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This article considers the Economic Lot Scheduling Problem where setup times and costs
can be reduced by an initial investment that is amortized over time. The objective is to
determine a multiple-item single facility cyclic schedule to minimize the long run average
holding and setup costs plus the amortized investment. We develop a lower bound on the
long run average inventory carrying and setup costs as a function of the setup times, and
show that this lower bound is increasing concave on the setup times when the out-of-pocket
setup costs are zero or proportional to the setup times. We then develop a model that may
be helpful in deciding the magnitude and the distribution of a one-time investment in re-
ducing the setup times when the investment is amortized over time. Numerical results based
on randomly generated problems, and on Bomberger’s ten item problem indicate that sig-
nificant overall savings are possible for highly utilized facilities. Most of the savings are due
to a significant reduction in the long run average holding cost. © 1995 John Wiley & Sons, Inc.

1. INTRODUCTION

Due to economies of scale it is common in industry to produce several items in a single
facility. Typically, these facilities can only produce one item at a time, and have to be
stopped and prepared, i.e., setup, at a cost of time and money, before the start of the pro-
duction run of a different item. A scheduling problem arises because of the need to coordi-
nate the setups and the production runs of the items without ever scheduling two tasks at
the same time. The problem of scheduling the production of several items in a single facility
to minimize the long run average inventory carrying and setup cost is known in the litera-
ture as the Economic Lot Scheduling Problem (ELSP). The ELSP has been widely studied
for over 30 years, and it is typically assumed that production and demand rates are known
item-dependent constants and that setup times and setup costs are known item-dependent,
but sequence independent, constants. In addition, research in the ELSP has focused on
cyclic schedules, i.e., schedules that are repeated periodically. Moreover, almost all re-
searchers have restricted attention to cyclic schedules that satisfy the Zero Switch Rule
(ZSR). This rule states that a production run for any particular item can be started only if
its physical inventory is zero. Counterexamples to the optimality of this rule have been
found but are rare (see Maxwell [17] and Delporte and Thomas [3]).

Two approaches for heuristic algorithms exist, the basic period approach and the time-
varying lot sizes approach. The basic period approach requires, in addition to the ZSR,
every item to be produced at equally-spaced intervals of time that are multiples of a basic

Naval Research Logistics, Vol. 42, pp. 773-790 (1995)
Copyright © 1995 by John Wiley & Sons, Inc. CCC 0894-069X/95/050773-18



774 Naval Research Logistics, Vol. 42(1995)

time period. ( This together with the ZSR implies that every item is produced in equal lot
sizes.) Most of the heuristic algorithms that follow this approach first select the frequency
(i.e., number of production runs per cycle) with which each item is to be produced, and
then search for a feasible schedule that implements these frequencies. See Elmaghraby [5]
for an excellent review on this approach up to late 1970s. Under this approach it is NP-
complete to determine the existence of a feasible schedule (see Hsu [13]). These difficulties
have led some researchers to reject the basic-period paradigm, in particular the require-
ment of equally spaced production lots.

The time-varying lot sizes approach, which relaxes the restriction of equally spaced pro-
duction runs, was initiated by Maxwell [17] and Delporte and Thomas [3]. Dobson [4]
showed that any production sequence (i.e., the order in which the items are produced in a
cycle) can be converted into a feasible production schedule in which the quantities and
timing of production lots are not necessarily equal provided that the proportion of time
available for setups is positive. Dobson also developed a heuristic to generate production
frequencies and a sensible production sequence. Near optimal schedules can be obtained
by combining Dobson’s heuristic with Zipkin’s [29] algorithm which finds an optimal
schedule for a given production sequence. Gallego and Roundy [9] extended the time-
varying lot sizes approach to the ELSP which allows backorders. Gallego and Shaw [10]
showed that the ELSP is strongly NP-hard under the time-varying lot sizes approach with
or without the ZSR restriction, giving theoretical justification to the development of
heuristics.

In this article we are primarily concerned with highly constrained facilities where the
production capacity constraint is binding. By this we mean facilities where it is not optimal
to insert idle times between the production of different items. Highly constrained facilities
have large lot sizes which are driven by their setup times through the dual variable associ-
ated with the capacity constraint. This typically results in very high long run average hold-
ing costs relative to the long run average setup costs. By reducing setup time, lot sizes are
significantly reduced resulting in a better balance between the long run average holding
and setup costs.

Most researchers have concentrated on the study of setup cost reduction models (See
Hall[12], Porteus [ 20, 21]). However, as Dobson [4], Karmarkar [15], and Sheldon [23]
have observed, there is often no real out-of-pocket setup costs in the sense of cash flows
being affected. Rather, the setup costs are only a surrogate for the violation of capacity
constraints. Moreover, most industrial applications deal with setup time reduction, see
Shingo [24]. Our motivation is to model setup times and production capacity explicitly in
the hope of gaining insights about the economic impact of setup time reductions. Since we
will model setup times and production capacity explicitly, there is no need to include sur-
rogate setup costs. Consequently, if there are no out-of-pocket expenses directly related to
the setup operations we model setup costs as zero. In what follows, by setup costs we mean
exclusively out-of-pocket expenses incurred as a result of performing setup operations.

Beek and Putten [1] described how OR models can contribute to quantify the integral
effects of investment decisions with respect to production systems. They gave several ex-
amples illustrating opportunities to reduce setup times, to increase the production capacity,
and to cut supply leadtimes, etc. In addition to setup time reductions, Beek and Putten
suggested increasing the production rate. However, increasing the production rate is often
impossible because of technical constraints, or expensive compared to the cost of setup
time reduction. Because of this reason, we only study the effect of investment decisions in
reducing setup times.
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Spence and Porteus [26] applied the setup time reduction concept to the multi-item
capacitated EOQ model of Hadley and Whitin [11], which is a simpler version of the ELSP
since it ignores the scheduling issue. Gallego and Moon [8] developed a model which
considers the economic effects of externalizing internal setup operations in the ELSP
context. The tradeoff in [8] is between the decrease in holding costs resulting from shorter
setup times, and the higher out-of-pocket setup costs resulting from performing setup op-
erations off-line. Externalizing internal setup operations result in higher setup costs because
such operations are typically more time consuming when done off-line—they require ad-
ditional or better trained workers, or more careful coordination by management. Perhaps
the most important observation in [8] is that lot sizes may decrease as setup costs increase.
This observation seems to be at odds with traditional inventory theory, where lot sizes
are proportional to the square root of their setup costs. The explanation is that for highly
constrained facilities, the lot sizes are mainly driven by the setup times, and reducing them
can result in smaller lot sizes even when setup costs are increased. This explains why some
Japanese companies have been willing to spend more on setup costs to reduce internal
setup times in order to reduce lot sizes and average cost. In effect, they are trading setup
time for setup cost.

In this article, we assume that setup times can be reduced by a one time investment. One
time investments to reduce setup time operations include investment on special tools and
equipment, as well as in software for numerically controlled machines. The key decision is
to determine the magnitude of the one time investment, and the allocation of this invest-
ment among the different setup operations. Thus, the main difference between our model
and that in [8] is in the way we model the cost of reducing setups. In [8], internal setup
operations are externalized, and the cost of externalizing is reflected in higher out-of-pocket
setup costs. In our model, there is a one time cost of reducing setup times. Although the
formulations of these two problems are similar, the analysis required to study them is quite
distinct.

Note that under the average cost criterion, it is justified to make a one time investment
of $1,000,000 in reducing setup times if this investment leads to a reduction of the annual
cost by a positive amount, say one dollar. This is because any finite investment becomes
negligible under the average cost criterion.

Of course, we would not recommend a $1,000,000 investment in reducing average cost
unless the average cost is reduced by more than the opportunity cost of the $1,000,000.
Thus, it seems reasonable to select the level of the one time investment to minimize the
sum of the annual average cost plus the annual opportunity cost of the investment. Yet in
doing so we are using an undiscounted average cost criterion for the inventory carrying and
setup cost while amortizing the one time investment. This may be dismissed as adding
apples and oranges, but we will argue that this practice is approximately consistent with the
annual worth criterion.

To see this, consider a one time investment of ¢ dollars that results in an annual cost of
a(c). If the discount rate is «, then the present value of the one time investment plus an
infinite sequence of a(c) yearly costs is given by a(c)}/« + ¢, and minimizing this expres-
sion with respect to ¢ is equivalent to minimizing a(c¢) + ac which is the cost per unit time
plus the amortized cost ac of the one time investment. If, however, a(c¢) is not the exact
cost rate, but only the long run average cost of a cash flow, say a(c, t), then adding the
amortized cost ac of the one time investment is not equivalent to the annual cost criterion.
This may be a good approximation, however, when a(c, ¢) is periodic with a sufficiently
small period, say T', and when a(c, t) 0 < ¢ < T does not vary much from a(¢). In this case,
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a(c) + ac,

is a surrogate for the more complicated expression

fOTa(c, e *dt
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for annual worth. By the Cauchy-Schwartz inequality a(c¢) + ac is an upper bound on this
expression.

In the ELSP, the synchronization constraint forces the production of the items to be
scattered in time over a cycle, so the actual cost rate does not deviate much from the long
run average cost. Thus, adding the amortized cost of the one time investment to the long
run average cost is a good approximation to the equivalent annual worth criterion. While
this approximation is not exact, the alternative is to deal with a much more complicated
cost function from which it would be difficult to derive meaningful insights.

When setup costs are zero, or are proportional to the setup times, we show that a lower
bound of the long run average cost is increasing concave in the setup times. This lower
bound on the long run average cost, will be called hereafter the lower bound cost. For
general production sequences, it is possible to obtain feasible schedules by using Dobson’s
algorithm [4], whose cost is on the average about 4% higher than the lower bound cost.

The increasing concave property means that the lower bound cost drops more steeply
the more we reduce the setup times. That is, the reduction in the lower bound cost resulting
from the reduction of the setup times gets steeper (in the weak sense) the more we reduce
the setup times. This helps explain why reducing setup times have been viewed by some as
the best investment in manufacturing.

We also show that when the capacity constraint is binding, the reorder intervals from
the lower bound (which may be infeasible due to the relaxation of the synchronization
constraint) and the lower bound cost are homogeneous functions of degree one in the setup
times. This means that doubling (resp., halving) the setup times results in doubling (resp.,
halving) the reorder intervals and the lower bound cost, i.e., both functions act linearly on
straight lines emanating from the origin. This result is important because it dispels the
common belief that the reorder intervals and the average cost grow with the square root of
the setup times. This belief is rooted in the practice of using surrogate setup costs that are
proportional to the setup times. This practice is incorrect, because it ignores the fact that
the dual variable associated with the capacity constraint, which relates surrogate setup costs
to setup times, decreases as the setup times decrease.

A heuristic that generates cyclic schedules is obtained by first finding the setup times
that minimize the lower bound on the average inventory carrying and setup cost plus the
amortized cost of reducing the setup times. Then, for these setup times, we obtain reorder
intervals ignoring the synchronization constraints and round them to powers-of-two
multiples of a base planning period as suggested by Roundy [22]. This gives rise to relative
production frequencies which can then be used to obtain a production sequence using
Dobson’s [4] heuristic. Optimal time-varying lot sizes corresponding to these frequencies
can be computed by using Zipkin’s [29] algorithm. Numerical examples indicate that sig-
nificant savings are possible for highly utilized facilities.

This article is organized as follows: In Section 2 we introduce notation and state our
assumptions. In Section 3 we develop a lower bound on the average cost as a function of
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the setup times. When the setup costs are zero or proportional to the setup times, we obtain
a closed form expression for the lower bound and show that it is increasing concave in the
setup times. We also show that the lower bound cost and the reorder intervals that achieve
it are homogeneous of degree one in the setup times. In addition, we show that if it is
equally costly to reduce the setup times, then it is most profitable to reduce the setup time
of the item that is produced most frequently. In Section 4, we consider the problem of
minimizing the lower bound cost plus the amortized cost of the one time investment. We
show that a global minimum for this problem always exists, and that under certain condi-
tions there is a unique global minimum. In this section we also discuss the special case of
common cycle schedules. Numerical results are reported in Section 5, and our conclusions
in Section 6.

2. NOTATION AND ASSUMPTIONS

The data for the problem are:

Index for the items i=1,...,m,
Lower bound on setup times (day) S; i=1,...,m,
Initial setup times (day) S i=1,...,m,
Initial setup costs ($) A, i=1,...,m,
Constant production rates (unit/day) p; i=1,...,m,
Known inventory holding costs ($ /unit,day) A}, i=1,...,m,
Constant demand rates (unit/day) d, i=1, ,m.

By initial setup times and setup costs, we mean the setup times and setup costs before
the investment in reducing setup times. Without loss of generality we redefine the units of
the items so demand rates are all equal to one. This is accomplished by setting d; = d'/d}
=1, p; =p;i/d;and h; = hd;. The transformation maps many equivalent problems to one
that is easier to manipulate. For convenience, define F; = 1/2h;(1 — 1/p;). Let T; denote
order interval of item i, i = 1, . .., m. We denote vectors by bold faced letters; for instance
$=(S8,...,8nm),¢€tc.

Define k=1— 27, (1/p;). Note that k is the long run proportion of time available for
setups. For infinite horizon problems k > 0 is a necessary and sufficient condition for the
existence of a feasible schedule, see Dobson [4].

As discussed earlier, there are often no out-of-pocket setup costs, and in this case we
model the setup costs as zero. More generally, however, there may be positive out-of-pocket
setup costs, which we model as fixed plus linear in the setup times. Thus, the setup cost of
item 7 is modeled as 4, (s;) = K; + 8;s;, where K; = 0 is a fixed out-of-pocket cost for the
setup of item i and §; = 0 is the out-of-pocket cost charged per unit of time spent in the
setup of item i. The fixed part K; may represent a fixed out-of-pocket cost that must be
paid every time a setup of product / is performed, i.e., the cost of materials consumed
during the setup (so long as the quantity is independent of the setup time), while 8; may
be the direct labor cost per unit time associated with the setup of item i. We assume that 3;
includes all costs that vary with time, for instance labor cost, except the cost of machine
down time.

Clearly K; = A; — 8;5; where A4; and 5; are respectively the initial setup cost and the initial
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setup time. Notice that our formulation allows lower bounds on the setup times which may
exist for technological reasons; if no such bounds exist then the s;’s can be set to zero.

We now turn our attention to the one time cost of reducing the setup times. Let ¢ : X7,
[si, 5;]1 > R, denote the one time cost of reducing the setup times to s. To facilitate the
analysis, we assume that ¢( -) is twice continuously differentiable and strictly decreasing.
We assume c( - ) to be convex in any direction of reduction of setup times. This assumption
is reasonable since we expect further decrease in any particular direction to become more
and more expensive. This implies that ¢( -) itself is convex when ¢( -) is separable, i.e., of
the form ¢(s) = 272, ¢;(s;). Separability of the cost function is appropriate when setup
reductions are product dependent, such as when the setup for a product consists of install-
ing a unique guide tool. (See Spence and Porteus [26].) We denote dc(sy, . . . , 5m)/ds; by
¢i(S1s. .. Sm),and d%c(s,,. .. 2 Sm)/0s;05;,by ¢; {81, . .., Sn), respectively. However, when
¢(s) is separable, we denote the partial derivative of ¢(s) with respect to s; by ci(s;), and
this should cause no confusion.

In general, assuming ¢( -) to be convex implies that if two different vectors of setup times
are achievable at a certain cost, then all the vectors that lie in the straight line that joins
them must also be achievable at the same cost. Since this may not always be the case, one
should use caution in using the convexity assumption.

A comment on the continuity assumption on ¢( -) is needed. In reality the set of invest-
ments that reduce setup times may be a finite set. However, there are many setup proce-
dures which have 20 or more substages where each stage can be reduced independent of
the other stages. See for example the setup procedure for the cold-forging machine, (Shingo
[24]). Let n be the total number of substages for a setup procedure. Then the number of
possible set of investments is 2 7_o nC, = 2", a large number which allows a continuous
approximation of the resulting function.

Commonly used cost functions in the economic literature are of the Cobb-Douglas type
(S, ooy Sm) = AL (5 — s;)% where 4 > 0, a; > 1 for all i. (See Varian [28] for
details.) Spence and Porteus [26] argued that separable cost functions c(s) = X; ¢;(s;)
where ¢;(s;) = a;57% — d; arise in practice when setup reduction is item dependent. A
detailed analysis of the separable case is deferred to Section 4 and computational results to
Section 5.

The problem can be now stated as follows. There is a single facility on which m distinct
items are to be produced. We try to find a cycle length 7', a production sequence /!, . . .,
M e{l,...,m}),n=m,setuptimess,, ..., s, (consequently setup costs q, , . . ., ),
production times 7', . .., t" and idle times u', . . ., u" so that the production sequence is
executable in the chosen cycle length, the cycle can be repeated indefinitely, demand is met
and total (amortized investment plus inventory and setup ) cost per unit time is minimized.

3. A LOWER BOUND ON THE AVERAGE HOLDING AND SETUP COST

In this section we develop a lower bound on the long run average holding and setup cost.
In the next section, we will consider the problem of minimizing this lower bound plus the
amortized cost of the one time investment in reducing setup times.

For fixed setup times s, the lower bound problem is given below:

LB(s)= min %[@+H,T,]

7. Tm =1 i
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<k

M sz
Nl

subject to
1

~

,'20 i=1,...,m.

The objective function denotes the average holding and setup cost per unit time. The
capacity constraint is explicitly considered. However the synchronization constraint, stat-
ing that no two items can be scheduled to-produce at the same time, is ignored. Conse-
quently, the value of the program results in a lower bound on the average cost over all
cyclic schedules, sce Bomberger [2].

Let A denote the dual variable for the capacity constraint. By optimizing over (74, . . .,
T,,) for fixed A, we obtain the Stoer dual, see Stoer [27],

LB(s)= max LB(s, \)

A=0

where

LB(s,\)=2 % VH;(A;(s;) + \s;) — k.

i=1

We have long suspected LB(s) to be increasing concave in s. Notice that a sufficient
condition for LB(s) to be concave is that LB(s, ) be concave. Unfortunately LB(s, \) is
not concave even when the K;’s and the 8,’s are all zero (the hypo-graph is not convex).
On the other hand the concavity of LB(s, \)in X for fixed s is not sufficient. Nor is the fact
that LB(s, \)is concave in s for fixed A. Under these conditions it is very difficult to prove
the concavity of LB(s). Nevertheless, we are able to show that LB(s) is indeed concave
when the out-of-pocket setup costs are proportional to the setup times, i.e., when A4, (s;) =
Bs; . This type of setup cost arises when a team of operators is paid a fixed hourly rate for
setups regardless of the set of operations they perform. This model encompasses the case of
zero out-of-pocket setup costs discussed by Dobson [4], Karmarkar [15], and Sheldon
[23]. The concavity of LB(s) under more general conditions remains an open question.

LEMMA 1. 1If 4;(s;) = Bs; forall i = 1, ..., m and the capacity constraint is binding,
then the optimal reorder intervals for the lower bound, and the non-constant portion of
LB(s) are homogeneous functions of degree one.

Before presenting the proof, notice that when 4, (s;) = 8s; foralli=1,..., m, LB(s, \)
reduces to

LB(s,\) =2 % V(B + N H,s; — k\.

Recall that the Stoer dual calls for maximizing LB(s, A\) over A > 0, and since LB(s, \) is
concave in A, it follows that A\*, the maximizer of LB(s, \), is positive if and only if the
partial derivative of LB(s, \) with respect to A is positive at A = 0. This is so, if and only if

2 H;s;
—= —k>0.
Z Vs
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By complementary slackness, the capacity constraint is binding whenever A* > 0. Solving
for 8 we see that the capacity constraint is binding whenever

8 < 7 VH;s;: \
— % |-

In particular, the capacity constraint is binding when 8 = 0.

PROOF. If the capacity constraint is binding it is possible to solve the Stéer dual in
closed form. To see this, notice that if the capacity constraint is binding then there exists a

A* = 0 such that
- / H.s;
D — —k=0.
- 8+ A*

Consequently,
m 6\2
e - (2
k
resulting in
(B+A)s; _ 1 Vs, 5
l(s) Hi k st Jsj Hi s
and
1(Z 2
LB(s)= X ( > VHjsj) + Bk.
j=1
It is clear that T;(s) and the nonconstant part of LB(s), namely
1(Z 2
g(s)=—| 2 VHs;
k
Jj=1
are homogeneous of degree one, i1.e., of the form f(yx) = vf(x), ¥ = 0. ]

We are now ready to state:

PROPOSITION I: If the setup costs are proportional to the setup times, t.e., if 4;(s;) =
Bs; holds foralli = 1,.. ., m, then the lower bound cost LB(s) is increasing concave in s.

PROOF: There are two cases to consider. If the capacity constraint is not binding, then
M =0,and LB(s) = LB(s,0) =2 27, VBH;s; is clearly increasing concave in s. On the
other hand, if the capacity constraint is binding, then LB(s) = g(s) + Bk. Clearly LB(s)is
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increasing in s. To prove concavity of LB( -) it is enough to show that g( -) is concave. To
see this, we first show that g(x + y) = g(x) + g(y). This is true since

g(x+y)—g(x)— g(y) :%z VH. H, M(vx,»yj —Vxp)i=0

i<j
Since g(x) is homogeneous of degree 1, we have

glyx + (1 —v)y)=vg(x) + (1 —v)g(y)
establishing the concavity of g( -). [ ]

Since Dobson’s heuristic results in feasible schedules with average costs that are very
close to LB(s), our result suggests that the average cost is likely to drop more steeply the
more we reduce the setup times, i.e., reducing setup times may have increasing marginal
returns. Informally this means that for any direction d = (d;).,, d; > 0, the cost savings
obtained from reducing 5 to 5 — d are not larger than the cost savings obtained from re-
ducing s — d'to 5 — 2d. Notice that if d is in the direction of §, so that § — d is proportional
to §, then the cost savings obtained from reducing § to 5 — d are equal to the cost savings
obtained from reducing s — dto s — 2d.

We will now show that if it is equally costly to reduce each of the setup times, then
larger costs savings accrue from reducing the setup time of the item that is produced most
frequently.

COROLLARY [: When the setup costs are proportional to the setup times, reducing the
setup time of the item with the smallest reorder interval has the largest impact in reducing
the lower bound on the long run average cost.

PROOF: It is easy to see that the derivative of LB(s) with respect to s; is proportional to
the reciprocal of the reorder interval 7, this being true regardless of whether the capacity
constraint is binding or not. Hence the derivative is steepest for the item with the smallest
reorder interval, i.e., the item produced most frequently. [ ]

The intuition is that reducing the setup time of the item that is produced most frequently
(smallest 7;) has the highest return since we enjoy the benefits of the setup time reduction
every time that item is produced. It is interesting to observe that if the holding costs are
equal, then the most frequently produced item is the one with the smallest setup time. This
is in sharp contrast to the common practice of reducing the Jongest setup time.

4. MINIMIZING THE LOWER BOUND PLUS THE AMORTIZED COST

Incorporating the one time investment cost ¢(s) our objective is to minimize

LB(s) + ac(s)
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subject to
s<s=<S§.

The existence of a global minimizer is guaranteed because we are minimizing a contin-
uous function

f(s)=LB(s)+ ac(s)
over a compact set
D={s:s<s5=<5§}.

There are many commercial codes available to solve nonlinear programs over compact
sets. Most of the codes stop upon finding a local minimizer. For this reason it is important
to know when there is a unique local, and hence global, minimizer.

We know two ways of showing when a function has a unique local, and hence, global
minimizer. One is for the function to be connected. The other is by showing that there is a
unique Karush-Kuhn-Tucker (KKT) point.

Recall that a point is a local minimizer if there exists an open neighborhood around the
point over which no other point has a lower value function. A local minimizer is proper if
the value function at the point is strictly lower than the value function of all other points in
the neighborhood. It is not well known that a sufficient condition to guarantee the unique-
ness of a local (resp., proper) minimizer is that the objective function be connected (resp.,
strictly connected ) over the feasible region, see Ortega and Rheinboldt [19].

A function g(x) is said to be connected over the set C if for every x and y in C, there
exists a continuous function p : [0, 1] - C such that p(0) = x, p(1) = y and g(p(1)) <
max { g(x), g(y)}. A connected function is said to be strictly connected if the inequality
holds strictly for 0 < # < 1. When p(t) is the straight line between x and y, e.g., p(¢) = (1 —
1)x + ty, the function g(x) is said to be quasi-convex. Thus all quasi-convex functions are
connected.

LB(s) being increasing concave is connected, since for any two points s and s’ the path
that goes straight from s to the origin, and from the origin to s’ is a connected path over
which LB(.) is at most the maximum of LB(s) and LB(s’). If ¢(s) is convex, then it is
quasi-convex. If ¢(s) is concave, then it is connected on account of being decreasing. Thus,
c(s) is connected regardless of whether ¢(s) is convex or concave. While we cannot claim
that the sum of any two connected functions is connected, the result is true under fairly
mild conditions.

PROPOSITION 2: Let f( -) and g( -) be any two connected functions. If for any x, y the
level set {z: f(z) = f(x)} and the level set {z: f(z) = f(y)} each intersects the level sets
{z:g(z)=g(x)}and {z:g(z)= g(y)} then f(-)+ g(-) is connected.

PROOQOF: See Appendix.

If the condition of Proposition 2 is met for LB(s) + ac(s), then there is a unique global
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minimum and any commercial nonlinear programming code can be used to minimize the
lower bound cost plus the amortized cost of the one-time investment.

If the above condition fails, or if the above condition is difficult to verify then there is an
alternative well known method of establishing that there is a unique local, and hence global,
minimizer. The method consist of examining the Karush-Kuhn-Tucker (KKT) points.
Recall that a KKT point is either an interior point at which the gradient of the objective
function vanishes, or it is a boundary point at which certain complementary conditions
hold. Recall also that all local minimizers, if regular, must satisfy the Karush-Kuhn-Tucker
conditions, see Luenberger [16]. There are different constraint qualifications that qualify
a point as regular. One sufficient condition for a point to be regular is that the gradients of
the active constraints are linearly independent. The constraints in our problem are lower
and upper bounds on the s;’s. The gradient of these constraints are the unit vectors in either
the positive or the negative direction. Since the lower and the upper bound constraint can
not be active at the same time, the gradients of the active constraints must be linearly
independent. Thus, the constraint qualification holds for our problem. Now, a Karush-
Kuhn-Tucker point is a local minimizer if it satisfies certain second order conditions. Once
it is known that a minimizer exists, and that the constraint qualification holds at each
minimizer, then the existence of a unigue KKT point implies the existence of a unique
local, and hence global, minimizer. Notice that when there is a unique KKT point there is
no need to verify the second order conditions, since they must be satisfied a-fortiori.

We will use the above to show that if the cost of reducing the setup times is separable,
then there is a unique KKT point. To do so, we first write the KK T conditions for the
general problem

min [LB(s) + ac(s)].

sED

Recall that LB(s) is the solution of the Stoér dual

LB(s)=max LB(s, \).

A=0
Relaxing the constraint on the setup times results in the Lagrangean function
L(s, A p,0)=LB(s,\) + ac(s) + (s —5) + v'(s — 5),

where v = (v;)72,, and v; is the dual variable corresponding to s; < s5;, and u = (u)2,, where
u; 1s the dual variable corresponding to s; < s;.
The Karush-Kuhn-Tucker conditions are then given by:

LBi(s,\) + ac;(s) +u; —v; =0, (1)
A=0 complementary slackness (c.s.) with LB, (s, A) <0 (2)

;=20 c.s. with 8 < 8; (3)
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and
;=0 c.s. with i< (4)

where

H.
LB,‘ ,)\ = A‘*‘ i _—
(8.0 =( 8:) K; +(8; + M\)s;
is the partial derivative of LB(s, \) with respect to s; and
LB\(s,\)=2's; —_—
’ i=1 Ki+(8; +N)s;

is the partial derivative of LB(s, \) with respect to A.
For the special case where c(s) = 272, ¢;(s;), we replace ¢; (s) by ¢i(s;). Let g;(-)denote
the inverse function of ¢}(-). We are now ready to show

PROPOSITION 3: If ¢(s) is separable and strictly convex, and for fixed A the function
si=Ti(s;, \)= min[maX[gi,gi(— M)] , s",-]
84

admits a unique fixed point foreach 7 = 1, ..., m, then there is a unique KKT point, and
such a point is a global optimum.

PROOF: Let s = (s5;)7Z, be the vector of fixed points of T';(s;, A),i=1,..., m. Then
there exists nonnegative vectors u and », depending on A such that conditions (1), (3), and
(4) are satisfied. It is easy to see that LB;(s, A) is increasing in A which renders T';(s;, A)
decreasing in A. Thus, the fixed points are decreasing in A. Consequently, to satisfy con-
straint (2}, all that is needed is a line search in X starting from X\ = 0. The convergence of
the line search is guaranteed by the continuity of the I';(s;, A) and of LB, (s, M\). Since
there is a unique regular KKT point, this must be the global minimizer of f(s)over D. B

REMARK I: It is easy to see that for fixed A, the function LB, (s, \) is decreasing in s;,
while g; (-) is strictly increasing. Thus, the function T;( -, A) is strictly increasing over [s;,
s;]1. This implies that T (s;, A) must have at least one fixed point. The requirement of the
proposition is met for example when I'; (s5;, A) > s; and T';( -, ) has at most one fixed point
on s; < 5;. The requirement is also met if I';(s;, A) < s; and T;(-, A) does not have any
fixed pointons; < s <.

REMARK 2: It is easy to check directly that the unique KKT point is indeed a strict
local, and hence strict global minimizer, by verifying that the Hessian of the Lagrangean
function is positive definite on the tangent plane of the active constraints.

When the conditions of Proposition 3 are satisfied, we can solve the problem by the
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following algorithm. To facilitate the presentation of the algorithm, we denote by s, the
vector of fixed points of T'; (s;, A\),i=1,...m.

Algorithm

Step 1. (Check if A = 0 gives an optimal solution.)

Stop if LB, (sy, 0) < 0. Else go to Step 2.
Step 2. (Trapping the optimal X.)

Set\;=0and A\, = 1.

Evaluate LB, (s,,, \) doubling A, if necessary until LB, (s, \y) <O0.

If A, > 1, set \; = 0.5 N,. The optimal value of A lies in the interval [\, A,].
Step 3. (Line search on \)

Lete>0,andd = 1. Dountild <e. Let A, = 0.5(N\; + Ap).

If LBy(sy,,, M) <Oset A, = Ay,

Otherwise set \; = A,,. Letd = >\h A

At the end of Step 3 we have a KKT point that minimizes the lower bound cost plus the
amortized cost of the one-time investment. The optimal setup times are given by s = Sx,

the optimal dual variable by A = \,, and the optimal cycle lengths by

K,' + B,»Si + )\S,‘

Ti =
H;

An Optimal Common Cycle Schedule

A common cycle (CC) schedule is a cyclic schedule where all the items are produced
exactly once per cycle. Common cycle schedules perform adequately in some realistic sit-
uations. (See Jones and Inman [14], and Gallego [6].) A lower bound on the cost of CC
schedules is obtained by solving the following program:

LBCC(s) = mm D [ ’;f')+H T]

i=1

. Zs;
subject to —
j § 7=

~

=0 i=1,...,m.

The cost LBCC(s) is a lower bound on the cost of CC schedules for the same reason LB(s)
is a lower bound on the cost of all cyclic schedules. It turns out, however, that it is always
possible to satisfy the synchronization constraint when T, = Tforalli = 1, ..., m. Con-
sequently, it is possible to find a CC schedule with cost LBCC(s).

Incorporating the one time investment cost ¢(s) our objective is to minimize

LBCC(s) + ac(s)
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subject to
S<S<5§,

If the conditions of Proposition 2 are met, then any commercial code can be used to solve
for a common cycle schedule. Otherwise, the algorithm of Section 4 can be adapted to
obtain the optimal common cycle schedule provided the conditions of Proposition 3 are met.

Here we derive succinct conditions for the case where the K;’s are all zero, and c(s) =

27 ¢i(s;) is separable and convex. If 8 is zero, or sufficiently small so that the capacity
constraint is binding, then the long run average holding and setup costis /inearinss, i.e.,

LB(s)=H’§njs,-+kﬁ

i=1

where H = 2%, H,;/k, and the average cost plus the amortized cost of the one-time in-
vestment is separable and convex

f(s)= 2 (Hs; + ac;(s,)).
i=1

It follows that minimizing f(s) over D is equivalent to minimizing m one dimensional
convex functions over a closed interval. Letting g; ( - ) denote the inverse function of ¢}( -),
the optimal solution is given by

lmfsen(-4)] 5}
§; = min{ max §i>gi - »Sits
o

fori=1,..., m.Forexample,ifc;(s;) = 1/s;, then

s; = min{ max| s ad S;
1 I H bl 1 -

5. NUMERICAL EXAMPLES

The 10-item problem in Bomberger [2] has been used extensively to study the perfor-
mance of heuristics for the ELSP. Very often researchers scale up the basic demands in
Bomberger’s example to achieve different load factors. Here we consider Bomberger’s ex-
ample with the basic demand scaled by a factor of four, which results in k = 0.12. We also
solve the problem with 4.5 times the basic demand resulting in & = 0.007. We assume ¢(s)
= 27, ¢;(s;) where ¢;(s;) = a;5; % — d;. Let 6; be the cost of reducing the original setup
time of item i by 10% and let v; be the corresponding compounding parameter. That is,
every additional 10% reduction costs 100y,;% more than the last one. (See Porteus [20] for
details.) Then
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Table 1. Data for the example.

Product _ Production rate Holding cost
number A, (%) s; (day) (unit/day) ($/unit, day)
1 15 0.125 66.6667 0.0012
2 20 0.125 17.7778 0.0220
3 30 0.250 10.5556 0.0478
4 10 0.125 4.1667 0.0750
5 110 0.500 22.2222 0.1044
6 50 0.250 66.6667 0.0100
7 310 1.000 88.8889 0.0169
8 130 0.500 3.3987 0.9403
9 200 0.750 5.2288 0.1434
10 5 0.125 33.3333 0.0075
—In(1+v:) 0;s;" ——b,
b= =9y %oy ho1 AT as

This ¢; (s;) is a convex C? function which is zero at §;. Let §; = 500, y; = 0.05 for all ; and
a = 0.001. For example, it costs $500 to reduce s, from 1 day to 0.9 day. Let 5; be the
current setup time for all / and s; be 0.4s; forall i. Let A, be the initial setup cost for item i.
The time unit is day. The holding cost rate is dollars per unit per day. The normalized data
for k = 0.007 is in Table 1.

At four times the basic demand rates, i.e., k = 0.12, it is not profitable to invest in re-
ducing setup times which implies that the capacity constraint is not binding. The results
for k = 0.007 are summarized in Table 2. For comparison purpose, we include an optimal
Common Cycle solution and a near-optimal time-varying lot size ELSP heuristic solution
without setup time reductions under the headings CC and ELSP, respectively. We provide
the lower bound costs and the actual costs resulting from the heuristic to see the perfor-
mance of the heuristic. The results reported are for the case 8 = 0. Results for 8 = 30 were
essentially similar, since for such low value of k, the solution is driven by the setup times,
not by the setup costs.

We also tested the heuristics for 50 randomly generated problems. The data sets were
generated from uniform distribution on the given intervals, i.e., §; ~ U(0.1, 1), 4; ~ U(5,
500), p; ~ U(4, 40), and h; ~ U(0.01, 1). Since the ELSP is harder when k is small [4]
and it is meaningful to invest in reducing setups when k is small, we generated problems by
adding products to the problem until X became less than 0.01. On the average, investing in
setup times resulted in savings of 32.8% for CC and 23.6% for ELSP compared to the
solutions obtained without setup time reduction.

The dramatic savings for k = 0.007 and the computational results indicate that setup

Table 2. Computational results for Bomberger’s problem (k = 0.007).

CcC ELSP
($/day) CcC (reduction) ELSP (reduction)
Setup reduction cost 0 40.04 0 37.18
Holding cost 266.41 115.96 173.73 74.27
Setup cost 1.71 3.93 1.69 3.99

Total average cost 268: 12 159.93 175.42 115.44
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time reductions are very worth while for highly utilized facilities. Interestingly, the opposite
was observed in Silver [25], Gallego [ 7], and Moon, Gallego, and Simchi-Levi [18] where
production rate reduction was shown to be more profitable in under-utilized facilities.

6. CONCLUSIONS

We model a realistic strategic problem of reducing setup times and costs by a one-time
initial investment. The objective is to minimize the long run average holding and setup
costs plus the amortized investment per unit time. This type of investment has the effect of
reducing the lot sizes, in accord with JIT philosophy, and is justified for facilities operating
near or at capacity. This approach should be considered as an alternative to an investment
in increased capacity. The main insight gained by this exercise is that, under certain con-
ditions, the savings in the lower bound cost resulting from a reduction in setup times in-
crease as we further decrease the setup times.

APPENDIX

Proof of Proposition 2.

PROOF: To check whether the sum of two connected functions is connected, we need
to find a continuous path from x to y such that value of f -+ g along the path is never larger
than the maximum of f(x) + g(x) and f(y) + g(y). Pick x and y arbitrarily. Without loss
of generality we can and do assume that f(x) + g(x) = f(y) + g(y) and that f(x) = f(y).

There are two cases to consider, namely g(x) = g(y) and g(x) < g(y). Let us assume
first that g(x) = g(y). Starting from x take any path in the set

{z:/(z) =f(x), 8(y) = g(z) < g(x)}

in the direction towards which g( -) decreases. Stop at the point where the level set {z: f(z)
= f(x)} intersects the set {z: g(z) = g(y) } and move towards y within the set

{z:8(2) = g(y), f(z) < f(x)}.
Notice that in the first portion of the path we have f(z) + g(z) < f(x) + g(x) since f(z) =
J(x)and g(z) < g(x).
In the second part of the path we have f(z) + g(y) < f(x) + g(x) since f(z) < f(x) and

8(y) = g(x).
Now consider the case g(x) < g(y). Starting from x take any path in the set

{z:g(z) = g(x), f(y) =f(z) < f(x)}

in the direction in which f( .) decreases. Stop at the point where the path intersects the set
{z:f(z) = f(y)} and move towards y within the set

{z:f(z)=f(y),8(z) < g(y)}.

Notice that in the first portion of the path we have f(z) + g(z) < f(x) + g(x) since f(z) <
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f(x) and g(z) = g(x). In the second part of the path we have f(z) + g(z) < f(x) + g(x),
since f(z) < f(y), g(z) <g(f), and f(y) + g(y) <f(x) + g(x). L
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