2.7543,4.2713, 5.5000,4.7932). O

6. CONCLUDING REMARKS

This paper presented a MIP formulation for the WSP and applied the formulation to the SAP.
We showed that some special cases of the WSP and the SAP can be solved in polynomial time. We
also demonstrated how the WSP can be coupled with a cyclic schedule after a finite horizon. These
models can be used as a practical scheduling tool for temporarily overloaded facilities until a normal
load condition is recovered or to phase into a target cyclic schedule after a disruption.

In some flexible manufacturing systems, group technology principles divide items naturally into
families (groups) so that substantial setups occur only when switching production between families.
That is, if production is switched from one item to another in the same family, only a minor intra-
family setup is required. If, however, production is switched to an item outside the family, then a
major inter-family setup is required. We can extend the results in this paper to the multi-family case.
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