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ABSTRACT
In this paper, we derive a closed-form solution and an explicit characterization of the worst-
case distribution for the data-driven distributionally robust newsvendor model with an
ambiguity set based on the Wasserstein distance of order p 2 ½1,1Þ: We also consider the
risk-averse decision with the Conditional Value-at-Risk (CVaR) objective. For the risk-averse
model, we derive a closed-form solution for the p¼ 1 case, and propose a tractable formula-
tion to obtain an optimal order quantity for the p> 1 case. We conduct numerical experi-
ments to compare out-of-sample performance and convergence results of the proposed
solutions against the solutions with other distributionally robust models. We also analyze
the risk-averse solutions compared to the risk-neutral solutions.
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1. Introduction

The newsvendor problem is a well-known problem
to decide an order quantity considering the trade-off
between the risks of overage and underage under
demand uncertainty. It is a building block of many
operations management problems, such as inventory
control, pricing, supply chain contracts, and retail
management. In the classical setting of the news-
vendor problem, complete knowledge of demand
distribution is assumed. In reality, however, the
demand distribution is often impossible to be known
precisely. To tackle this difficulty, a decision maker
considers an ambiguity set which is a set of candidate
distributions that may contain the unknown true dis-
tribution, and minimizes the worst-case expected
cost over the ambiguity set. This approach, called
distributionally robust optimization (DRO), is widely
applied to many operations management problems.
Various types of ambiguity sets are proposed with
several different prior information about demand
distribution. In some practical cases, however, histor-
ical data is the only information that can be
obtained. Therefore, how to construct an ambiguity
set with historical data and optimize over the con-
structed ambiguity set is important to successful
operations. In this study, we consider the data-driven
distributionally robust newsvendor model with a
Wasserstein ambiguity set.

The distributionally robust newsvendor model
dates back to Scarf (1958), who considered the distri-
butionally robust order quantity with an ambiguity
set that contained all distributions with known first

and second moments. Gallego and Moon (1993)
extended Scarf’s basic results to various ways with
the same ambiguity set. With the development of
DRO with moment-based ambiguity sets (Bertsimas
et al., 2010; Delage & Ye, 2010; Goh & Sim, 2010;
Wiesemann et al., 2014), several extensions were
proposed to consider various objective functions and
to construct new ambiguity sets considering the
shape of distribution, e.g. symmetry/asymmetry and
unimodality/multimodality (Hanasusanto et al.,
2015; Natarajan et al., 2018; Perakis & Roels, 2008;
Saghafian & Tomlin, 2016; Yue et al., 2006; Zhu
et al., 2013). In most cases, the distributionally
robust newsvendor models with moment constraints
are tractable, and in some cases closed-form solu-
tions and explicit characterizations of the worst-case
distributions are available. However, the assumption
that a decision maker has certain information about
moments proves to be unrealistic for many opera-
tions management problems. For example, historical
data of a newly introduced product is not enough to
estimate moments. Moreover, decisions based on an
inaccurate estimation of moments can lead to highly
suboptimal solutions. Even if the decision maker has
the exact moment information, the moment-based
ambiguity set is constructed with only moment
information and other prior information such as the
shape of distribution is abandoned. Another short-
coming of the moment-based ambiguity set is that
resulting decisions are sometimes overly conservative
due to the unrealistic worst-case distribution (Wang
et al., 2016).
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An important alternative is DRO with an ambi-
guity set which contains probability distributions
close to the reference distribution in terms of a stat-
istical distance. A statistical distance measures the
distance between two probability distributions and
several studies used various statistical distances for
constructing ambiguity sets, such as /-divergences
(Bayraksan & Love, 2015; Ben-Tal et al., 2013; Jiang
& Guan, 2016; Sun & Xu, 2016) and the
Wasserstein distance (Esfahani & Kuhn, 2018;
Pichler & Xu, 2017; Wozabal, 2012; Zhao & Guan,
2018). However, as Gao and Kleywegt (2016)
pointed out, in some cases, an ambiguity set with
/-divergences fails to include distributions that a
decision maker wishes to include. For instance, con-
sider historical data generated from a normal distri-
bution and a /-divergence ambiguity set based on
the discrete empirical distribution. The /-divergence
ambiguity set does not contain the data-generating
normal distribution, because probability distribu-
tions in the ambiguity set are absolutely continuous
with respect to the empirical distribution, i.e. the
ambiguity set includes only discrete distributions
with the same support of the empirical distribution.
Gao and Kleywegt (2016) also pointed out that the
/-divergence does not consider the closeness
between two points in the support, thus leading to
the inclusion of overly conservative or pessimistic
distributions.

DRO with an ambiguity set based on the
Wasserstein distance not only alleviates the prob-
lems mentioned above, but also has several useful
properties. The Wasserstein distance captures close-
ness between two points, which leads to the realistic
measurement of distance between two distributions.
Furthermore, the Wasserstein ambiguity set contains
both discrete and continuous distributions, because
the Wasserstein distance between discrete and con-
tinuous distributions can be defined (cf. /-diver-
gence). In addition, the Wasserstein ambiguity set
with the empirical distribution contains the data-
generating distribution with probabilistic guarantees
(Fournier & Guillin, 2015). Desirable properties, e.g.
finite sample guarantee, asymptotic consistency, and
tractability (Bertsimas et al., 2018; Esfahani & Kuhn,
2018; Fournier & Guillin, 2015), are proved for the
Wasserstein order p¼ 1.

Although some researches have considered the
newsvendor models with a Wasserstein ambiguity
set, they are used as examples to emphasize theoret-
ical results of DRO, and the models are limited to
discrete and bounded support (Gao & Kleywegt,
2016) or the Wasserstein order p¼ 1 (Esfahani &
Kuhn, 2018). To the best of our knowledge, a
closed-form solution and an explicit characterization
of the worst-case distribution are not studied in the

general setting such as the continuous and
unbounded support, and the higher Wasserstein
order (p>1Þ: In this study, we study the distribu-
tionally robust newsvendor model with a
Wasserstein ambiguity set on support with nonnega-
tive real numbers N ¼ ½0,1Þ and the Wasserstein
order p 2 ½1,1Þ: We consider the reference distri-
bution for an ambiguity set as the empirical
distribution.

The main contributions of this paper are as follows:

� The closed-form expressions of an optimal order
quantity and the worst-case distribution for the
risk-neutral newsvendor problem are derived
with the general support and the higher
Wasserstein order.

� For the risk-averse decision, we also consider the
Conditional Value-at-Risk (CVaR) objective for
the newsvendor model. We derive a closed-form
solution for the p¼ 1 case and propose a tract-
able formulation to obtain an optimal order
quantity for the p> 1 case.

The rest of this paper is organized as follows. In
Section 2, we introduce the definition of the
Wasserstein distance and present a strong duality
result for the data-driven DRO with a Wasserstein
ambiguity set. In Section 3, we derive the closed-
form solution of an optimal order quantity and the
worst-case distribution for the distributionally
robust newsvendor model. We also consider the
risk-averse model and analyze the model in Section
4. Section 5 provides numerical experiments based
on the theoretical results, and we conclude the
paper in Section 6.

2. Distributionally robust optimization with
the Wasserstein distance

In this section, we introduce the definition of the
Wasserstein distance and discuss properties of the
Wasserstein ambiguity set in the optimization per-
spective. We adopt the strong duality result of data-
driven DRO with the Wasserstein distance and
related definitions from the result of Gao and
Kleywegt (2016).

Let ðN, dÞ be a separable complete metric space
(Polish space) and BðNÞ be the Borel r-algebra. Let
PðNÞ denote a set of Borel measures defined on
ðN,BðNÞÞ: Let PpðNÞ for p 2 ½1,1Þ denote a set
of probability measures with a finite moment
of order p for any x0 2 N, i.e. PpðNÞ :¼
l 2 PðNÞ :� Ð

Ndðx0, xÞplðdxÞ < 1g:
Definition 2.1. (Wasserstein distance). The
Wasserstein distance of order p between two prob-
ability measures l, � 2 PpðNÞ is defined as
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Wpðl, �Þ :¼
�

min
c2Cðl, �Þ

ð
N�N

dðn, fÞpdcðn, fÞ
� ��1

p

,

where Cðl, �Þ denotes a set of all probability meas-
ures on PðN� NÞ with marginals l and �.

We use metric d for the definition of the
Wasserstein distance as dðn, fÞ :¼ jn�fj throughout
this study. The Wasserstein distance is motivated by
the optimal transport theory whose foundation is
rooted back to the Monge’s problem. We refer the
reader to Villani (2009) for further details. The
meaning of the Wasserstein distance is the optimal
transport cost of moving mass from l to �.
Therefore, the Wasserstein distance represents a dis-
tance between two different distributions considering
the distance between two points in N with respect to
the metric d. The Wasserstein distance has been
attracting attention in recent studies because of sev-
eral good properties. First, convergence with respect
to the Wasserstein distance implies weak conver-
gence. Second, DRO with a Wasserstein ambiguity
set can incorporate the data-driven setting and over-
come the absolutely continuous support issue of the
/-divergence. The Wasserstein distance has been
actively applied in areas other than optimization, e.g.
machine learning literature such as a GAN
(Generative Adversarial Network) (Arjovsky et al.,
2017), an auto-encoder (Tolstikhin et al., 2017), and
regularization (Shafieezadeh-Abadeh et al., 2019).

First, we discuss the properties of the Wasserstein
distance. The following properties are summarized
from various literature (Pflug & Pichler, 2014;
Pichler & Xu, 2017; Villani, 2009).

Proposition 2.2. (Properties of the Wasserstein dis-
tance). Let ðN, dÞ be a Polish space. The follow-
ing hold.

� Wp is finite on PpðNÞ, so Wp is a distance func-
tion on PpðNÞ: PpðNÞ equipped with a distance
function Wp is a metric space.

� Wp metrizes the weak convergence in PpðNÞ,
i.e., lk converges to l weakly if and only
if Wpðlk, lÞ ! 0:

� The Wasserstein distance is monotone, i.e., if
p1 � p2, then Wp1ðl, �Þ � Wp2ðl, �Þ:

� Wp is p-convex, i.e., for any l1, l2 2 PpðNÞ and
k 2 ½0, 1�,
Wpð�, ð1�kÞl1 þ kl2Þp � ð1�kÞWpð�,l1Þp þ kWpð�, l2Þp:

� A metric space ðPpðNÞ,WpÞ with the Wasserstein
distance is a Polish space.

We define an ambiguity set based on the Wasserstein
distance and discuss the properties of the Wasserstein
ambiguity set based on Proposition 2.1.

Definition 2.3. (Wasserstein ambiguity set). Let � be
the reference distribution. The Wasserstein ambiguity
setM is defined as

M :¼ fl 2 PpðNÞ : Wpðl, �Þ � hg:
The Wasserstein radius h determines the size of the
Wasserstein ball. To ensure the certain probability
of a Wasserstein ambiguity set containing unknown
true distribution, the size of the radius is chosen
appropriately (Esfahani & Kuhn, 2018; Fournier &
Guillin, 2015).

Since ðPpðNÞ,WpÞ is a metric space, we can
define a closed ball Bhð�Þ centered at � 2 PpðNÞ
with radius h as follows:

Bhð�Þ :¼ fl 2 PpðNÞ : Wpðl, �Þ � hg
Then, Bhð�Þ coincides with Definition 2.2, that is, a
Wasserstein ambiguity set is a closed ball in a metric
space ðPpðNÞ,WpÞ: The following proposition reveals
the useful properties of the Wasserstein ambiguity set.

Proposition 2.4. Let � be the empirical distribution.
Then, the Wasserstein ambiguity set M is closed,
convex, and weakly compact.

Proof. M is a closed ball in ðPpðNÞ,WpÞ, so M is
closed. To show M is convex, we use p-convexity
of Wp from Proposition 2.1. For any l1, l2 2 PpðNÞ
and k 2 ½0, 1�, ð1�kÞl1 þ kl2 2 PpðNÞ and

Wpð�, ð1�kÞl1 þ kl2Þp � ð1�kÞWpð�, l1Þp
þ kWpð�, l2Þp � ð1�kÞhp þ khp ¼ hp:

The first inequality holds by p-convexity of Wp and
the second inequality holds by the definition of M:

Therefore, Wpð�, ð1�kÞl1 þ kl2Þ � h and
ð1�kÞl1 þ kl2 2 M, which proves that M is con-
vex. For the compactness, M is weakly compact by
Banach-Alaoglu theorem (Section 3.15 in Rudin
(1991)) and tightness of empirical distribution �. w

The properties of the Wasserstein ambiguity set
will be used in various analyses. Using the
Wasserstein ambiguity set, DRO with cost function
W : X � N ! R is expressed as follows:

inf
x2X

sup
l2M

El Wðx, nÞ½ �: (1)

From the study of Gao and Kleywegt (2016), we
adopt the strong duality result for data-driven DRO
with the Wasserstein distance of order p when the
reference distribution is the empirical distribution.

Theorem 2.5. (Strong duality for data-driven DRO,
Gao and Kleywegt (2016)). Let � be the empirical

distribution with historical data fn̂1, :::, n̂Ng, i.e.
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� ¼ 1
N

PN
i¼1 dn̂ i where d denotes the Dirac measure.

Then, the strong dual of (1) is

inf
x2X, k�0

khp þ 1
N

XN
i¼1

sup
n2N

Wðx, nÞ � kdðn, n̂iÞp
h i( )

:

To avoid the trivial case of the dual formulation in
Theorem 2.4, the inner supremum should be finite.
To guarantee finiteness of the inner supremum, we
need the following definition.

Definition 2.6. (Growth rate, Gao and Kleywegt
(2016)). The growth rate j of W is defined as

j :¼ inf k � 0 :

ð
N
sup
n2N

Wðx, nÞ � kdðn, fÞp� �
�ðdfÞ < 1

( )
:

The growth rate j is the minimum value of the
dual variable k, which makes the inner supremum
finite (see also the definition of steepness of the
objective function in Theorem 6.3 and Proposition
6.5 of Esfahani and Kuhn (2018)). The dual
variable k should be greater than or equal to the
growth rate of the function W, otherwise, the dual
formulation becomes infeasible. We utilize the
above results to analyze the distributionally robust
newsvendor model with a Wasserstein ambigu-
ity set.

3. Risk-neutral newsvendor model

In this section, we consider the data-driven distribu-
tionally robust newsvendor model with a risk-neu-
tral decision maker. We consider the general
Wasserstein order p 2 ½1,1Þ and derive the closed-
form solution of the optimal order quantity. Then,
we characterize the worst-case distribution with per-
turbations from historical data.

In the newsvendor model, the decision maker
sells a single product for a single period. The deci-
sion maker decides the order quantity before the
random demand n 2 N is observed. After the
demand is realized, the overage cost h per unit of
unsold goods or the underage cost b per unit of
shortage is imposed. The objective of the decision
maker is to minimize the expected total cost. The
newsvendor model can be expressed as follows:

minx�0El hðx�nÞþ þ bðn�xÞþ
� �

where Xþ :¼ maxfX, 0g: In the classical newsvendor
problem with the known demand distribution l, the
optimal order quantity is well known as the
critical ratio, i.e. the b

hþb quantile of the demand
distribution.

However, in practice, the demand distribution is
restricted to be known precisely. Although complete

knowledge of demand distribution is restricted, his-
torical data can be obtained. Therefore, we propose
the data-driven distributionally robust newsvendor
model. We consider the support of the demand dis-
tribution is N ¼ ½0,1Þ, and we assume that without

loss of generality N historical data fn̂1, :::, n̂Ng is

sorted in nondecreasing order, that is, n̂
1 � ::: �

n̂
N
: Using historical data, we define the empirical

distribution � ¼ 1
N

PN
i¼1 dn̂ i , which is used for con-

structing a Wasserstein ambiguity set. Then, the
data-driven distributionally robust risk-neutral
newsvendor model with a Wasserstein ambiguity set
is expressed as follows:

min
x�0

sup
l2PpðNÞ

fEl hðx�nÞþ þ bðn�xÞþ
� �

: Wpðl, �Þ � hg:

(2)

Using Theorem 2.5 based on the empirical distribu-
tion � and dðn, fÞ ¼ jn�fj, the dual reformulation
of (2) can be expressed as follows:

min
x�0

inf
k�0

khp þ 1
N

XN
i¼1

sup
n2N

hðx�nÞþ þ bðn�xÞþ � kjn� n̂
ijp

h i( )
:

(3)

To obtain meaningful and simple analysis, espe-
cially for the analysis of the inner supremum
and derivation of closed-form solutions, we
impose a weak restriction on overage and
underage costs.

Assumption 3.1. The underage cost is greater than
or equal to the overage cost, i.e. b � h:

The assumption is needed for further analysis,
e.g. analysis of the inner supremum in (3), the
partition of sample points based on x and k, and
feasibility issues in Section 3.2. In addition, the
assumption has real-world meaning: the decision
maker considers the underage situation to be
more important than the overage situation. In
practice, the shortage is more important in many
cases because it results not only in a penalty cost
but also in loss of goodwill or trust, which may
be costly for the decision maker. Therefore, the
underage cost is greater than the overage cost for
many real-world situations which means that the
decision maker tends to order more than the
mean of random demand in the news-
vendor problem.

We consider two cases: p¼ 1 and p> 1. The rea-
son we divide the cases is that the analysis is easier
for the Wasserstein order p¼ 1 case. Due to the
Kantorovich-Rubinstein duality, calculation of the
Wasserstein distance for p¼ 1 is much more tract-
able. The inner supremum of the dual formulation
is first order, which makes the derivation of the
explicit form of the inner supremum simple. Even
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with the difficulty of analysis in the p> 1 case, the
differentiation can be used for the explicit expres-
sion of the inner supremum.

3.1. Wasserstein order p¼ 1

First, we consider the Wasserstein order p¼ 1 for
the dual formulation (3). We note that the growth
rate of the newsvendor cost function (Definition
2.5) is b. Therefore, dual variable k should be
greater than or equal to b, i.e. the constraint k � b
should be added.

To obtain the closed-form solution, we need to
characterize equivalent expressions of the inner

supremum. For given ðx, kÞ, let fiðnÞ :¼ hðx�nÞþ þ
bðn�xÞþ�kjn�n̂

ij for i ¼ 1, :::,N: To analyze the

supremum of fi, we define N1ðxÞ :¼ f1 � i � N :

n̂
i
<xg and N2ðxÞ :¼ f1 � i � N : n̂

i � xg such
that N data points are divided into two sets based
on x (Figure 1).

Under Assumption 3.1, the supremum of fi can
be derived by simple analysis using strong duality
results. One specific instance of fi is presented in
Figure 2. There are four cases according to whether

x<n̂
i
or x � n̂

i
, and whether k ¼ b or k>b: We can

see that the supremum of fi is attained at n ¼ n̂
i
for

all four cases. This result can be extended to all
instances of fi, that is, the supremum of fi is attained

at n ¼ n̂
i
, which leads to supn2N fiðnÞ ¼ hðx�n̂

iÞ for

i 2 N1ðxÞ and supn2N fiðnÞ ¼ bðn̂i�xÞ for i 2 N2ðxÞ:

Figure 2. Four cases for fiðnÞ: Dotted lines represent hðx�nÞþ þ bðn�xÞþ and �kjn�n̂
ij, respectively, and the solid line rep-

resents fiðnÞ:

Figure 1. Definitions of N1ðxÞ and N2ðxÞ:
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This result shows that the inner supremum
of dual formulation is independent of dual
variable k, which disconnects the linkage between x
and k. Therefore, we obtain the following
equivalent expression of the objective function of
dual formulation (3).

min
x�0, k�b

khþ 1
N

XN
i¼1

sup
n2N

hðx�nÞþ þ bðn�xÞþ � kjn� n̂
ij

h i

¼ min
x�0, k�b

khþ 1
N

X
i2N1ðxÞ

hðx� n̂
iÞ þ

X
i2N2ðxÞ

bðn̂i � xÞ
 !

¼ bhþmin
x�0

1
N

X
i2N1ðxÞ

hðx� n̂
iÞ þ

X
i2N2ðxÞ

bðn̂i � xÞ
 !

Since x and k are separated, the optimal dual vari-
able k� ¼ b is obtained. Now, we derive the closed-
form solution based on the critical ratio b

hþb in
Theorem 3.2.

Theorem 3.2. Suppose the underage cost is greater
than or equal to the overage cost, i.e. b � h. If i� 2
f1, :::,Ng satisfies i��1

N < b
hþb � i�

N, then n̂
i�
is an opti-

mal order quantity and the optimal cost is

bhþ 1
N

Xi��1

k¼1

hðn̂i
�
� n̂

kÞ þ
XN
k¼i�

bðn̂k � n̂
i� Þ

 !
:

Proof. Define region i as ðn̂i, n̂iþ1� for i ¼ 0, :::,N

where n̂
0
:¼ 0 and n̂

Nþ1
:¼ 1: For x 2

ðn̂i, n̂iþ1�, N1ðxÞj j ¼ i and N2ðxÞj j ¼ N�i: Let gðxÞ :
¼ 1

N ð
P

i2N1ðxÞ hðx�n̂
iÞ þPi2N2ðxÞ bðn̂

i�xÞÞ: Suppose

h N1ðxÞj j<b N2ðxÞj j, then g(x) is nonincreasing as

x ! n̂
iþ1

: Suppose h N1ðxÞj j � b N2ðxÞj j, then g(x) is

nonincreasing as x ! n̂
i
:

There exists i� such that hði��1Þ<bðN�i� þ 1Þ
and hði�Þ � bðN�i�Þ: Then it is optimal to order

n̂
i�
: With this order quantity, the optimal cost is

bhþ gðn̂i
�
Þ. w

Remark 1. (Sample average approximation). The
optimal order quantity derived in Theorem 3.2 is
the b

hþb quantile of the empirical distribution �, i.e.

x� ¼ inffq : �ð½0, q�Þ � b
bþhg: Under Assumption 3.1,

we derive that the distributionally robust solution
with respect to the Wasserstein ambiguity set is
equivalent to the optimal solution of the data-driven
newsvendor model or sample average approximation
(SAA) solution. This result coincides with Remark
6.7 in Esfahani and Kuhn (2018).

The worst-case distribution in M is an optimal
solution of the inner optimization of (1). It is
important to analyze the closed-form solution of the

worst-case distribution because the structure of the
distribution affects the conservativeness of the DRO
solution. Therefore, the existence conditions and
structure of the worst-case distribution in the gen-
eral distributionally robust optimization with a
Wasserstein ambiguity set are studied. We refer to
Gao and Kleywegt (2016) and Esfahani and Kuhn
(2018) for more details. We focus on the news-
vendor case and propose the explicit characteriza-
tion of the worst-case distribution based on
historical data. The following worst-case distribution
in P1ðNÞ is the optimal solution of the inner opti-
mization of (2).

Proposition 3.3. (Worst-case distribution for p¼ 1).
For each x � 0, let

l�ðxÞ :¼ 1
N

X
i2N1ðxÞ

d
n̂
i þ 1

N

X
i2N2ðxÞ

dðn̂ iþ Nh
N2ðxÞj jÞ

:

Then, l�ðxÞ is the worst-case distribution for a
given x.

Proof. To check if l�ðxÞ is the maximizer of the
inner maximization of (2) for each x, we have to
prove that l�ðxÞ is a feasible distribution in the
Wasserstein ambiguity set and satisfies strong dual-
ity. First, we show l�ðxÞ satisfies strong duality.

El�ðxÞ hðx�nÞþ þ bðn�xÞþ
� �

¼ bhþ
X

i2N1ðxÞ
hðx�n̂

iÞ þ
X

i2N2ðxÞ
bðn̂i�xÞ

¼ max
l2PðNÞ

fEl hðx�nÞþ þ bðn�xÞþ
� �

: W1ðl, �Þ � hg:

The first equality holds by the characterization of
l�ðxÞ and the second equality holds by strong dual-
ity. Hence, l�ðxÞ satisfies strong duality.

To verify l�ðxÞ is a feasible distribution, let fi ¼ n̂
i

for i 2 N1ðxÞ and fi ¼ n̂
i þ Nh

N2ðxÞj j for i 2 N2ðxÞ:
Then, by the definition of the Wasserstein distance,

W1ðl�ðxÞ, �Þ

¼ min
1
N

XN
i¼1

jn̂i � f̂
rðiÞj : r 2 PN

( )
� 1

N

XN
i¼1

jn̂i�f̂
ij

¼ 1
N

X
i2N1ðxÞ

jn̂i � n̂
ij þ

X
i2N2ðxÞ

n̂
i � n̂

i � Nh
jN2ðxÞj

				
				

( )
¼ h,

where PN is all permutations of f1, :::,Ng: The
inequality holds by letting rðiÞ ¼ i: Then, l�ðxÞ is a
feasible distribution and inside the Wasserstein
ambiguity set. w

We note that the worst-case distribution is con-
structed by historical data itself for data in N1ðxÞ
and the perturbation of the data in N2ðxÞ: The
perturbation depends on historical data and the
Wasserstein radius. We also note that the worst-case
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distribution is not unique. The worst-case distribu-
tion implies that the supremum of (2) is indeed
a maximum.

3.2. Wasserstein order p> 1

For the p> 1 case, the analysis is more difficult than
the p¼ 1 case, but the Wasserstein distance of
greater order is stronger by monotonicity
(Proposition 2.1) and reflects geometric properties
better (Villani, 2009). When p> 1, the growth rate
is 0, which leads to k � 0:

The derivation of the closed-form solution
(Theorem 3.7) consists of several stages. To express
the inner supremum of (3) in the explicit form, we
partition data based on a specific point determined
by x and k. Based on the partition, the inner supre-
mum can be characterized in explicit form, which is
essential for the analysis of the dual formulation
(Proposition 3.4). The explicit characterization of
the inner supremum leads to a concise expression of
the objective function of the dual formulation. We
derive the optimality condition based on the struc-
ture of the objective function (Lemma 3.6). Using
the optimality condition, the objective function is
separable in the order of data and dual variable k,
which leads to the derivation of the closed-
form solution.

First, we derive the equivalent expression of the
inner supremum similar to the p¼ 1 case. We
consider the partition of historical data to weaken
the dependence of x and k, which leads to the
explicit characterization of the inner supremum.

For given ðx, kÞ, we define fiðnÞ :¼ hðx�nÞþ þ
bðn�xÞþ�kjn�n̂

ijp for i ¼ 1, :::,N to analyze the
inner supremum of (3). By dividing the intervals

according to the positions of ðx, kÞ and n̂
i
and ana-

lyzing the cases, the maximum of fiðnÞ is attained at

nir :¼ n̂
i þ ð bkpÞ

1
p�1 or nil :¼ n̂

i�ð hkpÞ
1

p�1 based on fiðnirÞ
and fiðnilÞ: The comparison of two values bðn̂i�xÞ þ
ð bkpÞ

1
p�1b p�1

p


 �
and hðx�n̂

iÞ þ ð hkpÞ
1

p�1h p�1
p


 �
leads to

the following definitions. For given ðx, kÞ, we define

N1ðx, kÞ :¼ f1 � i � N : x�Dð1kÞ
1

p�1>n̂
ig and N2ðx,

kÞ :¼ f1 � i � N : x�Dð1kÞ
1

p�1 � n̂
ig, where D :¼ 1

hþb

ð1pÞ
1

p�1 p�1
p


 �
b

p
p�1�h

p
p�1

� 

(Figure 3). Under Assumption

3.1, D � 0 and D¼ 0 when b¼ h. Then, for i 2
N1ðx, kÞ, fiðnilÞ ¼ hðx�n̂

iÞ þ ð hkpÞ
1

p�1h p�1
p


 �
, and for

i 2 N2 ðx, kÞ, fiðnirÞ ¼ bðn̂i�xÞ þ ð bkpÞ
1

p�1b p�1
p


 �
:

There are two interpretations of N1ðx, kÞ and
N2ðx, kÞ: First, by the definitions, i 2 N1ðx, kÞ repre-
sents the samples whose values are less than

x�Dð1kÞ
1

p�1 and i 2 N2ðx, kÞ represents the samples

whose values are greater than or equal to x�Dð1kÞ
1

p�1:

Second, the inequality x�Dð1kÞ
1

p�1>n̂
i
is equivalent to

hðx�n̂
iÞ þ ð hkpÞ

1
p�1h p�1

p


 �
>bðn̂i�xÞ þ ð bkpÞ

1
p�1b p�1

p


 �
:

On the contrary, the inequality x�Dð1kÞ
1

p�1 � n̂
i
is

equivalent to hðx�n̂
iÞ þ ð hkpÞ

1
p�1h p�1

p


 �
� bðn̂i�xÞ þ

ð bkpÞ
1

p�1b p�1
p


 �
: With the second interpretation of

N1ðx, kÞ and N2ðx, kÞ, we obtain the explicit expres-
sion of the inner supremum.

Proposition 3.4. Under Assumption 3.1, if nil � 0
for i 2 N1ðx, kÞ,

sup
n2N

fiðnÞ ¼ fiðnilÞ ¼ hðx�n̂
iÞ þ h

kp

� � 1
p�1

h
p�1
p

� �
,

and for i 2 N2ðx, kÞ,

sup
n2N

fiðnÞ ¼ fiðnirÞ ¼ bðn̂i�xÞ þ b
kp

� � 1
p�1

b
p�1
p

� �
:

In the proposition, nil should be nonnegative for i 2
N1ðx, kÞ to attain the maximum of fiðnÞ at n ¼ nil:

The following assumption guarantees that nil � 0
when a dual variable k is chosen properly.

Assumption 3.5. For all i ¼ 1, :::,N, i-th data is
greater than or equal to the Wasserstein radius,

i.e. n̂
i � h:

Under Assumption 3.5 with properly chosen k,

we will prove that nil � 0 for i 2 N1ðx, kÞ in the
proof of Theorem 3.7. Therefore, we can obtain the

Figure 3. Definitions of N1ðx, kÞ and N2ðx, kÞ:
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maximum of fiðnÞ at n ¼ nil for i 2 N1ðx, kÞ: Even
though the above assumption is needed for the tech-
nical reason, the assumption holds in most practical
instances. The size of the Wasserstein radius to
guarantee the probability that a Wasserstein ambi-
guity set contains the unknown true distribution is

O 1ffiffiffi
N

p

 �

(Esfahani & Kuhn, 2018; Fournier &

Guillin, 2015). Hence, except for the extremely small
demand, Assumption 3.5 holds in most cases.

The next step is to express the objective function
of dual formulation with the explicit form of the
inner supremum. By the definitions of N1ðx, kÞ and
N2ðx, kÞ and Proposition 3.4, the objective function
of dual formulation (3) can be expressed as follows:

where I :¼ 1
N f
P

i2N1
h x�Dð1kÞ

1
p�1�n̂

i

 �

þPi2N2
b

n̂
i�xþ Dð1kÞ

1
p�1


 �
g and II :¼ ðjN1j

N hD� jN2j
N bDþ

jN1j
N ðhpÞ

1
p�1h p�1

p


 �
þ jN2j

N ðbpÞ
1

p�1b p�1
p


 �
Þ: We suppress the

dependence of x and k on N1 and N2 for notational
brevity. The first equality holds by adjusting the

term Dð1kÞ
1

p�1 for x to make a similar structure of the
objective function for the p¼ 1 case. The objective
function consists of three parts: khp, the data-driven

newsvendor cost based on x�Dð1kÞ
1

p�1, and the
remainder. Now, we derive the optimality condition
based on the structure of the objective function.

Lemma 3.6. Under Assumptions 3.1 and 3.5, the

optimal solution ðx�, k�Þ satisfies x��D 1
k�
� 
 1

p�1 ¼ n̂
i

for some i ¼ 1, :::,N:

Proof. We prove the lemma by contradiction.
When we suppose the lemma does not hold, there
exist i and an optimal solution ðx�, k�Þ such that

n̂
i
<x��D 1

k�
� 
 1

p�1<n̂
iþ1

: If we fix k�, then the
first and third parts of the objective function,

k�hp þ II 1
k�
� 
 1

p�1, are fixed. To see the change of the
objective function value as x� changes, we increase

x� as x��D 1
k�
� 
 1

p�1 remains in the interval ðn̂i, n̂iþ1Þ:
Then the cost change of the second part, I, is
i
N h� N�i

N b: By increasing or decreasing x, we can
change the total cost downward, which contradicts
the assumption that ðx�, k�Þ is optimal. w

Therefore, we can express the optimal solution

ðx�, k�Þ as x��D 1
k�
� 
 1

p�1 ¼ n̂
i
for some i ¼ 1, :::,N

and the corresponding cost I ¼ 1
N f
Pi�1

k¼1 hðn̂
i�n̂

kÞ þPN
k¼i bðn̂

k�n̂
iÞg: By the above lemma, we can

assume that x�Dð1kÞ
1

p�1 ¼ n̂
iþ1

for some i. Then

jN1ðx, kÞj ¼ i and jN2ðx, kÞj ¼ N�i: To see the inde-
pendence of x and k on II, we arrange the equa-
tion.

II ¼ i
N
hD�N�i

N
bDþ i

N
h
p

� � 1
p�1

h
p�1
p

� �

þ N�i
N

b
p

� � 1
p�1

b
p�1
p

� �

¼ i
N

h
hþ b

1
p

� � 1
p�1 p�1

p

� �
b

p
p�1 � h

p
p�1

� 


�N�i
N

b
hþ b

1
p

� � 1
p�1 p�1

p

� �
b

p
p�1 � h

p
p�1

� 

(4)

þ i
N

1
p

� � 1
p�1

h
p

p�1
p�1
p

� �
þ N�i

N
1
p

� � 1
p�1

b
p

p�1
p�1
p

� �
(5)

¼ 1
p

� � 1
p�1 p�1

p

� �
1

hþ b

� �
b

p
p�1hþ h

p
p�1b

� 

(6)

The second equality holds by the substituting D :¼
1

hþb ð1pÞ
1

p�1 p�1
p


 �
b

p
p�1�h

p
p�1

� 

back to the original equa-

tion. Then, Equality (6) shows that II does not

khp þ 1
N

X
i2N1

hðx� n̂
iÞ þ h

kp

� � 1
p�1

h
p�1
p

� � !
þ
X
i2N2

bðn̂i � xÞ þ b
kp

� � 1
p�1

b
p�1
p

� � !8<
:

9=
;

¼ khp þ 1
N

X
i2N1

h x� DðkÞ� 1
p�1 � n̂

i

 �

þ
X
i2N2

b n̂
i � xþ DðkÞ� 1

p�1


 �( )

þ 1
N

X
i2N1

hD
1
k

� � 1
p�1

�
X
i2N2

bD
1
k

� � 1
p�1

þ
X
i2N1

h
kp

� � 1
p�1

h
p�1
p

� �
þ
X
i2N2

b
kp

� � 1
p�1

b
p�1
p

� �8<
:

9=
;

¼ khpIþ IIþ 1
k

� � 1
p�1
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depend on x and k. Let K :¼ 1
hþb b

p
p�1hþ h

p
p�1b

� 

�

0: Then II ¼ ð1pÞ
1

p�1 p�1
p


 �
K and the objective func-

tion of (3) can be expressed as follows:

#ðiþ 1, kÞ : ¼ khp þ 1
p

� � 1
p�1 p�1

p

� �
K

1
k

� � 1
p�1

þ 1
N

Xi
k¼1

hðn̂iþ1 � n̂
kÞ þ

XN
k¼iþ1

bðn̂k � n̂
iþ1Þ

 !

(7)

Using the fact x�Dð1kÞ
1

p�1 ¼ n̂
iþ1

, the objective func-
tion (7) can be expressed as the function of iþ 1
and k. By the above analysis, #ðiþ 1, kÞ is separable
in iþ 1 and k, which leads to an optimal solution.

Theorem 3.7. Under Assumptions 3.1 and 3.5, an

optimal order quantity is x� ¼ n̂
i� þ Dp

1
p�1hð1KÞ

1
p, and

an optimal dual variable is k� ¼ 1
php�1 ðKÞ

p�1
p where

i� 2 f1, :::,Ng satisfies i��1
N < b

hþb � i�
N. The optimal

cost is

hK
p�1
p þ 1

N

Xi��1

k¼1

hðn̂i
�
� n̂

kÞ þ
XN
k¼i�

bðn̂k � n̂
i� Þ

 !
:

Proof. Under the assumptions, Lemma 3.6 holds
and the objective function is expressed as (7). First,
we derive the optimal dual variable k�: Since #ði, kÞ
is a separable function of i and k, the optimal dual
variable k� can be derived by partial differentiation
in k.

@#

@k
¼ hp� 1

p

� � p
p�1

K
1
k

� � p
p�1

¼ 0

Then, 1
k�
� 
 1

p�1 ¼ p
1

p�1hð1KÞ
1
p and k� ¼ 1

php�1 K
p�1
p : To

obtain the optimal i�, we express the objective func-
tion using k�:

#ðiþ 1, k�Þ ¼ 1

php�1K
p�1
p hp þ ðp�1Þh

p
K

p�1
p

þ 1
N

Xi
k¼1

hðn̂iþ1 � n̂
kÞ þ

XN
k¼iþ1

bðn̂k � n̂
iþ1Þ

 !

¼ hK
p�1
p þ 1

N

Xi
k¼1

hðn̂iþ1 � n̂
kÞ þ

XN
k¼iþ1

bðn̂k � n̂
iþ1Þ

 !

To minimize #ðiþ 1, k�Þ in terms of iþ 1, we refer
the analysis of Theorem 3.2. There exists i� such

that i��1
N < b

hþb � i�
N and i� minimizes #ði, k�Þ, that is,

x��D 1
k�
� 
 1

p�1 ¼ n̂
i�
: Then, x� ¼ n̂

i� þ D 1
k�
� 
 1

p�1 ¼
n̂
i� þ Dp

1
p�1hð1KÞ

1
p: Therefore, the optimal solution of

(3) is ðx�, k�Þ and the optimal cost

is hK
p�1
p þ 1

N ð
Pi��1

k¼1 hðn̂
i� � n̂

kÞ þPN
k¼i� bðn̂

k � n̂
i� ÞÞ:

To see that the optimal dual variable k� under

Assumption 3.5 satisfies nil ¼ n̂
i� h

k�p


 � 1
p�1 � 0 for all

i 2 N1 and Proposition 3.4 holds, we analyze the fol-
lowing inequality.

n̂
i � h

k�p

� � 1
p�1

() k�ðn̂iÞp�1 � h
p

() n̂
i

h

 !p�1

1
hþ b

� �
b

p
p�1hþ h

p
p�1b

� 
� �p�1
p

� h

() n̂
i

h

 !p

1
hþ b

� �
b

p
p�1hþ h

p
p�1b

� 

� h

p
p�1

If n̂
i

h


 �p
� 1, then k� satisfies nil � 0, because

b
p

p�1hþ h
p

p�1b
� 


� ðhþ bÞh p
p�1: In short, if

Assumption 3.5 holds, then the optimal dual vari-

able k� satisfies nil � 0 for i 2 N1. w

Remark 2. If b¼ h, then D¼ 0 and x� ¼ n̂
i�
: In this

case, the optimal order quantity is equal to the SAA
solution the same as the p¼ 1 case. The optimal

cost is hb
p

p�1 þ 1
N ð
Pi��1

k¼1 hðn̂
i� � n̂

kÞ þPN
k¼i� bðn̂

k �
n̂
i� ÞÞ: The only difference is hb

p
p�1 compared to hb in

the p¼ 1 case.

For the p> 1 case, the optimal order quantity is

the sum of the SAA solution and Dp
1

p�1hð1KÞ
1
p, where

the second part is determined by parameters h, b,
and p. If b> h, the optimal order quantity x� is
greater than the SAA solution. The first derivative

of Dp
1

p�1hð1KÞ
1
p with respect to p � 2 is negative, so

the optimal order quantity is decreasing in p � 2
with a fixed set of parameters. The first derivative

goes to 0 as p increases to infinity, and Dp
1

p�1hð1KÞ
1
p

goes to b�h
bþh h as p increases to infinity. The optimal

cost is decreasing in p> 1, because hK
p�1
p is decreas-

ing in p> 1. This result is explained by the mono-
tone property of the Wasserstein distance.
According to Proposition 2.1, Wp1 � Wp2 if p1 � p2,
and the ambiguity set becomes smaller as the
Wasserstein order p increases. Therefore, the news-
vendor model with a higher order is less conserva-
tive and the optimal cost is smaller.

We now characterize the worst-case distribution
based on Nþ 1 points perturbed from historical
data. The structure of the worst-case distribution is
similar to the p¼ 1 case except for the split of mass

for n̂
i�
: The worst-case distribution has mass p0

N and
1�p0
N at two points perturbed from n̂

i�
, respectively,
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and mass 1
N at N� 1 points perturbed from histor-

ical data (Figure 4).

Proposition 3.8. (Worst-case distribution for p> 1).
For given optimal order quantity and dual variable

ðx�, k�Þ, let ~n
i
:¼ n̂

i� h
k�p


 � 1
p�1 ¼ n̂

i�h
1

p�1hð1KÞ
1
p for i 2

N1ðx�, k�Þ and ~n
i
:¼ n̂

i þ b
k�p


 � 1
p�1 ¼ n̂

i þ b
1

p�1hð1KÞ
1
p

for i 2 N2ðx�, k�Þ n fi�g. Let ~ni
�
l :¼ n̂

i��h
1

p�1hð1KÞ
1
p and

~n
i�r :¼ n̂

i� þ b
1

p�1hð1KÞ
1
p be two points perturbed from

n̂
i�
. Then, l�ðx�Þ :¼ 1

N

P
d~n i þ

p0
N d~n i

�
l
þ 1�p0

N d~n i
�
r is the

worst-case distribution where p0 2 ½0, 1� satis-

fies jN1ðx�, k�Þjþp0
N ¼ b

hþb :

Proof. We prove that l�ðx�Þ is a feasible distribu-
tion and satisfies the strong duality similar to the
p¼ 1 case. For notational brevity, we suppress
dependence on x and k on N1 and N2. First, we will

show that points perturbed from data points satisfy
the desirable ordering based on x�, even separation

of N1 and N2 is based on x��D 1
k�
� 
 1

p�1, that is, ~n
i
<x�

for i 2 N1 and i�l , and ~n
i � x� for i 2 N2 n fi�g and

i�r : This ordering seems unintuitive when we con-
sider definitions of N1 and N2, but the ordering is
important for the evaluation of the objective func-

tion value. By the definitions of N1, ~n
i

and
~n
i�l , ~n

i
<n̂

i
<x� for i 2 N1 and ~n

i�l <n̂
i�
<x�: Since

b
1

p�1 � Dp
1

p�1 ¼ 1
hþb

p�1
p b

p
p�1 � h

p
p�1

� 

, ~n

i�r ¼ n̂
i� þ b

1
p�1

hð1KÞ
1
p � n̂

i� þ Dp
p

p�1hð1KÞ
1
p ¼ x�: Then, ~n

i�r � ~n
i
for i 2

N2 n fi�g, that is, ~ni � x� for i 2 N2 n fi�g and i�r :

Second, the objective function value with
l�ðx�Þ satisfies the strong duality. The objective
function with x� and l�ðx�Þ is expressed
as follows:

Figure 4. Worst-case distribution perturbed from the empirical distribution.

El�ðx�Þ hðx��nÞþ þ bðn�x�Þþ
� �

¼ 1
N

X
i2N1

hðx��~n
iÞ þ 1

N

X
i2N2nfi�g

bð~ni�x�Þ þ p0
N
hðx�~n

i�l Þ þ 1�p0
N

bð~ni
�
r�x�Þ

¼ 1
N

X
i2N1

h n̂
i� þ Dp

1
p�1hð1

K
Þ1p�n̂

i þ h
1

p�1hð1
K
Þ1p

� �
þ 1
N

X
i2N2nfi�g

b n̂
i þ b

1
p�1hð1

K
Þ1p�n̂

i��Dp
1

p�1hð1
K
Þ1p

� �

þ p0
N
h n̂

i� þ Dp
1

p�1hð1
K
Þ1p�n̂

i� þ h
1

p�1hð1
K
Þ1p

� �
þ 1�p0

N
b n̂

i� þ b
1

p�1hð1
K
Þ1p�n̂

i��Dp
1

p�1hð1
K
Þ1p

� �

¼ 1
N

X
i2N1

hðn̂i
�
�n̂

iÞ þ 1
N

X
i2N2

bðn̂i�n̂
i� Þ

þhK�1
p

jN1j þ p0
N

hDp
1

p�1 � jN2j�p0
N

bDp
1

p�1 þ jN1j þ p0
N

h
p

p�1 þ jN2j�p0
N

b
p

p�1

� �

¼ 1
N

X
i2N1

hðn̂i
�
�n̂

iÞ þ 1
N

X
i2N2

bðn̂i�n̂
i� Þ þ hK�1

p
b

hþ b
h

p
p�1 þ h

hþ b
b

p
p�1

� �

¼ 1
N

X
i2N1

hðn̂i
�
�n̂

iÞ þ 1
N

X
i2N2

bðn̂i�n̂
i� Þ þ hK

p
p�1
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The equalities hold by definitions of l�ðx�Þ, ~n, and
p0. Therefore, l�ðx�Þ satisfies the strong duality.

Third, l�ðx�Þ is a feasible distribution, that is, the
Wasserstein distance between l�ðx�Þ and the empir-
ical distribution � is less than or equal to the
Wasserstein radius h. By the definition of the
Wasserstein distance, Wpðl�ðx�Þ, �Þ can be
expressed as follows:

Wpðl�ðx�Þ, �Þp ¼ min
cij�0

XNþ1

i¼1

XN
j¼1

j~ni�n̂
jjp

s:t:
XN
j¼1

cij ¼

1
N
, if i 2 N1 [ N2 n fi�l , i�rg

p0
N
, if i ¼ i�l

1�p0
N

, if i ¼ i�r

8>>>><
>>>>:

XNþ1

i¼1

cij ¼
1
N

for j ¼ 1, :::,N

Then, the following inequality holds.

Wpðl�ðx�Þ, �Þp

� 1
N

X
i2N1

j~ni�n̂
ijp þ 1

N

X
i2N2nfi�g

j~ni�n̂
ijp

þ p0
N
j~ni

�
l �n̂

i� jp þ 1�p0
N

j~ni
�
r�n̂

i� jp

¼ 1
N

X
i2N1

h
1

p�1hð1
K
Þp

� �
þ 1
N

X
i2N2nfi�g

b
1

p�1hð1
K
Þp

� �

þ p0
N

h
1

p�1hð1
K
Þp

� �
þ 1�p0

N
b

1
p�1hð1

K
Þp

� �

¼ hp
1
K

jN1j þ p0
N

h
p

p�1 þ jN2j�p0
N

b
p

p�1

� �

¼ hp
1
K
K ¼ hp

The first inequality holds, because cij ¼ 1
N for i ¼ j, i 6¼

i�l , i
�
r , ci�l , i� ¼

p0
N , and ci�r , i� ¼

1�p0
N is a feasible solution

of cij. The second equality holds by the definitions of
p0 and K. Therefore, the Wasserstein distance between
l�ðx�Þ and � is less than or equal to h and l�ðx�Þ is a
feasible distribution. w

We derived the closed-form expressions of an opti-
mal order quantity and the worst-case distribution for
the general Wasserstein order p 2 ½1,1Þ: The closed-
form solutions can be applied to various applications
such as multistage inventory control, pricing, and retail
management. In the next section, we consider the risk
measure as an objective for the risk-averse case, rather
than an expected cost as the risk-neutral case.

4. Risk-averse newsvendor model

Although the long-run average performance of the
risk-neutral solution outperforms that of the risk-

averse solution, risk-averse decisions of the first few
periods are important in terms of protection against
bankruptcy. Moreover, many decision makers are risk-
averse in reality. Therefore, we consider a risk-averse
model with the Conditional Value-at-Risk (CVaR)
objective. CVaR has several strong points. CVaR is a
coherent risk measure and preserves convexity of the
newsvendor cost function. Optimization with CVaR is
much easier by using the following definition.

Definition 4.1. (CVaR, Rockafellar and
Uryasev (2000)).

CVaRb
lðXÞ :¼ inf

a2R
aþ 1

1� b
El ðX�aÞþ
� �� �

Let Fbðx, a, lÞ :¼ aþ 1
1�b

Ð ðhðx�nÞþ þ bðn�xÞþ�
aÞþlðdnÞ: Then, minimization of the worst-case
CVaR of the newsvendor cost function is repre-
sented as follows:

min
x�0

sup
l2M

CVaRb
lðhðx�nÞþ þ bðn�xÞþÞ

¼ minx�0 sup
l2M

inf
a2R

Fbðx, a, lÞ
(8)

Before we utilize Theorem 2.4 directly, we need to
change the order of supremum and infimum with a
general version of John von Neumann’s mini-
max theorem.

Lemma 4.2. (Sion’s minimax theorem). Let X be a
compact, convex subset of a topological vector space
and Y be a convex subset of a topological vector
space. Let f be a real-valued function on X�Y such
that, f ð	, yÞ is lower-semicontinuous and quasi-convex
on X for each y 2 Y and f ðx, 	Þ is upper-semicontinu-
ous and quasi-concave on Y for each x 2 X: Then,

inf
x2X

sup
y2Y

f ðx, yÞ ¼ sup
y2Y

inf
x2X

f ðx, yÞ:

First, we check that the risk-averse newsvendor
model satisfies the conditions of Lemma 4.2 to
change the order of operations. Fbðx, a, lÞ is convex
in a (Rockafellar & Uryasev, 2000), and affine in l.
The Wasserstein ambiguity set M is convex by
Proposition 2.3. For fixed x, minimizer of
infa2R Fbðx, a, lÞ is achieved in ½0, hx� (Chen et al.,
2009; Gotoh & Takano, 2007). It can be easily
proved that Fbðx, a, lÞ is continuous with respect to
a and l. Then,

sup
l2M

inf
a2R

Fbðx, a, lÞ ¼ sup
l2M

inf
a2 0, hx½ �

Fbðx, a, lÞ

¼ inf
a2 0, hx½ �

sup
l2M

Fbðx, a, lÞ � inf
a2R

sup
l2M

Fbðx, a, lÞ

� sup
l2M

inf
a2R

Fbðx, a, lÞ

The second equality holds by Lemma 4.2 and the
last inequality holds by minimax inequality.
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By the above result and Theorem 2.5, we obtain

min
x�0

sup
l2M

inf
a2R

Fbðx, a, lÞ ¼ min
x�0

inf
a2R

sup
l2M

Fbðx, a, lÞ

¼ min
x, k�0, a2R

�
aþ 1

1� b
khp þ 1

1� b
1
N

XN
i¼1

sup
n2N

½ hðx�nÞþ þ bðn�xÞþ � a
� 
þ � kjn� n̂

ijp�
�
:

(9)

We consider two cases similar to the risk-neutral
model: p¼ 1 and p> 1. We utilize a similar analysis of
(3), which leads to a closed-form solution for the p¼ 1
case and a tractable formulation for the p> 1 case.

4.1. Wasserstein order p¼ 1

First, we characterize the explicit form of the inner
supremum of (9) for p¼ 1. For given ðx, k, aÞ, let

giðnÞ :¼ ðhðx�nÞþ þ bðn�xÞþ � aÞþ�kjn�n̂
ij: For

the supremum of gi, we consider the interval of n
which makes the first part of gi positive. Otherwise,
giðnÞ would be less than or equal to 0 and the

supremum of gi is 0 when n ¼ n̂
i
: We define

N1ðx, aÞ :¼ f1 � i � N : n̂
i
<x� a

hg and N2ðx, aÞ :¼
f1 � i � N : n̂

i � x þ a
bg (Figure 5). Then,

N1ðx, aÞ 
 N1ðxÞ and N2ðx, aÞ 
 N2ðxÞ by the defi-
nitions of N1ðxÞ and N2ðxÞ in Section 3.1.

We also assume that Assumption 3.1 holds, i.e.
b � h: By the analysis similar to that of fiðnÞ in
Section 3.1, for i 2 N1ðx, aÞ the supremum is

attained at n ¼ n̂
i
with giðn̂

iÞ ¼ hðx�n̂
iÞ�a, and for

i 2 N2ðx, aÞ the supremum is attained at n ¼ n̂
i
with

giðn̂
iÞ ¼ bðn̂�xÞ�a: For i 2 N1ðxÞ n N1ðx, aÞ and i 2

N2ðxÞ n N2ðx, aÞ, the supremum of gi is 0.
Therefore, the linkage between x and k is discon-
nected by the analysis of supremum of gi, which
leads to separation of x and k in the objective func-
tion in (9). Using the explicit form of the inner
supremum, the CVaR objective (9) can be expressed
as follows:

aþ 1
1� b

khþ 1
1� b

1
N

 X
i2N1ðx, aÞ

hðx � n̂
iÞ � a


 �

þ
X

i2N2ðx, aÞ
bðn̂i � xÞ � a

 �!

(10)

Then, k� ¼ b by the growth rate constraint, and the
remaining part can be expressed as follows, which is
the same as the data-driven CVaR model where the
true distribution is given as the empirical distribu-
tion �, CVaRb

�ðhðx�nÞþ þ bðn�xÞþÞ :

min
x�0, a2R

aþ 1
1� b

1
N

 X
i2N1ðx, aÞ

hðx � n̂
iÞ � a


 �

þ
X

i2N2ðx, aÞ
bðn̂i � xÞ � a

 �!

(11)

The closed-form solution of the CVaR news-
vendor model is characterized by Gotoh and
Takano (2007). When distribution function F
is given, the inverse distribution function of F
is defined as F�1ðqÞ :¼ inffx 2 R : FðxÞ � qg:
Then, the closed-form solutions are given as
follows:

x� ¼ h
hþ b

F�1 bð1�bÞ
hþ b

� �
þ b
hþ b

F�1 bþ hb
hþ b

� �

a� ¼ hb
hþ b

F�1 bþ hb
hþ b

� �
� F�1 bð1�bÞ

hþ b

� � !
:

If the true distribution F is given as the empir-
ical distribution �, the inverse function is written
as

F�1 bð1�bÞ
hþ b

� �
¼ inf x : � 0, x½ �ð Þ � bð1�bÞ

hþ b

� �

F�1 bþ hb
hþ b

� �
¼ inf x : � 0, x½ �ð Þ � bþ hb

hþ b

� �
:

Therefore, by the definition of the empirical distri-
bution �, there exist i1 and i2 such that

Figure 5. Definitions of N1ðx, aÞ and N2ðx, aÞ:
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i1�1
N

<
bð1�bÞ
hþ b

� i1
N

i2�1
N

<
bþ hb
hþ b

� i2
N
:

Then the closed-form solution of (9) for p¼ 1 can
be expressed using i1 and i2.

Theorem 4.3. Under Assumption 3.1, the optimal
solutions of the worst-case CVaR newsvendor
model are

x� ¼ h
hþ b

n̂
i1 þ b

hþ b
n̂
i2

a� ¼ hb
hþ b

n̂
i2 � n̂

i1

 �

k� ¼ b:

The optimal objective function value is

hb
hþ b

ðn̂i2�n̂
i1Þ þ 1

1� b
bh

þ 1
1� b

1
N

Xi1�1

k¼1

hðn̂i1 � n̂
kÞ þ

XN
k¼i2

bðn̂k � n̂
i2Þ

8<
:

9=
;:

By the analysis of the inner supremum and separ-
ation of x and k, the optimal order quantity is the
same as the data-driven CVaR solution. Theorem
4.3 shows that the equivalence between the SAA
solution and the distributionally robust solution
with respect to the Wasserstein ambiguity set is
extended to the risk-averse case for p¼ 1.

Using the closed-form solutions in Theorem 4.3,

x�� a�
h ¼ n̂

i1
and x� þ a�

b ¼ n̂
i2
, which leads to

N1ðx�, a�Þ ¼ f1, :::, i1�1g and N2ðx�, a�Þ ¼
fi2, :::,Ng if N samples are sorted in nondecreasing
order. The above expression is useful for deriving
the worst-case distribution.

Proposition 4.4. (Worst-case distribution). For
given ðx�, k�, a�Þ, let
l�ðx�, a�Þ :¼ 1

N

X
i2NnN2ðx�, a�Þ

d
n̂
i þ 1

N

X
i2N2ðx�, a�Þ

d
n̂
iþ Nh

N2j j

 �:

Then, l�ðx�, a�Þ is the worst-case distribution.
Proof. l�ðx�, a�Þ satisfies the strong duality and is a
feasible distribution. We omit the detailed proof,
because it is similar to the proof of Proposition 3.3. w

4.2. Wasserstein order p> 1

To characterize the explicit form of the inner supre-

mum of (9) for p> 1, we define giðnÞ :¼
ðhðx�nÞþ þ bðn�xÞþ � aÞþ�kjn�n̂

ijp for given
ðx, k, aÞ and i ¼ 1, :::,N: Then, supn2N giðnÞ � 0 by

the definition of gi. If hðx�nÞþ þ bðn�xÞþ�a � 0,

i.e. n<x� a
h or n � xþ a

b , then giðnÞ ¼ hðx�nÞþ þ
bðn�xÞþ�aþ kjn�n̂

ijp: Using the analysis of the
inner supremum in Section 3:2, the supremum of gi

may be attained at nir :¼ n̂
i þ ð bkpÞ

1
p�1 or nil :¼

n̂
i�ð hkpÞ

1
p�1: Specifically, for i 2 N1ðx, kÞ, giðnilÞ ¼

hðx�n̂
iÞ�aþ ð hkpÞ

1
p�1h p�1

p


 �
should be greater than

or equal to 0, that is, n̂
i
<x� a

h þ ð hkpÞ
1

p�1 p�1
p : For i 2

N2ðx, kÞ, giðnirÞ ¼ bðn̂i�xÞ�aþ ð bkpÞ
1

p�1b p�1
p


 �
should

be greater than or equal to 0, that

is, n̂
i � x þ a

b�ð bkpÞ
1

p�1 p�1
p :

Using the above result, we need definitions of
index sets considering interactions of both ðx, kÞ
and ðx, aÞ: We define N1ðx, k, aÞ :¼ f1 � i � N :

n̂
i
<x�Dð1kÞ

1
p�1, n̂

i
<x� a

h þ ð hkpÞ
1

p�1 p�1
p g and N2ðx,k,aÞ :

¼ f1� i�N : n̂
i � x�Dð1kÞ

1
p�1, n̂

i � xþ a
b�ð bkpÞ

1
p�1 p�1

p g:
For i2N1ðx,k,aÞ, the supremum of gi is attained at

nil with giðnilÞ ¼ hðx�n̂
iÞ�aþð hkpÞ

1
p�1h p�1

p


 �
: For i2

N2ðx,k,aÞ, the supremum of gi is attained at nir with

giðnirÞ ¼ bðn̂i�xÞ�aþð bkpÞ
1

p�1b p�1
p


 �
: If i 62N1ðx,k,aÞ

and i 62N2ðx,k,aÞ, then supremum of gi is 0.
Using the explicit form of the inner supremum,

we derive the equivalent expression of (9) for p> 1.
We suppress the dependence of ðx, k, aÞ on N1 and
N2 for notational convenience.

min
x, k�0, a2R

aþ 1
1� b

khp þ 1
1� b

1
N X

i2N1

hðx � n̂
iÞ � aþ h

kp

� � 1
p�1

h
p�1
p

 !

þ
X
i2N2

bðn̂i � xÞ � aþ b
kp

� � 1
p�1

b
p�1
p

 !!
:

(12)

The objective function of (12) without 1
1�b kh

p can

be expressed as the CVaR objective. Let �n
i
:¼

n̂
i�ð hkpÞ

1
p�1 p�1

p for i 2 N1 and �n
i
:¼ n̂

i þ ð bkpÞ
1

p�1 p�1
p for

i 2 N2: Then, we define

lðx, kÞ :¼ 1
N

X
i2N1

d�n i þ
1
N

X
i2N2

d�n i þ
1
N

X
i2NnðN1[N2Þ

d
n̂
i :

Using the definition of lðx, kÞ, (12) can be
expressed as follows:

min
x, k�0, a2R

1
1� b

khp þ CVaRb
lðx, kÞ hðx�nÞþ þ bðn�xÞþ

� 

(13)

However, there exists dependence between x and k,
which makes further analysis complex. In this case,
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it is difficult to derive closed-form solutions, but we
can obtain a tractable formulation using the analysis
of the inner supremum.

Theorem 4.5. Under Assumption 3.1, the optimal
order quantity of (12) is determined by the following
formulation:

min
x, k�0, y, a2R

aþ 1
1� b

khp þ 1
1� b

1
N

XN
i¼1

yi

s:t: yi � hðx�n̂
iÞ�aþ h

kp


 � 1
p�1h

p�1
p

, 8i ¼ 1, :::,N,

yi � bðn̂i�xÞ�aþ b
kp


 � 1
p�1b

p�1
p

, 8i ¼ 1, :::,N,

yi � 0, 8i ¼ 1, :::,N,

a � hx:

For the risk-averse decision, we consider the CVaR
objective for the newsvendor model. We derive the
closed-form solution for the p¼ 1 case, and propose
a tractable formulation to obtain the optimal order
quantity for the p> 1 case. In the next section,
numerical experiments are conducted to verify the
risk-aversion of the CVaR solution using Theorem
4.3 and 4.5.

5. Computational experiments

We conduct numerical experiments to compare the
Wasserstein model with other data-driven models
such as the /-divergence model (Ben-Tal et al.,
2013). We also compare with the Scarf’s moment-
based model (Scarf, 1958) in terms of convergence
of order quantities and total costs to those with the
true underlying distribution. Then, we compare the
risk-averse solution with the risk-neutral solution in
terms of the worst cost with pessimistic demand
realization.

5.1. Out-of-sample performance

One important aspect when analyzing a distribu-
tionally robust solution is out-of-sample perform-
ance, i.e. the average performance of the
distributionally robust solution over test samples
from the data-generating distribution. We compare
the out-of-sample performance of distributionally
robust solutions for Wasserstein models and
/-divergence models. The /-divergence models are
another data-driven distributionally robust approach
based on /-divergence, using measures such as KL-
divergence and v2-distance (Ben-Tal et al., 2013).

Let l ¼ ðl1, :::, lNÞ and � ¼ ð�1, :::, �NÞ be prob-
ability distributions defined on N points. The
/-divergence model is given as follows:

min
x�0

sup
l2M/ð�Þ

El hðx�nÞþ þ bðn�xÞþ
� �

, (14)

where M/ð�Þ :¼ fl 2 PðNÞ : I/ðl, �Þ � qg and

I/ðl, �Þ ¼
PN

i¼1 �i/
li
�i


 �
, i.e. the /-divergence ambi-

guity set based on the empirical distribution �.
/-divergence is only defined between the empirical
distribution and distributions that are absolutely
continuous to the empirical distribution. Hence, the
/-divergence ambiguity set consists of distributions
whose supports are the same as the empirical distri-
bution. From the strong duality of the /-divergence
model (Ben-Tal et al., 2013), the newsvendor model
with the /-divergence ambiguity set is expressed as
follows:

min
x�0, k�0, g

gþ qk

þ k
XN
i¼1

1
N
/� hðx�n̂

iÞþ þ bðn̂i�xÞþ�g
k

 !
(15)

where /� is the conjugate of /: In this experiment,
we use KL-divergence and v2-distance for /-diver-
gence. The /-divergence function of KL-divergence
is /ðtÞ ¼ t log t�t þ 1 and the conjugate function is
/�ðsÞ ¼ es�1: The /-divergence function of v2-dis-

tance is /ðtÞ ¼ 1
t ðt�1Þ2 and the conjugate function

is /�ðsÞ ¼ 2�2
ffiffiffiffiffiffiffiffi
1�s

p
for s � 1: For both cases, the

resulting dual formulations are tractable (Ben-Tal
et al., 2013).

We will compare the empirical out-of-sample
performance of distributionally robust solutions. We
set h¼ 1 and b 2 f1, 3, 9, 19g to set the resulting
critical ratio as f0:50, 0:75, 0:90, 0:95g, respectively.
We generate N 2 f50, 500g samples from a normal
distribution with two different parameters: mean
m¼ 100 and standard deviation s 2 f20, 40g for
different coefficients of variation CV ¼ s

m as
f0:2, 0:4g: We let the Wasserstein radius h¼ 1,
which is large enough to guarantee probability
bounds (Esfahani & Kuhn, 2018; Fournier &
Guillin, 2015). We let the radius of /-divergence
models q ¼ 0:5: Let p-Wasserstein denote the
Wasserstein newsvendor models of the Wasserstein
order p for p¼ 1, 2. p¼ 1 and p¼ 2 are the widely
used orders for the Wasserstein distance. The
Wasserstein and /-divergence solutions are derived
based on the N historical data. Then, the demand d
is realized and the total cost is calculated based on
the order quantities and the realized demand as
TCðx�, dÞ ¼ hðx��dÞþ þ bðd�x�Þþ: We generate
500 demand realizations for d to evaluate the aver-
age of the realized total cost TCðx�, dÞ from the
same normal distribution. The average of the real-
ized total cost represents the empirical out-of-sam-
ple performance of distributionally robust solutions.
We conduct 100 iterations to generate data sets and
calculate the average and maximum of simulated
costs when the optimal solutions are implemented.
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xavg denotes the average of optimal order quantities
of each model. cavg and cmax denote the average and
maximum of empirical out-of-sample performances
over 100 iterations. The results are summarized in
Table 1.

The optimal order quantities of the /-divergence
models are larger than those of the Wasserstein
models for most cases, and the gaps between order
quantities increase as b increases. Therefore, the
gaps between average simulated costs are consider-
able, which reflects the better out-of-sample per-
formances of the Wasserstein solutions compared to
those of the /-divergence solutions. The optimal
order quantities for the /-divergence models are
sensitive to the coefficient of variation, that is, the
decision-maker considering the /-divergence model
over-orders when the variance is large. Another rea-
son for the gaps is that the /-divergence ambiguity
set cannot contain normal distributions that are
data-generating distributions and the resulting ambi-
guity set becomes unrealistic. In contrast, the
Wasserstein ambiguity set contains the unknown
true distribution with a certain probability (Esfahani
& Kuhn, 2018). In summary, the optimal order
quantities for the Wasserstein models have better
out-of-sample performances than those for the
/-divergence models.

5.2. Convergence property

One important property of Wasserstein DRO is con-
vergence property, i.e. as the sample size N
increases, the distributionally robust solution con-
verges to the true optimal solution with the com-
plete knowledge of the probability distribution.
According to the result of Theorem 3.2, for p¼ 1,
an optimal order quantity with the Wasserstein
ambiguity set is equivalent to the SAA solution. If
we choose the Wasserstein radius proportional to

1ffiffiffi
N

p for probability guarantee (Fournier & Guillin,

2015), then the ambiguity set shrinks to the empir-
ical distribution as the sample size N goes to infin-
ity. We choose the Wasserstein radius hN ¼ 10ffiffiffi

N
p to

control the conservativeness of the Wasserstein
models. Then, the optimal solution of the
Wasserstein newsvendor model converges to the
optimal solution with true distribution as the sample
size N increases, even if the decision maker does
not know the true distribution. Furthermore, with
hN, the objective function value of the Wasserstein
models converges to the optimal cost with true dis-
tribution as N goes to infinity.

In this experiment, we compare the convergence
property of the Wasserstein solutions compared to
the moment-based DRO model, specifically Scarf’s
model. Scarf’s model is given by

min
x�0

sup
l2Mðm, sÞ

El hðx�nÞþ þ bðn�xÞþ
� �

, (16)

where Mðm, sÞ denotes the moment-based ambigu-
ity set with known first and second moments, i.e. a
set of probability distributions with mean m and
standard deviation s. In our setting, the decision
maker knows only about historical data. Hence, m
and s are estimated by sample mean and sample
standard deviation, respectively. Scarf’s solution is

xScarf ¼ mþ s
2 s, where s ¼

ffiffi
b
h

q
�

ffiffi
h
b

q
and the opti-

mal objective function value is s
ffiffiffiffiffi
bh

p
:

In the data-driven approach, the decision maker
can update the order quantity based on the realized
data. For example, we consider the repeated setting
of the newsvendor problem, that is, a decision
maker decides the order quantity repeatedly through
the planning horizon. The decision maker decides
xN based on N samples and demand is realized after
the decision is implemented. The realized demand
can be used to make a decision xNþ1 with Nþ 1
samples. Likewise, order quantities are updated with

Table 1. Empirical out-of-sample performance of optimal order quantities for Wasserstein and /-divergence models when
CV ¼ 0:2 and CV ¼ 0:4:

1-Wasserstein 2-Wasserstein KL-divergence v2-distance

CV b N xavg cavg cmax xavg cavg cmax xavg cavg cmax xavg cavg cmax

0.2 1 50 98.91 16.18 17.85 98.91 16.18 17.85 98.91 16.18 17.85 99.89 16.60 20.81
1 500 99.77 15.93 17.47 99.77 15.93 17.47 99.77 15.93 17.47 100.81 16.43 19.16
3 50 113.08 25.82 30.34 113.66 25.80 30.05 120.06 26.99 33.75 122.22 28.43 44.44
3 500 113.31 25.40 28.63 113.89 25.40 28.53 121.74 27.30 29.89 131.74 33.95 56.02
9 50 124.17 36.07 44.32 125.50 35.90 42.45 136.12 39.89 58.76 135.56 39.66 58.84
9 500 125.64 35.09 39.22 126.98 35.16 38.99 145.39 46.35 64.02 150.23 50.74 79.70
19 50 132.02 42.59 54.00 134.09 42.43 51.32 140.85 45.43 64.65 139.97 45.10 63.97
19 500 132.80 41.39 47.27 134.86 41.54 47.17 155.51 55.98 86.27 156.39 56.80 87.61

0.4 1 50 97.81 32.36 35.71 97.81 32.36 35.71 98.28 32.33 35.71 99.83 33.04 40.20
1 500 99.54 31.86 34.94 99.54 31.86 34.94 100.16 31.88 35.05 101.61 32.85 38.32
3 50 126.17 51.64 60.68 126.74 51.62 60.39 140.47 54.04 67.75 141.85 55.24 80.42
3 500 126.63 50.80 57.26 127.20 50.80 57.16 143.61 54.65 59.84 163.47 67.91 112.04
9 50 148.34 72.15 88.63 149.67 71.94 86.75 172.24 79.79 117.49 169.45 78.10 112.70
9 500 151.29 70.19 78.43 152.62 70.22 78.16 191.20 93.11 143.84 200.46 101.48 159.41
19 50 164.04 85.18 108.00 166.11 84.92 105.15 181.71 90.86 129.31 179.58 89.78 127.18
19 500 165.59 82.78 94.54 167.66 82.82 94.39 210.99 111.95 173.48 212.79 113.60 175.21
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realized demand as sample size N increases. We
conduct numerical experiments by updating order
decisions based on the realized demand data until
N¼ 5, 000. We generated demand samples from a
normal distribution of mean 100 and standard devi-
ation 20, and the experimental setting is similar to
that of Section 5.1. The updated order quantities
and objective function values are shown in Figures
6 and 7, respectively. The black horizontal line rep-
resents the optimal solution when the underlying
true distribution is known.

When b¼ 1, the Wasserstein solution is equal to
the median and Scarf’s solution is equal to the sam-
ple mean, because s¼ 0. Therefore, Scarf’s solution
behaves similarly to that of the Wasserstein model,
because samples are generated from a normal distri-
bution and mean and median of a normal distribu-
tion are equal. In other cases (b¼ 3, 9, 19), the
Wasserstein solutions converge to the true optimal
solution, whereas the Scarf’s solutions do not.
Moreover, the Wasserstein radius hN decreases as N
increases, which leads to the convergence of object-
ive function values of the Wasserstein model. This
convergence result reflects one of the important
advantages of the Wasserstein model.

5.3. Risk-aversion of the CVaR solution

In some cases, it is important to reduce the risk of
extremely large costs caused by the pessimistic
demand realization. To verify such a risk-aversion
property of the CVaR model, the following experi-
ment is conducted. Risk-neutral and CVaR solutions
are derived based on the N historical data generated
from a normal distribution of mean 100 and stand-
ard deviation 20. Then, the demand d is realized
and the total cost is calculated based on the order
quantities and the realized demand as TCðx�, dÞ ¼
hðx��dÞþ þ bðd�x�Þþ: The experimental setting is
the same as that described in Section 5.1 such that
we generate 500 demand realizations for d to evalu-
ate the realized total cost from the same normal dis-
tribution. We let b 2 f0:2, 0:5, 0:9g for the CVaR
coefficient.

The optimal solution x� and the average and
maximum of realized total costs (TCavg, TCmax) are
summarized in Tables 2 and 3 for p¼ 1 and p¼ 2,
respectively. The CVaR model becomes more risk
averse as b increases. Hence, the optimal order
quantity tends to increase as b increases, but there
are exceptions because of the data-driven setting.
The closed-form solution of the CVaR model

Figure 6. Convergence of optimal order quantities to true optimal order quantities as sample size (N) increases.
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depends on historical data, so the order quantity
may decrease as b increases, especially for small
values of b. The most noticeable result is that, in

most cases, the maximum cost of the risk-averse
model is less than that of the risk-neutral model,
and the difference becomes significant when b and

Figure 7. Convergence of objective function values to true optimal cost as sample size (N) increases.

Table 2. Optimal solutions and simulation results for risk-neutral and CVaR models with different values of b when the
Wasserstein p¼ 1.

risk-neutral CVaR: b ¼ 0:2 CVaR: b ¼ 0:5 CVaR: b ¼ 0:9

b N x� TCavg TCmax x� TCavg TCmax x� TCavg TCmax x� TCavg TCmax

1 50 96.44 15.82 66.89 97.64 15.68 65.69 99.87 15.56 66.20 100.02 15.56 66.35
1 500 99.42 15.57 65.75 99.66 15.56 65.99 99.21 15.57 65.54 99.12 15.58 65.44
3 50 111.22 25.14 156.32 110.71 25.18 157.85 114.42 25.27 146.74 117.09 25.79 138.72
3 500 112.23 25.11 153.30 112.60 25.12 152.18 115.98 25.54 142.06 118.41 26.20 134.76
9 50 121.91 35.57 372.76 123.95 35.21 354.40 127.47 35.27 322.70 129.03 35.58 308.74
9 500 125.92 35.13 336.68 126.66 35.18 330.01 128.23 35.40 315.88 130.76 36.15 293.10
19 50 130.98 41.03 614.63 129.99 41.28 633.40 129.73 41.37 638.36 132.01 40.92 595.13
19 500 131.73 40.95 600.33 131.28 40.99 608.91 132.74 40.88 581.18 139.61 43.47 450.73

Table 3. Optimal solutions and simulation results for risk-neutral and CVaR models with different values of b when the
Wasserstein p¼ 2.

risk-neutral CVaR: b ¼ 0:2 CVaR: b ¼ 0:5 CVaR: b ¼ 0:9

b N x� TCavg TCmax x� TCavg TCmax x� TCavg TCmax x� TCavg TCmax

1 50 96.44 15.82 66.89 97.79 15.67 65.54 99.87 15.56 66.20 100.02 15.56 66.35
1 500 99.42 15.57 65.75 99.66 15.56 65.99 99.46 15.57 65.78 99.20 15.58 65.53
3 50 111.80 25.11 154.59 111.36 25.13 155.92 115.23 25.40 144.30 118.92 26.37 133.24
3 500 112.81 25.13 151.57 113.25 25.16 150.24 116.79 25.72 139.61 120.23 26.89 129.30
9 50 123.25 35.29 360.76 125.44 35.13 341.00 129.35 35.67 305.79 133.24 37.30 270.80
9 500 127.25 35.24 324.68 128.15 35.39 316.60 130.27 35.96 297.58 136.26 39.25 243.61
19 50 133.05 40.89 575.40 132.30 40.89 589.54 132.65 40.88 582.89 138.54 42.85 471.08
19 500 133.80 40.97 561.10 133.89 40.98 559.39 135.66 41.53 525.76 146.13 47.91 326.80
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b are large. It means that the CVaR model prefers
less risk of extremely large loss, even the average
cost would be increased. When b is large, the order
quantity of the risk-averse model is larger than that
of the risk-neutral model to decrease the extremely
large underage costs. Therefore, more cautious and
concerned decision makers would prefer the risk-
averse model.

6. Conclusions

In this paper, we considered a Wasserstein ambigu-
ity set for the data-driven distributionally robust
newsvendor model. To incorporate a wide range of
random demand and the Wasserstein distance, we
considered continuous and unbounded support N ¼
½0,1Þ and the general Wasserstein order p 2 ½1,1Þ:
We derived the closed-form expressions of the opti-
mal order quantity and the worst-case distribution
for the risk-neutral model. Esfahani and Kuhn
(2018) also discussed the equivalence between a
closed-form solution and the SAA solution when
p¼ 1, but we extended the closed-form analysis to
the general p> 1. We analyzed the structure of an
optimal order quantity based on the closed-form
expressions, which is characterized by the sum of
the SAA solution and the value determined by the
parameters. We also considered the risk-averse
model with the CVaR objective, and derived the
closed-form solution for the p¼ 1 case, and pro-
posed a tractable formulation to obtain the optimal
order quantity for the p> 1 case. We conducted
numerical experiments to verify the out-of-sample
performance of distributionally robust solutions and
the convergence results of the Wasserstein models.
The Wasserstein solutions showed better out-of-
sample performance and convergence properties,
which is an important advantage when applied to
practical circumstances. The risk aversion of the
CVaR model was analyzed in terms of the possibil-
ity of extremely large costs caused by the pessimistic
realization.

This research can serve as a building block for
applications of the newsvendor model. There are
several extensions of the newsvendor model, such as
multi-item setting, risk-averse models with various
risk measures, and pricing. Furthermore, the closed-
form of a newsvendor order quantity can be applied
to various applications, for example, inventory man-
agement, supply chain contract, and many other
operations management problems. For further
research, the Wasserstein ambiguity set with the
bounding of the shape of distributions, e.g. sym-
metry or unimodality, could be considered to
incorporate prior information on distributions.
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