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Abstract: Although important for production industries to reach fully
sustainable manufacturing processes, those implementing production systems
face challenges in reaching this reliability goal. In this direction, a production
system is modelled through a basic economic-production paradigm under
carbon emissions with a storage constraint and demand-dependent unit
production cost. More reliable production houses produce fewer defective
products than the unreliable production system. As the model contains a
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power-function, a geometric programming procedure is employed to obtain a
quasi-closed form of the optimal solution. A numerical example based on data
from the literature and a case study based on industry data, are provided to
demonstrate geometric programming as a valuable analytical tool to resolve
this type of problem for a production system under carbon emissions. Finally,
a sensitivity analysis and graphical illustration are provided to illustrate
the model. Numerical results show that the production system becomes
completely reliable when the recommended model is used. [Submitted:
18 May 2019; Accepted: 8 March 2021]
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1 Introduction

A reliable production system means that the system should always move with perfect
products without any defects or deterioration. There are several reasons to create
reliable production systems, including saving the environment, increasing the output



Effects of variable setup cost, reliability, and production costs 373

of perfect products, and making the best possible products. If a production system is
sustainable, then it must follow three pillars of sustainability – economic, environmental,
and social benefit. If a production system is reliable, then the number of defective
products tends to be zero. This indicates that the production system produces less
waste, which itself is an indicator of the environmental benefit of producing less
waste and pollution. This also indicates the economic benefit as the number of
reworking/remanufacturing/refurbishing units is reduced. Additionally, a social benefit
is shown, as the maintenance of any reliable system needs more skilled workers, which
creates more jobs than the traditional production system. Rasay et al. (2019) studied
a two-stage maintenance model, where the quality of the second stage is dependent
upon the first stage. A maintenance planning is considered for general deterioration.
The process control follows a continuous distribution. They developed a stand-alone
model for statistical process control. Recently, Tiwari et al. (2018) discussed the
effect of carbon emissions for managing inventory. They found that considering carbon
emissions is very much essential to hold inventory to save the environment and make
any reliable production system. In this direction, Laforest et al. (2013) discussed the
optional production system with cleaning and better way within a multi-decision criteria
system. Jawad et al. (2015) extended the economic order quantity model with energy
counting criteria to make the system reliable. Cárdenas-Barrón et al. (2015) developed
a production system to determine the optimum lot size and the best transportation way
by reworking defective items. Ozturk et al. (2016) extended the textile industry problem
with the production system by maintaining the eco-friendly environment. Tayyab and
Sarkar (2016) obtained the optimal production batch size within a multi-stage production
process by considering random defective production rate. Using variable backorder rates
in an imperfect production, Kim and Sarkar (2017) developed a production system
without accounting for the direction of reliability of the production system. Several
authors, such as Sarkar et al. (2011), Sarkar (2012), Saha et al. (2017) and Sett et al.
(2017) acknowledged the role of a reliable production system, but none of them took
into account the reliability of the systems they described. Instead, most of the cited
works were based on shortages and backorders that were caused by defective products.

The main research gap found in the literature involves the reliability of the
production system because reliability is one of the most credible measures of a
production system. This study explains that a system is reliable when the number of
defective units is reduced in the production process. The research gap is fulfilled by this
paper, which is an extension of Leung’s (2007) model within a production environment
with more realistic assumptions based on carbon emissions during reliable production
setup, during continuous production, and holding those products in warehouse. Rest of
this study is designed as follows: the development of mathematical model is explained
in Section 3. In Section 4, a solution procedure is provided to the mathematical model
thorough geometric programming. In Section 5, an illustrative numerical example and
sensitivity analysis are given to explain the model. Finally, conclusions are given in
Section 6.

2 Literature review

The literature review is being made based on the following specific research areas of
the production-inventory model.



374 I. Moon et al.

2.1 Production-inventory models

The basic production-inventory model is based on two important assumptions regarding
fixed setup cost and production of a perfect-quality product. In a short-term
manufacturing situation, the setup cost may be fixed or constant, but for long-term
manufacturing operations, it may not always be fixed. It tends to decrease due to
investment in new technologies and machines, and the flexibility of the manufacturing
processes largely depends upon system reliability. Every firm, regardless of size or
incurred costs, would like to produce perfect-quality items within a reliable production
system. Is such a goal achievable in either the short or long-run? Generally, it is
impossible to get a perfect product in every production run, but quality is directly related
to reliability within a production system. Thus, one can expect to obtain continuously
good quality products if the system is reliable. However, to make a system reliable, a
large initial investment must be allocated to the production system. As the system is
continuing for a long-time, carbon emissions will be more during production setup and
production as well as for holding those products. Carbon emissions during productions
or holding products become a global issue nowadays. Every industry is taken care of
this matter as the first priority-based because of recent government regulation. Many
countries started to follow Euro-6 rules to save the environment. Recently, Ahmed
and Sarkar (2018) developed the priority-based optimisation in sustainable production
system, where they proved the cost is minimum when the total cost is being calculated
subject to carbon emissions constraint.

Wang et al. (2018) proved that the decision of manufacturing or remanufacturing
depends on carbon emissions and the low carbon emissions can control the economy
easily. Sinha and Chaturvedi (2018) extended this field of production with reduction of
carbon emissions and minimising energy consumption. They proved that the flexibility
production schedule can reduce carbon emissions during production time. Sarkar et al.
(2018) developed the effect of variable production rate on quality of products in
a supply chain management without having any concept of reliability of production
system. Majumder et al. (2017) investigated the effect of quality improvement under
the controllable lead time scenario. They found the effect of setup cost reduction in
a two-echelon supply chain management. Moon et al. (2018) studied a supply chain
management for online selling. The manufacturer has the opportunity to sell products
both in centralised and decentralised way. They observed that the manufacturer is
beneficial for the decentralised policy but the entire supply chain earns more profit by
the centralised policy. Kang et al. (2018a, 2018b) discussed the effect of human quality
based inspection, safety stock, and planned backorder in two smart production models
without any concept of carbon emissions or reliability. Lin et al. (2019) introduced
the production system’s capacity extension with coordinated production planning. They
utilised a flexible production capacity to solve the model due to the linear problem.
Sahin et al. (2020) increased the production system’s performance by a system analysis,
but they concentrated only on the quality of products without thinking about obtaining
those perfect qualitative products. Recently, Nahas (2020) discussed a serial production
model with an unreliable production system. Nevertheless, the concept of making the
production system reliable was not considered within it, though the consideration of
equipment of the production system with the buffer was considered.
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2.2 Reliable production-inventory models

Silver (1992) suggested that ‘changing the givens’ plays an important role in
manufacturing systems, and qualitative models offer the most important tool for making
managerial decisions. Silver (1992) described the changes in constant parameters such
as setup cost, setup time, demand, and production rate. The literature on inventory
modelling that explains the effect of ‘changing the givens’ in manufacturing decisions
is rapidly growing. Porteus (1985) discussed an inventory model with a reduced system
cost and later explained that the quality of a product can be controlled by investment
levels (Porteus, 1986). Van Beek and Putten (1987) discussed issues related to improved
flexibility in a production and inventory management. They defined flexibility as an
ability to change a situation with the minimal effort in a short time, explaining, “the
flexibility possesses three dimensions: the ranges of states a system can adopt, the cost
of moving from one state to the other, and the time which is necessary to move from
one state to other.”

Cheng (1989a) characterised a reliable production process as consistently generating
acceptable quality products, which are defined as those demonstrating acceptable
performance under a certain condition. If the reliability increases, the costs of scrap
items and wasted materials as well as expenses associated with reworking substandard
products decrease. To produce highly reliable products, investments in new technologies
and machines as well as prioritised setup cost reductions are required. Based on this
concept, Cheng (1989b) developed an economic production quantity model considering
manufacturing process flexibility and reliability. Due to scale of economies, the unit
production cost is assumed as less to satisfy more demand. An annual fractional
cost of the capital investment function and price elasticity parameter are introduced
within the unit production cost to increase the process reliability due to investment
in technology. Based on this idea, Leung (2007) extended Cheng’s (1989b) model by
adding a reliability constraint and obtained a closed-form solution for the model when
the degree of difficulty is positive.

If the entire production system cannot be transformed into a reliable system, then
machines might breakdown. To control total system costs, machine breakdowns must
be prevented through reliable production. Although Sarkar and Saren (2016) and Sett
et al. (2017) proved that a stable system reduces costs, the production systems they
described were not completely reliable. As a result, these researchers used defective
costs and warranty costs as proxies of reliability. If any defective product is sold to
a customer, the company may suffer from a poor brand image within the industry.
To promote a positive brand image, the production system must be fully reliable such
that no defective items will be manufactured. Sarkar et al. (2011) and Sarkar (2012)
developed two new production models using the number of failures and working hours
as indicators of system reliability. If the ratio of failure percentages to total work hours
is decreased, the system becomes more reliable such that a fewer defective items are
produced. These researchers initiated a direction of study toward reliability, but they did
not address the ways the production system can become reliable. They used a control
theory optimisation to solve for a closed-form solution. Asim et al. (2019) introduced a
reliability cost within an uncertain integrated production-inventory model. Although they
used the concept of reliability in a production system, they considered multi-objective
optimisation instead of geometric programming. Thus, they could not reach a fully
reliable production system.
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In all cases, researchers have been unable to extend the model of a power function
or power demand pattern. The models of Sarkar et al. (2011) or Sarkar (2012), based on
a control theory approach, cannot solve models that contain a power function. Therefore,
past research leaves a major research gap leading to the question: how can a closed-form
or quasi-closed-form solution be obtained when system reliability is taken into account
for reliable production? This research gap is fulfilled by this study considering geometric
programming procedure.

2.3 Reliable production-inventory models with constraints

Generally, adding more constraints in the research model makes the model more
realistic, as in reality there are several constraints in every industry sector. The major
constraints in almost every industry sector is a budget constraint. Sometimes, space
constrains play an important role. Roy and Maiti (1998) developed a multi-objective
inventory model by considering budget and space constraints in fuzzy environment.
They solved the model with a fuzzy technique. Yi and Sarker (2013) discussed an
optimum policy for an integrated inventory system under consignment stock policy
with space limitation. Sarkar and Moon (2014) developed the quality improvement of
products manufactured in an imperfect process, but they did not address corrections
for the production system. Paul et al. (2015) extended their own production model
by considering several disruption strategies and several constraints from single-stage
disruption to multi-stage disruption, even though they can easily consider system
reliability within the production system to reduce more disruptions. Recently, Saha et al.
(2017) developed a model of optimal investment for the retailer and preservation of
deteriorated products through green operations to make a system clean. However, they
did not take into account the reliability of the entire system under carbon emissions.
They only considered the quality and improved quality of products. An inventory
management for perishable products was discussed by Balugani et al. (2019), where
the demand follows a Bernoulli demand pattern. The management of those products
was really challenging because of the intermittent consumption, limited lifespan, and
expiration. They found that the solution of this type of problem was driven by the
demand size, not by intermittent and expiration. These all researchers developed models
to improve product quality, but they did not consider the reliability of the machinery
systems on which the items were produced. The reliability of any production system is
considered as an important measurement of industrial and management design. A series
or parallel reliable system is more preferable, but not economical. Thus, many industries
do not prefer the redundancy system to control continuous production of perfect
products. Gago et al. (2013) developed an exact cost minimisation of a series-parallel
reliable system with multiple component choices using an algebraic method for a
nonlinear program. Das et al. (2021) solved a production inventory problem with
system reliability in which there was no concept of a geometric program solution for a
variable demand and production setup. They only considered system reliability within
the confines of a production system with perfect products exclusively. They found that if
the machinery system was very reliable, then defective items were not produced within
such a reliable production system. This study fulfills the research gap that exists in the
recent literature. If the machinery system is the most reliable, then defective items are
not produced within the reliable production system.
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2.4 Necessity of geometric programming as a solution methodology

To accommodate different changes in inventory models, the solution procedure becomes
more difficult to implement. Generally, differential calculus provides the strongest
analytical tool to obtain the optimal solution for continuous optimisation problems,
but the power function in the model makes obtaining a closed-form solution more
difficult. Many industry problems require the optimal solution of the nonlinear program
of complex nature. Among them, generalised reduced gradient (GRG) is one of the best
method which was proved by Duffuaa et al. (1993). Choi and Bricker (1996) proved
that geometric programming is an equivalent techniques for solving the same problem
for which GRG is the best. They obtained the same results for both the procedure. They
proved the effectiveness of geometric programming is more than others for optimisation.
Since then, geometric programming is an important tool, with advantages over other
optimisation methods, to solve a nonlinear program. Duffin et al. (1967) explained
the basic tenets of geometric programming: in geometric programming problems, the
degree of difficulty (i.e., the dimension of the dual problem) is defined as the number
of variables (minus one) subtracted from the number of terms. According to geometric
programming terminology, if the degree of difficulty is negative, then geometric
programming is not directly applied; if it is zero, then only one unique solution to the
problem can be found; if it is positive, then an infinite number of solutions is possible.
Cárdenas-Barrón (2001) extended a production model with an algebraic approach to
obtain the closed-form solution. He proved that this algebraic method can be utilised
for the research problems without using optimisation through calculus. Yang and Wee
(2002) extended the application of the algebraic method in an economic lot size model
through the vendor-buyer relation. They also proved that using algebraic approach, the
optimum results can be obtained faster than the calculus-method. Wee et al. (2003) wrote
a note on the inventory model through the algebraic procedure to obtain the optimum
results. Chung and Wee (2007) utilised the algebraic method in the supply chain model
and proved that they obtained the optimum results without the complex calculation of
calculus method. Cárdenas-Barrón (2008) proved the arithmetic-geometric mean can
solve more faster way than the basic algebraic method. Thus, he recommended to utilise
arithmetic-geometric method for optimisation instead of calculus. Sarkar (2013) proved
that for the supply chain problem, the algebraic method is quite useful to obtain the
closed-form solution. The important benefit of this method is that the Hessian matrix
calculation and other complex calculation is not needed for obtaining the optimum
solution.

Liu (2007) discussed how geometric programming can be used for profit
maximisation problem. He extends the geometric programming approach which gives
the global optimum solution as well as information to obtain the relationship between
profit maximisation and returning scale for the problem solution. Liu (2008) developed
an extended interval-exponent posynomial problem with coefficients. The resulting
solution procedure is based on the duality theorem and the separation-of-variables
method for the exponents present in the objective function. Liu (2009) derived
a profit maximisation model with interval coefficients and a quantity discount
by using signomial geometric programming to derive the interval profit value.
Receiving both bounds for the range, Liu (2009) employed two-level mathematical
programming and utilised the duality theorem and the separation-of-variables technique
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to transform the two-level geometric programming into a single-level geometric
programming. Mahapatra and Mondal (2012) developed a posynomial parametric
geometric programming setup with an interval valued coefficient in an imprecise
environment. They optimised the objective function without changing the equivalent
transformed model. Xu (2013) developed an iterative strategy to address the steady-state
optimisation of biochemical systems by considering nonlinear kinetic models known as
generalised mass action (GMA) models. Samadi et al. (2013) introduced a geometric
approach for the fuzzy inventory model. They proved that variable pricing made a
significant effect on the total profit. Ojha and Biswal (2014) introduced an ϵ-constraint
method to solve the multi-objective geometric programming problem, but they obtained
a non-inferior solution. They finally used the duality theory and found a Pareto optimal
solution. However, an iterative procedure can be used to calculate an optimal solution
by solving a series of geometric programming. Some notable books and research articles
have been written by Sun et al. (2015).

2.5 Novelty of this research

After a long survey of literature, one can find a literature gap that no authors yet
considered the reliable production system to reduce the waste for making a reliable
production system with good quality products. There are two aspects for novelty for this
model:

2.5.1 Theoretical aspect

Nowadays, many in the industry maintain green manufacturing systems to save the
environment and address other issues. Controlling carbon emissions within the whole
production system is one of the way to maintain a good environment. For example,
under controlled carbon emissions, reduction in the number of defective items minimises
waste, which contributes to a good environment and is an indicator of a reliable
production system. Furthermore, reduction in the number of defective items during
production means that the system is reliable, and this reliability translates to relatively
few failures per working hour. Thus, a reliable green production system is ultimately
a reliable production system-as determined by the output of high quality products and
reduced waste-that causes less damage to the environment than an inefficient production
system. However, these important outcomes have not been considered by any other
researcher to date.

2.5.2 Methodological aspect

A geometric programming procedure is typically employed for solving algebraic
nonlinear problems for which the main goal is optimisation. The most remarkable
property of geometric programming is that it can solve an optimisation problem with
highly nonlinear constraints because of the powerful duality. Generally, two types
of geometric programming problems are solved: posynomial and signomial. In a
posynomial problem, all coefficients are positive and in an signomial problem, at least
one coefficient is negative. Posynomial and signomial problems each contain a power
function. For the proposed model, a posynomial problem is formulated. The model has
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been solved with geometric programming to obtain a closed-form solution even though
the model solved in the usual way obtained a quasi-closed-form solution. The finding is
based on a high degree of difficulty, and a unique solution is obtained. This is a major
contribution from the methodological perspective.

The proposed model establishes general results for a reliable production system
under the effect of carbon emissions by using arithmetic-geometric inequalities
and geometric programming under storage space and reliability constraints. A
quasi-closed-form solution is found analytically for each of the decision variables of
demand, lot size, setup cost, and reliability. Geometric programming is a powerful tool
to solve the posynomial, and the purpose of this study is to reduce the total system cost
by obtaining a quasi-closed-form solution with the help of geometric programming and
an arithmetic-geometric inequality for an economic reliable production quantity problem.
The contribution of the paper, compared with existing studies, is summarised in Table 1.

3 Mathematical model

This section contains the basic concept of reliable production with the problem definition
addressed by the model, notation, basic assumptions, and a full description of a reliable
production system characterised by reliability.

3.1 Basic concept of a reliable production system

A production system is said to be a reliable production system if it controls or reduces
the amount of waste generated throughout the process in a way that maintains the
quality of the products and reduces any negative effects on the environment. The novelty
of the production model presented is that it represents a reliable production system
under carbon emissions that minimises the amount of defective items. Controlling waste
while maintaining the quality of manufactured products is the key to create a reliable
production system under carbon emissions. See Figure 1 to gain a better understanding
of a reliable production.

Figure 1 Basic concept of a reliable production system (see online version for colours)
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Table 1 Comparison between contributions of different authors
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A basic economic production system is the basis for making a reliable production
system model that featured reliability as a decision variable under carbon missions.
The aim of the model is to reduce costs and improve existing production systems by
introducing reliability as a measured characteristic under carbon emissions. To create
a reliable production system model, the following basic assumption is adopted: More
reliable production systems create fewer defective products. The fundamental goal is
to make a completely reliable carbon-controlled production system such that the entire
system is defect free, or totally clean under controlled carbon emissions, which is an
indicator of a good environment for green manufacturing. An improved methodology
of a geometric programming is employed to obtain closed-form or quasi-closed form
solutions. Using a geometric programming procedure with a positive degree of difficulty,
it is very difficult to obtain a closed-form solution. For this model, using an analytical
geometric programming procedure, one can obtain a closed-form or quasi-closed-form
of the optimal solution.

The nomenclature of the model is given in Table 2.

Table 2 Notation used in to the model

Decision Variables

S Setup cost per setup under controlled carbon emissions cost ($/setup)
D Demand rate (units/year)
R Reliability of the reliable production process
Q(t) Production quantity at time t per batch (units/batch)

Dependent Variables

p Demand dependent unit production cost ($/item)

Parameters Variables

Ψ(S,R) Total cost of depreciation and interest per production cycle ($/year)
C(S,D,R,Q) Total average cost of the reliable production system ($/year)
β Price elasticity (β > 1)

α Annual fractional cost of the capital investment including carbon
emissions (α > 0)

h Holding cost per unit per unit time under controlled carbon
emissions ($/unit/year)

ω1 Storage space area per unit (square feet/unit)
A Total storage space area (square feet)

The following assumptions are considered to develop the model.

1 A reliable production process handles a single type of items. All items are
inspected and all defective items are discarded to maintain the reliable production
system. All costs are considered under controlled carbon emissions. The whole
production is being made such that the amount of carbon emissions is less for
saving the environment.

2 Generally many models consider a fixed-unit production costs. However, for large
manufacturing systems, the unit production cost will be less because it is based on
the product’s demand. This model assumes that the unit production cost under



382 I. Moon et al.

carbon emissions is dependent on demand as p = αD−β , where α is the partial
fractional cost of the total investment annually and β is the price elasticity
parameter (α > 0, β > 1).

3 The total depreciation and interest cost under carbon emissions per production
cycle is directly proportional to the reliability and inversely proportional to the
setup cost: Ψ(S,R) = aS−bRc, where a, b, c > 0 are three constants (real
numbers) as the shape parameters.

4 The time horizon is infinite and production rate is instantaneous.

The unit production cost under carbon emissions depends on demand and high demand
of reliable products translates to reduced unit production; that is, if demand increases,
then production must increase to prevent shortages. Hence, without considering
shortages, increasing the value of production rate translates to a decreasing value of unit
production cost. Therefore, the unit production rate must follow an inverse relation with
the demand rate. The graphical representation of the relationship is given in Figure 2.
The unit production cost under carbon emissions is considered as

p = αD−β , where α is the annual fractional cost of the capital investment
and β is the price elasticity parameter (α > 0, β > 1). (1)

Products can be made more efficiently through use of modern technology. Small batches
require less holding costs, but managers may produce in large batches when demand
for the reliable product is high. Thus, a storage space constraint is considered. As no
product is perfect reliable, another constraint on reliability is used.

Figure 2 Relationship between demand and unit production cost (see online version
for colours)
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It is examined for the cost in terms of unreliability as 1−R:

Ψ(S,R) = aS−b(1−R)−c1

where a, b, c1 > 0 are constant (real numbers) as the shape parameters. (2)

If R → 1, then Ψ(S,R) → ∞; that is, no product is fully reliable, and if this
unreliable equation is used, then the closed-form solution cannot be found from this
model. However, equation (2) fits the data better than equation (3), thus a geometric
programming is employed rather than differential calculus.

The production system depends on the reliability R of the product, which indicates
that R% of the items with acceptable quality can meet the market demand. Hence, the
cycle length is equal to RQ/D, and D/RQ indicates the average number of cycles per
year.

Now the total inventory related cost under controlled carbon emissions per
production cycle becomes

Setup cost under controlled carbon emissions
+production cost under controlled carbon emissions
+inventory holding cost under controlled carbon emissions
+interest and depreciation cost under controlled carbon emissions.

Thus, the total average cost is

C(S,Q,R,D) = DSQ−1R−1 +DpR−1 +
HQR

2
+DaS−bQ−1Rc−1 (3)

and the required storage area is ω1RQ. One can consider

P = αD−β

along with the two constraints, 0 ≤ R ≤ 1 and RQω1 ≤ A.
Thus, it can be rewritten as

Min C(S,Q,R,D) = DSQ−1R−1 + αD1−βR−1

+
HQR

2
+DaS−bQ−1Rc−1

subject to 0 ≤ R ≤ 1

RQω1 ≤ A

D,S,Q,R > 0. (4)

In the basic economic production quantity model, the product is considered as perfect,
neither inspection nor rework costs are considered. However, production of fully reliable
products is very difficult to achieve. Therefore, to make an accurate assumption, the
total interest and depreciation costs under carbon emissions per production cycle of the
modern flexible system are considered as: both of these costs under carbon emissions
vary with reliability levels and setup costs. Van Beek and Putten (1987) explained a
similar type of expression to model the production of a reliable product in a basic
economic production quantity model without carbon emissions.

Ψ(S,R) = aS−bRc

where a, b, c > 0 are three constants as of the shape parameters. (5)
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4 Geometric programming solution to the mathematical model

By using geometric programming, a solution is obtained for the mathematical model by
considering the following equations:

u1 = DSQ−1R−1 (6)
u2 = αD1−βR−1 (7)

u3 =
HRQ

2
(8)

u4 = DaS−bQ−1Rc−1 (9)
u5 = R (10)

u6 =
RQω1

A
. (11)

From the weighted arithmetic-geometric inequality for the positive integers, one can
write the cost equation under controlled carbon emissions as

C(S,Q,R,D) = u1 + u2 + u3 + u4

≥
(
u1

y1

)y1
(
u2

y2

)y2
(
u3

y3

)y3
(
u4

y4

)y4

(12)

where y1 + y2 + y3 + y4 = 1 and y1, y2, y3, y4 > 0 and one can consider the constraints
in the following way:

1 ≥ R = u5 ≥ u∆5
5 (13)

1 ≥ RQω1

A
= u6 ≥ u∆6

6 (14)

where

∆5 ∈
{
(1,∞) if u5 < 1
(−∞,∞) if u5 = 1

}
(15)

and

∆6 ∈
{
(1,∞) if u6 < 1
(−∞,∞) if u6 = 1

}
. (16)

Multiplying the geometric inequality (12) by the two extreme sides of constraint
inequalities (13) and (14), one can obtain

C(S,Q,R,D) = u1 + u2 + u3 + u4

≥
(
u1

y1

)y1
(
u2

y2

)y2
(
u3

y3

)y3
(
u4

y4

)y4

u∆5
5 u∆6

6

≡ ϕ(y,∆5,∆6, S,Q,R,D). (17)

From the geometric programming theory, the left-hand side and right-hand side of
inequality (17) is known as the primal function and pre-dual function, respectively. The
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column vector y (= y1, y2, y3, y4) consists of normalised dual variables. ∆5 and ∆6 are
the non-normalised dual variables.

Using the values of ui’s, i = (1, 2, ..., 6), one can find

ϕ(y,∆5,∆6, S,Q,R,D) =
(DSQ−1R−1

y1

)y1
(αD1−βR−1

y2

)y2
(HQR

2y3

)y3

(DaS−bQ−1Rc−1

y4

)y4

=
( 1

y1

)y1
( α

y2

)y2
( H

2y3

)y3
( a

y4

)y4
(ω1

A

)∆6

Dy1+y2(1−β)+y4Sy1−by4 (18)
Q−y1+y3−y4+∆6R−y1−y2+y3+y4(c−1)+∆5+∆6 . (19)

Because y, ∆5, and ∆6 are arbitrary, the exponent of the four decision variables are set
to zero. Therefore, equation (18) is of the following form:

ϕ(y1, y2, y3, y4) =
( 1

y1

)y1
( α

y2

)y2
( H

2y3

)y3
( a

y4

)y4
(ω1

A

)∆6

. (20)

Equation (19) is accepted when the orthogonality and normality conditions hold:

y1 + y2(1− β) + y4 = 0 (21)
y1 − by4 = 0 (22)
−y1 + y3 − y4 +∆6 = 0 (23)
−y1 − y2 + y3 + y4(c− 1) + ∆5 +∆6 = 0 (24)
y1 + y2 + y3 + y4 = 1. (25)

Equations (20) to (23) refer to the orthogonality conditions, and equation (24) shows
the normality condition.

The degree of difficulty = number of terms in equation (17)
−number of variables− 1 = 6− 4− 1 = 1.

an infinite number of solutions is possible. Taking Z = (1 + b)− c(β − 1), one can
obtain solutions of dual variables in terms of ∆5.

y1 =
∆5b(β − 1)

Z
(26)

y2 =
∆5(1 + b)

Z
(27)

y3 = 1− ∆5β(1 + b)

Z
(28)

y4 =
∆5(β − 1)

Z
(29)

∆6 =
∆5(2β − 1)(1 + b)

Z
− 1. (30)
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These values are substituted into equation (19) to obtain

ϕ(∆∗
5) =

[
Z

∆∗
5b(β − 1)

]∆∗
5b(β−1)

Z
[

αZ

∆∗
5(1 + b)

]∆∗
5(1+b)

Z

 H

2
(
1− ∆∗

5β(1+b)
Z

)
1−∆∗

5β(1+b)

Z [
aZ

∆∗
5(β − 1)

]∆∗
5(β−1)

Z

(ω1

A

)∆∗
5(2β−1)(1+b)

Z −1

. (31)

The dual of the above function for ∆5 is considered as

ϕ(∆5) =

[
Z

∆5b(β − 1)

]∆5b(β−1)
Z

[
αZ

∆5(1 + b)

]∆5(1+b)
Z

 H

2
(
1− ∆5β(1+b)

Z

)
1−∆5β(1+b)

Z [
aZ

∆5(β − 1)

]∆5(β−1)
Z

(ω1

A

)∆5(2β−1)(1+b)
Z −1

. (32)

According to Duffin et al. (1967), the substituted dual function ϕ(∆5) can be maximised
by the optimal weight ∆∗

5. To maximise this expression, a logarithm of the above
function is taken.

X(∆5) = lnϕ(∆5) =
∆5b(β − 1)

Z
ln

Z

∆5b(β − 1)

+
∆5(1 + b)

Z
ln

αZ

∆5(1 + b)
+

{
1− ∆5β(1 + b)

Z

}
ln

H

2
(
1− ∆5β(1+b)

Z

) +
∆5(β − 1)

Z
ln

αZ

∆5(β − 1)

+

{
∆5(2β − 1)(1 + b)

Z
− 1

}
ln
(ω1

A

)
. (33)

Differentiating and equating with zero, one can find that the value of ∆5 satisfies the
equation:

(
Z

∆5b(β − 1)

) b(β−1)
Z

(
αZ

∆5(1 + b)

) 1+b
Z

(
aZ

∆5(β − 1)

) β−1
Z

(ω1

A

) (2β−1)(1+b)
Z

=

 H

2
(
1− ∆5β(1+b)

Z

)


β(1+b)
Z

(34)

and the value of ∆6 satisfies the equation
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∆6 =
∆5(2β − 1)(1 + b)

Z
− 1.

Therefore, the optimal weights ∆∗
5 and ∆∗

6 must satisfy equations (29) and (33). With
these values, other optimal weights can be determined from equations (25), (26), (27),
and (28). Equation (19) gives

C(S,Q, r,D) ≥ ϕ∗(y∗1 , y
∗
2 , y

∗
3 , y

∗
4) ≡ ϕ(∆∗

5,∆
∗
6)

= ϕ(y∗1 , y
∗
2 , y

∗
3 , y

∗
4)

=
( 1

y1

)y1
( α

y2

)y2
( H

2y3

)y3
( a

y4

)y4
(ω1

A

)∆5(2β−1)(1+b)
Z −1

. (35)

Considering the equality of equation (34), it is found as

Min C(S,Q, r,D) = Max ϕ∗(y∗1 , y
∗
2 , y

∗
3 , y

∗
4) = ϕ∗(y∗1 , y

∗
2 , y

∗
3 , y

∗
4). (36)

To obtain the global optimal solution of the optimisation problem with constraints, the
necessary steps are as follows:

The equality case in equation (17) is assumed, which is possible when
inequalities (12), (13), and (14) are considered as equal, which gives

u∗
1

y∗1
=

u∗
2

y∗2
=

u∗
3

y∗3
=

u∗
4

y∗4
. (37)

It is assumed

u∗
1

y∗1
=

u∗
2

y∗2
=

u∗
3

y∗3
=

u∗
4

y∗4
= θ,

u
∆∗

5
5 = 1,

and

u
∆∗

6
6 = 1.

After substituting these values into equation (17), one can obtain

θy
∗
1+y∗

2+y∗
3+y∗

4 = θ = ϕ∗

i.e., u∗
i = y∗i ϕ

∗, i = 1, 2, 3, 4. (38)

Equation (37) gives

u∗
1 = y∗1ϕ

∗

which implies Q∗ =
D∗S∗Z

∆5bϕ∗R∗(β − 1)
(39)

and

u∗
2 = y∗2ϕ

∗

which implies R∗ =
αZD∗(1−β)

∆∗
5(1 + b)ϕ∗ . (40)
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Using equations (38) and (39) in

u∗
3 = y∗3ϕ

∗

which gives D∗ =
2ϕ∗2∆∗

5b(β − 1)

S∗ZH

(
1− ∆5

∗β(1 + b)

Z

)
. (41)

Substituting equation (40) into equation (38), one can find

Q∗ =
D∗βS∗(1 + b)

αb(β − 1)
. (42)

Finally, using equations (39), (40), and (41) in

u∗
4 = y∗4ϕ

∗

which gives S∗ =

ab( Z

∆∗
5

)βc
2b(β − 1)

(
1− ∆5β(1+b)

Z

)
H

(1−β)c

(
α

1 + b

)c

ϕ(1−2β)c

] 1
b+c+1−βc

. (43)

The optimal solutions of the model are given by equations (39), (40), (41), and (42).
According to geometric programming theory, the optimal dual variables are obtained
first and using these, the optimal cost and finally optimal decision variables are found.

5 Numerical example, sensitivity analysis, and managerial insights

This section contains two numerical examples, sensitivity of both examples, and major
insights.

5.1 Numerical examples

Two numerical examples are presented to illustrate the model. Example 1 was conducted
with data available in the literature, and Example 2 was conducted with data available
through a newly launched company, in West Bengal, India.

Example 1: For illustration of the geometric programming procedure developed in
Section 3, under the effects of the space constraint and the demand-dependent unit
production cost under controlled carbon emissions, an EPQ model with the data used in
Leung (2007) is assumed as: a = 1, b = 1, c = 1, H = $5 per item per year. For variable
unit production cost under carbon emissions and a space constraint, it is assumed β =
1.4, α = 1,000, ω1 = 10 square feet per item, and A = 1,500 square feet. Then, the cost
of interest and depreciation under controlled carbon emissions due to production is

Ψ(S,R) = S−1R
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and the corresponding cost under controlled carbon emissions becomes

Min C(S,Q,R,D) = DSQ−1R−1 + 1, 000D1−1.4R−1

+
5QR

2
+DS−1Q−1

subject to 0 ≤ R ≤ 1

10 RQ ≤ 1, 500

D,S,Q,R > 0.

By using the geometric programming procedure, one can obtain the following values of
the dual variables: ∆∗

5 = 0.0937651, ∆∗
6 = –0.789028, y∗1 = 0.0234413, y∗2 = 0.117206,

y∗3 = 0.835911 and y∗4 = 0.0234413.
The values of the optimal dual variables satisfy the normality condition: y∗1 + y∗2 +

y∗3 + y∗4 = 1.
The corresponding minimum total cost of the system under controlled carbon

emissions is C∗ = $448.61 per year, which is less than the minimum cost obtained
by Leung (2007). Therefore, this model has saved $98.65 per year. The values of the
decision variables are D∗ = 1,577 items per year, R∗ = 1, S∗ = $1 per batch, and
Q∗ = 150 items per batch.

Example 2: A real medium-sized company seeks to obtain fully perfect quality products
for the system to maintain a positive brand image of the company. They produce
packets made by jute. It is totally green products without having less or almost
zero-carbon emissions. Therefore, management at the company appreciates the reliable
production system with a space constraint under controlled carbon emissions. The
numerical data is taken from the above mentioned industry as follows: a = 10, b = 1,
c = 1, H = $0.5/unit/year, β = 1.4, α = 2,200, ω1 = 10 square per item, and A = 1,000
square feet.

The optimum result of the industry is obtained as total cost C∗
Int = 226.701 and

decision variables D∗ = 911.19 units, R∗ = 0.99, S∗ = $3.16 per batch, Q∗ = 100 items
per batch.

5.2 Sensitivity analysis

A sensitivity analysis has been performed to prove the effect of key parameters on the
optimal cost for both Examples 1 and 2. The results are summarised in Tables 3 and 4.

From the sensitivity analysis of Example 1, one can observe the following results:

1 The increasing value of a indicates the increasing value of the total system cost;
that is, a is proportional with the total system cost. Table 3 shows that a is the
least sensitive parameter. Under controlled carbon emissions, the value of scaling
parameter increases, total cost increases, which is an indicator of sustainable
production.

2 Increased holding cost under controlled carbon emissions increases the total
system cost. If the available space is fixed, the holding cost is also directly
proportional to the total system cost. Therefore, the extent of positive and negative
changes in holding cost is similar to that of total cost. However, the signs for the
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resulting two cost equations are opposite. i.e., the holding cost under carbon
emissions maintain an equilibrium position.

3 An increasing value of α, which is related to the production cost under controlled
carbon emissions of the system, increases the total system cost. ω1 is inversely
proportional to the total system cost because it is related to the storage space per
item. Therefore, if ω1 increases, the total system cost decreases. Results indicate
that ω1 is the most sensitive parameter. The increasing value of the total storage
space A indicates an increased total system cost; that is, these costs are directly
proportional.

Almost all analyses are similar, only the least and the most sensitive parameters are
changed and all changes are in similar directions in both examples.

Table 3 Sensitivity analysis for key parameters in Example 1

Parameters Changes C∗ Parameters Changes C∗

a –50% –1.55 H –50% –41.80
–25% –0.66 –25% –20.90
+25% +0.53 +25% +20.90
+50% +0.98 +50% +41.80

α –50% –6.41 ω1 –50% +80.64
–25% –3.05 –25% +26.57
+25% +2.84 +25% –15.64
+50% +5.51 +50% –25.85

A –50% –38.20
–25% –19.49
+25% +19.88
+50% +40.01

Table 4 Sensitivity analysis for key parameters in Example 2

Parameters Changes C∗ Parameters Changes C∗

a –50% –8.39 H –50% –5.51
–25% –3.58 –25% –2.76
+25% +2.88 +25% +2.76
+50% +5.30 +50% +5.51

α –50% –34.74 ω1 –50% +13.97
–25% –16.53 –25% +4.86
+25% +15.37 +25% –2.74
+50% +29.89 +50% –4.22

f –50% –4.96
–25% –3.34
+25% +3.65
+50% +7.25

From the sensitivity analysis of Example 2, one can observe the following results:
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1 Similar as in Table 3, the increasing value of a indicates the increasing value of
the total system cost; that is a is proportional with the total system cost. But a is
not the least sensitive parameter among all other cost parameters here.

2 Similar as in Example 1, for Example 2, the increased holding cost increases the
total system cost and if the available space is fixed, the holding cost is also
directly proportional to the total system cost. Therefore, the extent of positive and
negative change in holding cost is similar to that of total cost, but the signs for
the resulting two cost equations are opposite. Similar analysis is obtained as on
last case with the holding cost as the least sensitive parameter among all other
cost parameters.

3 An increasing value of α, which is related to the production cost of the system,
increases the total system cost and this is the most sensitive parameter among all
other cost parameters. If the storage space per item ω1 increases, the total system
cost decreases. It is also similar as in Example 1. As total storage space A is
directly proportional to the total cost, its increasing value indicates an increased
total system cost.

4 Figure 3 explains the sensitiveness of each parameter with respect to the changes
from –50% to +50%. It is found that α is the most sensitive in case of negative
change (–50%), whereas ω1 shows the reverse pattern with α. It indicates if the
annual fractional cost for the capital investment is reduced, then the total cost is
reduced in a huge amount. This is the effectiveness of the continuous investment.
In each cycle, the total cost will be continuously reducing. But if the discrete
investment is utilised, then the total cost only reduces in the investment cycle
only, then it may be increased again. Thus, the continuous improvement makes
the major benefit for the cost reduction strategy. But the storage space per unit
area behaves totally the reverse direction of the annual fractional cost.

Figure 3 Sensitivity of different key parameters (see online version for colours)
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Figure 4 Changes of total cost with changes of different parameters separately, (a) changes of
total cost with changes of parameter a (b) changes of total cost with changes of
parameter α (c) changes of total cost with changes of parameter f (d) changes of
total cost with changes of parameter H (e) changes of total cost with changes of
parameter ω1 (see online version for colours)

(a) (b)

(c) (d)

(e)

5.3 Managerial insights

1 From the five figures in Figure 4, it can be found that within five parameters,
only the storage space per unit area follows the reverse direction with the other
sensitive parameters of the total cost. The industry manager must be careful about
the rented space and the amount of the total available rented space, because these
parameters prove to be the most sensitive in the reverse direction of the total cost
reduction.

2 Among the other four parameters, the industry manager may not concentrate on
the holding cost, as it is the least sensitive, but it does hold an equilibrium change
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in both positive and negative sides. As the demand and production rate are
related, that is the main reason that the holding cost is the least sensitive among
all parameters.

6 Conclusions

The model of Leung (2007) was extended by using a space constraint and a
demand-dependent unit production cost for a reliable production system under controlled
carbon emissions. In reality, it is very difficult to make a reliable production system
under controlled carbon emissions, as all production systems have to control emissions.
Therefore, for each section the cost is increased. This model, however, proved that
using controlled carbon emissions costs within each cost itemised saved more than
other models researched in the existing literature (Leung, 2007). The same data were
used in this study and found more savings than in other studies. The geometric
programming procedure was employed for obtaining a closed-form global optimum
solution of this model, because this type of solution is difficult to find by applying
calculus to a posynomial function. As the degree of difficulty is positive, a unique
result is impossible to obtain. However, the same solution procedure as was used by
Leung (2007) was used in this study and obtained a quasi-closed-form solution. This
model proved that a reliable production system can produce more perfect products
and can save the environment by controlling carbon emissions. This model can be
extended to a model that includes a budget constraint. To make the system reliable, the
energy cost and water resource cost can be included within a reliable production system.
Thus, considering these factors, the research would point to interesting findings. A data
analysis could help to make the system more reliable by reducing the ripple effect of
supply chain management (Dubey et al., 2019). This model considered a single-stage
production system, which could be extended to a multi-stage production system with
many products or assembled products. A new design of two or three industries could
result in the outcome of them working together to reduce carbon emissions to solve other
unreliability issues in order to make the system more reliable. To make a production
system fully reliable, a large amount of initial investment is needed, and as a result,
the initial setup costs might increase. The setup costs of a reliable production system
might be reduced by investment (Sarkar et al., 2014; Moon et al., 2014). This study
could be extended by considering a trade-credit policy, and a constraint optimisation of
geometric programming could be utilised. Furthermore, the production flexibility with
learning effect could be considered together with cost savings for further extension of a
multi-item reliable production system.
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