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a b s t r a c t

An airline scheduler plans flight schedules with efficient resource utilization. However, unpredictable
airline disruptions, such as temporary closures of an airports, cause schedule perturbations. Therefore,
recovering disrupted flight schedules is essential for airlines. Many previous studies have relied
on copies of flight arcs, which could affect the quality of solutions, and have not addressed the
key measure of airlines’ on-time performance as their objective. To fill these research gaps, we
propose Q-learning and Double Q-learning algorithms using the reinforcement learning approach for
aircraft recovery to support airline operations. We present an artificial environment of daily flight
schedules and the Markov decision process for aircraft recovery. The proposed approach is first
compared with existing algorithms on the benchmark instance. In comparison with other algorithms,
the developed Q-learning and Double Q-learning algorithms obtain high-quality solutions within the
proper computation time. To verify that the proposed approach can be applicable to a real-world case
and can adapt to realistic conditions, we employ a domestic flight schedule from one of the airlines
in South Korea. We evaluate the reinforcement learning approach on a set of experiments carried out
on real-world data. Computational experiments show that reinforcement learning algorithms recover
disrupted flight schedules effectively, and that our approaches flexibly adapt to various objectives and
realistic conditions.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

As international trade and demand for air travel have in-
reased, the number of commercial airlines has grown [1]. In
rder to survive in the competitive airline industry, airlines have
ried to provide better service to passengers and use resources,
uch as crew and aircraft, efficiently. Flight schedules are usually
stablished one season ahead of the actual operation, following
he forecast of passenger demand and seasonal factors [2]. Plan-
ing flight schedules with effective utilization of such resources
ontributes to the overall success of an airline. Therefore, airlines
pend considerable time and effort planning flight schedules [3].
Although efficient flight schedules are established, perturba-

ions of flight schedules can occur because of uncertain or unpre-
ictable events, such as adverse weather conditions, mechanical
alfunctions, airport congestion, and crew member absences.

nitial flight delays could propagate to subsequent flights be-
ause of interconnected resources (i.e., late arrivals of previous
lights cause late departures of subsequent flights). In addition
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to this, flight delays not only affect passenger satisfaction but
also cost airlines billions of dollars. The Federal Aviation Ad-
ministration (FAA) estimates that the cost of flight delays in the
United States costs airlines about $22 billion a year [4]. In order
to alleviate minor stochastic delays and small disruptions, airline
schedulers usually add buffer times between flight legs [5]. How-
ever, in cases of extreme disruptions (e.g., temporary closures
of airports), buffer times cannot prevent long flight delays. In
particular, short-haul flight schedules with tight turnaround time
(TAT) causes serious damage to airlines’ bottom lines. The TAT
indicates the time interval on the ground needed to prepare
aircraft for subsequent flights.

In order to minimize the damage from disruptions as much as
possible, the Airline Operational Control Center (AOCC) initiates
a recovery process of airline schedules that involves reschedul-
ing aircraft, crews, and passengers [6]. Several research studies
have focused on the integrated recovery of aircraft, crews, and
passengers [7–10]. However, due to the complexity of the airline
recovery process, the airline usually segments the process into
three stages: aircraft, crew, and passenger recovery [5]. Because
aircraft are one of the most valuable resources for an airline,
aircraft recovery is typically initiated at the first stage. In this

stage, the AOCC reschedules the flight schedule and reroutes the
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ffected aircraft to best meet the objectives of the airlines. After
ircraft recovery, crew planners reassign crews to aircraft accord-
ng to the revised flight schedule (i.e., crew recovery). Finally, air-
ine customer service coordinators accommodate misconnected
assengers with their best alternative itineraries (i.e., passenger
ecovery). Among these three stages, this study concentrates on
he aircraft recovery process.

In the aircraft recovery process, the AOCC makes decisions
o restore flight schedules back to initially planned schedules
hrough the following recovery options: canceling flight legs,
wapping aircraft, ferrying, and delaying flight departures until
onnected resources become ready [6]. In particular, swapping
ircraft is a strategy commonly used in the aircraft recovery pro-
ess, and it is defined as switching flights on a pair of aircraft. On
he other hand, because cancellations and ferrying cause airlines
reat financial loss, they are seldom used in real practice [11].
hen schedule disruptions occur, the problem of revising routes

or affected aircraft using the previous options is known as the
ircraft recovery problem (ARP).
Even though many previous studies have dealt with ARP in

arious aspects, this study seeks to fill two research gaps in
he ARP research area. The first research gap is the practice
f using copies of flight arcs. Many previous studies have used
opies of flight arcs within network flows to recover the airline
chedule by reassigning the aircraft to flights [8,12–14]. How-
ver, if a decision maker generates a large number of copies, it
ecomes more difficult to solve the ARP because the network
ize is increased. In contrast, if not enough copies are gener-
ted, the quality of solutions becomes worse because important
opies of flight arcs can be missed. Huang et al. [15] also ac-
nowledged this problem, so they presented the copy generation
lgorithm that evaluates the importance of generated copies.
lthough Huang et al. [15] mitigated issues of flight copies, they
till relied on flight copies in the solution approach. A detailed
iscussion about the dilemma of generating the copies of flight
rcs will be presented in Section 3.4.
The second research gap is that previous studies did not incor-

orate the key measures in real airline operations as objectives.
ost of the existing research for the ARP focuses on minimizing

he total cost incurred by flight delays [16,17]. However, the total
ost of delays is very sensitive to cost parameters, and estimating
he values of parameters is challenging. Furthermore, there are
any objectives for aircraft recovery processes, and each airline’s
bjective could be different (e.g., minimizing total delays or the
umber of flight delays). In particular, minimizing the number
f flights delayed over a specific time frame is very important
o airlines. If the time differences between actual and scheduled
light events exceed the permissible range (specific time frame),
he occurrence is defined as a ‘flight delay.’ The number of flight
elays is the key measure of the on-time performance of airlines.
ot only do flight delays affect an airline’s reputation, but airlines
lso must pay monetary compensation to passengers who have
een on delayed flights. Not many studies have been carried out
o deal with the objective of minimizing flight delays, except for
he study by Liu et al. [18].

Motivated by the above research gaps in existing ARP litera-
ure, this study defines the following five research questions to
ddress:

(1) How can we solve the ARP without depending on copies of
flight arcs for the solution approach?

(2) Which solution approach can flexibly adapt to various ob-
jectives that accommodate the key measure in real airline
operations?

(3) If a solution approach suitable to solving research ques-
tions (1) and (2) is developed, what advantages does this
approach have compared to exiting algorithms?
2

(4) Is the developed solution approach applicable to real-world
airline schedules, and does it adapt to complex conditions?

(5) How can we validate that the solution approach is config-
urable for various objectives?

In order to answer the above research questions, we adopt the
reinforcement learning (RL) approach. The main reasons we adopt
this approach will be explained in detail in Section 2 by drawing
comparisons with existing literature.

In this study, our purpose is to develop a framework for
applying the RL approach to aircraft recovery in order to make
it useful for actual operations. To the best of our knowledge,
there has been no experimental study solving the ARP efficiently
utilizing the RL approach. Specifically, we adopt Q-learning (QL)
and Double Q-learning (DQL) for the RL algorithms. The proposed
framework could support airlines handling schedule perturba-
tions caused by airline disruptions. Even though our proposed
method can be applied to various types of airline disruptions,
we focus on the temporary closure of airports, which affects
numerous flight operations. In addition, we solve this problem
when multiple fleets serve the flight schedule. We utilize a real-
world flight schedule and establish various objectives to meet
each airline’s goals.

In summary, the contributions of this study are fourfold. First,
we propose RL algorithms for solving the ARP for the temporary
closure of the airport. Existing studies of the ARP utilize opti-
mization or heuristic methodologies. This study, however, adopts
the RL approach, which is an agent-based model, for utilizing
the advantages of RL in aircraft recovery. Second, we solve the
ARP to optimize various objectives: minimizing total delays and
the number of flight delays of more than 30 min and more than
0 min. By revising the reward function, we can easily adapt our
approach to different objectives compared to optimization or
heuristic methodologies. Third, we compare the performance of
the proposed RL algorithms and the existing solution approaches,
such as optimization, meta-heuristic, and real-world strategies,
and show the advantages of utilizing RL algorithms for ARP.
Fourth, we apply the proposed method to a real-world flight
schedule of a South Korean domestic airline with multiple fleets.
In addition, we consider the constraint that the minimum TAT
could be affected by disruption (i.e., TAT extensions).

The remainder of the study is organized as follows. Section 2
reviews literature related to the RL approach and the ARP. Sec-
tion 3 describes the problem statement and mathematical for-
mulation of the problem. Principles of RL, the environment of
the flight schedule, and the Markov decision process (MDP) are
presented in Section 4. Section 5 describes the QL and DQL algo-
rithms. Section 6 shows the results of computational experiments
to compare proposed RL algorithms with existing algorithms.
Moreover, we evaluate the performance of our approaches by
applying them to the real-world case of the South Korean do-
mestic airline, and we suggest managerial insights. Conclusions
are presented in Section 7.

2. Literature review

This paper is directly related to three streams of literature: the
reinforcement learning approach for air transport management,
the ARP in operations management, and the ARP dealing with
temporary closures of airports.

The RL approach was adopted in several studies for air trans-
port management. Gosavii et al. [19] formulated airline revenue
management as a semi-Markov decision process (SMDP). They
solved SMDP with a λ-SMART algorithm based on RL. Balakr-
ishna et al. [20] incorporated RL for predicting taxi-out time
in airports. Because airline operations dynamically change, the
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ccurate prediction of taxi-out time is very challenging. Because
f this property, the authors adopted RL, and the accuracy of their
rediction was relatively high, even without detailed data. Hon-
et et al. [21] used the QL algorithm in disruption management of
irline schedules. However, the performance of the QL algorithm
as worse than it was without any controls, and they obtained no
ignificant results. Ruan et al. [22] used the RL-based algorithm,
pecifically QL, to deal with the operational aircraft maintenance
outing problem (OAMRP). By comparing meta-heuristic meth-
ds, the authors showed the outperformance of the proposed
L-based algorithm. Hu et al. [23] developed extreme learn-
ng machine-based QL, which learned the maintenance decision
olicies for different aircraft maintenance scenarios. The devel-
ped algorithm required only a little information about aircraft
aintenance and showed prior performance in adjusting its de-
ision for addressing the variations of several components. Shihab
t al. [24] utilized a deep RL algorithm for solving the airline
evenue management problem with multiple fare classes with
tochastic demand, passenger arrivals, and booking cancellations.
ravaris et al. [25] dealt with the problem of demand and capacity
mbalances in actual air traffic management settings with many
gents. The deep multi-agent RL method was utilized to alleviate
he challenges of scalability and complexity in the suggested
roblem. In addition, they developed visual analytic tools for ren-
ering information provided by the RL method. Pham et al. [26]
tilized the RL approach to resolve conflicts and inherent uncer-
ainties in air traffic. They formulated the conflict resolution task
s a sequential decision-making problem. The deep deterministic
olicy gradient algorithm was used to handle a large and complex
ction space.
We investigated previous studies related to the ARP in opera-

ions management. The ARP was first introduced by Teodorović
nd Guberinić [27]. They solved a simple example of the ARP
ith a heuristic, which decided aircraft routes sequentially. Yan
nd Yang [28] proposed a framework that is based on the time-
ine network. Moreover, they proposed time-shifted copies of
lanned flights in the event of flight delays. They solved this
odel by using Lagrangian relaxation with subgradient methods.
hengvall et al. [12] added protections arcs and through-flight
rcs to the time-line network model. This method makes it pos-
ible to prevent the original flight schedule from perturbations.
øve et al. [29] presented the steepest ascent local search (SALS)
euristic based on the network formulation. This algorithm swaps
ircraft iteratively until a better solution cannot be found. Rosen-
erger et al. [30] formulated a set partitioning model to resched-
le flight legs and reroute multiple fleet aircraft. In order to
fficiently determine a subset of aircraft for rerouting, they devel-
ped the aircraft selection heuristic. Khaled et al. [31] presented
multi-criteria repair/recovery framework using multi-objective

nteger programming for the tail assignment problem.
Liang et al. [32] solved the ARP with airport capacity constraint

nd maintenance flexibility. In order to consider these conditions,
hey adopted a column generation based heuristic framework.
ink et al. [33] proposed a heuristic that dynamically solved
he recovery of the airline schedules. In this manner, recovery
roblems for subsequent disruptions are solved based on the
reviously obtained solutions. Hu et al. [34] proposed an integer
rogramming model to simultaneously consider the airline cost
nd passengers’ willingness in the ARP. The proposed model
ddressed two objectives, minimizing airline recovery cost and
assenger recovery loss. The authors developed a heuristic by
ombining multi-directional and stochastic neighborhood search
lgorithms to solve the problem. Huang et al. [15] focused on
itigating the issue that occurred when generating flight copies

or solving the ARP. The authors developed the copy evaluation

lgorithm to solve the ARP through an iterative process of copy

3

generation and filtration. Zhao et al. [14] addressed the ARP
with two types of uncertainty in airline disruptions: the length
of the disruption and the time when additional information be-
came available. The two-stage and rolling horizon approaches
were developed, and two types of uncertainty were handled by
considering an extensive range of scenarios.

Several researchers have considered the temporary closure of
airports in the ARP. Yan and Lin [35] conducted one of the pio-
neering studies on this problem. They adopted similar methods
proposed by Yan and Yang [28]. They used a time-line network
with four types of arcs: flight, ground, overnight, and ferrying.
Thengvall et al. [36] proposed three multi-commodity network
models for recovering a multiple fleet flight schedule when the
hub airport closed. They showed that the preference network
model obtained a better solution compared to other network
models. Liu et al. [18] proposed a multi-objective genetic algo-
rithm (MMGA) for short-haul flights in Taiwan. The objectives
consisted of hard and soft constraints, and they used Pareto
optimization for the multi-objective solution. The problem was
decomposed separately according to each type of plane involved
in the multiple fleet condition. Therefore, it is not easy to adapt
an MMGA to multi-fleet airline schedules.

Liu et al. [18] studied the most relevant problem to our re-
search and also considered various objectives such as flight delays
of more than 30 min. In order to get admissible Pareto optimal
solutions, this study proposed an MMGA to consider multiple
objectives using the method of inequalities (MOI). Minimizing
the number of flight delays was just one of the objectives in the
array of multiple objectives. A serious weakness of this study,
however, was that this algorithm includes indispensable condi-
tions (i.e., minimum TAT and flight connections at airports) to
meet multiple objectives for hard constraints. Therefore, it was
difficult to consider complex realistic conditions, such as multiple
fleets and aircraft balance. This was the case, because as the
number of objectives increases, challenges of the computation
burden and conflicts between objectives could appear. In addition
to this weakness, since this study adopted MOI for finding Pareto
solutions with smaller computing efforts, an MMGA found the
suboptimal solutions.

To overcome the limitations of previous studies, we propose
the RL approach, which has generated a lot of interest from
the research community. We interpret the ARP as a sequential
decision-making process and improve the behavior of the agent
by trial and error. There are four main advantages to using RL
for the ARP. First, because RL is a simulation-based method, it
can handle complex assumptions [19]. In air transport manage-
ment, there are many realistic conditions and factors that affect
airline operations. By including these conditions in the simula-
tion (i.e., environment), RL could solve the ARP under realistic
situations. Second, by just modifying reward functions, RL is
more flexible in meeting various objectives than are operations
research methods. Third, since RL is an agent-based model, the
policy that the agent learned for a case of disruptions can be
reused for other cases of disruptions. Reusing the learned policy
could accelerate the learning process compared to learning the
policy from scratch [37]. Fourth, the time-line network math-
ematical model, which is one of the most comprehensive and
practical approaches for the ARP, can suffer from the trade-off
between the quality of the recovery schedule and the computa-
tion time. In contrast, we solve this challenge by developing the
environment of RL to make decisions in discrete minutes.

3. Problem statement

3.1. Characteristics of aircraft, flights, and flight schedule require-
ments

When the AOCC implements the aircraft recovery, the charac-
teristics of the aircraft and flights should be considered. In actual
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ractice, the AOCC usually swaps aircraft of the same ‘subfleet’
i.e., category of aircraft types). Moreover, the minimum TAT of
ach aircraft type is different. The minimum TAT depends on the
ize of the aircraft. The bigger the aircraft, the longer the TAT.
onsidering the above characteristics, we set the following two
onstraints.

(1) Each aircraft can be swapped with the aircraft that belongs
to the same subfleet.

(2) The TAT of each aircraft type is different.

Flights on the schedule are implemented by designated air-
raft. Each flight is assigned an origin airport, a destination air-
ort, a flight number, a scheduled time of departure (STD), an
ctual time of departure (ATD), a scheduled time of arrival (STA),
nd an actual time of arrival (ATA). The STD and STA are deter-
ined in the initial flight schedule, and the ATD and ATA are
etermined after the event of a flight is implemented. If flight
elays happen, the ATD or ATA is later than the STD or STA.
urthermore, the flying duration between an origin airport and
destination airport is fixed. Therefore, differences between the
TA and STD, and the ATA and ATD are equivalent, unless a
estination airport is closed during the time the aircraft planned
o arrive is still in the air. In addition, we consider the following
hree requirements, which the flight schedule must satisfy.

(1) Minimum TAT: When an aircraft lands at the destination
airport, a certain amount of time is necessary for preparing
the next flight (e.g., runway taxiing, cabin cleaning, refuel-
ing, catering). This time is defined as TAT. The ground times
of the aircraft for consecutive flights must be longer than
a minimum TAT.

(2) Aircraft balance: The number of aircraft in each airport
should be equivalent at the start and end of the day. With-
out the aircraft balance requirement, another disruption
will occur the following day.

(3) Flight connection: In two consecutive flights of an aircraft,
the destination airport of the prior flight and the origin
airport of the subsequent flight should be the same.

.2. Definitions of disruptions and recovery options and objectives of
he problem

There are many types of flight disruptions, but we consider
nly one kind: the disruption that occurs when the airport is
losed temporarily. Fig. 1 represents the example of disruptions
hat occurred by temporary closures of airports. When the airport
s closed, flights planned to depart or arrive are postponed until
he closed airport reopens. Because of this disruption, consid-
rable delays occur in disrupted flights, and also subsequent
lights could be affected by delay propagation. Moreover, the
ircraft ground handling could take more time than usual due
o airport congestion after closure. Therefore, the minimum TAT
s increased for a certain period from the reopening time of the
irport. We refer to this period as the ‘extension period’ and the
ncreased minimum TAT as the ‘extension time.’ To reflect this
roblem, we assumed that the TAT increased (extension time) for
certain period of time (extension period) at a closed airport, and
e used the term ‘TAT extension’ to refer to this condition. For
xample, assume the situation that the airport is closed from 2:00
.m. to 3:00 p.m., and the minimum TAT of the aircraft is 30 min.
f the extension period is set to three hours and the extension
ime is set to 15 min, every aircraft planned to depart between
:00 p.m. and 5:00 p.m. from the disrupted airport must satisfy
he extended minimum TAT, 45 min.

As mentioned in Section 1, there are four types of recovery
ptions that minimize the damage of disruptions as much as
 t

4

possible. In real practice, flight cancellations and ferrying are used
as a last resort because these options incur a lot of cost [38].
Because of these reasons, many research studies did not consider
cancellation and ferrying as recovery options [39–41]. We em-
ploy the following recovery options, except for cancellation and
ferrying.

(1) Delaying flight departures: The departure times of subse-
quent flights should be delayed until the connected re-
sources are ready (e.g., satisfaction for minimum TAT). This
recovery option could cause delay propagation to subse-
quent flights in the route.

(2) Swapping aircraft: During the recovery process, the AOCC
can change the aircraft for disrupted flights in order to
absorb flight delays. This is defined as swapping aircraft. In
daily schedules, each aircraft is assigned to a sequence of
flights (i.e., aircraft routes). Therefore, swapping aircraft is
equivalent to swapping the routes of aircraft, which means
that swapped aircraft have to complete one another’s re-
maining flights. To show the advantages of this option,
the simple example of swapping aircraft is illustrated in
Fig. 2. The flight schedule consists of flights, [f1, f2, f3, f4]
and aircraft [ac1, ac2]. In the original planned schedule, f1
and f3 are assigned to ac1, and f2 and f4 are assigned to
ac2. Assume that the ATA of f2 is equal to the STA of f2,
and assume that the ATA of f1 is later than the STA of
f1. If f1 and f3 are assigned to ac1 in accordance with the
initial planned schedule, the departure time of f3 should
be delayed for satisfying the minimum TAT requirement.
However, when f2 and f3 are reassigned to ac2, and when
f1 and f4 are reassigned to ac1, the ATD and STD are equal
for f2, f3, and f4. Therefore, with the aircraft swapping, the
AOCC can avoid departure delays of f3.

Turning now to the objectives of the ARP, we adopt three cases
ith different system objectives by considering the characteris-
ics of the air transport business. Among the two types of flight
elays, we consider departure delay for all objectives except for
ne, in which we consider an arrival delay. The adopted objectives
re as follows:

(1) To minimize the total delays of flights (Case A): This objec-
tive ensures the minimization of total delays on the overall
daily flight schedule. This is one of the most common
objectives that existing studies used.

(2) To minimize the number of flight delays of more than
30 min (Case B): Flight delay is a significant measure for
evaluating an airline’s on-time performance. Throughout
this study, we note flight delay when the actual event time
is late by more than 30 min, compared to the scheduled
event time in accordance with the regulation of the South
Korean government.

(3) To minimize the number of flight delays of more than zero
minutes (Case C): This objective ensures the punctuality of
airlines, which affects customer satisfaction and the brand
image of the airline. Punctuality is one of the most impor-
tant aspects that influences customer loyalty. Because of
the properties of airline service, customers tend to be loyal
to particular airline companies. These customers keep on
using a specific airline rather than changing to others, and
they influence a huge part of airlines’ revenues [42].

.3. Assumptions

We accommodate the following major assumptions used within

he modeling framework:
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Fig. 1. Disruptions by temporary closures of airport.
Fig. 2. Example of swapping aircraft.
(1) The flight schedule is a daily schedule. The initial flight
schedule always satisfies the aircraft balance requirement
for that day.

(2) The time horizon to recover the disrupted flight schedule
ranges from the start time of an airport’s closure to the end
of the day.

(3) The ATD of a flight cannot be earlier than the STD of a flight.

(4) The minimum TAT of each aircraft is different, depending
on the type of aircraft.

(5) Flight cancellations and ferrying are not allowed.
(6) The flying time between each airport is fixed.
(7) Every slot (e.g., landing and takeoff) is assumed to be

available.
(8) The event times of flights planned to land on or depart from

a closed airport are postponed until the reopening time.
(9) Although aircraft at a closed airport are in the air, aircraft

cannot land at the closed airport until the reopening time.

(10) When the flight is planned to arrive at a closed airport
during the closure and has not yet departed from the origin
airport, the departure times of the flight must be postponed
until the destination airport is reopened.

(11) If the aircraft takes the last flight in the sequence of flights
in the scheduled (initial) route, it cannot be swapped with
other aircraft. Therefore, this aircraft finishes the daily
schedule.

(12) The sequence of flights in every aircraft route must be
unchanged after swapping aircraft.

The above main assumptions were utilized to formulate the
athematical model in Section 3.4, and we designed the envi-

onment of flight schedule operation for the RL approach based
n these assumptions in Section 4.3. Assumptions (1)–(10) are
he same as those in Liu et al. [18]. These assumptions were
sed to reflect the situation that aircraft operation is disrupted
y airport closures. In addition, several studies also adopted these
ssumptions to simplify the problem [39,43].
5

We added Assumptions (11) and (12) for the following three
reasons. First, Assumption (11) prevents particular aircraft from
taking excessive flights. Second, because of Assumptions (1) and
(11), the aircraft balance requirement is satisfied. According to
Assumption (1), if each aircraft takes the last flight of initial
routes at the end of the daily schedule, the aircraft balance is
satisfied. Because Assumption (11) ensures that the last flights
of initial routes are carried out the latest by each aircraft, the
aircraft balance requirement is satisfied. Third, Assumption (12)
can reduce action space for the RL algorithm. In the early stage
of this research, we did not account for Assumption (12), and
the extensive action-state space that the agent visited caused
extreme flight delays and slowed convergence speed.

Swapping ‘arriving aircraft’ (i.e., the aircraft assigned to the
arrival event) with any aircraft could violate Assumption (12).
Therefore, in this study, the standard meaning of the ‘swappable
condition’ is used to indicate the status of the aircraft that satisfy
Assumption (12). We assume that the decision of swapping air-
craft is available at the arrival event of the aircraft. After swapping
arriving aircraft with each aircraft in the flight schedule, it is
required that they be classified according to whether they satisfy
Assumption (12) or not. A detailed explanation for generating
the candidates of aircraft that satisfy the swappable condition is
described in Appendix A.

3.4. Mathematical formulations

The time-line network mathematical model is one of the most
comprehensive and practical approaches for the ARP that utilizes
copies of flight arcs. This model is formulated based on network
flow, and a simple example of the time-line network is illus-
trated in Fig. 3. A single time-line network is utilized for a single
subfleet, as illustrated in Fig. 3. In order to take into account a
multi-fleet condition, we utilize |P| number of time-line networks
where P denotes the set of subfleets. There are three types of
nodes: supply (S), termination (T ), and intermediate (I) nodes.
The larger nodes shown in Fig. 3 are the supply and termination
nodes. The supply nodes supply aircraft at the beginning of the
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Fig. 3. Simple example of time-line network structure for a single subfleet.

time horizon of recovery, and the aircraft finish flight schedule
when the flow of aircraft is reached to the termination nodes.
The smaller nodes represent intermediate nodes and indicate the
departure or arrival event of flight at a specific airport and time.
There are two types of arcs in the time-line network: ground
(G) and flight arcs (N). The ground arcs represent the number
of aircraft on the ground preparing for the next flights at the
specific airport. The flight arcs consist of scheduled and delay arcs.
The scheduled arcs represent originally planned flight legs. For
considering delays on a particular flight, several delay arcs are
built to represent the series of options that move the departure
time of flight for later times. For instance, three delay options are
available for each of the three flights in Fig. 3. Therefore, in this
example, the set of arcs for each flight (N(f )) contains four flight
rcs: one scheduled arc and three delay arcs. At last, we define
he function h : N × P → F indicating the flight f covered by the
light arc n and for subfleet p.

Based on the problem defined in Sections 3.1 and 3.2, a mathe-
atical formulation of time-line network model is developed. The
otations used in the mathematical formulation are as follows:

Sets
F Set of flights
N Set of flight arcs (including scheduled and delay

arcs)
G Set of ground arcs
S Set of supply nodes
T Set of termination nodes
I Set of intermediate nodes
P Set of subfleets
R Set of aircraft routes
O+(i, p) Set of arcs originating at node i for subfleet p
O−(i, p) Set of arcs terminating at node i for subfleet p
N(f ) Set of flight arcs covering flight f ; N(f ) ⊂ N
N(r) Set of flight arcs belonging to the aircraft route r;

N(r) ⊂ N

Parameters
cnp Delays incurred for flight arc n for subfleet p
bsp Initial supply of aircraft at supply node s for

subfleet p
btp Number of aircraft required at termination node t

for subfleet p
ugp Capacity for ground arc g for subfleet p
th(n,p) Initial scheduled departure time of flight h(n, p)
t̃np Actual departure time of flight h(n, p) altered by

flight arc n for subfleet p

Decision variables
xnp Flow on flight arc n for subfleet p
zgp Flow on ground arc g for subfleet p
6

The following is the time-line network mathematical formu-
lation for the ARP (TLN). The model is developed based on the
mathematical formulation proposed by Thengvall et al. [36].

TLN

min
∑
p∈P

∑
n∈N

cnpxnp (1)

s.t.
∑

g∈G∩O+(s,p)

zgp +
∑

n∈N∩O+(s,p)

xnp = bsp, ∀s ∈ S,∀p ∈ P (2)

∑
g∈G∩O+(i,p)

zgp −
∑

g∈G∩O−(i,p)

zgp

+

∑
n∈N∩O+(i,p)

xnp −
∑

n∈N∩O−(i,p)

xnp = 0,
∀i ∈ I,∀p ∈ P (3)

∑
g∈G∩O−(t,p)

zgp +
∑

n∈N∩O−(t,p)

xnp = −btp, ∀t ∈ T ,∀p ∈ P (4)

∑
p∈P

∑
n∈N(f )

xnp = 1, ∀f ∈ F (5)

xnp ≤ xνp,
∀r ∈ R,∀p ∈ P,∀n, ν ∈ N(r) :(
th(n,p) ≤ th(ν,p)

)
∧

(
t̃νp < t̃np

)
(6)

xnp ∈ {0, 1}, ∀n ∈ N,∀p ∈ P (7)

0 ≤ zgp ≤ ugp, ∀g ∈ G,∀p ∈ P (8)

zgp ∈ Z, ∀g ∈ G,∀p ∈ P (9)

The objective function 1 is minimizing the total flight delays
incurred by disruption. The cnp is modified according to the cor-
responding objective. Constraints represent the aircraft balance
constraints. Constraint 3 is the balance equation for intermediate
nodes. Constraint 5 is the flight cover constraint, which ensures
that every flight is implemented at the scheduled time or delayed.
Constraint 6 is the route sequence constraint, which ensures
Assumption (12). Constraint 7 is a binary constraint. Constraint
8 is the capacity constraint for ground arcs. Constraint 9 ensures
that the flow of ground arcs is integer.

There are three weak points in this model. First, without
Constraints 5 and 6, this problem is equivalent to the single com-
modity flow problem, which is a well-solved problem. However,
the single commodity flow problem becomes an NP-hard problem
by adding the side constraint, Constraint 5 [44]. Second, a trade-
off between quality of recovery schedule and computation time
exists because creating delay arcs is necessary to account for
delaying flight departure. The more delay arcs could guarantee
better solution quality while the problem size increases. Further-
more, when there were not enough delay arcs, a feasible solution
could not be guaranteed. Third, because the decision variables of
this model represent the flow of flight and ground arcs of aircraft,
an additional algorithm is required to transform the arc-based
solutions to route-based solutions.

Unlike the methods mentioned above, we interpret the ARP
as sequential decision-making and develop an MDP model for
this problem. In addition, we utilize the RL algorithms to find the
optimal policy in the MDP. In this manner, we can adopt delay
options for every discrete time (minutes). Also, constructing flows
of aircraft and aircraft routing can be implemented simultane-
ously. By using the MDP model and RL algorithms in the ARP, the
proposed solution approach does not depend on copies of flight
arcs, which can be the answer to the research question (1).

4. Reinforcement learning for aircraft recovery

Recently, many optimization methods have been developed
to solve decision problems. A lot of exact algorithms (e.g., dy-
namic programming, LP-based algorithms, and decomposition
algorithms) are widely used to derive the optimal solution, and a
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Fig. 4. Framework of reinforcement learning.

ommercial optimization solver has been improved to solve the
ifferent types of problems. However, there are many challenging
ecision problems (i.e., NP-hard problems) in the optimization
esearch area. Even though the computing power has increased,
t is still difficult to find a ‘good’ solution for NP-hard problems
ithin the proper computation time. In several real cases (e.g., a
outing problem in the navigation business or an evacuation
roblem after a disaster), it is more important to get a suboptimal
olution within the proper times than to derive an optimal solu-
ion by spending a lot of time in computation. To address these
ssues, advanced optimization algorithms, such as heuristics and
etaheuristics, have been developed and widely used in many
ecision problems. Not only have heuristics and metaheuristics
een specialized in decision problems, they have also been uti-
ized in many different domains, such as in the machine learning
esearch area [45–47].

The RL approach, which belongs to the machine learning tech-
ique, directly mitigates two potential issues of classical dynamic
rogramming (i.e., the curse of dimensionality and the curse of
odeling) when solving large-scale problems [48]. Many opera-

ion management and combinatorial optimization problems have
een solved using RL algorithms within the reasonable compu-
ation times [49,50]. Also, the RL approach has achieved great
uccess in solving complex sequential decision-making problems,
nd many researchers in operations management take a profound
nterest in the RL approach. This solution approach has been
idely employed in various domains: energy management, trans-
ortation, and health care [51–53]. As indicated in Section 3.4,
he ARP is classified as a challenging decision problem. Motivated
y the above successes of RL, we adopt RL as our main solution
pproach to solve the ARP and to get a ‘good’ solution within the
roper computation times.
Being able to apply the RL to aircraft recovery, environment,

gent, and MDP adequate to the given problem is significant.
ection 4.1 describes the interaction between the agent and the
nvironment, the action-value function, and the exploration–
xploitation dilemma. Section 4.2 explains the structure of the
nvironment of flight schedule operation. Section 4.3 presents the
etails of states, actions, and reward functions of MDP.

.1. Principles of reinforcement learning

RL is an agent-based approach to finding an optimal policy
hat would maximize cumulative rewards by trial and error in
given environment. Through interaction with the environment,
he agent discovers the optimal or near-optimal action at at a
specific state st . The reward rt and the next state st+1 are observed
when the agent takes action at . By observing the reward signal,
the agent can assess the quality of action. Fig. 4 depicts how the
agent interacts with the environment. In this study, the agent
corresponds to the AOCC, which makes decisions for aircraft
recovery; and the flight schedule system, which includes every
aircraft, flight, airport, and timetable, is the environment.
7

Because RL is a framework for sequential decision making,
we consider not only immediate reward rt but also long-term
rewards. In such a setup, the agent seeks to maximize the return,
which is defined as the sum of future discounted rewards: Gt =∑
∞

k=n+1 γ k−t−1rk. The policy is the agent’s way of establishing
behavior in a given situation. It can be defined as a mapping
from states to probabilities of each action: π (a|s). The action-
value function qπ (s, a) estimates the quality of taking an action
at the state s following policy π [54]. The action-value function

qπ (s, a) expects the return Gt starting with the state s, taking
action a under policy π : qπ (s, a) = Eπ [Gt |st = s, at = a]. The
purpose of RL is to find optimal policies (π∗) which share optimal
action-value function: qπ∗ (s, a) = maxπ qπ (s, a).

Among valid actions, the agent takes action at at the state st
epending on qπ (st , at ). If the agent always takes action with the
aximal value of the action-value function, it is a suitable strat-
gy to maximize return on the immediate step (exploitation). In
rder to produce better total rewards in the long term, however,
t is necessary to choose other valid actions (exploration). This
hallenge is referred to as the exploration–exploitation dilemma.
arious methods have been proposed to balance exploration and
xploitation, and the ε-greedy is one of the most commonly used
trategies. The ε-greedy takes action a in accordance with the
ollowing policy:

(a|s)←

{
1− ε + ε

|A(s)| if a = argmaxa Q (s, a) (a)
ε
|A(s)| otherwise (b)

(10)

here A(s) denotes the action space at state s. In addition to the
-greedy, we adopt an optimistic initialization. The ε-greedy with
ptimistic initialization is effective on stationary problems [54].
his method biases the initial action-value estimates and ensures
xtensive exploration. In this study, we initialize action-value
stimates to zero and employ negative rewards. Then, the reward
s less than any starting estimates of action-value, causing exten-
ive exploration in the early stage. We set parameter ε to 0.97n

here n means the number of the current episode. Therefore, ε,
he probability of choosing an action for exploration, decays over
ime. The first learning episode could start with a big ε. However,
converges to a small value with the learning process.

.2. Environment

We built an artificial environment of flight schedule operation
ased on the assumptions in Section 3.3. Fig. 5 represents the
tructure of the environment. One execution of the flowchart in
ig. 5 is defined as one episode for the RL approach. There are
hree principal elements in the proposed environment. The first
lement is aircraft routes. There are two types of routes: the
cheduled and the actual route. Initially, every aircraft is assigned
o the scheduled route. After a disruption, the AOCC reroutes
ircraft by swapping each aircraft’s scheduled routes, and the
ctual routes for aircraft are established at the terminal state.
he second element is the aircraft. There are several states of
ircraft that contain the status of each aircraft at a given time
e.g., flying status, assigned route, and location). Based on the
tates of aircraft, the valid actions are determined. The third
lement comprises events of flights. The database of the flight
vents is utilized, and it contains the information of the actual
ime of flight events, and whether a given flight is implemented
r not.
In the initialization stage, the state of the simulation is up-

ated based on the input instance: flight schedule and disruption
nformation. The time step is defined as events of flights, and
here are two events in a flight: departure and arrival. Among
he departure or arrival events of flights not implemented yet,
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Fig. 5. Structure of the environment.
a
a

the earliest one to occur is first designated to the time step,
and a single aircraft is assigned to the corresponding event. The
terminal state of each episode is the time step when the latest
arrival of a flight is executed.

At the arrival event, the AOCC can decide which aircraft will
swap with arriving aircraft. In other words, there are |F | decision
points for each day of operation. If the AOCC decides not to swap
aircraft, only the states of arrived aircraft are updated. Otherwise,
if two aircraft are determined to swap their assigned routes,
the states of those two aircraft are updated. At the departure
event, if the ground time of ‘departing aircraft’ (i.e., the aircraft
assigned to the departure event) does not satisfy the minimum
TAT requirement, the AOCC delays the actual departure time until
the minimum TAT is met. In contrast to TLN, the proposed RL
framework always guarantees a feasible solution, owing to the
above mechanism.

4.3. Markov decision process

The problem of RL can be formalized as MDPs, which is a
mathematical formulation for sequential decision making. The
MDP is defined as a tuple (S, A, R, P, γ ) that is composed of
five components— a set of states, S; a set of actions, A; the
reward function, R; the transition probability function, P; and the
discount factor, γ . The MDP model is utilized to simulate the
behavior of the system under the environment of flight schedule
operation, which is presented in Section 5.2 [55].

In every time step, the agent receives states from the envi-
ronment and takes action based on those current states. Among
lots of information in the environment, the information that is
essential for the learning agent is defined as the MDP’s state.
We combine the states of aircraft and the event information to
define the state of MDP (s, i). The states of aircraft are as follows:
8

future route, previous route, and binary parameter for indicating
whether aircraft is flying or on the ground. Let uc ∈ U , pc ∈ P ,
and bc ∈ B denote future routes, previous routes, and the binary
parameter of aircraft c ∈ C where U , P , B, and C represent the
set of future route, previous route, binary parameter, and aircraft
in flight schedule, respectively. Because all aircraft in the flight
schedule has this state, the state of aircraft, s, is defined as the
following tuple: s = (u1, . . . , u|C |, p1, . . . , p|C |, b1, . . . , b|C |)

Because the number of routes is equal to the number of
ircraft in the flight schedule, sets of previous and future route
re as follow: U = {1, 2, 3, . . . , |C |}, P = {1, 2, 3, . . . , |C |}. The

future route means the route that an aircraft is going to take
for departing immediately after. This route is determined by the
time point when an aircraft is planned to be assigned for the next
departure. Because each aircraft is assigned one-on-one with the
route, the size of future route space for all the aircraft is equal
to |C |!. The previous route is defined as the route that an aircraft
took for departing immediately before. This route is determined
by the time point when an aircraft was most recently assigned for
the past departure. The size of the previous route space for all the
aircraft is equal to |C ||C | because the assigned previous route of
aircraft can be overlapped. When the aircraft c is on the ground,
the binary parameter (bc) is zero, otherwise one. Therefore, the
size of this state space for all aircraft is equal to 2|C |.

The event information represents the type of event on every
flight. Because there are two types of events in each flight, the
size of state space of the event information is equal to 2|F |, where
F is the set of flights in the flight schedule. The set of states of
the event information, I , is as follows: I = {1, 2, 3, . . . , 2|F |}. The
state of the MDP at given time step, t , is denoted as a tuple: (st , it ),
∀st ∈ S, ∀it ∈ I . Therefore, the total size of the environment state
space is equal to (2|C |)|C |+1|F ∥ C − 1|!. Even though the size of
state space is extensive, the actual visited state is relatively small



J. Lee, K. Lee and I. Moon Applied Soft Computing 129 (2022) 109556

d
e
b
f
t
t
r
b

I
r
d
e
v
δ

ρ

f

e

ue to the fact that the state is not dramatically rearranged at
ach time step. The maximum number of state elements that can
e changed at each time step is five: (i) the previous, and (ii) the
uture route, and (iii) the binary parameter of aircraft assigned to
he event, and (iv) the future route of swapped aircraft, and (v)
he event information. In addition, the overlapping of previous
outes seldom occurs in the environment due to the time interval
etween flights.
In this study, the action set, A, is defined as all aircraft op-

erating on the flight schedule. The action selected at each time
step, t , is at ∈ A, which represents an aircraft swapped with
the departing or arriving aircraft. The action space is defined as
follows: A = {1, 2, . . . , |C |}. However, valid action space size is
one at the departure event since the AOCC can swap aircraft at
the arrival event. Moreover, at the arrival event, the action space
can be reduced due to the swappable condition. We provide a
small example of states changed by the actions in Appendix B to
help readers to understand easier.

The reward function defines the purpose of the agent and
indicates what is a good or bad action at a specific state within
the environment. Formulating a reward function appropriate to
the objectives of RL problem is important for guiding the agent to
achieve its goal. We define three reward functions in accordance
with each objective. We indicate tdf as the STD, and t̃df as the ATD
of flight f ∈ F . In Case A, reward rt is the departure delay of flight
f (rt = min{tdf − t̃df , 0}). In Case B, if the departure delay of flight f
is more than 30 min (t̃df −t

d
f > 30), reward rt is−1, otherwise 0. In

Case C, if the departure delay of flight f is more than zero minutes
(t̃df − tdf > 0), reward rt is −1, otherwise 0. By simply altering
reward functions for corresponding objectives, the RL approach
can flexibly adapt to various objectives, which can be the answer
to the research question (2).

The discount factor, γ , determines how much emphasis is
given to immediate rewards. If γ is close to 0, it means that the
agent puts more importance on immediate rewards. On the other
hand, there is more emphasis on the future rewards when γ is
close to 1. The parameter setting of the discount factor will be
explained in Section 6.

5. Reinforcement learning algorithms

In this section, we present RL algorithms for solving the ARP.
Among the various RL algorithms, we adopt QL and DQL. Sec-
tion 5.1 presents the concept and procedure of QL algorithm.
Section 5.2 examines the overestimation bias problem of QL
algorithm and presents DQL algorithm, which alleviates the over-
estimation bias.

5.1. Q-learning algorithm

As was stated in Section 4.1, the purpose of solving the MDP
is that finding the optimal action-value function at the state and
action pairs [(st , it ), at ]. Based on the classical dynamic program-
ming, we can find the optimal action-value function by utilizing
the Bellman optimality equation [56]. However, in problems in-
volving complicated systems with numerous states, it is difficult
to compute the values of the transition probability. This difficulty
is called the ‘curse of modeling’ [48]. In contrast with dynamic
programming, model-free algorithms of RL do not need to calcu-
late the transition probability. QL is the RL algorithm utilizing the
model-free concept and employs Bellman equation and temporal
difference learning [57]. Especially, temporal difference learning
generalizes beyond the Robbins–Monro algorithm, which is a
representative method in a stochastic approximation [58]. By

approximating the optimal action-value, it is not necessary to

9

compute the transition probability, and QL can avoid the curse
of modeling.

Due to the property of the off-policy approach, QL utilizes
two independent policies: a behavior policy and a target policy.
The agent takes action at based on the value of the learned
action-value function, Q function, and follows a behavior policy
(i.e., ε-greedy policy) for (st , it ) while learning with a target policy
(i.e., greedy policy) for (st+1, it+1). We initialize the Q function to
zero for all states and actions at the first stage, and we update the
Q function until the end of the learning. The current state of the
Q function, Q [(st , it ), at ], is updated by the next states of the Q
function, Q [(st+1, it+1), a′], with the greedy action. The learned Q
function approximates the optimal action-value by updating with
the following equation iteratively:

Q [(st , it ), at ] ← Q [(st , it ), at ] + α

[
rt + γ max

a′
Q [(st , it ), a′]

− Q [(st , it ), at ]
]

(11)

n this equation, α is the step size parameter of the learning
ate of temporal differences δt . Utilizing the concept of temporal
ifferences, the agent can avoid having to wait until the end of
ach episode, and can update the Q function immediately after it
isits a pair of states and actions. The Q function is updated with
t , depending on the size of the learning rate, α, which determines
the step size in δt direction. Moreover, since our problem is a
stationary problem, we compare the total reward of the episode
(ρ), which is a summation of observed rewards rt in an episode,
with the maximum total reward of the episode (ρmax) and update
the maximum value. The procedure of QL algorithm is presented
as follows:

Algorithm 1 Q-learning.
Initialize Q [(s, i), a], for all s ∈ S, i ∈ I , a ∈ A
max ←−∞

or each episode do
ρ ← 0, t ← 0
while it is not the terminal state do

Choose at using ε-greedy policy based on Q [(st , it ), a]
Take action at and observe rt , (st+1, it+1)
ρ ← ρ + rt
δt ← rt + γ maxa′ Q [(st+1, it+1), a′] − Q [(st , it ), at ]
Q [(st , it ), at ] ← Q [(st , it ), at ] + αδt
t ← t + 1

end
ρmax ← max{ρmax, ρ}

nd

5.2. Overestimation bias and double Q-learning algorithm

Even though QL has been successfully applied to many dif-
ferent applications, QL can sometimes overestimate action-value
functions (the overestimation bias). The performance of QL al-
gorithm suffers from the overestimation bias, which can impede
the agent from learning an optimal policy and have a negative
impact on the convergence rate [59]. This problem is caused by
the noise in the environment and the property that utilizing a
single estimator and the max operator to determine the value of
the next state [60].

DQL can alleviate the overestimation bias by employing the
double estimator, Q A and Q B. In contrast with QL, one of the Q
functions in DQL is chosen randomly determined between Q A and
Q B for separating sets of experiences. The updating process of
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QL uses the following equations:

A
[(st , it ), at ] ← Q A

[(st , it ), at ] + α

[
rt + γQ B

[(st+1, it+1),

argmax
a′

Q A
[(st+1, it+1), a′]] − Q A

[(st , it ), at ]
]
(12)

Q B
[(st , it ), at ] ← Q B

[(st , it ), at ] + α

[
rt + γQ A

[(st+1, it+1),

argmax
a′

Q B
[(st+1, it+1), a′]] − Q B

[(st , it ), at ]
]
(13)

In the process of updating the Q function, each Q is updated
by the next state of the other Q function. In QL example, in cases
in which Q A is chosen, Q A

[(st+1, it+1), aA] is used for the next
state value to update Q A, where aA = argmaxa′ Q A

[(st+1, it+1), a′].
However, in DQL, Q B

[(st+1, it+1), aA] is used for the next state
value, in which each Q can learn from different sets of experience.
Both Q functions are unbiased estimators of true action-value
because they are updated on the same problem, and the ex-
perience of each Q is different. Therefore, the overestimation
bias can be alleviated in Double Q-leaning, though using double
estimators sometimes underestimates the action-value functions.
For detailed proof of the principles of DQL, refer to Hasselt [60].
The procedure of DQL algorithm is presented as follows:

Algorithm 2 Double Q-learning.
Initialize Q A

[(s, i), a], and Q B
[(s, i), a], for all s ∈ S, i ∈ I , a ∈ A

ρmax ←−∞

for each episode do
ρ ← 0, t ← 0
while it is not the terminal state do

Choose at using ε-greedy policy based on Q A
[(st , it ), a] +

Q B
[(st , it ), a]

Take action at and observe rt , (st+1, it+1)
ρ ← ρ + rt
x← generateRandom(0, 1)
if x < 0.5 then

aA ← argmaxa′ Q A
[(st+1, it+1), a′]

δAt ← rt + γQ B
[(st+1, it+1), aA] − Q A

[(st , it ), at ]
Q A
[(st , it ), at ] ← Q A

[(st , it ), at ] + αδAt
else

aB ← argmaxa′ Q B
[(st+1, it+1), a′]

δBt ← rt + γQ A
[(st+1, it+1), aB] − Q B

[(st , it ), at ]
Q B
[(st , it ), at ] ← Q B

[(st , it ), at ] + αδBt
end
t ← t + 1

end
ρmax ← max{ρmax, ρ}

end

6. Computational experiments

In this section, we conducted three computational experi-
ents to answer the research questions (3), (4), and (5) in Sec-

ion 1. In Section 6.1, in order to measure the performance of
ur algorithms, we compare QL and DQL with MMGA, and TLN
aking into account the same problem definition of Liu et al. [18].
n Section 6.2, for validating the proposed approach to real-world
pplication, we conduct experiments with the flight schedule
f a Korean domestic airline, taking into account realistic con-
traints (e.g., TAT extension and multiple fleet conditions). In
 m

10
Section 6.3, to verify proposed RL algorithms are customizable
for various objectives, we implement experiments with different
reward functions. All experiments were conducted based on the
computational environment, AMD Ryzen 7 2700X Eight-Core Pro-
cessor with 32 GB of RAM in Windows 10. Every algorithm and
the artificial environment was coded using Python 3 language.
TLN was conducted with FICO Xpress 8.5 and Xpress-Optimizer
version 33.01.02, which is a general-purpose mixed-integer pro-
gram solver. Research questions (3), (4), and (5) are answered
by Sections 6.1, 6.2 and 6.3, respectively. At last, we suggest
several managerial insights that are helpful for airline operation
decision-making in Section 6.4.

6.1. Comparison between reinforcement learning and existing algo-
rithms

In this section, we employ the flight schedule presented in Liu
et al. [18], which consists of four airports, 70 flights, and seven
aircraft of a single fleet. For every aircraft, the minimum TAT
is 30 min. Because of the property of a short-haul flight sched-
ule, most of the time intervals between flight legs are equal to
the minimum TAT. The experiments were conducted within the
disruption scenario in which the Taipei Sungshan (TSA) airport
was closed at 2:00 p.m. and reopened at 3:00 p.m. All of the
flights scheduled to depart or arrive at TSA between 2:00 p.m. and
3:00 p.m. were delayed until the airport was reopened. In order
to compare the performance of TLN, MMGA and our proposed
RL algorithms, we excluded multiple fleet and TAT extension
conditions. We set the value of the discount factor, γ , to 0.9
and the learning rate, α, to 0.95 for all experiments. To properly
valuate the performances of QL and DQL, we implemented 50
earning runs with different random seeds. Although we could
ind a better quality of the solution with a long length of training
pisodes, we set the end of the episodes to 3,000. In some ex-
eriments, we observed that after a particular episode, the total
eward of each episode (ρ) did not change and converged to
specific value in some experiments. Therefore, we included a

convergence episode’ to ensure that the agent does not imple-
ent avoidable training episodes. In this study, the ‘convergence
pisode’ stands for the number of episodes in which the value
f ρ is the same across 500 episodes. In other words, when
he convergence episode is small, the speed of convergence is
aster. One learning run is terminated, and computation time is
alculated at the convergence episode or the episode 3,000.
We utilized the ‘Without Swapping’ (WSAP) and MMGA for

omparing the performance of QL and DQL. The WSAP is a recov-
ry method in which the swapping aircraft is not considered for
he recovery option. Thus, all the aircraft always were assigned
o their initial scheduled routes. A supplementary explanation
nd pseudocode of WSAP is added to Appendix C. The MMGA,
hich was proposed by Liu et al. [18], is a multi-objective genetic
lgorithm with the MOI. The multiple objectives consist of two
ard constraints and three soft constraints. The hard constraints
re minimum TAT and flight connection requirements, which
ecide whether the solution is feasible or not. The soft constraints
re equivalent to the objectives of this study (i.e., Cases A, B, and
).
Detailed experiment results are illustrated in Table 1. As stated

n Section 4.3, we employed different reward functions for each
bjective of Cases A, B, and C. The objective value stands for the
aximum value of the total rewards in every episode (ρmax). The

esults of the objective value, convergence episode, and compu-
ation time was obtained from averaging results of 50 runs with
ifferent random seeds. For Case A, DQL, QL, and TLN attained
he best objective values, and except for WSAP, every solution
ethod attained the same objective values for Case B. For Case
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Table 1
Comparison of algorithms for the ARP.
Case Method OBJa Conv epb CPUsc Gapd (%)

A DQL 430.00 2,243.22 52.42 0.00
QL 430.00 2,125.94 46.51 0.00
TLN 430.00 – 127.13 0.00
MMGAe 435.00 – In minutes 1.16
WSAP 525.00 1.00 0.03 22.10

B DQL 6.00 2,096.36 49.22 0.00
QL 6.00 1,855.92 40.20 0.00
TLN 6.00 – 126.06 0.00
MMGAe 6.00 – In minutes 0.00
WSAP 7.00 1.00 0.03 16.67

C DQL 13.00 2,302.30 55.03 8.33
QL 13.00 3,000* 67.09 8.33
TLN 12.00 – 117.02 0.00
MMGAe 14.00 – In minutes 16.67
WSAP 17.00 1.00 0.03 41.67

aOBJ : −ρmax .
Conv ep : Convergence episode.
CPUs : Computation time in seconds.
Gap (%) := OBJ by each method − OBJ by TLN

OBJ by TLN × 100.

The results of MMGA are referred from Liu et al. [18].
End of the episode was reached.

Table 2
Aircraft information of the flight schedule of a Korean domestic airline.
Aircraft type Units TAT (min) Substitutions

A220 11 40 A220
B737 5 40 B737
B777 2 50 B777, A330
A330 2 50 B777, A330

C, TLN attained the best objective values compared to other
methods. However, DQL and QL took much less computation time
for solving the problems compared to TLN and MMGA for every
objective. Although WSAP could solve in 0.03 s, the quality of the
solution was much poorer than the solution of other algorithms.
The proposed RL approach could finish computing around one
minute in every experiment, but TLN and MMGA required several
minutes to solve the problem. Moreover, the objective values of
QL and DQL were always the same regardless of different random
seeds.

6.2. Aircraft recovery for a complex real-world case: a Korean do-
mestic airline

In this section, the flight schedule of an August 2020 domestic
light schedule from one of the airlines in South Korea was used as
he input for further analysis. There are 20 aircraft operating 94
lights from six airports: Gimpo (GMP), Jeju (CJU), Busan (PUS),
lsan (USN), Cheongju (CJJ) and Gwangju (KWJ). The reasons
hy this study implemented a case study in South Korea, and
he detailed description of the input data set were discussed in
ppendix D. Table 2 presents the information of the number
f aircraft, the minimum TAT, and the types of aircraft that
ould be swapped for each type of aircraft. The aircraft consisted
f four types, and the minimum TAT of each type of aircraft
as different. Moreover, there are three subfleets: (i) A220, and
ii) B737, and (iii) B777 and A330. The feasible types of aircraft
hat could be swapped were different depending on each aircraft.
n contrast with Section 6.1, we considered the TAT extension
nd multiple fleet conditions in this experiment. We compared
he performance of QL, DQL, and WSAP, without TLN and MMGA,
hich cannot be applied to the TAT extensions and multiple fleet
onditions.
11
Ten disruption scenarios of airport closures were proposed to
validate the efficiency of the algorithms. The detailed information
of the scenarios is summarized in Table 3. All times in the cate-
gory of closed periods were reported in minutes. The disruption
scenarios were chosen for covering a wide range of disruption
types with the following properties. First, the closed airport was
determined in light of the traffic volume at that airport. Consid-
ering the characteristics of airports in South Korea, the closed
airports corresponding to high, medium, and low traffic volumes
were selected as the CJU, GMP, and CJJ, respectively. Second, the
simulated scenarios considered the various lengths of the closed
periods of airports. The closed periods of airports for the scenarios
were decided based on the fact that the closed periods in real-
world cases at Jeju are usually about one to two hours. Third,
because airports that have been closed for a long time are usually
more congested, scenarios with longer closed periods of airports
had more extended periods and TAT extensions.

The detailed results for every scenario are presented in Table 4.
The experimental results were obtained by averaging the results
of five runs with different random seeds. We could note that QL
and DQL outperformed WSAP, and especially DQL showed the
best performance in terms of objective values. Furthermore, DQL
and QL completed learning within two minutes in all experi-
ments, but two out of 30 (i.e., DQL for Cases B and C in Scenario
4). Even in these two experiments, the computation time was
close to two minutes. Therefore, utilizing the RL algorithms is
appropriate for real-time decisions based on the fact that it is
recommended that the process should be less than three minutes
for real-time decisions in actual practice [29].

Fig. 6 shows how the length of the closed period affects the
flight operations depending on the traffic volume in the airport.
As the length of the closed period increased, the flight schedule
was affected severely at every airport. In particular, CJU (high
traffic volume) was affected much more severely compared to
GMP (middle traffic volume), and CJJ (low traffic volume) as
the scale of disruption became large. For example, when the
disruption occurred in the CJU, the total delays of Scenario 4
increased dramatically compared to Scenario 2 (to 1,545 from
154.2). However, in the case of the CJJ, the increase of the total
delays between Scenarios 8 and 10 was relatively small (to 234
from 90).

Fig. 7 shows the learning curves of QL, DQL, and WSAP for
Cases A, B, and C in Scenario 2. The solid line depicts the learning
curve of QL. The dashed line depicts the learning curve of DQL,
and the flat dotted line depicts the objective value of WSAP. The
learning curves were obtained by averaging the value of ρ of five
learning runs with different random seeds. We set the length
of the training episode to 10,000 to compare the performance
of DQL and QL in detail. Considering the experiment for the
flight schedule of a Korean domestic airline, QL suffered from the
convergence problem due to the overestimation bias. However,
DQL alleviated challenges of convergence compared to QL. In Case
B, DQL, QL, and WSAP had the same result of objective value, one,
and DQL converged faster than QL. However, in Cases A and C, QL
could not learn a policy that improves the value of ρ continuously
until the end of training episodes, and the value of ρ diverged. On
the other hand, DQL showed steady improvement and learned a
policy that led to the best solution quality among the comparison
algorithms. Also, in contrast with QL, the ρ of DQL converged to
the lowest value.

6.3. Validation for different objectives

Turning now to evaluating whether the reward functions de-
fined in Section 4.3 have good performance for each objective, we
compare three DQL with different reward functions. Throughout
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Table 3
Information of disruption scenarios.
Scenario Closed period Closed airport TAT extension

Extension
period

Extension
time

1 840∼900 (1 h) CJU – -
2 840∼900 (1 h) CJU 3 h 10 min
3 900∼990 (1.5 h) CJU 4 h 15 min
4 860∼980 (2 h) CJU 5 h 20 min
5 890∼950 (1 h) GMP 3 h 10 min
6 860∼950 (1.5 h) GMP 4 h 15 min
7 870∼990 (2 h) GMP 5 h 20 min
8 900∼960 (1 h) CJJ 3 h 10 min
9 860∼950 (1.5 h) CJJ 4 h 15 min
10 840∼960 (2 h) CJJ 5 h 20 min
Table 4
Comparison of algorithms for the flight schedule of a Korean domestic airline.
Scenario Method Case A Case B Case C

OBJ Conv ep CPUs OBJ Conv ep CPUs OBJ Conv ep CPUs

1 DQL 120.00 3,000* 116.22 1.00 1,202.80 45.32 8.00 3,000* 117.38
QL 119.00 3,000* 109.80 1.00 2,060.80 73.76 8.00 3,000* 109.32
WSAP 135.00 1.00 0.05 1.00 1.00 0.05 10.00 1.00 0.05

2 DQL 154.20 2,981.20 116.97 1.00 1,202.80 45.37 11.00 3,000* 118.51
QL 161.00 3,000* 110.06 1.00 2,060.80 73.84 11.80 3,000* 109.73
WSAP 160.00 1.00 0.05 1.00 1.00 0.05 13.00 1.00 0.05

3 DQL 1,128.00 1,351.20 47.43 16.00 2,571.60 92.67 24.00 3,000* 109.07
QL 1,128.00 1,264.20 41.78 16.00 3,000* 102.19 24.00 2,569.20 86.90
WSAP 1,310.00 1.00 0.05 19.00 1.00 0.05 27.00 1.00 0.05

4 DQL 1,545.00 2,393.00 96.28 19.00 3,000* 121.62 29.00 3,000* 122.56
QL 1,545.00 3,000* 114.56 19.00 3,000* 114.39 29.00 3,000* 115.02
WSAP 1,765.00 1.00 0.05 22.00 1.00 0.05 32.00 1.00 0.05

5 DQL 145.60 2,737.80 95.69 2.00 1,739.40 59.53 8.00 3,000* 105.56
QL 142.00 3,000* 98.16 2.00 576.20 17.92 8.00 3,000* 98.60
WSAP 385.00 1.00 0.05 6.00 1.00 0.05 12.00 1.00 0.05

6 DQL 459.20 3,000* 114.72 6.00 3,000* 114.53 12.00 3,000* 114.94
QL 481.00 3,000* 107.15 6.00 673.60 22.96 12.60 3,000* 107.30
WSAP 695.00 1.00 0.05 10.00 1.00 0.05 16.00 1.00 0.05

7 DQL 888.00 3,000* 114.27 7.00 3,000* 114.25 19.00 3,000* 114.74
QL 918.00 3,000* 107.07 7.80 3,000* 106.57 19.00 3,000* 107.03
WSAP 1,235.00 1.00 0.05 12.00 1.00 0.05 20.00 1.00 0.05

8 DQL 90.00 3,000* 99.35 0.00 3,000* 99.02 7.00 2,935.60 97.04
QL 90.00 3,000* 92.65 0.00 640.00 18.86 7.00 3,000* 92.57
WSAP 140.00 1.00 0.00 0.00 1.00 0.05 11.00 1.00 0.05

9 DQL 147.00 2,919.40 105.81 1.00 3,000* 108.65 8.80 2,917.40 105.98
QL 165.00 3,000* 101.88 1.00 698.40 22.76 9.00 3,000* 101.61
WSAP 235.00 1.00 0.05 3.00 1.00 0.05 12.00 1.00 0.05

10 DQL 234.00 3,000* 116.04 1.60 3,000* 115.93 8.00 3,000* 116.29
QL 237.00 3,000* 108.58 1.20 3,000* 108.74 10.00 3,000* 108.35
WSAP 320.00 1.00 0.05 3.00 1.00 0.05 12.00 1.00 0.05

*End of the episode was reached.
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this study, we use the terms ‘DQL for Cases A, B, and C’ to indicate
DQL algorithm that applies appropriate reward functions for each
objective. ‘DQL for Case A’ applies min{tdf − t̃df , 0} for reward
unction and the others apply different reward functions defined
or each objective (see Section 4.3).

Table 5 shows the performance of DQL for Cases A, B, and C in
very objective. The objective values were obtained by averaging
he results of five learning runs at the convergence episode. DQL
ith appropriate reward functions outperformed other reward

unctions for customized objectives in all but three experiments
ut of 30. In particular, DQL for Case A had the lowest objective
alue for all Scenarios for the objective of Case A. In Case B, DQL
or Case B performed best in all Scenarios except for Scenario
0. DQL for Case C showed the best performance in all Scenarios
xcept Scenarios 2 and 9 in terms of Case C.
12
For further comparison, we examined the number of the best
erforming DQL for Cases A, B, and C for every objective. Fig. 8
resents a comparative analysis of DQL with different reward
unctions for every objective. With the setup of the same random
eed and scenario, we compared DQL for Cases A, B, and C, and
he method obtained the best objective value was counted as
he number of ‘best performing’ each objective. In the case in
hich several DQL algorithms obtained the same best objective
alue, all those algorithms were considered for the category of the
est performing. If an algorithm showed the best performance for
very learning run in ten scenarios, the best performing number
as set at 50 (i.e., 5× 10). As anticipated, our experiment showed
hat DQL with the appropriate reward function for each objective
erformed best for each objective. This result means that DQL
ith the appropriate reward function performed best on each
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Fig. 6. Impacts of disruption depending on the traffic volume in the airport.
Table 5
Comparison of the performance of DQL with different reward functions for each objective.
Scenario DQL for Case A DQL for Case B DQL for Case C

Case A Case B Case C Case A Case B Case C Case A Case B Case C

1 120.00 1.00 8.00 216.00 1.00 13.20 120.00 1.00 8.00
2 154.20 1.60 10.20 246.00 1.00 15.20 206.00 2.00 11.00
3 1,128.00 18.00 27.00 1,310.00 16.00 28.60 1,364.00 19.40 24.00
4 1,545.00 19.00 29.00 1,601.00 19.00 31.40 1,630.00 20.00 29.00
5 145.60 2.00 8.00 211.00 2.00 11.00 151.00 2.00 8.00
6 459.20 6.00 12.00 545.00 6.00 14.80 490.00 6.00 12.00
7 888.00 7.00 21.00 904.00 7.00 22.20 1,062.80 10.40 19.00
8 90.00 0.00 7.00 164.00 0.00 11.60 90.00 0.00 7.00
9 147.00 1.00 8.20 226.00 1.00 12.80 157.00 1.00 8.80
10 234.00 1.00 10.20 323.00 1.60 14.00 260.00 3.00 8.00
objective when trained specifically to optimize for the corre-
sponding objective. Especially, DQL for Case A showed robustness
in terms of performance for any type of objective.

6.4. Managerial insights

This study offers managerial insights, which could be instruc-
ive to airline operations controllers. By analyzing the results of
he computational experiments, we derived the following man-
gerial insights.

(1) Based on the computational experiments, the proposed RL
approach showed effective performance on a real-world
flight schedule. In actual practice, most commercial airlines
manage disruptions of flight schedules with optimization-
based decision tools and long-standing practices estab-
lished by the airline industry and the practical knowledge
of AOCC staff. However, in addition to optimization-based
decision tools and AOCC staff expertise, a framework mod-
eled with the RL approach could help AOCC, the final user
of the proposed algorithms, make better decisions.

(2) QL is well applied to aircraft recovery of simple flight
schedules, which do not consider various realistic condi-
tions. However, if airline operations controllers take into
account complex conditions, which create noise in the en-
vironment of RL, QL could show poor performance because
of the overestimation bias. In such cases, therefore, we
showed that utilizing DQL would be an effective strategy.

(3) In this study, we suggested three objectives and defined re-
ward functions for each objective. The RL approach is con-
figurable to different objectives. Based on the conducted
experiments, DQL with an appropriate reward function for
each objective outperforms other reward functions. There-
fore, if airline operations controllers want to meet the
13
objectives suggested by our study, they could utilize the
proposed appropriate reward functions. On the other hand,
if airline controllers want to implement aircraft recovery to
perform well for overall objectives, we recommended that
adopting the reward function for minimizing total delays
would be an effective strategy.

7. Conclusions

Implementing aircraft recovery to minimize the damage from
disruptions is significant for an airline’s bottom line, in terms of
both customer satisfaction and operations costs. In the aircraft
recovery process, it is necessary to take into account various
objectives of airlines and realistic conditions that affect their op-
erations. Considering the advantages of flexibility in establishing
various objectives and adapting them to complex assumptions,
we adopted the method of RL, specifically QL and DQL, for the
ARP. Among various types of air transportation disruption, we
concentrated on airport closures, which affect many flight oper-
ations. Note that our proposed methods can be applied to other
disruption types, such as aircraft unavailability, flight delay, and
crew and/or passenger caused delays, by revising the disruption
scenarios and inputting them to the developed environment.

We developed the environment of daily flight schedules and
defined the states, actions, and reward functions of MDP for
implementing the proposed RL algorithms. In particular, the three
different reward functions were defined for each objective. We
evaluated the performances of QL and DQL, and compared the
results with TLN, MMGA, and WSAP. Through conducting com-
putational experiments, we could observe the outperformance
of the proposed RL algorithms compared to other methods in
terms of computation time. Furthermore, in the real-world flight
schedule of one of the domestic airlines in South Korea, we
validated the advantages of utilizing DQL, which alleviates the
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Fig. 7. Learning curves of algorithms in Scenario 2.

Fig. 8. Performance for different objectives.

verestimation bias of QL. We analyzed the impact of disrup-
ion depending on the traffic volume in the airport. In addition,
ur computational experiments in this study showed that DQL
ith appropriate reward functions outperformed other reward

unctions in customized objectives.
To the best of our knowledge, this study is a first step to

pplying the RL approach to the ARP, since most existing
14
studies adopted operations research methods instead. The pre-
sented framework with the RL approach has three distinctive
features that differentiate it from previous studies. First, re-timing
certain flights and swapping aircraft can be implemented by the
RL approach without relying on copies of flight arcs. Second,
by just modifying reward functions, the RL agent can flexibly
adapt to various objectives. Third, because the RL algorithms are
carried out through the simulation (i.e., environment), complex
real-world conditions can be handled without heavily relying on
mathematical models.

The present findings suggest several managerial implications
for the AOCC staff who manage disruptions of airline flight sched-
ules. Along with existing optimization-based tools and the prac-
tical knowledge of AOCC staff, the proposed RL framework could
help the final user to make better decisions for aircraft recovery.
We expect our approach to serve as a bridge for utilizing artifi-
cial intelligence technology, specifically RL, in airline disruption
management.

The RL framework developed in this study has several limita-
tions to address in future research, as follows:

• An important issue to resolve for future studies is to derive
general policy for various airline disruptions. Because the
states and actions in the RL framework were defined based
on aircraft routes, it was difficult to reuse the obtained
policy for new problem instances. By redefining states and
actions and by utilizing suitable functions (e.g., a neural net-
work) to approximate the action-value function, the agent
could learn a general policy that can be utilized for new
problem instances. In this manner, the RL approach may
derive general policy, which could be applied to many dis-
ruption instances.
• The current study was not designed to prevent unneces-

sary swapping of aircraft. However, an airline’s engaging in
non-profitable duty swaps for flights could cause trouble in
changing crews and could consume other resources. Unnec-
essary swaps, therefore, might be regarded as measures of
deviation from original flight schedules. Future studies on
the current topic are therefore suggested in order to revise
reward functions that take into account the additional cost
of swapping aircraft.
• The present study has only considered aircraft among many

airline resources (e.g., crews and passengers) for recovery
of schedules reacting to airline disruptions. The proposed
approach can be extended to the integrated recovery of
aircraft, crews, and passengers. An advanced artificial envi-
ronment should be developed to incorporate the complex
operations of these resources.
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Fig. B.9. Example of states changed by the actions of the agent.
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ppendix A. Generation of list of aircraft satisfying the swap-
able condition

Let mtac denote the minimum TAT of aircraft c . We indicate
t1 as the departure time of subsequent flight of arriving aircraft,
nd dt2 as the earliest departure time among remaining flights
xcept dt1 (dt1 < dt2). At each arrival event, we generate the list
f aircraft that are in the swappable condition using the following
lgorithm:

Algorithm 3 Generation of the list of swappable aircraft.
S ← empty list
c ← an aircraft assigned to the arrival event
dt1 ← earliest departure time of remaining flights of c
dt2 ← second earliest departure time of remaining flights of c
for each aircraft i do

mtai ← minimum TAT of aircraft i
if i is in the air then

if max{planned arrival time of i+mtai, dt1} < dt2 then
S.append(i)

end
else

if max{the time i has arrived + mtai, dt1} < dt2 then
S.append(i)

end
end

end

Appendix B. Example of states changed by the actions

Fig. B.9 depicts the small example of how states are changed
y swapping actions. At the first time step, Aircraft 1 is assigned
o the arrival of Flight 1 (i.e., arriving aircraft will be Aircraft 1).
he AOCC decided to swap Aircraft 1 and Aircraft 2, which are
lanned to arrive at the same airport. Assuming that Aircraft 3
oes not satisfy the swappable condition, Aircraft 1 could not
wap with Aircraft 3. At the second time step, the future route
tates of Aircraft 1 and Aircraft 2 were changed, and the binary
arameter state of Aircraft 1 was changed to zero due to the
revious time step. At the third time step, because the departure
f Flight 2 was assigned to Aircraft 1 at the second time step,
he previous route and binary parameter state of Aircraft 1 was
15
changed. The arrival of Flight 7 was assigned to Aircraft 2, and the
AOCC decided not to swap. Therefore, only the binary parameter
state of Aircraft 2 was changed to zero at the fourth time step.

Appendix C. Without swapping strategy

For validating the performance of RL approach, we proposed
WSAP for comparison. In real practice, flight schedulers build ex-
tra buffer time between consecutive flights for absorbing unpre-
dictable flight delays. Therefore, without implementing additional
recovery options, just delaying flights’ departure times could be
an effective strategy. For implementing the above strategy, we
utilized the environment proposed in Section 4.2. In contrast with
RL approach, there was only one valid action (e.g., initial aircraft
route) in every time step when carrying out WSAP. Thus, imple-
menting only one episode is required for WSAP. The pseudocode
of WSAP is as follows:

Algorithm 4 WSAP.
atc ← 0,∀c ∈ C
tdf ≥ mtac,∀f ∈ F ,∀c ∈ C
E ← the set of every flight’s events
while E is not empty do

e ← the earliest event in E
f ← the flight which includes e
c ← an aircraft assigned to f
mtac ← minimum TAT of aircraft c
if e is departure event then

delay← max{mtac − (tdf − atc), 0}
t̃df ← tdf + delay
t̃af ← t̃df + (taf − tdf )

else
atc ← t̃af

end
E ← E \ {e}

nd

Appendix D. Detailed description of the domestic flight sched-
ule in South Korea

In South Korea, Jeju Island is the main low-cost carrier (LCC)
market and is considered one of the best vacation spots. Air
transport is the fastest way to travel to Jeju Island; thus, over
90% of travelers use airline service [61]. Hence, domestic airline
flights in South Korea are concentrated on the CJU. However,
owing to this reason, CJU had the highest average delay time and
incurred a very large impact on domestic propagated delays [62].
If an extreme air transport disruption, such as a temporary airport
closure, occurs, a large number of flights will be affected by delay
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Fig. D.10. Flight information in terms of airports.
ropagation. Therefore, an effective ARP strategy is necessary for
ealing with the concentration of domestic airline flights on the
JU, which is why we implemented a case study for South Korea.
We analyzed the input data set, which is a domestic flight

chedule from one of the airlines in South Korea. Fig. D.10 shows
he flight information regarding airports. As anticipated, airline
lights are concentrated on the CJU. The CJU is connected to
ll five airports. The GMP is also connected to many flights.
he CJU-GMP flight route is the busiest in the domestic flight
chedule. The PUS is connected to CJU and GMP, and is connected
ith fourteen flights. However, the KWJ, CJJ, and USN are only
onnected to three or two flights.
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