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Multi-Trip Multi-Trailer Drop-and-Pull
Container Drayage Problem

Decheng Wang , Ilkyeong Moon , and Ruiyou Zhang , Member, IEEE

Abstract— This paper addresses a novel and interesting
container drayage problem in which a tractor can pull multiple
trailers and can perform multiple trips during a working day.
A state-based method and an IF-THEN method are proposed to
model the multi-trip feature. The problem is mathematically for-
mulated as two mixed-integer programming models. Three fami-
lies of valid inequalities are introduced to strengthen the models.
An adaptive large neighborhood search (ALNS) algorithm with
an embedded decoding mathematical model is proposed to solve
realistic-sized instances of the problem. Numerical experiments
based on a large number of benchmark instances indicate that
the inequalities are valid and that the model based on IF-THEN
constraints shows excellent performance. The ALNS algorithm
outperforms the strengthened mathematical model considering
large-sized instances. The multi-trailer mode is more suitable if
customers are clustered in the area far away from the depot
when compared to the single-trailer mode.

Index Terms— Container drayage, multi-trip multi-trailer
drop-and-pull transportation, valid inequality, adaptive large
neighborhood search.

I. INTRODUCTION

CONTAINER drayage refers to the truckload transporta-
tion activities around the depot. These activities are

mainly the pre- and end-haulage activities including reposi-
tion of empty containers between the depot, exporters, and
importers, and are typically performed by trucks [1]–[5].
Container drayage can provide door-to-door services, while
the other transportation means (e.g., by vessels or by trains)
usually cannot [6]. Despite this merit, this transportation mode
still has to face the inescapable high costs contributed by
investments on purchasing trucks which play a significant
role in economic considerations. Recently, the reality of high
truck-purchasing costs became insupportable, which called for
an urgent reaction to the logistic mode. Deploying trucks to
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Fig. 1. One example of a road train in Australia (https://medium.com/
knowledge-stew/the-incredible-australian-road-trains-6c41c7fb3ed7).

undertake more than one trip is a practical and popular option
because this mode can substantially decrease the required size
of truck fleets [7], and increase utilization rate of vehicles [8].

A truck typically consists of two parts: a motorized part
that can move by itself (i.e., a tractor) and a non-motorized
part (i.e., trailers or containers) that needs to be pulled by
the motorized part. As a result, the transportation modes of
container drayage can be classified as drop-and-pull (D&P)
mode and stay-with mode. In the D&P mode, the motorized
part can detach itself from the non-motorized part, park the
non-motorized part at customer sites for packing/unpacking
operations, and leave to carry out some other transportation
tasks. After the packing/unpacking operations are finished,
the motorized part comes back to pull the non-motorized part
away. The detaching/attaching activities can be conveniently
accomplished with a negligible operation time. In the stay-
with mode, however, the two parts are not separable [9]–[12].
Compared to the stay-with mode, the D&P mode can save
transportation costs by one quarter, on average [13]. Moreover,
the D&P mode, which allows one tractor to pull two trailers,
can decrease transportation costs by about 30% [14], compared
to the one-tractor-one-trailer version. All these results validate
the D&P mode and stimulate us to further study it.

The utilization of multi-trailer tractors, the so-called long
combination vehicles [15] (see Fig. 1 for the configuration),
was found to be significantly efficient from an economic
standpoint [16]. In Australia, such long combination vehicles
are called road trains, and they are considered to be the
best way to move freight, because the Outback terrain of
Australia is very barren and vast. Most articles addressing the
D&P container drayage focus on the one-tractor-one-trailer
mode [13], [17]–[19]. As far as we know, Ref [14] is the
only article investigating the one-tractor-multi-trailer container
drayage problem. However, the authors of [14] assumed that
a tractor can only perform a single trip in a planning horizon.
We, in this paper, address a multi-trip multi-trailer D&P
container drayage (MTMTDPD) problem. Differently from
most multi-trip problems (e.g., Ref [20]), vehicle routes in
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the MTMTDPD problem are interrelated because different
vehicles might be involved in fulfilling precedence-required
tasks. A change in one route usually causes changes in
the other routes, and even make the routing and scheduling
infeasible. Moreover, differently from most D&P research such
as [18], [19], we provide freedom for tractors to flexibly
choose their departure time from the depot. This setting can
make the vehicle arrive at the customer locations at an appro-
priate time, and thus reduce the unnecessary waiting [21], and
increase the utilization of vehicles [14].

Compared to the problem in [14], the MTMTDPD is an
important and interesting problem not only from a practical
viewpoint. Its importance from a theoretical viewpoint is also
significant, and this makes it particularly attractive for con-
ducting a systematic study. First, in the MTMTDPD, frequent
dropping off and picking up of trailers at the depot is a setup
that is needed in order to perform multiple trips, some of which
are consecutive. Therefore, the number and type of trailers that
should be dropped off or picked up from the depot are jointly
determined by the trips. The combinatorial feature brought
about by the multi- trailer tractors complicates the dropping
and pulling operations and imposes theoretical challenges on
the multi-trip issue (see later Section III.B). Second, modeling
the multi-trip feature is difficult because the number of trips
performed by vehicles is not easy to determine in advance.
The standard method in existing literature is to introduce the
maximum number of trips that the vehicle can perform. This
number usually influences the construction of transportation
plans. Moreover, this number increases the model size if a
large value is assigned. In this study, we have designed a
state-based method and an IF-THEN method to handle this
issue. A third and most important point is that, given the
interdependence of routes, obtaining the total working time of
a transportation plan is difficult. Compared to the three-stage
heuristic method used to handle a similar problem in [14],
we developed in this study a mathematical model to solve this
problem exactly.

In general, the contributions of this paper can be summa-
rized as follows.

1) An MTMTDPD problem is formally presented. Dif-
ferent attempts as state-based method and IF-THEN
method are conducted to handle the multi-trip issue
accurately from the mathematical level. Two mixed-
integer mathematical programming models are con-
structed accordingly.

2) Three families of valid inequalities are presented to
strengthen the mathematical models. Extensive exper-
iments are conducted to validate the inequalities and
verify their effectiveness in improving the upper and
lower bounds of the problem.

3) An adaptive large neighborhood search (ALNS) algo-
rithm is developed, because even the strengthened
mathematical models still cannot solve realistic-sized
instances of the problem. In the ALNS algorithm,
a model-based decoding method is proposed to obtain
the optimal working time of tractors for given vis-
iting sequences of customers. Numerical experiments

validated the ALNS algorithm and provided several
operational insights.

The remainder of this paper is organized as follows.
Section II reviews the related literature from two viewpoints.
Section III describes the MTMTDPD problem formally.
Section IV presents two mathematical models to formulate the
MTMTDPD problem. Section V introduces three families of
valid inequalities. Section VI develops the ALNS algorithm.
Computational results are analyzed in Section VII. Finally,
Section VIII concludes this paper.

II. LITERATURE REVIEW

Vehicle routing problems involving pickups and deliveries
can be grouped into two classes: transportation of freight from
the depot to some customers and from some other customers
to the depot, and transportation of freight and people between
pickup and delivery locations [22]. The so-called pickup-
and-delivery problem (PDP) and dial-a-ride problem (DARP)
belong to the second class, and usually focus on the less-
than-truckload transportation setup. The PDP handles the
transportation of freight. However, the DARP deals with
the transportation of people. Therefore, the DARP considers
client-centric or service-based constraints (e.g., high-quality
service, reduction of idle time, and maximum riding time). For
example, Cordeau [23] addressed a DARP with a maximum
ride time of passengers. The MTMTDPD problem belongs to
the first class and deals with the truckload transportation under
the D&P mode. Therefore, we focus on the relevant literature
from two aspects — as multi-trip routing problems and as
D&P routing problems — hereafter in this section.

A. Multi-Trip Routing Problems

Multi-trip routing problems have been studied in different
application fields. The first field is the people transportation.
For example, Tang et al. studied a multi-trip problem of pro-
viding pickup and delivery services for customers traveling to
airports [24]. Liu et al. presented a multi-trip DARP arising in
the transportation of elderly or disabled people [25]. They con-
sidered heterogeneous vehicles, single depot, and configurable
vehicle capacity. Some other researchers investigated specific
aspects of the DARP. For instance, Masmoudi et al. concerned
a multi-depot multi-trip routing problem [26]. Zhang et al.
considered the sterilization of ambulances between trips and
lunch break for emergency management technicians [27].
Recently, Liu et al. addressed a multi-trip scheduling problem
for multiple repairmen [28].

Routing problems regarding freight transportation consti-
tute the most widely studied field of multi-trip problems.
Most such studies focus on the classical vehicle routing
problem (VRP) concerning less-than-truckload transportation.
A large number of research on the multi-trip VRP [29] and
its variants accommodating practical requirements such as
distribution of emergency aid [30], uncertain travel times [31],
release dates [32], [33], heterogeneous vehicles [20], [34], and
time windows [35]–[37], have been extensively conducted.
We cannot survey all the multi-trip VRP research here because
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TABLE I

COMPARISON BETWEEN THIS STUDY AND THE RELATED MULTI-TRIP RESEARCH

of the limited space. Interested readers can refer to Ref [38]
for a unified review.

Multi-trip container drayage problems, which normally con-
cern the truckload transportation, have also been studied.
For example, Marković et al. studied a truck-train inter-
modal transportation problem [39]. Zhang et al. addressed
a container drayage problem with flexible orders based
on a so-called determined-activities-on-vertex graph [40].
Zhang et al. proposed a state-transition method to handle
a multi-size container drayage problem in which a truck
might carry multiple containers [41]. Recently, Bruglieri et al.
studied a multi-period container drayage problem with release
and due dates requirements [10]. One common element in
the aforementioned research is that the drayage is operated in
the stay-with mode. However, we present a multi-trip drayage
problem under the D&P mode. Table I presents a comparison
between the studies on the multi-trip routing problems.

B. D&P Routing Problems

The D&P mode has been first applied in the truck-and-trailer
routing problem (TTRP) which focuses on less-than-truckload
transportation [42]. In the TTRP, a vehicle is composed of
a truck and a trailer. The trailer is detachable from the truck.
Cargoes can be shifted between the truck and the trailer, which
is beyond the range of this research. References [43] and [44]
have provided detailed overviews for the TTRPs. Therefore,
we focus on the D&P problems in the other fields here.

A few studies present container drayage under the D&P
mode, in most of which one tractor can pull at most one
trailer. For example, Xue et al. formulated a mixed-integer pro-
gramming model for a local container drayage problem [13].
A synchronized transportation routing problem with limited
transportation resources and single trip was presented and
solved using an ALNS algorithm in [17]. It was further solved
with a branch-and-price-and-cut algorithm [19]. Furthermore,
Song et al. adopted a branch-and-price-and-cut algorithm to
solve a similar problem with multiple trips [18]. They required
that each drayage task must be accomplished by the same
tractor so that the vehicle routes do not depend on each other.

Quite few researches present multi-trailer D&P container
drayage problems. Zhang et al. investigated a foldable con-
tainer drayage problem, in which the operational mode is a
little similar to the D&P mode at least from the mathematical

perspective [47]. A truck can carry four or even six folded
containers or only one loaded container. Moghaddam et al.
proposed a generalized model for drayage with heterogeneous
fleet, multi-container sizes and D&P transportation [4]. The
model is effective to find high-quality solutions for small-
and medium-sized instances. However, one task can only be
handled by the same truck, and the truck cannot engage in
multi-trip services. A similar problem with time windows
was studied and solved by using a genetic algorithm [46].
You et al. addressed a so-called truck platooning problem,
in which a human-driven truck can lead several automated
trucks using the cooperative adaptive cruise control tech-
nique [7]. Quite recently, Xue et al. further analyzed the effects
of the truck platooning on fuel consumptions [45]. Further-
more, Zhang et al. formulated a multi-trailer D&P container
drayage problem into a mixed-integer linear programming
model and solved it with a backtracking adaptive threshold
accepting algorithm [14]. The problem in [14] is the most
similar one to this research but considers single trip only.
Table II summarizes the similarities and differences between
the D&P studies.

III. MULTI-TRIP MULTI-TRAILER DROP-AND-PULL

CONTAINER DRAYAGE

A. Problem Description

A trucking company provides container drayage services
in a local area using a depot, a number of homogeneous
tractors, trailers and containers. Each trailer can load exactly
one container. The container stays with the trailer as one entire
entity. Each tractor can drag up to K (≥ 2) trailers. The tractors
and trailers operate in the D&P mode. Specifically, a tractor
picks up a number of trailers at the depot and drops the trailers
at the customer’s designated location. The tractor then returns
to the depot after possibly picking up some other trailers.
At the customer’s designated location, it is unnecessary for
the tractor that picks up the trailer to be the tractor that drops
off the trailer. All tractors and trailers originally park at the
depot, and should finally return to the depot after finishing
drayage services. A trip is defined as the drayage activities
of a tractor, since the tractor departs from the depot until it
returns to the depot. A tractor might perform a number of trips
during a planning horizon. A series of trips performed by a
tractor form a route.
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TABLE II

COMPARISON BETWEEN THIS STUDY AND THE RELATED D&P RESEARCH

According to the flow directions of full containers, drayage
services are classified into inbound orders and outbound
orders. The full containers of inbound orders need to be deliv-
ered from the depot to their receivers, while full containers
in outbound orders are delivered from their shippers to the
depot. Each order corresponds to a customer, and is divided
into a Phase I suborder and a Phase II suborder according
to the feature of the D&P mode. Let I1 and I2 be the sets of
Phase I and Phase II suborders of inbound orders, respectively.
A suborder i ∈ I1 requires a tractor to pick up a trailer with an
inbound full container (an inbound full trailer, or an IFT) at
the depot and deliver it to its receiver, where the container
is unpacked. A suborder i ∈ I2 requires a tractor to pick
up the trailer with the emptied container (an empty trailer,
or an ET) and take it to the depot, or directly to the shipper
of outbound orders for future use. Similarly, let O1 and O2
be the sets of Phase I and Phase II suborders of outbound
orders, respectively. A suborder i ∈ O1 requires a tractor to
deliver an ET to the shipper where the freight is packed into
the container. A suborder i ∈ O2 requires a tractor to pick up
the trailer with the outbound full container (an outbound full
trailer, or an OFT) and take it back to the depot. For a Phase I
suborder i , the corresponding Phase II suborder is δ (i). Each
Phase I suborder i has to be handled before its corresponding
Phase II suborder δ (i). However, these two suborders might
be served by different tractors.

All orders should be finished within a planning horizon H .
For suborder i ∈ I1 ∪ O1, the container packing/unpacking
time is pi (≥ 0), while suborder j ∈ I2 ∪ O2 has no pack-
ing/unpacking operations. Let the initial start from and final
return to the depot be a virtual suborder (say Suborder 0).
The traveling time of tractors with or without trailers between
the locations of any two suborders i and j is τi j (≥0).

The location of Suborder 0 is the depot. The location of
the two suborders of an inbound order is its receiver. The
location of the two suborders of an outbound order is its
shipper. For any i , j , and k, the triangular inequality holds
(i.e., τi j + τ j k ≥ τik).

The MTMTDPD problem looks for a set of routes to
finish all the drayage orders in time period [0, H ] with the
minimum total costs. The total costs consist of the fixed costs
of employing tractors and the variable total working time costs
of fulfilling drayage services. The total working time is the
summation of time intervals of all tractors. The time interval
of a tractor is the period from when it departs from the
depot to perform its first trip until it returns to the depot
after performing all its trips. Such a definition can reflect the
variable costs and has been widely used (e.g., [48]).

B. Dropping and Pulling of Trailers at the Depot

We explain the dropping and pulling of trailers at the depot
in detail in this subsection for the convenience of mathematical
modeling. Dropping and pulling of trailers at the depot is
sometimes required in order to perform a trip. For example, if a
tractor without an IFT is going to serve a suborder of I1, it has
to go back to the depot to pull the IFT (Fig. 2 (a)). Similarly,
a tractor without an ET has to go back to the depot to pull
the ET to serve a suborder of O1 in the next trip (Fig. 2 (b)).
On the contrary, if a tractor with K trailers (i.e., the capacity
is reached) is going to finish a Phase II suborder, it has to
return to the depot to drop off some trailers first (Fig. 2 (c)).

For the one-tractor-multi-trailer transportation setup, the
dropping and pulling of trailers at the depot is rather compli-
cated, because the number and type of trailers to be dropped
or pulled are jointly determined by the connected trips.
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Fig. 2. Dropping and pulling of trailers between two trips.

Fig. 3. Dropping and pulling operations.

Fig. 3 (a) illustrates a multi-trailer example in which K = 4.
After serving some suborders, a tractor is carrying four trailers
(i.e., one ET and three OFTs), but two suborders of I1 and
two suborders of O1 need to be served. In this situation, the
tractor has to go back to the depot to drop all three OFTs
and pull two IFTs and one ET because it already carries one
ET. Because the serving sequence of suborders cannot be pre-
determined, the trips as well as the number and type of trailers
to be dropped and pulled cannot be determined in advance.
All these are left as decisions to be made and create challenges.
As a comparison, in the one-tractor-one-trailer case (e.g., [18]),
at most one trailer is dropped and at most one trailer is pulled
each time a tractor goes to the depot (see Fig. 3(b)). The type
of trailers to be dropped or pulled can be easily determined.
For example, after a tractor with an IFT serves the suborder
of I1, it carries no ET before serving the suborder of E1. The
tractor has to go back to the depot to carry an ET.

TABLE III

COMMON DECISION VARIABLES AND PARAMETERS OF MODELS SB AND
LC

TABLE IV

AUXILIARY VARIABLES INTRODUCED IN MODEL SB

IV. MIXED-INTEGER PROGRAMMING MODELS

The MTMTDPD problem can be defined as a directed
graph G = (N, A), where N = {0} ∪ I1 ∪ I2 ∪ O1 ∪
O2 is the set of nodes and A = {(0, i)| i ∈ N\ {0}} ∪
{(i, 0)| i ∈ N\ {0}} ∪ AT RF is the set of arcs. In A, AT RF =
{(i, j)| i ∈ N\ {0} , j ∈ N\ {0, i}} ARV S is a set of interme-
diate arcs, where ARV S = { (δ (i) , i)| i ∈ I1 ∪ O1} is a set
of reverse arcs that transfer from Phase II suborder node
to its corresponding Phase I suborder node. The reverse
arcs are excluded because no Phase II suborder could be
accomplished prior to its corresponding Phase I suborder.
Hereafter, the terms suborder, suborder node and node are used
interchangeably where no confusion is involved.

Based on Graph G, we formulate the problem as a so-called
state-based model (Model SB) and a logical-constraint model
(Model LC, see Appendix A). The common decision variables
and parameters used in the two models are listed in Table III.
In Model SB, three indicators, x I

i j , x E
i j and x T

i j were introduced
to formulate the state of tractors (i.e., the number and type of
trailers that a tractor is carrying) as shown in Table IV. They
are defined as auxiliary variables to formulate trailer number
variations and transfer times of arcs.

A. Objective Function

min ρ1

∑
i∈N\{0}

x0i

+ρ2

⎛
⎝ ∑

i∈N\{0}
xi0 (si + τi0)−

∑
i∈N\{0}

x0i (si − τ0i )

⎞
⎠ (1)
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Objective function (1) minimizes the total costs, where ρ1
and ρ2 are the weighting coefficients.

∑
i∈N\{0} x0i calculates

the number of employed tractors.
∑

i∈N\{0} xi0 (si + τi0) is the
summation of the time points when tractors finally return to
the depot.

∑
i∈N\{0} x0i (si − τ0i ) is the summation of the time

points when tractors initially leave the depot.

B. Basic Constraints∑
i∈
−→
A−1( j )

xi j = 1, ∀ j ∈ N\ {0} (2)

∑
i∈
−→
A−1( j )

xi j −
∑

i∈
←−
A−1( j )

x j i = 0, ∀ j ∈ N\ {0} (3)

si + ti j − s j ≤ M
(
1− xi j

)
, ∀ (i, j) ∈ AT RF

(4)

si + pi − sδ(i) ≤ 0, ∀i ∈ I1 ∪ O1 (5)

y I
i j + y O

i j + y E
i j ≤ K xi j , ∀ (i, j) ∈ A (6)∑

i∈N\{0}
y I

i0 +
∑

i∈N\{0}
y O

0i = 0 (7)

Constraint (2) guarantees that each suborder is served

exactly once, where
−→
A−1( j) = { i | (i, j) ∈ A}. Constraint (3)

ensures that the in-degree of any suborder node is equal to

its out-degree, where
←−
A−1( j) = { i | ( j, i) ∈ A}. Constraint (4)

establishes the relationship of the service starting times for
successively served suborders and eliminates sub-tours, where
M = H − min

i∈N\{0} τi0 is a sufficiently large positive constant.

Constraint (5) imposes the precedence constraints. Constraint
(6) imposes the capacity constraints. Constraint (7) prevents
tractors from taking IFTs back to the depot at the end of
services, and taking OFTs out of the depot at the beginning
of services.

C. State Construction

y I
i j /K ≤ x I

i j≤y I
i j , ∀ (i, j) ∈ A (8)

y E
i j /K ≤ x E

i j≤y E
i j , ∀ (i, j) ∈ A (9)

y I
i j + y O

i j + y E
i j − K + 1 ≤ x T

i j

≤
(

y I
i j + y O

i j + y E
i j

)
/K , ∀ (i, j)∈ A

(10)

Constraints (8) and (9) construct x I
i j and x E

i j , respectively.
In Constraint (8), if a tractor carries some IFTs, i.e., y I

i j > 0,
we have 0<x I

i j≤y I
i j , and the domain of x I

i j forces it to be one;
otherwise, x I

i j is forced to be zero. Similarly, Constraint (9)
makes x E

i j = 1 if y E
i j > 0; or x E

i j = 0 otherwise. Constraint
(10) constructs xT

i j . Specifically, if y I
i j + y O

i j + y E
i j = K , both

sides are equal to one and hence xT
i j = 1; otherwise, we have

y I
i j + y O

i j + y E
i j − K + 1 ≤ 0 and

(
y I

i j + y O
i j + y E

i j

)/
K < 1,

and the domain of xT
i j forces it to be zero.

D. Trailer Number Formulation Considering I1

∑
i∈
−→
A−1( j )

y O
i j − K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x I
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y O
jk

≤ K
∑

i∈
−→
A−1( j )

x I
i j , ∀ j ∈ I1 (11)

∑
k∈
←−
A−1( j )

y O
jk −

∑
i∈
−→
A−1( j )

y O
i j

≤ 0, ∀ j ∈ I1 (12)

∑
i∈
−→
A−1( j )

y I
i j − 1− K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x I
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y I
jk

≤ K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x I
i j

⎞
⎟⎟⎠+ ∑

i∈
−→
A−1( j )

y I
i j − 1, ∀ j ∈ I1 (13)

∑
i∈
−→
A−1( j )

y E
i j − K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x I
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y E
jk

≤ (K − 1)

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x I
i j

⎞
⎟⎟⎠+ ∑

i∈
−→
A−1( j )

y E
i j , ∀ j ∈ I1

(14)∑
k∈
←−
A−1( j )

y E
jk +

∑
k∈
←−
A−1( j )

y I
jk

≤ K − 1+ K
∑

i∈
−→
A−1( j )

x I
i j , ∀ j ∈ I1 (15)

Constraints (11)-(15) formulate the number of trailers when
a suborder j ∈ I1 is served. Note that if a tractor carries
some IFTs (i.e.,

∑
i∈
−→
A−1( j )

x I
i j = 1), it can go directly to

serve suborder j ; otherwise, it has to return to the depot
before serving suborder j . Specifically, if

∑
i∈
−→
A−1( j )

x I
i j = 1,

the right side of Constraint (11) becomes K and hence is
relaxed. Constraint (12) and the left side of Constraint (11)
make

∑
k∈
←−
A−1( j )

y O
jk equal to

∑
i∈
−→
A−1( j )

y O
i j (i.e., the number

of OFTs remains when a tractor leaves suborder j). Both
sides of Constraint (13) become

∑
i∈
−→
A−1( j )

y I
i j − 1, and we

have
∑

k∈
←−
A−1( j )

y I
jk =

∑
i∈
−→
A−1( j )

y I
i j − 1 (i.e., the number

of IFTs decreases by one). Similarly, Constraint (14) makes
that

∑
k∈
←−
A−1( j )

y E
jk =

∑
i∈
−→
A−1( j )

y E
i j . Constraint (15) becomes∑

k∈
←−
A−1( j )

y E
jk +

∑
k∈
←−
A−1( j )

y I
jk ≤ 2K − 1 and is relaxed.
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If
∑

i∈
−→
A−1( j )

x I
i j = 0, the left side of Constraint (11)

becomes
∑

i∈
−→
A−1( j )

y O
i j − K , and hence is relaxed. The right

side of Constraint (11) and the domain of yO
jk restrict that∑

k∈
←−
A−1( j )

y O
jk = 0 (i.e., no OFTs are carried when a tractor

leaves suborder j). Consequently, Constraint (12) is relaxed.
The left side of Constraint (13) is relaxed, while the right
side imposes an upper bound K − 1 on

∑
k∈
←−
A−1( j )

y I
jk. The

reason is that at most K IFTs might be pulled at the depot
but one IFT must be dropped off for suborder j ∈ I1. The left
side of Constraint (14) is relaxed, and the right side becomes
K − 1+∑

i∈
−→
A−1( j )

y E
i j and is also relaxed. The reason is that

at least one IFT must be pulled at the depot in order to serve
suborder j ∈ I1, and hence at most K − 1 ETs can be pulled.
As a result, the total number of IFTs and ETs will not exceed
K −1 when a tractor leaves suborder j ∈ I1 (Constraint (15)).

E. Trailer Number Formulation Considering O1

∑
i∈
−→
A−1( j )

y O
i j − K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x E
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y O
jk

≤ K
∑

i∈
−→
A−1( j )

x E
i j , ∀ j ∈ O1 (16)

∑
k∈
←−
A−1( j )

y O
jk −

∑
i∈
−→
A−1( j )

y O
i j

≤ 0, ∀ j ∈ O1 (17)

∑
i∈
−→
A−1( j )

y I
i j − K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x E
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y I
jk

≤ (K − 1)

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x E
i j

⎞
⎟⎟⎠+ ∑

i∈
−→
A−1( j )

y I
i j , ∀ j ∈ O1

(18)

∑
i∈
−→
A−1( j )

y E
i j − 1− K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x E
i j

⎞
⎟⎟⎠

≤
∑

k∈
←−
A−1( j )

y E
jk

≤ K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x E
i j

⎞
⎟⎟⎠+ ∑

i∈
−→
A−1( j )

y E
i j − 1, ∀ j ∈ O1

(19)

∑
k∈
←−
A−1(j)

y E
jk+

∑
k∈
←−
A−1(j)

y I
jk

≤ K−1+K
∑

i∈
−→
A−1(j)

x E
i j , ∀ j ∈ O1 (20)

Constraints (16)-(20) formulate the number of trailers when
a suborder j ∈ O1 is served similarly as Constraints (11)-(15).
If

∑
i∈
−→
A−1( j )

x E
i j = 1, Constraints (16) and (17) guarantee that

the number of OFTs remains. Constraint (18) ensures that the
number of IFTs remains. Constraint (19) decreases the number
of ETs by one. Constraint (20) is relaxed.

If
∑

i∈
−→
A−1( j )

x E
i j = 0, Constraint (16) and the domain

of y O
jk restrict that

∑
k∈
←−
A−1( j )

y O
jk = 0. Constraints

(17)-(19) are relaxed. Constraint (20) works similarly as
Constraint (15).

F. Trailer Number Formulation Considering I2∑
i∈
−→
A−1( j )

y O
i j − K

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y O
jk

≤ K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x T
i j

⎞
⎟⎟⎠ ,∀ j ∈ I2 (21)

∑
k∈
←−
A−1( j )

y O
jk −

∑
i∈
−→
A−1( j )

y O
i j

≤ 0, ∀ j ∈ I2 (22)∑
i∈
−→
A−1( j )

y I
i j − K

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y I
jk

≤ (K − 1)
∑

i∈
−→
A−1( j )

x T
i j +

∑
i∈
−→
A−1( j )

y I
i j , ∀ j ∈ I2 (23)

∑
i∈
−→
A−1( j )

y E
i j + 1− (K + 1)

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y E
jk

≤ K
∑

i∈
−→
A−1( j )

x T
i j +

∑
i∈
−→
A−1( j )

y E
i j + 1, ∀ j ∈ I2 (24)

∑
k∈
←−
A−1( j )

y E
jk

≥ 1, ∀ j ∈ I2 (25)

Constraints (21)-(25) formulate the number of trailers when
a suborder j ∈ I2 is served. If the capacity limit of a
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tractor is not reached, it can go directly to serve suborder j .
Otherwise, the tractor must return to the depot to drop some
trailers. Specifically, if

∑
i∈
−→
A−1( j )

x T
i j = 0, Constraints (21)

and (22) keep the OFTs unchanged, similarly as Constraints
(11) and (12). Constraint (23) keeps the IFTs unchanged.
Constraint (24) increases the ETs by one. Constraint (25)
always holds because the tractor picks up one ET at
suborder j ∈ I2.

If
∑

i∈
−→
A−1( j )

x T
i j = 1, Constraints (21) and (22) work

similarly as Constraints (11) and (12). For Constraint (23),
the left side is relaxed, and the right side becomes K − 1 +∑

i∈
−→
A−1( j )

y I
i j , and is also relaxed because

∑
k∈
←−
A−1( j )

y I
jk will

not exceed K −1 considering Constraint (25). Constraint (24)
is relaxed.

G. Trailer Number Formulation Considering O2∑
i∈
−→
A−1( j )

y O
i j + 1− (K + 1)

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y O
jk

≤ K

⎛
⎜⎜⎝1−

∑
i∈
−→
A−1( j )

x T
i j

⎞
⎟⎟⎠+ 1, ∀ j ∈ O2 (26)

1

≤
∑

k∈
←−
A−1( j )

y O
jk ≤

∑
i∈
−→
A−1( j )

y O
i j + 1,∀ j ∈ O2 (27)

∑
i∈
−→
A−1( j )

y I
i j − K

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y I
jk

≤ (K − 1)
∑

i∈
−→
A−1( j )

x T
i j +

∑
i∈
−→
A−1( j )

y I
i j , ∀ j ∈ O2 (28)

∑
i∈
−→
A−1( j )

y E
i j − K

∑
i∈
−→
A−1( j )

x T
i j

≤
∑

k∈
←−
A−1( j )

y E
jk

≤ (K − 1)
∑

i∈
−→
A−1( j )

x T
i j +

∑
i∈
−→
A−1( j )

y E
i j , ∀ j ∈ O2 (29)

Constraints (26)-(29) formulate the number of trailers
when a suborder j ∈ O2 is served. If

∑
i∈
−→
A−1( j )

x T
i j= 0,

Constraints (26) and (27) force
∑

k∈
←−
A−1( j )

y O
jk to be∑

i∈
−→
A−1( j )

y O
i j + 1 (i.e., the number of OFTs increases by

one). If
∑

i∈
−→
A−1( j )

x T
i j = 1, Constraints (26) and (27) force

∑
k∈
←−
A−1( j )

y O
jk to be one. That is, no OFTs are pulled at the

depot, and one OFT is picked up at suborder j . Constraint (28)
formulates the number of IFTs similarly as Constraint (23).
For Constraint (29), if

∑
i∈
−→
A−1( j )

x T
i j= 0, the number of ETs

remains. If
∑

i∈
−→
A−1( j )

x T
i j = 1, the left side is relaxed; the

right side becomes K − 1+∑
i∈
−→
A−1( j )

y E
i j , and is also relaxed

because
∑

k∈
←−
A−1( j )

y E
jk will not exceed K−1 when considering

the left side of Constraint (27).

H. Transfer Time

ti j =
(

1− x I
i j

) (
τi0 + τ0 j

)+ x I
i j τi j ,

∀ (i, j) ∈ AT RF , ∀ j ∈ I1 (30)

ti j =
(

1− x E
i j

) (
τi0 + τ0 j

)+ x E
i j τi j ,

∀ (i, j) ∈ AT RF , ∀ j ∈ O1 (31)

ti j = x T
i j

(
τi0 + τ0 j

)+ (
1− x T

i j

)
τi j ,

∀ (i, j) ∈ AT RF , ∀ j ∈ I2 ∪ O2 (32)

Constraints (30)-(32) determine the transfer time of arcs. If a
tractor carries the trailer required by a suborder j ∈ I1 ∪ O1,
i.e., x I

i j = 1 or x E
i j = 1, we have ti j = τi j ; otherwise, we have

ti j = τi0 + τ0 j according to Constraints (30) and (31). If a
tractor carries K trailers before serving a suborder j ∈ I2∪O2
(i.e., x T

i j = 1), ti j = τi0 + τ0 j ; otherwise ti j = τi j according
to Constraint (32).

V. VALID INEQUALITIES

This section presents three families of valid inequalities in
order to compact Models SB and LC and to improve their
solving efficiency. See Section VII.B.1 for their efficiencies.

A. Strengthened Sub-Tour Elimination Inequality

Models SB and LC eliminate sub-tours by Constraint (4)
based on the fact that the decision variable si monotonically
increases along the routes. However, the strengthened sub-tour
elimination (SBE) inequality xi j + x j i ≤ 1,∀ (i, j) ∈ AT RF ,
can be directly applied to eliminate such sub-tours that contain
two suborder nodes. A similar inequality has also been used
by, e.g., Ref [49].

B. Strengthened Deadlock Elimination Inequality

Deadlock in the MTMTDPD problem refers to the cir-
cular dependency of service starting times. For example, if
xδ(i) j = 1 and xδ( j )i = 1 for nodes i ∈ I1 ∪ O1 and
j ∈ I1 ∪ O1\ {i} hold, the value for sδ(i), s j , sδ( j ) and si

can never be determined successfully. Deadlocks also exist
among suborders of more than two orders in more than two
routes. Such solutions that contain deadlocks are infeasible.
Models SB and LC eliminate deadlocks similarly as they elim-
inate sub-tours. Similarly as Inequality SBE, the strengthened
deadlock elimination (SDE) inequality xδ(i) j+xδ( j )i ≤ 1,∀i ∈
I1∪O1,∀ j ∈ I1∪O1\ {i} can directly eliminate the deadlocks
appearing in four nodes.
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C. Working Time Inequality

The working time inequality (say Inequality WT) is formu-
lated based on the lower bound of total working time. We have
the following proposition:

Proposition 1: In the MTMTDPD problem,
∑
(i, j )∈A xi j τi j

is a lower bound of the total working time.
See Appendix B for the proof of Proposition 1. Let

eRET U RN
i and eST ART

i denote the time when a tractor finally
returns to and initially departs from the depot, respectively.
Similarly as in Ref [14], objective (1) can be linearized as

min ρ1

∑
j∈N\{0}

x0 j

+ρ2

⎛
⎝ ∑

i∈N\{0}
eRET U RN

i −
∑

i∈N\{0}
eST ART

i

⎞
⎠ (33)

s.t. eRET U RN
i ≥−H (1− xi0)+si+τi0, ∀i ∈ N\ {0} (34)

eST ART
i ≤ H x0i,∀i ∈ N\ {0} (35)

eST ART
i ≤ H (1− x0i )+ si − τ0i , ∀i ∈ N\ {0} (36)

0 ≤ eRET U RN
i ≤ H, 0 ≤ eST ART

i ≤ H, ∀i ∈ N\ {0}
(37)

After replacing objective function (1) with objective (33)
and Constraints (34)-(37), we introduce Inequality WT as∑

i∈N\{0}
eRET U RN

i −
∑

i∈N\{0}
eST ART

i ≥
∑

(i, j )∈A

xi j τi j (38)

VI. AN ADAPTIVE LARGE NEIGHBORHOOD

SEARCH ALGORITHM

Models SB and LC and even the models with valid
inequalities can only solve small- or medium-sized instances
(see Section VII.B.2). Therefore, we develop an adaptive
large neighborhood search (ALNS) algorithm in this section.
The ALNS was firstly introduced by Ref [50]. Since its
introduction, ALNS has been successfully applied to solve a
large number of combinatorial optimization problems includ-
ing multi-trip VRP [51], VRP with time windows [52], and
TTRPs [53].

ALNS is a combination of the large neighborhood search
framework [54] and the ruin-and-recreate principle [55]. The
key idea is searching for a better solution at each iteration by
destroying a part of the current solution and reconstructing it
in a different way. Generally, one destruction operator and one
reconstruction operator are chosen from a number of candidate
operators according to their weights at each iteration. The
weights of operators are adjusted dynamically according to
their performance. That is the adaptive nature of the ALNS.

A. The ALNS Framework

The proposed ALNS algorithm starts with an initial solution
(see Section VI.B) which is considered as the current and best-
so-far solution. An iterative procedure is applied to the current
solution to obtain a better solution. At each iteration, a destruc-
tion operator and a reconstruction operator (see Sections VI.C
and VI.D, respectively) are selected based on an adaptive
mechanism to generate a neighbor solution. A local search
encompassing three operators (see Section VI.E) is used to
further improve the neighbor solution, in which process a

backtracking adaptive threshold accepting mechanism decides
the acceptance of the solution [56, 57]. The iterative pro-
cedure continues until a maximum number of iterations are
reached. The feasibility checking and objective calculating are
presented in Section VI.F.

The adaptive mechanism is similar to that of [58] except
for the reward rules. Reference [58] reward the operators by
adding σ1, σ2 or σ3 to their scores if they provide a new best
solution, a solution that is better than the current one, or an
accepted non-improving solution, respectively. We reward an
operator additionally by adding σ4 to its scores if it provides
a feasible but unacceptable solution to fully use the exploring
abilities.

Let g (·) denote the total working time of a solution.
A solution hereafter always refers to a feasible one unless
explicitly stated. Multiple depot nodes are merged into one
if they appear continuously in a solution. Given parameters
N I T E R , N S EG , I N O−M AX , and ω, the step-by-step algorithm
can be formulated as follows:

Step 1: Generate an initial solution S. Let SCU R = S,
SB = S, I I T E R = 0, I S EG = 0, T M AX = g

(
SCU R

)
, T H =

T M AX , T H = ωT M AX , and I N O = 0. Initialize equal weights
for all the destruction and reconstruction operators.

Step 2: I I T E R = I I T E R + 1. I S EG = I S EG + 1.
Let SI T E R = SCU R . Select a destruction operator and a
reconstruction operator based on the roulette wheel, and
successively apply them to SI T E R . If SI T E R is successfully
reconstructed as a solution, say SN E I , go to Step 3; otherwise,
go to Step 10.

Step 3: Let loc be the first operator of the local search.
If g

(
SN E I

) ≥ g
(
SB

)
, go to Step 4; otherwise, let SCU R =

SN E I , SB = SN E I , and go to Step5.
Step 4: If g

(
SN E I

) − g
(
SCU R

)≥T H , I N O = I N O + 1,
and go to Step 7; otherwise, let SCU R = SN E I , and go to
Step 5.

Step 5: Apply operator loc to SCU R to generate a solution,
say SL OC . If g

(
SL OC

) ≥ g
(
SB

)
go to Step 6; otherwise, let

SCU R = SL OC , SB = SL OC , I N O = 0, and go to Step 9.
Step 6: If g

(
SL OC

)− g
(
SCU R

)
< T H , let SCU R = SL OC ,

T H = T H − �T H , and go to Step 7; otherwise, I N O =
I N O + 1.

Step 7: If T H ≤ 0, go to Step 8; otherwise, go to Step 9.
Step 8: T H = cT M AX , where c is a random number evenly

distributed in the range of [0, 1]. If I N O ≥ I N O−M AX , let
I N O= 0 and SCU R = SB .

Step 9: If loc is the last operator of the local search, go to
Step 10; otherwise, let it be the next one, and return to Step 5.

Step 10: If I S EG < N S EG , go to Step 11; otherwise, let
I S EG = 0, and update the weights for all the destruction and
reconstruction operators.

Step 11: If I I T E R < N I T E R , return to Step 2; otherwise,
output SB and terminate.

B. Initial Solution

A trip is in the form of (0, v1,v2, · · · ,vn, 0), vi ∈ N\ {0},
i = 1, 2, · · · , n. A solution is composed of a set of routes each
of which is the trip(s) performed by a tractor. The routes in the
initial solution are formed in two sequential operations as trip
construction and route construction. In the trip construction,

Authorized licensed use limited to: Seoul National University. Downloaded on November 02,2022 at 05:42:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTI-TRIP MULTI-TRAILER DROP-AND-PULL CONTAINER DRAYAGE PROBLEM 19097

we resort to the two-stage merging method of Ref [14] adapted
from the Clarke-and-Wright algorithm [59]. Such two trips that
can generate a solution with the smallest total working time
are merged. Taking trips T1 and T2 as an example, merging
them means deleting the last depot node of T1 and the first
depot node of T2, and appending T2 to T1. In the route
construction, two operators as route combination and route
insertion are successively used in a circular process to reduce
the number of routes. The circular process continues until no
routes can be reduced.

The route combination appends one route to another
directly, and always combines two routes that can generate
a solution with the smallest total working time.

Definition 1: Given a node i to be inserted into a set of
routes, a candidate position P (i) is defined as the position k
satisfying any of the following conditions:

(i) Inserting i into k violates the capacity constraints.
However, inserting a depot node into the trip based on
the insertion of i at an optimum position (i.e., with the
least increased total traveling time) can fix the capacity
constraints.

(ii) Inserting i into k directly generates a solution.
Definition 2: Given a node i to be inserted into a set of

routes, the best candidate position P B (i) is defined as a
candidate position that can generate a solution with the shortest
total working time.

The operator of route insertion removes node i ∈ N\ {0}
from a route and inserts it into P B (i). Given a route of a
solution, if all the node i ∈ N\ {0} is removed, the route is
removed. The operator is executed once on each route. The
specific process is as follows.

Step 1: Given a solution S, let SRE M = S. Let ri be the
first route of SRE M .

Step 2: Let vi be the first non-depot node of ri .
Step 3: Let S∗ = SRE M , remove vi from S∗. If P B (vi)

exists in S∗, insert vi into P B (vi), let SRE M = S∗, and go to
Step 4; otherwise, go to Step 5.

Step 4: If there still exist non-depot nodes in ri , return to
Step 2; otherwise, remove ri from SRE M , let S = SRE M , and
go to Step 6.

Step 5: If vi is the last non-depot node of ri , let SRE M = S,
and go to Step 6; otherwise, let it be the next non-depot node,
and return to Step 3.

Step 6: If ri is not the last route of SRE M , let it be the next
one, and return to Step 2; otherwise, output S and the process
terminates.

C. Destruction Operators
This subsection presents two destruction operators:

relatedness-based removal and worst removal. Each of them
removes the Phase I suborder node and its corresponding
Phase II suborder node simultaneously, and removes a total
number of q nodes.

1) Relatedness-Based Removal
Definition 3: The relatedness between two nodes i ∈ I1∪O1

and j ∈ I1 ∪ O1\ {i} in a solution is defined as

� (i, j) = ψT τi j + τδ(i)δ( j )

D
+ ψR (

ϕi j + ϕδ(i)δ( j )
)

+ψ S

∣∣si − s j
∣∣+ ∣∣sδ(i) − sδ( j )

∣∣
H

,

i ∈ I1 ∪ O1, j ∈ I1 ∪ O1\ {i} (39)

where ψT , ψR and ψ S are given weights, D = max{
τi j | (i, j) ∈ A

}
, and ϕi j is equal to one if nodes i and j

are in the same route, or zero otherwise. Note that si is the
service starting time of node i , as defined in the two models.
The term weighted by ψT describes the distance between two
customer locations, the term weighted by ψR indicates the
node location distances in the routes, and the term weighted
by ψ S measures the temporal connectedness.

The step-by-step procedure of this operator is as follows:
Step 1: Given a solution S and an empty set Q, randomly

choose a node i ∈ I1 ∪ O1 from S, move i and δ (i) from S
to Q.

Step 2: Randomly choose a node j ∈ I1∪O1 from Q. Select
such a node i ∈ I1 ∪ O1 that minimizes |� (i, j)− μ |S||
from S, and move i and δ (i) from S to Q, where μ is a
random number between zero and one, and |·| is the number
of elements in the set.

Step 3: If |Q| < q , return to Step 2; otherwise, output S
and the operator terminates.

2) Worst Removal
Definition 4: Given a node i ∈ I1 ∪ O1 of a solution S, the

removal cost on the total working time is defined as �(i, S) =
g (S)− g−(i) (S), in which g−(i) (S) is the total working time
of S without i and δ (i).

The worst removal removes nodes based on the removal
cost. The specific removing procedures are as follows:

Step 1: Given a solution S, assign a weight g (S)+�(i, S)
to each node i and δ (i), i ∈ I1 ∪ O1. Let Q be an empty set.

Step 2: Select node i using the roulette wheel mechanism
from S, i ∈ I1 ∪ O1. Move node i and δ (i) from S to Q.

Step 3: If |Q| < q , return to Step 2; otherwise, output S
and the operator terminates.

D. Reconstruction Operators

1) Deep Greedy Insertion Operator: The deep greedy inser-
tion operator inserts the removed node into the position
generating the smallest total working time. It consists of two
stages. First, it fixes those trips that are infeasible in capacity
constraints using the removed nodes. Second, it iteratively
inserts the best node of the remaining removed nodes at
its best candidate position. A Phase II suborder node will
be selected for insertion only if its corresponding Phase I
suborder node has been successfully inserted. The operation
terminates if no trips can be restored, or some removed nodes
can never be inserted feasibly. The specific procedures are as
follows:

Step 1: Given q removed nodes, put the Phase I and Phase II
suborder nodes into empty sets Q and QI I , respectively. Let
vi be the first node of Q. Let S be the destroyed solution and
f be its first capacity-infeasible trip.

Step 2: Check all possible inserting positions of f to find a
P (vi ) generating a solution with the smallest traveling time.
If such P (vi ) does not exist, go to Step 3; otherwise, remove
vi from Q, insert it into P (vi ), and go to Step 4.

Step 3: If vi is not the last node of Q, let it be the next
one, and return to Step 2; otherwise, the operator terminates.

Step 4: If vi ∈ I1∪O1, move δ (vi ) from QI I to Q. If f is
the last capacity-infeasible trip of S, go to Step 5; otherwise,
let it be the next one, let vi be the first node of Q, and return
to Step 2.
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Step 5: If Q 
= ∅, where ∅ denotes an empty set, go to
Step 6; otherwise, output S, and the operator terminates.

Step 6: Attempt to find P B (i) for each node i ∈ Q. If such
a position exists, remove the best node v from Q, insert it at
P B (v), and go to Step 7; otherwise, terminate.

Step 7: If v ∈ I1 ∪ O1, move δ (v) from QI I to Q. Return
to Step 5.

2) Regret Insertion Operator: The regret insertion operator
is similar to the deep greedy insertion except for the node
selecting manner in the second stage. Let regi = gS − gB

be the regret value of node i , where gS and gB are the total
working time of inserting i at its second best and first best
candidate positions, respectively. The node with the highest
regret value is selected for insertion.

E. Local Search Operators

There are three sequentially executed operators: trip piece
insertion, node exchange, and node insertion. All the operators
operate in both inter- and intra-route ways.

Trip Piece Insertion: A trip piece is a sequence with k ∈
{1, 2, . . . , K } nodes. Given a trip including n non-depot nodes,
n + 1 − K trip pieces can be identified if n ≥ K . Each trip
piece includes K successive nodes. If n < K , there is only
one trip piece with n nodes. For example, supposing K = 2,
trip (0, v1, v2,v3, 0) includes two trip pieces as (v1, v2) and
(v2, v3), while trip (0, v4, 0) includes only one trip piece (v4).
The operator removes the best trip piece, and inserts it at its
best position to generate a solution with the smallest total
working time.

Node Exchange: This operator exchanges two best nodes to
generate a solution with the smallest total working time.

Node Insertion: Similarly as the trip piece insertion, this
operator removes the best node, and inserts it at its best
position.

F. Feasibility and Optimum of Solutions

A solution is feasible only if its routes satisfy the capacity
constraints, precedence constraints, no-deadlock constraints
and planning horizon constraints. We resort to the three-vector
procedure of [14] to check the capacity constraints. Consid-
ering the precedence constraints, the Phase II suborder node
cannot be seated before its corresponding Phase I suborder
node if both nodes exist in the same route. The other situations
are checked in the calculation process of total working time.

Calculating the total working time is difficult due to
the interdependence among routes. Regarding this issue,
Zhang et al. proposed a two-stage heuristic method [47].
First, the service starting time of nodes is temporarily given
according to the idea of topological sorting. The service
starting time is then adjusted in the reverse order of topological
sorting. Zhang et al. improved the method by adding a third
stage named forward adjustment [14]. However, both methods
cannot guarantee the optimality of service starting times for
solutions. Here, we tackle this problem by delivering the route
information to a solver by constructing a mathematical model
for the routes.

Before presenting this approach, we take a deeper look at the
proposed ALNS algorithm. In the algorithm, a set of routes

excluding node i ∈ I2 ∪ O2 or node j ∈ I1 ∪ O1 and its
corresponding node δ ( j) are allowed. However, cases in which
the Phase II suborder node appears while its corresponding
Phase I suborder node is absent from the routes are forbidden.

Now, given a solution, its routes can be defined on a
graph G∗ = (N∗, A∗), where N∗ = {0} ∪ N I I ∪ N I ∪
Ñ I is the set of nodes, A∗ = AI N D ∪ AD ∪ {

(i, j)|
i ∈ N∗, j ∈ N∗\ {i} , (i, j) /∈ AI N D ∪ AD, (i, j) /∈ ARV S

}
is the set of arcs. In N∗, N I I is the set of Phase II suborder
nodes existing in the routes, N I is the set of Phase I suborder
nodes corresponding to the nodes of N I I , and Ñ I is the set
of such Phase I suborder nodes that appear in the routes but
the corresponding Phase II suborder nodes are absent from
the routes. In A∗, AI N D is the set of arc (i, j) in which
nodes i and j are connected via depot node in the routes, and
AD is the set of arc (i, j) /∈ AI N D in which nodes i and j
are directly connected after deleting the depot node between
trips for the routes.

With decision variables xi j , ti j , si (see Section IV),
eRET U RN

i and eST ART
i (see Section V.C), the total working

time of a solution can be derived from the following model.

min
∑

i∈N∗\{0}
eRET U RN

i −
∑

i∈N∗\{0}
eST ART

i (40)

s.t . eRET U RN
i ≥ −H (1− xi0)+ si + τi0, ∀i ∈ N∗\ {0}

(41)

eST ART
i ≤ H x0i, ∀i ∈ N∗\ {0} (42)

eST ART
i ≤ H (1− x0i )+ si − τ0i , ∀i ∈ N∗\ {0} (43)

0 ≤ eRET U RN
i ≤ H, 0 ≤ eST ART

i ≤ H, ∀i ∈ N∗\ {0}
(44)

xi j = 1, ∀ (i, j) ∈ AD ∪ AI N D (45)

xi j = 0, ∀ (i, j) ∈ A∗\AD\AI N D (46)

ti j = τi j , ∀ (i, j) ∈ AD, i 
= 0, j 
= 0 (47)

ti j = τi0 + τ0 j , ∀ (i, j) ∈ AI N D (48)

si + ti j − s j≤M
(
1− xi j

)
,∀ (i, j) ∈ A∗, i 
= 0, j 
= 0

(49)

si + pi − sδ(i) ≤ 0, ∀i ∈ N I (50)

τ0i ≤ si ≤ H − τi0, ∀i ∈ N∗\ {0} (51)

ti j ≥ 0, ∀ (i, j) ∈ A∗, i 
= 0, j 
= 0 (52)

xi j ∈ {0, 1} , ∀ (i, j) ∈ A∗ (53)

In the model, Objective (40) minimizes the total working time.
Constraints (41)-(44) correspond to Constraints (34)-(37),
respectively. Constraints (45) and (46) present the visiting
sequences. Constraints (47) and (48) present the transfer
times. Constraints (49) and (50) correspond to Constraints (4)
and (5), respectively. Constraints (51)-(53) define the decision
variables.

VII. COMPUTATIONAL EXPERIMENTS

This section conducts extensive computational experiments
to validate the models and ALNS algorithm. All models were
solved with CPLEX (version 12.6.1, 32 bits). All procedures
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TABLE V

RESULTS OF MODEL SB WITH DIFFERENT VALID INEQUALITIES

were coded in C++. All experiments were carried out on a
personal computer with a 3.40 GHz CPU and 8 GB RAM.

Section VII.A describes the test instances and experimental
settings. Section VII.B validates the inequalities and Models
SB and LC. Section VII.C assesses the performances of the
ALNS algorithm. Finally, Section VII.D explores the applica-
ble scenario of the multi-trip multi-trailer D&P transportation.

A. Instances and Parameter Setting

Random instances R1-R25 with the number of orders rang-
ing from 4 to 60 and clustered instances C17-C25 with the
number of orders ranging from 20 to 60 are taken from
the single-trailer instances of Ref [13] (see https://github.
com/HiWangH/datasets.git). The planning horizon H is set
as 16 hours based on the time limit of work shifts [60].
For all experiments, we set K = 2 because one tractor
pulling two trailers is the most common scenario in real world
applications. Moreover, we set ρ1 = 10 and ρ2 = 1 according
to Ref [13]. For each instance, the ALNS algorithm runs for
five times independently and the best solution is presented
unless explicitly stated.

Parameter N I T E R is set as 200 for Instances R1-R20
and C17-C20, and 100 for Instances R21-R25 and C21-C25.
Parameters N S EG , σ1, σ2, σ3 and σ4 are respectively set as 5,
100, 20, 10, and 5. Parameter q ranges from �0.1 |N\ {0}| to
�ξ |N\ {0}|�, where �· and �·� are respectively the downward
and upward integer functions, and ξ is a given parameter.
Parameters ψT , ψR , ψ S , ω, I N O−M AX , γ and ξ are sequen-
tially tuned based on Instances R17, R20, C17 and C20 using
the popular method of [50], where γ is a reaction factor
controlling weight adjustments of the adaptive mechanism.
The final values are: ψT = 0.8, ψR = 1.2, ψ S = 1.6,
ω = 0.04, I N O−M AX = 4, γ = 0.3, and ξ = 0.2.

B. Performance of the Exact Approaches

1) Effectiveness of Valid Inequalities: We first validate
the inequalities based on small-sized Instances R1-R4.
Tables V and VI summarize the solutions of Models SB and
LC under different scenarios. Column None reports the com-
putation time of the model without any inequalities. The next
three columns list the computation time of the model with one
of the inequalities. Column All reports the computation time
with all the inequalities.

We can observe from Table V that the objective values for
the model with and without inequalities are the same. The
inequalities, Inequality WT in particular, can sharply shorten
the computation time in most cases. When all the inequalities
are added, the computation times for R1-R4 are respectively

TABLE VI

RESULTS OF MODEL LC WITH DIFFERENT VALID INEQUALITIES

TABLE VII

THE NUMBER (AMONG 25) OF INSTANCES WITH IMPROVED BOUNDS

BY MODEL SB WITH INEQUALITIES, COMPARED TO

THAT WITHOUT INEQUALITIES

decreased from 11.79, 256.55, 293.65 and 5532.13 seconds
to 1.08, 45.97, 45.51 and 1703.63 seconds. The average
decrease is 81.66%. The valid inequalities show similar effects
on Model LC (see Table VI). Note that Model LC without
inequalities cannot solve Instance R4. However, when inequal-
ities (except Inequality SBE) are added, the instance becomes
solvable. All these results validate the effectiveness of the
inequalities.

We carried out experiments on 25 medium- and large-
sized instances (R5-R23, C17-C21, and C23) to investigate
the performance of the inequalities in improving the bounds
at the root, which can further validate the effectiveness to
some extents. We set the maximum number of nodes solved by
the branch-and-cut algorithm of CPLEX as zero. The compu-
tational results show that the inequalities, except Inequality
SBE, can decrease the upper bounds for more than half
of the instances. Inequality WT is outstanding among the
inequalities. It decreases the upper bounds for instances except
Instances R9, R16 and R20. The average decrease is 18.32%.
Inequality WT also shows its strength in improving the lower
bounds. It lifts the lower bounds from negative values to pos-
itive values. The average improvement is 124.84%. Generally,
if all the inequalities are added, the upper and lower bounds are
improved by 12.74% and 125.42% on average, respectively.

For Model LC, although solutions for some instances cannot
be found due to the limit of solvable nodes, each inequality
can still improve the upper and lower bounds for about half of
the instances. When all the inequalities are added, the upper
bounds are a little worse than those without any inequalities,
but the lower bounds are improved by up to 141.20% on
average. Tables VII and VIII summarize the total number of
improved upper bounds (UB) and lower bounds (LB), obtained
by Models SB and LC under different scenarios.

2) Comparison Between Models SB and LC: We com-
pare the performance of Models SB and LC with all valid
inequalities (i.e., strengthened Models SB and LC) based on
20 instances (R5-R20 and C17-C20). The depth-first search
strategy is used in CPLEX. The time limit for solving each
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TABLE VIII

THE NUMBER (AMONG 25) OF INSTANCES WITH IMPROVED BOUNDS
BY MODEL LC WITH INEQUALITIES, COMPARED TO

THAT WITHOUT INEQUALITIES

Fig. 4. Performance of Models SB and LC with all valid inequalities.

instance is set as one hour. Fig. 4 presents the results on
lower bounds and upper bounds. The results indicate that
the strengthened Model LC provides better lower bounds
for 19 instances and better upper bounds for 17 instances,
compared to the strengthened Model SB. The strengthened
Model LC yields better solutions for 17 instances. The maxi-
mum upper bound difference is 36.79% reached at R18. The
average upper bound difference is 8.51%. However, realistic-
sized instances are still hard to solve, which necessitates the
design of the ALNS algorithm.

C. Performance of the ALNS Algorithm

1) Comparison to the Strengthened Model LC: The ALNS
algorithm is compared with the strengthened Model LC based
on 23 instances (R1-R20 and C17-C20). The comparative
results indicate that the ALNS algorithm can provide better
solutions in shorter computation time (as shown in Table IX).
The ALNS algorithm provides optimum solutions for the four
small-sized instances (R1-R4). The ALNS provides better
solutions for 18 out of the other 20 instances. The ALNS
algorithm provides the same number of tractors as the strength-
ened Model LC, but obtains a shorter total working time for
10 instances (R7-R16) among them. The objective difference
ranges from 0.96% to 5.30%. The ALNS algorithm provides
smaller value for both the number of employed tractors and
the total working time for the other eight instances. The
maximum objective improvement is up to 49.79% which is
reached at C20. The average objective improvement over all

TABLE IX

PERFORMANCE OF THE ALNS ALGORITHM COMPARED TO THE
STRENGTHENED MODEL LC WHEN SOLVING 24 INSTANCES

TABLE X

PERFORMANCE OF THE ALNS ALGORITHM

WITHOUT CERTAIN COMPONENTS

Fig. 5. Performance of different transportation modes.

instances is 12.76%. The savings on the computation time,
employed tractors and working time are 55601.46 seconds,
15 and 158.97 hours, respectively.

2) Contribution of ALNS Components: This subsection
demonstrates contributions of the ALNS components based on
Instances R1-R20 and C17-C20. We ran the ALNS algorithm
excluding one operator while retaining the others to solve
each instance. The deteriorated solution is compared to that
of the intact ALNS algorithm. Overall, the worst removal
is the most effective destruction operator, the deep greedy
insertion is the most effective reconstruction operator, and
the node exchange is the most effective local search operator
(as illustrated in Table X). The absence of destruction or
reconstruction operators incurs an increase of computation
time. Their utilization is reasonable considering the caused
deterioration on objectives. The absence of local search oper-
ators saves computation times between 3.45% and 17.75%.

Authorized licensed use limited to: Seoul National University. Downloaded on November 02,2022 at 05:42:29 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTI-TRIP MULTI-TRAILER DROP-AND-PULL CONTAINER DRAYAGE PROBLEM 19101

However, the objective deterioration of 0.97%-1.09% is sig-
nificant. Therefore, it is reasonable to embed them in the
algorithm.

D. Applicable Scenario of Multi-Trip Multi-Trailer D&P

This section explores which (one-tractor-two-trailer or one-
tractor-one-trailer) mode is more suitable for application when
customer distribution is changed, based on Instance R14. The
original geographical locations of customers are randomly
distributed in a square Euclidean plane with a side length
of 200 kilometers. The depot is located at the center point
(100, 100). We now choose the customers according to a

probability of 0.2, 0.4, 0.6, 0.8, and 1, and regenerate their
geographical locations in an area with both axes ranging
from 300 to 400 kilometers randomly. For each probability,
10 instances are generated and solved using the ALNS algo-
rithm. The average number of employed tractors and total
working time are presented in Fig. 5(a) and Fig. 5(b), respec-
tively. We can find that the two indexes for both the two- and
single-trailer modes increase with the choice probability.
However, the difference between them becomes obvious for
each index. The increasing trend of the multi-trailer mode is
flatter. As a result, the multi-trailer mode is more suitable if
customers are clustered in the area far away from the depot.
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ti j =
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The reason is that the traveling times between customers and
the depot are long. Benefiting from large transportation capac-
ity, the multi-trailer mode requires a small number of tractors
to accomplish more orders, and avoids frequent shuttling back
and forth between customers and the depot.

VIII. CONCLUSION AND FURTHER DIRECTIONS

This paper investigated a MTMTDPD problem. Two mixed-
integer programming models are constructed to formulate the
problem. Three families of valid inequalities are presented
to strengthen the models. An ALNS algorithm is developed
to solve realistic-sized instances of the problem, in which
a mathematical decoding method is proposed to obtain the
optimal service starting time. Experimental results indicate that
the inequalities are valid and the mathematical model based on
IF-THEN constraints outperforms the state-based model. The
ALNS algorithm further outperforms the strengthened math-
ematical model. The multi-trailer mode is more suitable for
transportation services if the customers are clustered far away
from the depot, when compared to the single-trailer mode.

The limitations of this research are as follows. First, this
research considers a popular static scenario, which limits its
application in real-life scenarios to a certain degree. Second,
we focus on the handling of a multi-trip feature assuming
that the travel time includes no uncertainty and that the
customers have no time window constraints. Third, the tractors
and trailers, as well as the containers, are assumed to be
homogeneous.

This research might be followed in several ways. For
example, some features, including limited resources, hetero-
geneous tractors/trailers/containers, time window constraints,
and multiple depots, might be introduced into the problem.
Consideration of greenhouse gas emissions could be another
vein of research that might yield solutions for making trans-
portation more environmentally friendly. Finally, introducing
dynamic elements such as the appearance of new orders,
cancellations of existing orders, weather changes, and break-
downs of vehicles, into the MTMTDPD problem are also
interesting topics for further research. However, the problem
with the aforementioned features is almost definitely to be
more difficult to solve and requires even stronger solution
strategies.

APPENDIX A
MODEL LC

Constraints (11), (12), (16), (17), (21), (22), (26) and (27)
in Model SB can be reformulated as the following IF-THEN
form, (54), shown at the bottom of the previous page.

Similarly, Constraints (13), (15), (18), (20), (23) and (28)
can be reformulated as, (55), shown at the bottom of the
previous page.

Constraints (14), (19), (24), (25) and (29) can be reformu-
lated as, (56), shown at the bottom of the previous page.

Constraints (30)-(32) can be reformulated as, (57), shown
at the bottom of the previous page.

Now we get Model LC with objective function (1),
Constraints (2)-(7) and (54)-(57). See https://github.com/
HiWangH/Model-Code.git for the code.

APPENDIX B
PROOF OF PROPOSITION 1

Let wi be the waiting time of the tractor serving
node i ∈ N\ {0}. For the total working time of tractors,
we have

∑
i∈N\{0} xi0 (si + τi0) − ∑

i∈N\{0} x0i (si − τ0i ) =∑
i∈N\{0}wi + ∑

(i, j )∈AT RF xi j ti j + ∑
i∈N\{0} xi0τi0 +∑

i∈N\{0} x0iτ0i . Moreover, considering the triangular
inequality and Constraints (30)-(32), we get ti j ≥ τi j , (i, j) ∈
AT RF . Therefore,

∑
(i, j )∈AT RF xi j ti j ≥ ∑

(i, j )∈AT RF xi j τi j ,
and∑
i∈N\{0}

wi+
∑

(i, j )∈AT RF

xi j ti j+
∑

i∈N\{0}
xi0τi0 +

∑
i∈N\{0}

x0iτ0i

≥
∑

i∈N\{0}
wi+

∑
(i, j )∈AT RF

xi j τi j+
∑

i∈N\{0}
xi0τi0+

∑
i∈N\{0}

x0iτ0i

≥
∑

(i, j )∈AT RF

xi j τi j+
∑

i∈N\{0}
xi0τi0+

∑
i∈N\{0}

x0iτ0i (58)

According to the definition of set A, we have∑
(i, j )∈A xi j τi j = ∑

(i, j )∈AT RF xi j τi j + ∑
i∈N\{0} xi0τi0 +∑

i∈N\{0} x0iτ0i . As a result,∑
i∈N\{0}

xi0 (si + τi0)−
∑

i∈N\{0}
x0i (si − τ0i )

≥
∑

(i, j )∈A

xi j τi j (59)

which is exactly Proposition 1. �
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