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Facility Location-Allocation Problem for Emergency
Medical Service With Unmanned Aerial Vehicle

Youngsoo Park, Sangyoon Lee, Inkyung Sung , Peter Nielsen , and Ilkyeong Moon

Abstract— This paper models an operation problem of an
unmanned aerial vehicle for the emergency medical service
(UEMS) system. The model is set up as a location-allocation
problem. The coverage distance and capacity of the UEMS
facility are modeled as functions of UAVs assigned. The allo-
cation of the demand point is constrained by the variable
coverage distance of each facility. The robust optimization
approach is used over the cardinality-constrained uncertain
demand, which leads to a nonlinear optimization problem.
The UEMS location-allocation problem (ULAP) is reformulated
to a solvable problem. An extended formulation and corre-
sponding branch-and-price (B&P) algorithm are also proposed,
which strengthen the linear programming relaxation bound.
The subproblem of the B&P algorithm is defined as a robust
disjunctively constrained integer knapsack problem. Two solution
approaches of mixed-integer linear programming reformulation
and decomposed dynamic programming are designed for the
subproblem. To provide time-efficient solutions for large-scale
problems, a restricted master heuristic (RMH) is proposed based
on the extended formulation. In computational experiments, the
B&P algorithm provided a strong lower bound, and the RMH
could find an effective feasible solution within an applicable
computation time.

Index Terms— Branch-and-price, emergency medical service,
location-allocation, robust optimization, unmanned aerial vehicle.

I. INTRODUCTION

THE medical system plays an essential role in modern
society by protecting human life and health. Among the

various components that constitute the medical system, the
emergency medical service (EMS) system is important in
connecting communities directly to the health care system.
The development of and investment in the EMS system have
focused on increasing the number of resources and imple-
menting advanced equipment. However, due to the resource
limitation, modern society’s health care system tries to spread
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primary medical devices widely in public areas. One example
of this is the automated external defibrillator (AED) placed
in public areas. AEDs regulate the heartbeats of individuals
experiencing sudden cardiac arrest and play a central role in
the “chains of survival.” Because rapid intervention with AEDs
can secure the survival rate of patients [1], AEDs can be used
to extend the “golden hour” of ambulance arrival.

In the company with the development of UAV technology,
several attempts have been made to utilize UAVs in public
security and health care services [2], [3], [4]. In the same
manner of the commercial UAV-operated logistics [5], [6], [7],
UAVs can be operated as multipurpose emergency medical
resources providing rapid and flexible responses. Even though
there is an increasing number of public-access AEDs in public
facilities and large buildings, less than 70% and only 30% of
non-residential and residential areas have an AED installed,
respectively [8]. The situation worsens in suburban and rural
areas, where the population is scattered over distances. Based
on the limited resources, there have been attempts to cover the
maximum demand by the mobile operation of AEDs [4], [8],
[9]. The UAV EMS (UEMS) is also known as an “ambulance
drone.”

UAVs are expected to transport other medical supplies that
require real-time delivery, including blood derivatives [10],
[11], vaccines [12], and medications [13]. Additionally, there
is an increasing amount of research that addresses the effort
to transport various medical resources while focusing on the
contactless characteristic of UAVs after the worst of the
COVID-19 outbreak [13].

The literature on the EMS system comprises two problem
environments: mass casualty and non-disaster situations. The
research on mass casualty situations focuses on modeling and
resolving the heavy load on the system from the instanta-
neous demand and the breakdown of infrastructure. Chen and
Yu [14], Liu et al. [15], and Wang et al. [16] introduced
temporary EMS facilities and considered EMS resource allo-
cation. Chou et al. [17], Liu et al. [15], and Zhou et al. [18]
considered evacuations and transportation of casualties under
mass disaster situations. The breakdown of the transporta-
tion infrastructure was introduced in Chou et al. [17] and
Liu et al. [15]. Recently, Kundu et al. [19] provided a detailed
literature review of emergency logistics, which includes EMS.

The research on non-disaster situations aims to model
the probabilistic demand of the public health care service
and to solve the specific logistics problems, including loca-
tion, relocation, and routing in a quotidian environment.
Iannoni and Morabito [20], Ansari et al. [21], and
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Yoon and Albert [22], [23] focused on an EMS dispatching
policy-related approach based on a queuing theory. Another
general approach is a location-related model. Recently,
Zhang et al. [24], Park et al. [25], and Lee et al. [26] tried to
tackle the EMS operation problem in a non-disaster situation
through the application of a facility location problem.

Research has been related to the EMS location of the facil-
ity location models. Daskin [27] subdivided facility location
models into four categories—analytic, continuous, network,
and discrete models—based on the problem’s space. While
the continuous facility location model locates the facility in
the continuous domain and can attain a true optimum, the
establishment of a facility takes place on top of the current
state of the region and the available sites. Furthermore, the
structure of the continuous facility location problem does not
include the coverage constraint in most cases, especially when
there are more than two facilities to locate. One can refer
to [28] and [29] for further information on the continuous
facility location models. Thus, as emphasized in [27], the
discrete models are dominant for health care facility locations
because they focus on the discrete decisions of opening,
operation, and assignments of demand points for the facilities.

There are two approaches to the discrete facility location
models for the health care facility planning. The first approach
is the covering-based approach. Under the given candidate
locations of facilities and demand points, the feasibility of
a coverage between a facility and a demand point can be
considered as binary. In the covering problem, the actual
distance is binarized, and the demand point is considered to
be “covered” if it is in the critical coverage distance from a
facility. Thus, the distance between the facility and the demand
point is considered as a constraint of the problem.

The second approach is the median-based approach. In the
median-based approach, the distance between the facility and
the demand point is considered as a cost in the objective
function, instead of a constraint. In other words, there is no
limitation on the coverage distance of a facility. Any demand
point can be assigned to a facility as a decision [30], [31].
One of the famous models of this concept is the location-
allocation problem, which decides the facility’s opening and
the assignment of each demand point to that facility. The
distance-weighted cost is accumulated to the objective func-
tion, in the company with the facility’s opening cost. Despite
of the pioneering literature considering maximum distance
constraints in median-based approach as [32] and [33], the
objective of the median-based approach usually focuses on the
total operation cost related to the summation of the distances
between every demand point and the allocated facility. The
main difference between the two approaches is based on the
way the distance between a facility and a demand point is
considered. In the covering-based approach, the distance is
binarized with the coverage distance limitation of a facility.
Conversely, in the median-based approach, the demand point
is allocated without any restriction, as long as the cost is valued
as high enough.

However, when operating multiple UAVs in the UEMS sys-
tem, the existing approaches cannot apply the characteristics
of UAVs. One of the major characteristics is the physical

limitation of a UAV’s flight distance. Due to its payload
limitation, UAVs can only cover a bounded area around the
facility [4], [5], [34], [35], [36], [37]. Another characteristic
is that multiple UAVs are operated in one facility within the
UEMS, while only one or two ambulances are operated in
one facility in the ordinary EMS system. When considering
the bounded coverage distance in the existing literature, the
problem is modeled with a covering-based approach. In that
case, resource capacity and availability are hardly considered,
so it is hard to model the effect of the number of UAVs
assigned to one facility. If a location-allocation model is
employed, the resource availability affected by the distribution
of the demand points is considered in the cost parameter,
instead of a constraint.

To locate the UEMS facility and assign multiple UAVs
efficiently to facilities, the coverage distance limitation has to
be considered in detail, so that the number of UAVs determines
the resource availability. From the classical approaches of
maximum expected covering location model [38] and max-
imum availability location problem [39], the busy-fraction
of one unit of the resource was used to calculate the total
resource availability by measuring the chance that at least one
resource is available. With the predefined coverage area and
the busy-fraction of each resource, one could calculate the
expected amount of the covered demand and, on the contrary,
the number of the resource required to fulfill the α-reliability.

We approached the busy-fraction concept from a different
angle. When the number of resources increases, the coverage
area can also be increased without the loss of reliability,
regardless of the increased busy-fraction. In the literature on
operating UAV systems, Shakhatreh et al. [40] showed that
if the UAV requires a setup such as a recharge between
flights, the coverage distance of the system increases along
with the number of UAVs. In this research, the coverage
area is modeled as the decision with the variable coverage
distance. Based on the binary coverage model and covering-
based approach, the variable coverage distance of a facility
can be defined as the function of the resource investment [41].
The number of UAVs assigned to a UEMS facility defines the
coverage distance as well as the capacity of the facility, which
is introduced for the first time in this research.

The location and operation problem of the UEMS sys-
tem is defined and named as a UEMS location-allocation
problem (ULAP). The ULAP includes the characteristics of
both covering-based and median-based approaches. The vari-
able coverage distance constraint is modeled as a quadratic
function based on the proximity of resource availability and
the size of the covered area, and then reformulated into the
equivalent linear formulation. Also, the allocation decision
of the uncertain demand is considered with the capacity
of the UEMS facility, as in the median-based approaches.
A cost-minimization problem, while fulfilling every demand
of the UEMS system, is modeled with a robust optimization
approach. In the robust optimization approach, the demand is
modeled with the cardinality-constrained uncertainty set, and
the nonlinear capacity constraints are linearly reformulated.
The reformulation model contains integer and continuous
decision variables and has highly fractional solutions in the
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linear programming (LP) relaxation. Because of the weak LP
bound, the commercial optimization solvers have difficulty
solving realistically-scaled problems. If the original problem
is decomposed into individual facilities, each decomposed
problem is related to the robust and integer knapsack problems.
To utilize the knowledge of the knapsack problem, an extended
formulation (EF) based on the Dantzig-Wolfe decomposition is
proposed and solved by the branch-and-price (B&P) algorithm.
With the B&P algorithm, the subproblem was solved by
two approaches–mixed-integer linear programming (MILP)
reformulation and decomposed dynamic programming (DP)
approaches–each of which has its own advantages. Further-
more, a restricted master heuristic based on the B&P algorithm
is proposed to provide a time-efficient feasible solution to
large-sized problems.

The rest of this paper is structured as follows: Section II
briefly introduces literature related to the health care facility
location problem. Section III proposes the problem definition,
mathematical formulation, and linear reformulation of the
mathematical model. Section IV presents detailed information
on the B&P algorithm of the ULAP. The extended formulation,
branching strategies, structure of the subproblem, and the
solution approaches of the subproblem are introduced. In addi-
tion, the restricted master heuristic for the primal solution is
presented. The proposed algorithms are compared with the
computational experiments in Section V. Finally, Section VI
concludes the paper.

II. RELATED LITERATURE

Previous literature related to the ULAP is introduced in this
section. As mentioned above, there are covering-based and
median-based approaches in the health care facility location
problem. In the covering-based approach, to overcome the
limitation of the digitized all-or-nothing coverage distance,
a concept of double coverage [42] was proposed, which forced
the system to cover every demand point within a large radius
and, at the same time, to cover a certain proportion of the
demand point within a small radius.

One limitation of the covering-based approach is the disre-
gard of the quantity of the demand and the facility’s capac-
ity, which requires the allocation decision of the demand
points to the facilities as in the location-allocation approach.
In the recent works of the location-allocation approach, the
demand uncertainties are investigated thoroughly with the
stochastic and robust models considering the probabilities
of the demand satisfaction [43]. The intractabilities of the
stochastic and robust models were tackled by limiting the set
of feasible facilities for each demand point or fixing policies
for allocations [44]. We refer readers to the recent research
of Bertsimas and Ng [45], who reviewed the probabilistic
models of ambulance deployment and modeled ambulance
deployment with recourse actions. In the location-allocation
approach, the distance between the facility and the demand
point is considered in the objective function or only filters
the impossible pairs of the facility-demand point, as in [4].
Although the existing location-allocation approaches consider
probabilistic constraints of the demand satisfaction, resource

TABLE I

COMPARISON OF THIS RESEARCH AND EXISTING LITERATURE

availability is not yet related to the decision of the size of the
covered area as constraints.

Two directions consider allocation decisions in the com-
pany with the covering-based approach. In the gradual cover
model [45], [46], [47], [48], the demand of each demand point
is “partially” satisfied by a function that decays according to
the distance from a facility and modeled in the objective func-
tion. Even though the allocation is considered as decisions in
the gradual cover model, the coverage distance of a facility is
not modeled as constraints and cannot be treated as decisions.
Another direction is the variable cover model [41], [49]. The
coverage distance of a facility is treated as a decision variable,
and the cost of a facility is decided by a monotonically
increasing function of a coverage distance. However, the
variable cover model is still bounded in the covering-based
approach because the facility’s capacity and the size of the
demands are not considered. Thus, the demand uncertainties
are hardly considered, and it is relatively simple to provide
efficient feasible solutions with heuristics and metaheuristics.

To the best of the authors’ knowledge, there is one existing
study related to the capacity and the coverage distance [50].
However, Akl et al. [50] determined the capacity of a wireless
network and used this to allocate clients to facilities, so the
coverage distance and the capacity were assumed to be related
inversely. Thus, the solution approaches proposed in [50]
cannot be used in the ULAP. For literature focusing on health
care facility location problems, we refer readers to the related
review papers [51], [52], [53]. Table I compares this research
to the existing literature.

III. LOCATION-ALLOCATION MODEL

FOR UEMS FACILITY

A. Problem Definition

The ultimate goal of the UEMS system is to respond
to medical emergencies while incurring minimum casualties.
Thus, the ULAP tackles the demand uncertainty with a robust
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approach. The demand uncertainty is modeled on the well-
known cardinality-constrained uncertainty set [55]. To respond
to perturbations in the environment, one can optimize the
decision under the assumption of the maximum perturbation
of every demand point with uncertainty, as proposed in [56].
Doing so can linearize the problem but has risks of making
over-conservative decisions because it obligates the solution
to cover every possible perturbation [57]. Thus, in the robust
optimization approach, it is necessary to define the uncertainty
set in a scientific manner and to optimize the decision inside of
the uncertainty set. The approach is connected to the attempts
to model the level of “protection.” The cardinality-constrained
uncertainty set used in this research was first proposed in [55]
and tried to control the conservatism by restricting the total
number of the demand points that might have had the maxi-
mum perturbation, instead of covering every possible realiza-
tion. The research showed that one could measure the trade-off
between the probability of the constraint violation and the
objective value by the protection over the demand points to
be realized in their maximum value. Furthermore, even when
the demand realizes out of the distribution, it is well known
that the solution can protect the system with a low chance of
constraint violation. These observations, in some way, justify
the assumption of the demand that its nominal value and the
symmetric distribution are fixed and known.

In the ULAP, the number of UAVs assigned to a facility
defines the capability of the facility in two ways: (1) the
total capacity and (2) the coverage distance, and restricts
the allocation of the demands as in Akl et al. [50]. Like
ordinary capacitated facility location problems, the capacity
limits the accumulated demands. Simultaneously, the capacity
of a facility has to consider the individual demand point
because the capacity limits the maximum distance between
the facility and the allocated demand points.

While modeling the resource availability based on the
variable coverage distance, we followed the concept of the
variable coverage distance proposed by Berman et al. [49]
and Akl et al. [50]. In this research, the variable cover-
age distance is modeled as a maximum coverage distance
assuring a certain level of resource availability. Given the
assumption that the demand is evenly distributed over the
plane, the amount of covered demand increases along with
the expansion of the covered area. To maintain the same
resource availability, the required capacity of the facility
must increase quadratically when increasing the coverage
distance. These are comprised in the mathematical models in
Section III-B.

The assumptions of the presented problem are defined as
follows:

1) The locations of the demand point and candidate facility
are already known.

2) The facility’s opening cost and the purchase and opera-
tion cost per UAV of the UEMS facility are known.

3) The coverage distance of a facility is defined based on
the number of the UAVs assigned to the facility.

4) The capacity of a facility is defined based on the number
of UAVs assigned to the facility.

5) Every demand has to be satisfied.

Fig. 1. Overview of the ULAP.

6) Each demand point has to be allocated to a certain
facility. In other words, a partial allocation of a demand
to multiple facilities is prohibited.

7) There is an upper limit to the number of UAVs assigned
to a facility.

8) A demand is known with a nominal value and a value of
the maximum perturbation. The uncertain demand obeys
symmetric distribution, where the support is given as an
interval.

Figure 1 presents an overview of the ULAP. The objective
of the ULAP is to minimize the total cost to fulfill every
demand while also considering uncertainties. The capacity
of a UEMS facility is decided by the assignment of the
UAVs, which requires the opening of the facility. The demand
uncertainty is protected in the capacity constraint with a
limited conservatism. That is, the ULAP considers the capacity
constraint while limiting the number of the demand points with
maximum perturbations. The uncertainty of the cardinality of
the demand points is considered for each UEMS facility. Thus,
the authority can control the conservatism of the individual
facility.

B. Mathematical Formulation

The following notations are used to formulate a mathemat-
ical model of the ULAP.

Sets

I set of candidate UEMS facilities (FC).
J set of demand points (DP).

Parameters

fi fixed cost of opening UEMS FC i .
pi assignment cost per unit UAV at UEMS FC i .
ni max. number of UAVs operated at UEMS FC i .
r0i min. insured coverage distance of UEMS FC i .
μi variable coverage distance ratio per UAV of UEMS

FC i .
si j distance between UEMS FC i and DP j .
d̃ j uncertain demand of DP j .
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Decision variables

yi =
�

1, if UEMS FC i is opened.

0, otherwise.

xi j =
�

1, if DP j is allocated to UEMS FC i .

0, otherwise.
ui ∈ Z+, number of UAVs assigned at UEMS FC i .

The information of the candidate UEMS facilities is given as
parameters. It includes the amortized cost related to the facility
and the UAV. Also, the upper limit of the UAVs to be assigned
to each facility is known. In our model, the assignment of
UAVs provides a minimum insured coverage distance around
a facility, and the implementation of multiple UAVs increases
the coverage distance with a given variable coverage distance
ratio. The ULAP models the demand uncertainty based on
the cardinality constrained uncertainty set. The demand, d̃ j ,
of a demand point, j , is modeled to take value in the interval
[d0

j − d̂ j , d0
j + d̂ j ] with symmetric distributions, where d0

j is

a nominal value and d̂ j is a maximum perturbation. �i ∈
[0, ni ] is defined for each facility, i , that controls the level of
conservatism. r0i defines a minimum insured coverage distance
over a UEMS facility opened, where the variable coverage
distance is defined as an inverse quadratic function with a
constant minimum value. There are three types of decision
variables: two binary decision variables of the ULAP and
one integer variable deciding the capacity of a facility. The
standard formulation (SF) is a compact formulation with a
nonlinear constraint.

1) Standard Formulation:

min
�
i∈I

fi yi +
�
i∈I

piui (1)

s.t. ni yi ≥ ui , ∀i ∈ I (2)

yi ≥ xi j , ∀i ∈ I,∀ j ∈ J (3)

ui ≥
�
j∈J

d̃ j xi j , ∀i ∈ I (4)

r0i + √
μi ui ≥ si j xi j , ∀i ∈ I, ∀ j ∈ J (5)�

i∈I

xi j ≥ 1, ∀ j ∈ J (6)

xi j ∈ B, ∀i ∈ I,∀ j ∈ J (7)

yi ∈ B, ∀i ∈ I (8)

ui ∈ Z+, ∀i ∈ I. (9)

Constraint (2) relates the assignment decision of UAVs to
the opening of the UEMS facility and Constraint (3) links
the location (opening) and allocation decisions. Constraint (6)
ensure every demand to be covered. Constraint (4) bounds
the allocation of the demand to the capacity of the facility.
The value of the demand is calculated as the number of UAVs
required. The uncertainty of the demand is not described in the
controllable format yet. In the cardinality constrained uncer-
tainty set, we optimize the objective function against every
scenario in which the uncertain demand is realized, as long
as the number of demand points with extreme perturbation is
lower than the target protection level �i . According to [55],

Constraint (4) can be modeled for each facility, i , as:
ui ≥

�
j∈J

d̃ j xi j

=
�
j∈J

d0
j xi j + max

N⊆J,|N |=�i

�
j∈N

d̂ j xi j (10�)

Note that Constraint (4) is still nonlinear. Constraint (5)
is a quadratic constraint that defines the variable coverage
distance around a facility. The coverage distance is defined
as a summation of a minimum insured coverage distance and
the variable distance related to the number of UAVs and the
variable coverage ratio. Although we modeled the variable
coverage as a quadratic constraint because of its simplicity,
other monotonic non-decreasing (e.g., linear or piecewise-
linear) functions can be utilized instead of the quadratic
function. One can refer to the literature related to resource
availability and the busy-fraction [39], [48], [58], [59].

C. Linearization of the Quadratic Variable Coverage
Distance Function

Let a parameter CVij denote the coefficient of coverage
distance between facility i and demand point j :

CVij :=
⎧⎨
⎩

0, if r0 ≥ si j .
(si j − r0i )

2

μi
, otherwise.

Considering Constraints (7) and (9), an equivalent linear
reformulation of Constraint (5) is proposed:

Proposition 1: The following inequality ui ≥ CVij xi j is
equivalent to Constraint (5) for the ULAP.

Proof: We only have to consider facility i and demand
point j which satisfies si j ≥ r0i .

(⇒) Let μi ui ≥ (si j − r0i )
2xi j for facility i and demand

point j . (i) xi j = 1, μi ui ≥ (si j − r0i )
2 	⇒ μi ui ≥ (si j xi j −

r0i )
2. (i i) xi j = 0, μi ui ≥ 0 	⇒ r0i + √

μi ui ≥ 0.
(⇐) Let μi ui ≥ (si j xi j −r0i )

2. (si j xi j −r0i )
2 ≥ xi j (s2

i j xi j +
r2

0i − 2si j xi j r0i ) (∵ xi j ≤ 1). In both cases of xi j ∈ B, μi ui ≥
(si j − r0i )

2xi j holds. �
Based on Proposition 1, Constraint (5) can substitute for

Constraint (5):

ui ≥ CVij xi j , ∀i ∈ I, ∀ j ∈ J. (11�)

D. Linear Reformulation of Standard Formulation

The standard formulation with nonlinear constraint can be
reformulated into an equivalent linear formulation using the
dual of the inner optimization problem [55]. The reformulation
is provided as follows:

1) Reformulated Standard Formulation:

min (1)

s.t. (2), (3), (5), (6), (7) − (9)

ui ≥
�
j∈J

d0
j xi j + αi�i +

�
j∈J

βi j , ∀i ∈ I (12)

αi + βi j ≥ d̂ j xi j , ∀i ∈ I, ∀ j ∈ J (13)

αi ≥ 0, ∀i ∈ I (14)

βi j ≥ 0, ∀i ∈ I, ∀ j ∈ J. (15)
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The decision variable βi j is an auxiliary variable used
for the linearization of the inner optimization problem of
Constraint (4). αi is the dual variable of the linearized inner
optimization problem. Constraint (12) defines the capacity
constraint of a facility, which uses a protection function to
linearize Constraint (4). Constraint (13) is the dual of the lin-
earized inner optimization problem. For detailed information
on the reformulation procedure, one can refer to [55]. Note
that the reformulated standard formulation (RSF) consists of
linear constraints with binary, integer, and continuous decision
variables. The problems in the RSF can be solved with com-
mercial optimization solvers (e.g., Cplex, Xpress, and Gurobi).
However, the commercial solvers that utilize LP relaxation-
based branch-and-cut algorithms have difficulty solving the
large-sized problems in the RSF within a short computation
time, even though the solvers can handle relatively large-sized
nominal problems within reasonable computation times. This
is because the combination of the integer and continuous deci-
sion variable generally causes the highly fractional solution of
the LP relaxation and have a weak LP relaxation bound [60].

IV. SOLUTION ALGORITHMS

A. An Extended Formulation of the ULAP

The solution of the ULAP consists of individual deci-
sions about each facility, which constructs a set-partitioning
structure. Based on the Dantzig-Wolfe decomposition, one
can reformulate the decisions of the SF with column-wise
decisions. Each column in the extended formulation defines
a set of demand points covered by a facility and the minimum
number of UAVs required for the allocation. In other words,
based on each facility, several feasible allocation of the set of
demand points are given in advance, along with the required
number of UAVs. �i is a set of feasible columns for a
facility, i . A column is defined as a combination of the subset
of the demand points that can be allocated to a facility and
the number of UAVs required to cover the demand points.
The parameters and the decision variables of the extended
formulation are presented as follows:

Parameters

cik cost associated to column k of FC i .
wk

i j indicate whether FC i covers DP j in column k.
uk

i number of UAVs assigned to FC i in column k.

Decision variables

zik =
�

1, if column k is used by FC i .

0, otherwise.
∀i ∈ I ,
∀k ∈ �i

The cost of each column is defined as cik := fi + piuk
i . The

extended formulation (EF) model of UEMS is represented in
the following integer program:

1) Extended Formulation:

min
�
i∈I

�
k∈�i

cik zik (16)

s.t.
�
i∈I

�
k∈�i

wk
i j zik ≥ 1 ∀ j ∈ J (17)

�
k∈�i

zik ≥ 1 ∀i ∈ I (18)

zik ∈ B ∀i ∈ I, ∀k ∈ �i (19)

The extended formulation only remains the set-partitioning
structure, while the capacity-related and coverage-distance-
related constraints are considered implicitly in the column. Let
us call the LP relaxation of the extended formulation the mas-
ter problem. The LP dual of the master problem can be viewed
as the Lagrangian dual, which is better than the LP bound
of the standard formulation. By Minkowski’s theorem, every
solution of the compact formulation can be represented in the
extended formulation. If �i contains every feasible column for
every facility i , then the solution set of the master problem
defines the convex hull of the ULAP. However, this requires
an exponential number of columns. To avoid maintaining a
very large number of variables, the column generation (CG)
technique can be implemented to solve the Lagrangian dual.
The CG iterates between the restricted master linear problem
(RMLP) and the pricing subproblem while generating new
variables that might improve the current solution. Let π j and
σi be dual prices associated with Constraints (17) and (18).
The pricing subproblem can be defined for each facility i :

2) Pricing Subproblem:

min fi + piu −
�
j∈J

π j x j + σi (20)

s.t. u ≥
�
j∈J

d0
j x j + max

N⊆J,|N |=�i

�
j∈N

d̂ j x j , (21)

u ≥ CVij x j , ∀ j ∈ J (22)

u ≤ n0 (23)

x j ∈ B, ∀ j ∈ J (24)

u ∈ Z+. (25)

The pricing subproblem of ULAP can be defined as a
robust integer knapsack problem. The robust integer knapsack
problem includes integer decision variables in the capacity
constraint [61], [62]. The integer decision variable acts as
a supplementary capacity that can be purchased additionally
from the original capacity. Constraint (21) is nonlinear and
can be reformulated as in the RSF. If Constraint (21) is
reformulated with the robust counterpart, the pricing sub-
problem gets a characteristic of a robust mixed-integer linear
knapsack problem because of the integer decision variable ui

and the continuous variables αi and βi j . Constraint (22) hunts
down the demand points that cannot be covered by the given
coverage distance, and zeroes out the decision variable, x j ,
of the demand points. On the other hand, when the number
of UAVs assigned to a facility is fixed, it becomes a robust
0-1 knapsack problem. Therefore, the pricing subproblem can
be solved by a decomposed approach that solves multiple 0-1
robust knapsack problems. The number of the decomposed 0-1
robust knapsack problems equals to ni , the maximum number
of UAVs to be operated at the UEMS facility i .

B. Branching Strategy

The column generation iterates between the restricted mas-
ter problem and the pricing subproblem. The solution of the
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master problem can be translated into the solution space of the
original (standard formulation) variable. However, because the
master problem is the LP relaxation of the extended formula-
tion, the translated solution is not necessarily an integer when
the column generation process is solved to the optimal. The
branch-and-price algorithm applies the CG to solve each node
in the branch-and-bound procedure, and can execute branching
when the solution of the CG is fractional.

The branching in the B&P algorithm can be executed with
various strategies [63]. First, the branching can be executed
over the variables of the extended problem. However, it is gen-
erally difficult to formulate the branching decision explicitly
in the variables of the pricing problem, and can complicate
the solution algorithm. Also, binary fixing of one among
many columns provides an unbalanced branch-and-bound tree,
which weakens the effect of the branching.

In the second strategy, branching over the original variables
of the standard formulation can be used. In the ULAP, for
a facility i , if the decision variable xi j is decided for every
demand point j , then the minimum value of ui can be
calculated subsequently:

ui = max

�
�
�
j∈J

xi j d j, �[(xi j si j − r0
i )+]2/μ

�
.

Thus, the branching can be defined based on the decision
variable xi j . When the CG provides a fractional solution of
the original variable xi j , the branching creates two children
nodes separated by the allocation between a demand point and
a facility. The second strategy shows a more balanced branch-
and-bound tree, so it is commonly used for various applica-
tions (e.g., generalized assignment problems). One strength
of the branching on original variables is that the branching
decision does not complicate the pricing subproblem. In the
robust knapsack problem, fixing the allocation of a demand
point can be applied by adjusting the remaining capacity of the
facility. Thus, the branching only changes the parameters of
the pricing subproblem while maintaining the structure of the
problem. However, in the ULAP, binary fixing of one decision
variable xi j still provides an unbalanced branching and has a
small impact, where we observed the inefficiency.

The third strategy is the Ryan-Foster [64] branching rule.
When the master problem has a set-partitioning-like charac-
teristic over a pure binary subproblem, the branching decision
can be made based on the coexistence of two elements.
We applied the Ryan-Foster branching rule, which showed
the best performance based on the model of the balanced
branching tree. However, because the ULAP does not orig-
inally include conflict constraints, unlike edge coloring and
bin packing with conflict [65], the implementation of the
Ryan-Foster branching rule changes the structure of the pricing
subproblem. Therefore, we redefined the pricing subproblem,
especially in order to implement the special-purpose solver
for the subproblem. In the Ryan-Foster branching rule, the
fractional solution of the restricted master problem denotes
the (fractional) employment of a feasible column. Based on the
fractional solution of the CG, the degree of the coexistence of
a pair of demand points, v j1, j2 , can be measured. If a column,
k ∈ �i , includes both demand points j1 and j2, then the

optimal solution of the column, z∗
ik , can be added to measure

the degree of the coexistence of the pair of demand points
j1 and j2. One can calculate it for every pair of demand points
in the same way: v j1, j2 := 	

k∈�i ,w
k
i, j1

=wk
i, j2

=1 z∗
ik . When the

degree of coexistence is nearest to 0.5, then the pair of demand
points is chosen for the branching.

C. Robust Disjunctively Constrained Integer Knapsack
Problem

As mentioned in Section IV, the pricing subproblem of the
ULAP is related to the robust integer knapsack problem. The
Ryan-Foster branching provides two children, one forcing and
the other forbidding the coexistence of two demand points. The
former is called same-child, and is easy to be considered in
the special-purpose solver by introducing an auxiliary demand
point merging two demand points. However, the latter differ-
child destroys the special structure of the knapsack problem.
The conflict, or disjunctive constraint, in the knapsack problem
is notorious for its simple shape and difficulty. The disjunc-
tively constrained knapsack problem (DCKP) was defined by
Yamada et al. [66] and drew more attention because of its
equivalence [65], [67] to the pricing subproblem of the bin
packing problem with conflict (BPPC).

In Section IV-E, the generic branching scheme [68] is
used to implement the Ryan-Foster branching in the ULAP
and consider the following arbitrary conflict. Based on the
conflict relation between demand points defined by the
branching, we defined the feasible set and solved the pric-
ing subproblem individually. As a matter of convenience,
we call the subproblem of the ULAP a robust disjunctively
constrained integer knapsack problem (RDCIKP). In this
paper, two solution approaches are proposed to solve the
RDCIKP. In Section IV-D, we find linear reformulation of
the RDCIKP and solve with the MILP solver. In Section IV-E,
the RDCIKP is decomposed into multiple 0-1 knapsack prob-
lems and solved with the dynamic programming algorithm.
In the computational experiment, we used a hybrid algorithm
using both approaches alternately.

D. MILP Reformulation Approach

By using the techniques of Bertsimas and Sim [55], the
linear reformulation of the RDCIKP for a facility i is derived:

1) Linear Reformulation of the RDCIKP:

min (20)

s.t. (22) − (25)

u ≥
�
j∈J

d0
j x j + α�i +

�
j∈J

β j , (26)

α + β j ≥ d̂ j x j , ∀ j ∈ J (27)

α ≥ 0, (28)

β j ≥ 0, ∀ j ∈ J. (29)

When branching happens in a node of the branching tree,
if the demand points j1 and j2 are chosen, then an additional
constraint, x j1 = x j2 , is added to every subproblem of the
same-child node, regardless of the facility. On the other hand,
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a more complicated constraint, x j1 + x j2 ≤ 1, is added to
every subproblem of the differ-child node. As in the reformu-
lated standard formulation, the nonlinear capacity constraint
is linearized using the dual variable of the inner optimization
problem. The formulation consists of the binary, integer, and
continuous decision variables, which give rise to the weak
LP bound. In the early stages of the CG process, linear
reformulation of the RDCIKP can be solved within a short
computation time with a commercial solver. However, as the
CG progresses and the dual bound converges to the optimal
dual solution of the master problem, it gets difficult and takes
time to solve the pricing subproblem. Thus, a decomposed DP
approach is designed to use a special-purpose solver to solve
the RDCIKP, as presented in the next section.

E. Decomposed DP Approach

The 0-1 knapsack problem is one of the most studied prob-
lems and is well known to be solved by dynamic programming
in pseudo-polynomial time. To take advantage of the knapsack
problem, we propose a decomposed-based approach in this
research. From the ideas of Bertsimas and Sim [69], the
RDCIKP is decomposed into nominal 0-1 knapsack problems,
based on the combination of the feasible sets.

Bertsimas and Sim [69] showed that the robust 0-1 knapsack
problem could be solved by solving |J | + 1 nominal 0-1
knapsack problems. Lee et al. [70] reduced the number of
nominal problems into |J | − � + 1. On the other hand,
as shown in Section IV-C, if the number of UAVs assigned
to a facility is fixed, then the RDCIKP becomes a robust
disjunctively constrained 0-1 knapsack problem. Thus, the
RDCIKP can be decomposed by the number of UAVs, u. For
the disjunctive constraint, Pferschy and Schauer [71] proposed
a pseudo-polynomial algorithm for the DCKP with chordal
conflict graphs. However, the ULAP consists of the arbitrary
conflict relation, which requires the enumeration of the feasible
set. Let us consider the feasible set of a RDCIKP of facility
i defined as:
S =



x ∈ B

m , u ∈ Z+
���u ≥

�
j∈J

d0
j x j + max

M⊆J,|M |=�i

�
j∈N

d̂ j x j ,

u ≤ n0, u ≥ CVij x j , ∀ j ∈ J, x ∈ B
�

=



x ∈ B
m , u ∈ Z+

���u ≥
�
j∈J

d0
j x j +

�
j∈J �

d̂ j x j , u ≥ CVij x j ,

u ≤ n0, ∀ j ∈ J, ∀J � ⊆ J with |J �| = �i , x ∈ B
�

where B is the family of all the subsets of demand points that
are not in conflict. In practical implementation, we developed
independent sets of the given conflict graph with enumeration.
The demand points, without any disjunctive constraint, were
then added to each independent set, which formed a feasible
set, B.

Following the notations of Lee et al. [70], let us define sets
L = {�i , �i + 1, . . . , m − 1, m + 1} and Sul = {x ∈ B

m |u −
�i d̂l ≥ 	

j∈J d0
j x j +	

j∈Jl
(d̂ j − d̂l)x j , u ≥ CVij x j ,∀ j ∈ J },

where J+ = J ∪ {m + 1}, l ∈ J+, and Jl = { j ∈ J+| j ≤ l}.
By the following proposition, the RDCIKP can be solved by

solving at most 2E ni (|J | − �i + 1) nominal 0-1 knapsack
problems, where E is the number of the disjunctive constraints
of the RDCIKP.

Proposition 2: The RDCIKP

Z∗ = max

�

j∈J

π j x j − fi − σi − pi u
���(x, u) ∈ S, x ∈ B

�

can be solved by solving at most ni (m − �i + 1) nominal
disjunctively constrained 0-1 knapsack problems

Z∗
ul = max


 �
j∈J

π j x j − pi u
���(x, u) ∈ Sul , x ∈ B

�
,

∀u ∈ {0, . . . , ni }, l ∈ L

Proof: Note that fi and σi are given parameters. For
every u ∈ {0, . . . , n0}, let us define a set Su = {x ∈ B

m |u ≥	
j∈J d0

j x j + maxM⊆J,|M |=�i

	
j∈N d̂ j x j , u ≥ CVij x j ,∀ j ∈

J } which is a subset of S. Because S = ni
u=0 Su , Z∗

can be solved by solving at most ni robust disjunctively
constrained 0-1 knapsack problems. By Lee et al. [70], each
robust disjunctively constrained 0-1 knapsack problems can be
solved by solving at most |J | − �i + 1 nominal disjunctively
constrained 0-1 knapsack problem. �

The feasible set, B, used in the proposition is defined based
on the independent set, which has cardinality at most 2E .
By the rule of product of the nested loop, the RDCIKP can
be solved in O(2E n2

i |J |2).

F. Hybrid Algorithm of the Solution Approach

In Section IV-C, it is shown that the subproblem of the CG
process is the RDCIKP. Because the computation speed of
the overall CG algorithm heavily depends on the efficiency of
solving its subproblem, it is natural to utilize both approaches
developed through the previous sections. In the initial stage
of the CG process, it is easier to solve the RDCIKP with
the MILP reformulation approach because of a large gap
between the optimal solution of the RMLP and the Lagrangian
dual bound. The decomposed DP approach takes advantage
of the special-purpose solver of the knapsack problem. The
decomposed DP approach can provide the solution in a robust
manner because the computation time is consistent, regardless
of the progress of the CG and the corresponding convergence
of the bound.

To benefit from both approaches, a hybrid algorithm was
used in this research. In the early stage of the CG process,
the MILP reformulation approach was used to solve the
pricing subproblem. When the subproblem is solved by the
MILP reformulation approach, there was a tendency of the
computation time of each iteration to increase in accordance
with the CG process. Thus, after each iteration of the CG
algorithm, the time was measured. If the time of an iteration
exceeded a predefined criterion, the solution algorithm of the
subproblem was switched into the decomposed DP approach,
which maintains a certain computation time regardless of the
CG stages. The limitation of the time for the change of
the solver was chosen arbitrarily to be 100 seconds in the
experiment.
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G. Restricted Master Heuristic

Despite the better LP bound of the CG, the B&P algorithm
can take a long enumeration of branching on the large-sized
problem, resulting in a long computation time. To solve the
large-sized problem in a feasible computation time, we imple-
mented the restricted master heuristic (RMH), one of the most
widely used heuristics related to the B&P algorithm. Based on
the current variables (columns), one can solve the ULAP with
the extended formulation using MILP solvers. This is also
called price-and-branch, because the columns are generated
first, and the branching takes place later. It is not guaranteed
that all the values required are found before starting to solve
the master integer problem, so the solution of the heuristic
can only be used as a primal bound of the ULAP. Note that
the RMH can be initiated in any stage of the B&P algorithm,
especially before the termination of the root node CG.

Although there are advanced heuristics, including the diving
heuristic [72], developed for the B&P algorithm, they are
challenging to implement in the ULAP. Note that the best-first
search strategy is implemented in the B&P algorithm to maxi-
mize the advantage of the Lagrangian dual bound. The diving
heuristics are developed based on the depth-first search, which
complicates the utilization of the heuristics in the ULAP.
One alternative is the relax-and-fix algorithm on the original
variables. It also has difficulty with the highly fractional
solution of the LP relaxation induced by the robust counterpart
and the following continuous decision variables. As mentioned
in Section IV-B, fixing one decision variable, xi j , did not
provide a dramatic effect on the residual problem. Also, there
is a feasibility issue using the relax-and-fix algorithm in the
ULAP because of the capacity constraint.

The RMH can be implemented inside of the B&P algorithm
to provide the primal bound. Furthermore, if there is a sub-
stantial restriction on the computation time, the heuristic can
be used to provide a feasible solution, which is presented in
Section V.

V. COMPUTATIONAL EXPERIMENTS

Computational experiments were conducted to compare the
performance of the proposed solution algorithms. The models
were developed in FICO Xpress 8.5 and solved with Xpress-
Optimizer 33.01.02. Experiments were performed with an
AMD Ryzen TM 7 2700X 8-Core CPU at 3.70GHz and 32GB
of RAM running on a Windows 10 64-bit operating system.

A. Datasets Used in the Experiments

Small and large-sized datasets were randomly generated
for computational experiments, using the simple plant loca-
tion problem on a Euclidean plane, with benchmark data
from the Benchmark Library [73]. Three small-sized and two
large-sized problem classes were tested, and 10 instances are
generated for each problem class. The demand points were
distributed randomly on the interior of a given size of a
square on the Euclidean plane. Figure 2a and Figure 2b show
solutions of a small and large-sized problem, respectively.

For each problem class, the maximum number of UAVs
operated at the UEMS facility, the minimum ensured coverage

Fig. 2. Example of the solution.

distance, and the variable coverage distance ratio per UAV
were determined for the realistic UEMS system in regard to
both capacity and coverage distance, both of which can affect
the number of UAVs assigned to a facility. The parameters
related to the number of UAVs, capacities, and coverage
distances are presented in Table II. In the table, N I and N J
represent the number of candidate facilities and the demand
points, respectively. Slim refers to the size of the plane.

The demand for each demand point was randomly generated
based on uniform distribution. The nominal value of the
demand d0

j and its maximum perturbation d̂ j are generated
following U[0, 3] and U[0, d0

j /1.3], respectively. The opening
cost and operation (assignment) cost per unit UAV were
generated based on Shavarani et al. [74], which followed
U[300,000, 400,000] and U[30,000, 40,000], respectively. One
can refer the dataset instance used in this research [75].

B. Algorithmic Performances

First, we compared the algorithmic performances of the
two formulations, the RSF and the EF. The tightness of the
LP relaxation bounds and the induced lower bounds were
compared, along with the optimality of the primal bounds. Sec-
ond, a further analysis of the B&P algorithm was conducted.
Third, the performances of the restricted master heuristics were
analyzed.
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TABLE II

PARAMETERS OF THE PROBLEM CLASSES

For the first analysis, the computation speed was compared
based on the computation time and the final gap between
the best value of the feasible solution (BFS) and the best
lower bound (BB). The optimality of the BFS was also
compared, and the strength of the formulation was shown
based on the tightness of the LP relaxation and the final
BB. In the computation, the maximum time limit was set to
3,600 seconds. In Tables III – V, the results are summarized
by the average of 10 instances of each problem class. The
columns in these tables are defined as follows:

• #solved: the number of the instances in the problem
class, solved by each algorithm.

• T ime: the average of the computation time. For the prob-
lems not solved within the computation time limit, the
limit was used as the computation time while calculating
the average, and was marked with an asterisk (*).

• GapL: the average of the gap between the primal bound
(the best feasible solution: BFS) and the best lower bound
(BB). GapL is used to evaluate the algorithm’s conver-
gence speed, especially for the problems not solved to
optimal within the time limit. GapL = (BFS)−(BB)

(BFS) ×100%
• RatL P : the average of the ratio between the LP relaxation

bounds of the reformulated standard formulation and
the extended formulation. RatL P = (LP bound of the EF)

(LP bound of the RSF) ×
100%

The pricing subproblem is identical to the Lagrangian
relaxation subproblem, and can be used as a lower bound of the
RMLP [76]. Thus, in the CG of the root node, the dual bound
of a pricing subproblem can be used as a lower bound of the
problem, regardless of the termination of the CG. On the other
hand, in the B&P algorithm, we implemented the best-first
search (BS) for the search strategy. Because the lower bound
of the head node of the active node queue always has the
worst lower bound in the BS, it can be used as a lower bound
of the problem. For the problems that the B&P algorithm has
not finished within the time limit, the lower bound calculated
by the BS was used for the comparison in Table IV. In the
same table, if the root node CG was not finished, the lower
bound of the RMLP was used as the LP relaxation bound and
marked with an asterisk (*).

The average of the overall instances of each problem class
is calculated in Table III. In the small-sized problems, the
commercial solver’s root cutting and heuristic techniques
showed powerful performances while solving the RSF. Even
the integer feasible solutions provided by the root cutting
and heuristics were optimal solutions in several small-sized
problems. The B&P algorithm could solve the problem within

a short computation time without both a heuristic and a valid
inequality, due to the advantage of the LP relaxation bound.
In the large-sized problems, the root node CG of the problem
class C210 was solved within the time limitation, but the
overall B&P was not finished as well as the RSF. If an
algorithm failed to solve every instance in a problem class,
the average computation time was marked to be the time limit
3,600. The size of the problem class C320 was too big to
be solved by any algorithm. However, the progress of the
optimization, including the CG and the RMH algorithm, was
compared later.

GapL compares the convergence between the BFS and the
BB of algorithms. In the problem classes C210 and C320
of the B&P algorithm, the BFS was not provided, so it was
impossible to calculate the GapL. As mentioned above, the
commercial solver could provide effective feasible solutions of
the RSF with root cutting and heuristics. When implemented in
real-world cases, those techniques could be utilized in the B&P
algorithm by providing the feasible columns and the primal
bounds. In this computational experiment, we investigated
the advantages of the EF in the BB perspective. Thus, the
LP bound and the lower bound provided by the following
branching are compared in Table IV, without consideration of
additional techniques, such as valid inequalities and heuristics.

As mentioned in Section IV-A, the LP bound of the EF
was always the same or better than the LP bound of the RSF.
Indeed, as illustrated in Table IV, the LP relaxation bound of
the EF was better than the RSF from 1.7% to 81.1%, and the
overall average of the RatL P was 138.8%. In the problem class
C320, the LP bound has the same value of the BB because the
root node column generation was not solved to the optimal.
It was expected that the gap of the LP bound between the
RSF and the EF would increase when the CG was finished.
As the optimization process continued, the Gap of the BB was
marked as zero if both algorithms found the optimal solution.
There was a minus gap of the lower bound in the problem
class C23, which took place because of the two unfinished
instances of the B&P algorithm. As the size of the problem
increased, the gap of the lower bound between the RSF and
the B&P algorithms deepened.

In the optimality perspective of the small-sized problems,
in Table V, there is no gap between the two algorithms because
both algorithms found the optimal solution for every problem.
In the large-sized problems, the B&P algorithm could not find
feasible integer solutions. In this research, the B&P algorithm
employed the best-first search to utilize the advantage of the
lower bound. The depth of the branching tree does not deepen
fast in the BS, so it is difficult to find the primal solution.
Although the primal heuristic, such as the RMH, can help to
find the feasible solution, it was not used in this experiment
to examine the primary performance of the EF and the B&P
themselves. The performance of the RMH will be investigated
in the latter part of this paper.

For the second analysis, the nodes and the columns gener-
ated in the B&P algorithm are summarized in Table VI. The
effectiveness of the EF and the column generation algorithm
are analyzed in Table VII. The columns in the tables are
defined as follows:
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TABLE III

RESULTS RELATED TO THE COMPUTATION SPEED

TABLE IV

COMPARISON OF LP RELAXATION

TABLE V

RESULTS RELATED TO THE OPTIMALITY

• Cols and Nodes: the average number of columns and
nodes generated in the CG and the B&P algorithms.
If a problem class contains instances not solved within
the computation time limit, the number of the columns
or nodes generated up until the time limit was used to
calculate the average and marked with an asterisk (*).

• # CGopt : the average number of problems that the root
node CG provided integer solutions.

• Gapint : the average of the integrality gap between the
optimal solution and the LP bound of the EF provided by
the CG algorithm. For the problems by which we do not
have optimal solutions, the best feasible solutions found
from any algorithm are used and marked with an asterisk
(*). If the root node CG is not finished, the lower bound
of the RMLP is used as the LP relaxation bound, and
the problem class is marked with a dagger symbol (†).
Gapint = (Optimal solution)

(LP bound of the EF) × 100%
• # Gapint : the number of problems that have values of

Gapint less than a certain criteria. That is, the value of the
Gapint should be less than 100.5% or 105% to be counted
in the columns “< 0.5%” or “< 5%,” respectively.

TABLE VI

RESULTS RELATED TO THE CG AND B&P ALGORITHM

TABLE VII

RESULTS RELATED TO THE EF AND THE CG ALGORITHM

In Table VI, it is shown that as the size of the problem
increased, the number of columns and nodes required fol-
lowed. Note that the optimization process of the large-sized
problems was not fully terminated, and the additional columns
and nodes would be generated afterwards. In the RSF model,
C210 and C320 consisted of 4,060 and 12,090 variables,
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TABLE VIII

RESULTS OF THE RMH RELATED TO THE COMPUTATION SPEED

respectively. Compared to the variables generated in B&P
algorithms, the RSF models tended to be larger in sizes.

In Table VII, the performance of both the EF and the CG
algorithm was analyzed from the integrality gap point-of-view.
In the small-sized problems, the CG algorithm provided an
integer optimal solution for 13 out of 30 instances, which
did not require the additional branching process. The smaller
integrality gap indicates the advantage of the EF. In the
problem classes C11 and C13, 15 out of 20 instances had
an integrality gap of less than 0.5%. In the larger problems,
the integrality gap increased. However, it should be considered
that in these problems, the BFS was used instead of the optimal
solution because the large-sized problems were not solved to
the optimal. Besides, for the class C320, the LP bound would
also be improved when the CG is solved to the optimal.

The performances of the restricted master heuristics were
tested in the third analysis. The RMH was proposed to solve
the large-sized problem in a real-world situation in a time-
efficient manner. As mentioned in Section IV-G, the RMH
could be initiated at any stage of the B&P algorithm. The
feasibility of the RMH was secured based on the initial
columns, which were generated according to every possible
pairing of a demand point and a facility. We compared three
initiation points of the RMH. The first point was the well-
known price-and-branch, where the RMH started after the
root node CG is terminated. The second and third points
were defined based on the computation time. Because the
computation time limit is set to 3,600 seconds, we tested to
start the RMH 1,200 and 2,400 seconds after the beginning
of the B&P algorithm. Three initiation points are named in
Tables VIII and IX as “RT,” “1200,” and “2400,” respectively.
In Table IX, column “# (same, better ) B FS” represents the
number of problems that the RMH algorithm provided the
same or better BFS than the RSF.

In the RMH with the second and third starting points,
there were problems solved by the B&P before the RMH
was initiated. Every instance in problem classes C11 and C13,
and eight instances in problem class C23 were solved before
the RMH was started at 1200. Even for the RMH, problem
class C320 was hard to solve within the time limitation of
3,600 seconds, however. Nevertheless, the RMH had relatively
smaller GapL than did the RSF, where the CG provided a
better LP bound, and the heuristic provided a decent feasible
solution.

TABLE IX

RESULTS OF THE RMH RELATED TO THE OPTIMALITY

Table IX compared the optimality of the RMH to the
RSF. In the RMH with the starting point of 1,200 sec-
onds (RMH_1200), the optimal solution was found for every
instance of the small-sized dataset. For the large-sized problem
class, C210 and C320 had 4.5 and 8.5 percent of an average
optimality gap, respectively. Furthermore, in problem class
C320, RMH_1200 provided better BFS than RSF in four
instances. The effective starting point of the RMH would be
affected by each problem situation, and a further investigation
is required when implemented in the applications.

To summarize, even though the built-in root cutting and
heuristic algorithms in the commercial solver could provide
a stronger feasible solution for the RSF than could the pro-
posed algorithm, the fundamental intractability of the problem
hinders the RSF from being solved because of the bad lower
bound. However, the EF provided a strong LP relaxation bound
and had a competent integrality gap, and the B&P algorithm
was expected to show a good performance in the lower bound
point of view. The RMH could be implemented in the B&P
algorithm to find primal bounds used in the branching. In the
large-scale problems, it was observed that the RMH could
provide time-efficient solutions. Because the RMH optimizes
the batch decisions developed through the CG process, the
heuristic can avoid the long convergence time that the RSF
faces.

VI. CONCLUSION

This paper introduced the location and allocation problem
of UAVs in the emergency medical service system consid-
ering demand uncertainties. A UAV-operated system would
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seemingly lead to new operation problems, which would
make applying the solution approach from existing literature
difficult. The UEMS system, instead of using one or two
UAVs, could use a fleet of UAVs operating from a facility.
Furthermore, the number of UAVs employed plays an essential
role in defining the capability of a facility. The resource avail-
ability is modeled to increase gradually along with the number
of UAVs, which is considered when allocating demand points
to a facility. In the ULAP, both the variable coverage distance
and the capacity of the UEMS facility are modeled as functions
of the number of UAVs. First, the quadratic constraint of the
variable coverage distance is linearized. Second, the demand is
modeled based on the cardinality-constrained uncertainty set,
and the resultant nonlinear capacity constraint of the model is
reformulated to the MILP model.

However, because of the highly fractional solution of the
LP relaxation, the reformulated standard formulation of the
ULAP has a weak LP relaxation bound and is challenging to
solve with a commercial solver. An extended formulation and
a B&P algorithm was proposed in this paper to improve the
LP bound and utilize it. Because of the Ryan-Foster branching
strategy and the corresponding disjunctive constraints, the
subproblem is defined as a robust disjunctively constrained
integer knapsack problem. Based on the existing knowledge
about various types of knapsack problems, a decomposed DP
approach was proposed as a special-purpose solver. A hybrid
approach of the MILP and the decomposed DP approach was
also introduced. A restricted master heuristic was proposed for
a primal solution based on the EF.

In the computational experiment comparing the performance
of the RSF and the EF and the corresponding B&P algorithm,
the EF showed stronger LP bounds. Despite the weak LP
bound, in small-sized problems, the RSF could find the optimal
solution in a short computation time by virtue of root cutting
and heuristics. In larger problems, the RSF reported a large
GapL , which represented a slow convergence of the algorithm.
Even though the EF showed the better bound, the B&P
algorithm could not provide feasible solutions for large-sized
problems because the algorithm depended on the best-first
search. The restricted master heuristic is developed to utilize
the columns found through the CG process and could provide
time-efficient feasible solutions. In the largest problem class,
C320, the RMH could find even better feasible solutions than
the RSF.

In this research, the RMH was initiated after the discontin-
uation of the B&P algorithm to measure the sole performance
of the RMH. However, it is expected that the RMH could
provide the primal bounds if implemented in the middle of
the B&P algorithm, and could thereby help the searching
process. Also, because the heuristics in the commercial solver
provided effective feasible solutions for RSF, they could be
used for the initial columns. For future research, more realistic
problems could be solved with actual datasets. For an actual
cost-benefit analysis, complex cases could be modeled with
triage [77], patient behaviors [78], and multiple levels of hos-
pitals [77]. More advanced busy-fraction models can be used
while defining the variable coverage distance. In this research,
commercial solver was used to solve the subproblem with

the MILP reformulation approach without using the structural
knowledge. However, one can refer to Ben Salem et al. [79],
who studied the polytope and the facet defining inequalities
of the disjunctive-constrained knapsack problem. Atamtürk
studied the inequalities on covers and packs of the integer
knapsack sets [80] and focused on the convex hull of the robust
knapsack problem [60]. Another research extension related to
the health care facility location problem is the data-driven and
dynamic relocation of UAVs among the UEMS facilities.
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