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Abstract

The importance of inventory management for perishable items has been steadily attracting attention. Because
of the characteristics of items whose values drop precipitously or cannot be sold after a particular time, items
should be disposed of by a markdown sale. Accordingly, the company makes the following decisions at the
end of the selling season: (a) selection on which products to be discounted, (b) pricing of the product, and (c)
timing of the sale. Extant literature on the inventory problem has mainly focused on investigating decisions
on selecting products for discount and the amount of the discount. That is, the decision on the start time
of the markdown sale was not extensively studied. This study focuses on the optimal combination of a start
time of the markdown sale and an order quantity based on a newsvendor model. Under certain conditions
in a decentralized system, the start time of a markdown sale, where the retailer obtains the highest profit, is
the least profitable for the manufacturer. Therefore, we propose a revenue-sharing contract to avoid irrational
ordering behavior by a retailer against a manufacturer. Centralization through the revenue-sharing contract
improves the profits of the retailer and manufacturer compared to those earned in the decentralized system.

Keywords: newsvendor model; markdown sale; revenue-sharing contract; supply chain coordination

1. Introduction

Inventory management on perishable items has been steadily attracting attention from researchers in
various academic fields, including operation management, marketing, and business administration.
In general, perishable items refer to products that see a precipitous drop in value or that cannot
be sold after a certain time because of their finite or limited shelf life. In the past, the term
was used to describe products, especially food, that decay quickly. In recent years, however, as
product development life cycles have shortened and global competition has intensified, more types
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of products have come to be regarded as perishable items. For example, high-tech devices, such
as mobile phones, are launched more often than ever before, and fast fashion goods that were
used to be introduced quarterly are now released monthly or weekly. The lifespan of food in a
supermarket also decreases because of an increase in customer demand for freshness (Nakandala
et al., 2017). Accordingly, the traditional method running the inventory by maintaining stocks for
a long period no longer confers a competitive advantage. Customers regard the products already
stored in inventory for a long time as technically cluttered or stale products (Aviv and Pazgal,
2008). Consequently, keeping goods in stock over a long time eventually causes loss of profitability
(Avinadav and Arponen, 2009).

Various studies have been widely conducted to deal with perishable items. A newsvendor model
is one of the conventional approaches used to cope with perishable items in inventory management.
The model provides an optimal order quantity by considering the trade-off between overestimating
and underestimating customer demand. A general assumption in the basic newsvendor model is
that a retailer orders a single item from a manufacturer (supplier) by determining the optimal
order quantity to meet the uncertain demand within a single period. This classical model has been
extended to various ways (Khouja, 1999; Qin et al., 2011). Although various extensions of the model
were developed, a fluctuation of the price within a single period was not considered. Even though
the newsvendor model was extended to multi-period model, it solved the problem recursively based
on the single-period model. In the case of perishable item, it would be worth noting by expressing
the price fluctuation during a single period to illustrate the last-order situation at the end of the
selling season.

For perishable items near the end of the selling season, the company might earn more profit by
selling all of the remaining stocks with the lower price rather than disposing off the entire leftover
stocks. Outdated stocks not only hinder the flow of capital but also occupy the space used for a
new product. In addition, relatively old products lose competitiveness because of the new entry of
competitive products into the market. Furthermore, a company selling an out-of-style item at a low
price can degrade the brand image. According to T he T imes magazine, Burberry, which is a luxury
brand, incinerated up to as much of £90 million worth of stock in July 2018.

To deal with these issues, many companies have introduced pricing strategy to reduce the loss
incurred by perishable items. It refers not to passive acceptance of existing customer demand but
the proactive response for amplification of demand. By reducing the price for the same product over
time, more demand can be generated by attracting interests from customers who want to purchase
the product at a sale price. A markdown sale is a representative example of a pricing strategy.
In the case of a promotion, the price is not permanently being reduced, and it can change over
time. It is related to the studies considering dynamic pricing or multiple price markdowns (Gupta
et al., 2006; Yang and Zhang, 2014; Chung et al., 2015; Moon et al., 2016). In the literature on
economics, it is widely known that the price and demand are in inverse proportion to each other
(You, 2005; Kocabıyıkoğlu and Popescu, 2011; Yang et al., 2013). Research on forward-looking
customers, who are willing to wait for a price reduction and make a purchase when the price is
discounted, also explains the inverse relationship of price and demand. Pesendorfer (2002) claimed
that customers who put a low valuation on a product expect the product to be sold at a lower
price in a markdown sale. By accommodating the expectations of these customers, especially in the
apparel industry, the company promotes a markdown sale for overstock items at the end of the
selling season.
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The area of inventory management also has shown an interest in pricing (Elmaghraby and
Keskinocak, 2003). In addition to research areas such as demand forecasting, optimal order quantity,
or pricing, researchers in the inventory management have focused on determining the price and
order quantity simultaneously (Smith and Achabal, 1998; Petruzzi and Dada, 1999; Panda et al.,
2015; Mitra, 2018). By extending the newsvendor model including determination of the price of
the product, the model provides the optimal price and order quantity at a time (Federgruen and
Heching, 1999; Chen et al., 2011; Hu et al., 2015). However, another important issue has been
overlooked: the timing of a markdown sale. It may bring about the following question: What is the
optimal time to reduce the price? The determination of an appropriate start time of price reduction
could remove the unnecessary inventory while maximizing the revenue. This information could also
have a significant impact on the retailer’s last-order quantity, which consequently affects the profit
of the manufacturer and supply chain system. Depending on the situation, a retailer might earn the
maximum profit when a markdown sale starts as early as possible. In contrast, a late markdown sale
generates maximum profit. In a particular case, starting a sale in the middle of the selling period
leads to the maximum profit. Otherwise, the retailer is indifferent to the start time of the markdown
sale. Depending on the start time of the sale, customer demand and the order quantity of the retailer
from the manufacturer could vary. In other words, the profits of the retailer and manufacturer vary
based on the start time of the sale.

In this study, we analyzed the optimal combination of the start time of a markdown sale and an
order quantity to generate the maximum profit at the end of the selling season. We extended the
newsvendor model to consider the start time of a markdown by dividing the single period into two
parts with (a) a regular price and (b) a sale price. In practice, the discount rate of a markdown sale,
such as 30%, 40%, or 50%, is often predetermined. In contrast with many studies concentrated on
the pricing and order quantity in the inventory model, we focus on an optimal combination of the
start time of the sale and the order quantity under the predetermined discount rate.

When the retailer determines the optimal start time of the markdown sale and the order quantity
from an individual perspective, it may lead to a local optimum. In other words, a decision made
under a decentralized system cannot achieve maximum profit from the perspective of the overall
supply chain system. In this system, the optimal quantity ordered by the retailer is different from
the optimal quantity that the manufacturer would like to sell. Researchers have studied supply
chain contracts in an effort to determine how to prevent such a local optimum. If the contract is
appropriately designed, the supply chain is coordinated to ensure that the optimal order quantities
for both retailer and manufacturer coincide. Naturally, total supply chain profit, which includes the
profits of the retailer and manufacturer, can thus be maximized. In a similar manner, the start time
of the markdown sale should also be considered from the perspective of supply chain coordination.
The retailer and manufacturer may prefer different start times for the markdown sale under a
decentralized system. Thus, the contract mechanism must be properly designed to achieve supply
chain coordination in terms of the start time of the markdown sale. Therefore, we examine supply
chain coordination after analyzing the decentralized system.

The remainder of the paper is organized as follows. Section 2 describes the demand modeling used
for this research. Specifications of the profit functions and decisions of the retailer and manufacturer
under a decentralized system are addressed in Section 3. Section 4 presents the profit functions and
decisions under a centralized system through a revenue-sharing contract. The findings of this
research are summarized in Section 5.
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Table 1
Random variables representing uncertain demand considered in this study

ξ = y(p) + ε Demand in [0, T ] when the item is sold at the regular price
ξ ′ = y(p, α) + ε Demand in [0, T ] when the item is sold at the sale price
D = tm

T ξ = tm
T y(p) + tm

T ε Demand in [0, tm] when the item is solved at the regular price
D′ = (

T−tm
T )ξ ′ = T−tm

T y(p, α) + T−tm
T ε Demand in [0, tm], demand in [tm, T ] when the item is solved at the sale price

ε ∼ N(0, σ 2) Random variable following a normal distribution f as probability density
function and F as a cumulative distribution function

Fig. 1. Uncertain demand considered in this study and three types of inventory levels.

2. Problem description

In this study, we assume that a single retailer (newsvendor) places an order to a single manufacturer
(supplier) at the end of the selling season. After observing the wholesale price and other relevant
costs, the retailer determines the start time of the markdown sale and the order quantity. Let
t ∈ [0, T ] denote the planning horizon where the markdown sale starts at t = tm. The selling period
ends at t = T , which is the expiration date for remaining items. The period is divided into two
parts as [0, tm] and [tm, T ]. Until tm, items are sold at a selling (regular) price, which is subsequently
decreased with a discount rate α ∈ (0, 1) after tm. Both price and discount rate were exogenously
determined. The order is placed at t = 0 and covered until T . After T , no additional profit can be
earned. Table 1 presents a summary of the random variables representing the uncertain demand
considered in this study.

The terms y(p) and y(p, α) represent the general price-dependent functions with the deterministic
demand where the discount rate α serves to lower the price and increase the demand. These functions
represent the expected demand in the planning horizon. We adopted the additive demand function,
where y(p) = a − bp and y(p, α) = a − (1 − α)bp. The notation ε incorporates a price-independent
random variable that denotes the demand uncertainty. We assume that both random terms, indicated
by ε in the ξ and ξ ′, are independent and identically distributed (IID). It should be noted that the
random variables representing the demands are D and D′, instead of using ξ and ξ ′. D and D′

represent the random variables following the uncertain demand in [0, tm] and [tm, T ], respectively.
The demands D and D′ are expressed as a linear combination of ξ and ξ ′ with the ratio for each sale
period in the planning horizon. Figure 1 illustrates the random variables representing the uncertain
demand and the three possible situations for the inventory level in the planning horizon [0, T ]. We
assume that the total demand in the planning horizon is controllable by changing the start time
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of the markdown sale, tm. If the selling period with the regular price becomes longer, tm becomes
larger in D and (

T−tm
T ) becomes smaller in D′. That is, demand more increases if the period of price

reduction is extended longer. Conversely, demand more decreases if the period of price reduction is
shortened. To support that there is no major contradiction in the assumption, limits for tm as to 0
and T are described in Equations (1) and (2), respectively:

lim
tm→T−

D = lim
tm→T−

tm

T
ξ = lim

tm→T−

(tm

T
y(p) + tm

T
ε
)

= y(p) + ε = ξ (1)

lim
tm→0+

D′ = lim
tm→0+

(
T − tm

T

)
ξ ′ = lim

tm→0+

(
T − tm

T
y(p, α) + T − tm

T
ε

)
= y(p, α) + ε = ξ ′. (2)

As shown in Equation (1), when tm reaches T , which means the product is sold at the selling price
p for the entire period [0, T ], the demand is equivalent to ξ . Similarly, by Equation (2), when tm
approaches 0, which means the product is sold at the sale price (1 − α)p for the entire period, the
demand function becomes equal to ξ ′. It is reasonable that the mean of each demand is proportional
to the remaining duration for each sale in D and D′, respectively. As shown in Table 1, the variances
are also proportional to the duration of the sales in D and D′. Conceptually, ε expresses the
uncertainty of the demand indicating that demand cannot be accurately predicted due to external
or internal factors. In other words, the variance of the demand caused by uncertainty may increase
when the remaining selling period is extended. Accordingly, the variance of demand is expressed as
a product of the variance ε and the remaining selling period. For a general expression, ε can be used
as a different random variable instead of an IID, but two reasons support the argument for setting
it as an IID. First, by setting ε as an IID, the difference of variance can be affected solely by the
remaining period rather than other factors. The main objective of our study is to analyze how the
retailer’s order quantity varies depending on the length of the remaining selling period. Therefore,
we made the variance dependent only on the remaining period. Second, for ease of analysis, the
two random variables are set to IID. Setting the random variables in different manners makes it
challenging to deal with the expected profit function. Consequently, the analysis becomes difficult
and the interpretation may not be intuitive. Therefore, we assume variances in demand functions
as IID.

3. Analysis of the decentralized system

We analyzed a decentralized system in which a retailer and manufacturer consider the profit max-
imization from their respective positions. The retailer determines the start time of the markdown
sale and the order quantity for the profit maximization within a given parameter. Meanwhile, the
profit of the manufacturer depends on the order quantity determined by the retailer. Denote by q∗

as the optimal order quantity when the start time of the markdown sale tm is given. The term t∗
m

indicates the optimal start time of the markdown sale when the order quantity q is given. The opti-
mal combination for maximizing the expected profit function of the retailer is defined as (t∗∗

m , q∗∗).
A newsvendor model is introduced to incorporate the expected profit function of the retailer.
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3.1. Newsvendor model for a retailer

An objective function of a retailer is to maximize the total expected profit at the end of the selling
season. Let R1(q, tm), R2(q, tm), and C be defined as

R1(q, tm) = p · E[min(q, D)]

R2(q, tm) = (1 − α) · p · E
[
min

(
(q − D)+, D′)]

C = crq + wq,

where E denotes expectation and (x)+ = max(x, 0). The expected profit function of the retailer �r
in the planning horizon t ∈ [0, T ] can be expressed as follows:

�r(q, tm) = R1(q, tm) + R2(q, tm) − C

= p · E[min(q, D)] + (1 − α) · p · E
[
min

(
(q − D)+, D′)] − crq − wq.

The expected profit on the planning horizon is the difference between the sum of the two types of
revenues in [0, tm] and [tm, T ], and the total ordering cost. Decision variables q and tm are defined
as the order quantity and start time of the markdown sale, respectively, which are nonnegative real
variables. Without loss of generality, the lead time is not taken into account, which means the order
quantity q is held in stock at time t = 0. The revenue R1 in [0, tm] is described by p · E[min(q, D)]
for the product of the selling price p with the smaller value between the uncertain demand in [0, tm]
and order quantity q. R2 is the revenue in [tm, T ] expressed as (1 − α) · p · E[min((q − D)+, D′)] for
the product of the sale price (1 − α) · p with the smaller value between the remaining inventories at
tm and the uncertain demand in [tm, T ]. The total ordering cost is expressed in crq + wq, where cr
is the retailer’s per-unit cost and w is the wholesale price for a transfer payment. To avoid triviality,
cr ∈ [0, p] was assumed.

In the existing literature on inventory management, although the salvage value was imposed on
the leftover stock in common, it is not considered in this study. Although it is included in the profit
function, it does not have a significant effect on the analysis. Therefore, the salvage value is not
considered in this study.

Proposition 1. The expected profit function of the retailer �r is strictly concave respect to q, where
q ≥ 0 and given tm ∈ [0, T ]. Therefore, there exists a unique q∗ maximizing the expected profit function
�r when tm is given.

Proof. See Appendix A. �

Proposition 2. When an optimal order quantity q∗(tm) is given, critical ratio (fractile) p−(cr+w)

p can be

expressed as a convex combination of F ( T
tm

q∗ − (a − bp)) and F (q∗ − (a − bp) − T−tm
T αbp):

αF
(

T
tm

q∗ − (a − bp)

)
+ (1 − α)F

(
q∗ − (a − bp) − T − tm

T
αbp

)
= p − (cr + w)

p
.

Proof. See Appendix B. �
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Corollary 1. An optimal order quantity of the retailer has the lower and upper bounds shown in the
following inequality:

tm

T
F −1

(
p − (cr + w)

p

)
+ tm

T
(a − bp) ≤ q∗ ≤ F −1

(
p − (cr + w)

p

)
+ a − bp + T − tm

T
αbp.

(3)

Proof. By Proposition 1, the following inequality holds true:

F
(

q∗ − a + bp − T − tm

T
αbp

)
≤ p − (cr + w)

p
≤ F

(
T
tm

q∗ − (a − bp)

)
. (4)

If Inequality (4) is rearranged based on q∗, it is equal to Inequality (3). �
Also, Inequality (4) can be expressed with the expectations of demands D and D′ as shown in

Inequality (5). Recall that E[D] = tm
T (a − bp) and E[D + D′] = a − bp + T−tm

T αbp:

tm

T
F −1

(
p − (cr + w)

p

)
+ E[D] ≤ q∗ ≤ F −1

(
p − (cr + w)

p

)
+ E[D + D]. (5)

Proof. E[D + D′] is larger than or equal to E[D]. Also F −1(
p−(cr+w)

p ) is always larger than
tm
T F −1(

p−(cr+w)

p ) because tm ≤ T and F (·) is the nondecreasing function. �

Although a closed form is not proposed for q∗, lower and upper bounds of q∗ are suggested. These
bounds can be utilized to obtain q∗ efficiently through the bisection method. Details are given in the
next subsection. We will analyze how q∗ varies with changes of tm. Depending on tm, the optimal
order quantity q∗ and the expected profit vary. Accordingly, we need to analyze the profit function
with respect to tm.

Proposition 3. The expected profit function of the retailer �r is strictly concave with respect to tm, where
tm ∈ [0, T ] and given q ≥ 0. Thus, there exists a unique t∗

m maximizing the expected profit function �r
when q is given.

Proof. See Appendix C. �
Propositions 1 and 3 show that �r is strictly concave with respect to q and tm. We now show that

�r is jointly concave with q and tm.

Proposition 4. The expected profit function of the retailer �r is strictly concave with respect to q and
tm, where tm ∈ [0, T ] and q ≥ 0. There exists a unique combination (t∗∗

m , q∗∗) maximizing the expected
profit function of the retailer �r.

Proof. See Appendix D. �
According to Proposition 4, the expected profit function is maximized through the optimal

combination of the start time of the markdown sale and the order quantity. The solution procedure
for obtaining the optimal combination is described in the next subsection.
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3.2. Solution procedure for an optimal combination (t∗∗
m , q∗∗)

We applied a bisection method to obtain the optimal combination of the start time of the markdown
sale and the order quantity. The bisection method is one of the root-finding methods. It searches
a solution by repeating a procedure based on dividing an initially given interval until the value
of the function is less than tolerance (TOL). The criterion for dividing the interval is whether
the value of the function obtained by the middle point of the interval is positive or negative.
The procedure is repeated by dividing the given interval in half and defining each half as a new
interval. When the value of the function of the middle point is smaller than the tolerance, the
procedure is terminated. According to Bolzano’s intermediate value theorem, the bisection method
is guaranteed to converge if h(a) and h(b) have opposite signs, where h(·) is a continuous function in
the interval [a, b] (Russ, 1980). That is, q∗ can be obtained by setting the value of the first derivative
of the expected profit function to 0. The initial interval was set as the lower and upper bounds of
the q∗ in Corollary 1. Likewise, the optimal start time of the markdown sale t∗

m can be obtained
using the initial interval [0, T ]. In this manner, the optimal combination (t∗∗

m , q∗∗) can be obtained by
iterating the procedure recursively. The pseudocode of the bisection method algorithm is described in
Algorithm 1.

3.3. Profit function of a manufacturer

In this study, we assume that the capacity of the manufacturer is infinite. Under the assumption,
the profit of the manufacturer is proportional to q determined by the retailer. The profit function
of the manufacturer �m can be expressed as follows:

�m(q) = wq − cmq,

where w and cm represent the wholesale price and the manufacturer’s per-unit cost, respectively.
For the manufacturer, the lower and upper bounds of the order quantity by the retailer can be
expected. Therefore, the lower and upper bounds of the expected profit of the manufacturer are as
follows:

Lower bound:
(
w − cm

) ·
(

tm

T
F −1

(
p − (cr + w)

p

)
+ tm

T
(a − bp)

)

Upper bound:
(
w − cm

) ·
(

F −1
(

p − (cr + w)

p

)
+ a − bp + T − tm

T
αbp

)
.

Although the order quantity is assumed as infinite, the profit of the manufacturer occurs within the
interval given as described. When the wholesale price is fixed, the profit of the manufacturer varies
with tm as determined by the retailer. Also, the determination of tm by the retailer depends on the
wholesale price. Therefore, the profit of the manufacturer depends on the optimal combination of the
start time of markdown sale and the order quantity determined by the retailer in the decentralized
system. A detailed analysis was conducted with numerical experiments.
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Algorithm 1. Bisection method algorithm

3.4. Numerical experiments of the decentralized system

We conducted numerical experiments to analyze the decentralized system. The parameter setting
for the experiments is provided in Table 2. We analyzed the optimal combination of the start time of
the markdown sale and the order quantity determined by the retailer and how it affects the profits
of the manufacturer and the supply chain system. We considered the following questions for the
numerical experiments:

C© 2019 The Authors.
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Table 2
Parameter setting for the numerical experiments of a decentralized system

p a b α w cr cm

Case 1 120 7000 50 0.4 35 20 24
Case 2 120 7000 45 0.4 35 20 24
Case 3 120 6200 45 0.4 20 15 17
Case 4 120 7500 35 0.4 20 5 8

Fig. 2. Numerical experiments of the decentralized system.

(i) How does the optimal order quantity vary with the change of the start time of the mark-
down sale?

(ii) What is the start time of the markdown sale generating the maximum profit for the retailer?
(iii) How does the profit of the manufacturer vary?
(iv) How does the profit of the system vary?

We also solved the problem by varying the given start time of the markdown sale tm to confirm
whether the optimal combination proposed in this study actually generates the maximum profit.
That is, the optimal order quantity and the expected profits of the retailer, manufacturer, and system
(�r, �m, and �s, respectively) were estimated by fixing tm. The results of the numerical experiments
are illustrated in Fig. 2 and detailed results are provided in Table 3. The optimal combination

C© 2019 The Authors.
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Table 3
Numerical experiments for a decentralized system

Case 1 Case 2

t q∗ �r �m �s q∗ �r �m �s

0 3256 53,363 35,816 89,179 3530 56,821 38,830 95,651
1 3136 53,723 34,496 88,219 3422 58,825 37,642 96,467
2 3016 54,083 33,176 87,259 3314 60,829 36,454 97,283
3 2896 54,443 31,856 86,299 3206 62,833 35,266 98,099
4 2776 54,803 30,536 85,339 3098 64,837 34,078 98,915
5 2656 55,163 29,216 84,379 2990 66,841 32,890 99,731
6 2536 55,523 27,896 83,419 2882 68,845 31,702 100,547
7 2416 55,883 26,576 82,459 2774 70,849 30,514 101,363
8 2296 56,243 25,256 81,499 2666 72,853 29,326 102,179
9 2176 56,603 23,936 80,539 2558 74,857 28,138 102,995

10 2056 56,963 22,616 79,579 2450 76,861 26,950 103,811
11 1936 57,323 21,296 78,619 2342 78,865 25,762 104,627
12 1816 57,683 19,976 77,659 2234 80,869 24,574 105,443
13 1696 58,043 18,656 76,699 2126 82,873 23,386 106,259
14 1576 58,403 17,336 75,739 2018 84,877 22,198 107,075
15 1456 58,763 16,016 74,779 1911 86,876 21,021 107,897
16 1336 59,123 14,696 73,819 1815 88,798 19,965 108,763
17 1222 59,440 13,442 72,882 1745 90,333 19,195 109,528
18 1135 59,367 12,485 71,852 1700 91,026 18,700 109,726
19 1073 58,207 11,803 70,010 1665 90,547 18,315 108,862
20 1021 55,478 11,231 66,709 1633 88,764 17,963 106,727

Case 3 Case 4

t q∗ �r �m �s q∗ �r �m �s

0 2966 104,927 8898 113,825 5239 216,510 62,868 279,378
1 2858 102,851 8574 111,425 5155 220,482 61,860 282,342
2 2750 100,775 8250 109,025 5071 224,454 60,852 285,306
3 2642 98,699 7926 106,625 4987 228,426 59,844 288,270
4 2534 96,623 7602 104,225 4903 232,398 58,836 291,234
5 2426 94,547 7278 101,825 4819 236,370 57,828 294,198
6 2318 92,471 6954 99,425 4735 240,342 56,820 297,162
7 2210 90,395 6630 97,025 4651 244,314 55,812 300,126
8 2102 88,319 6306 94,625 4567 248,286 54,804 303,090
9 1994 86,243 5982 92,225 4483 252,258 53,796 306,054

10 1886 84,167 5658 89,825 4399 256,230 52,788 309,018
11 1778 82,091 5334 87,425 4315 260,202 51,780 311,982
12 1670 80,015 5010 85,025 4231 264,174 50,772 314,946
13 1562 77,939 4686 82,625 4147 268,146 49,764 317,910
14 1454 75,863 4362 80,225 4063 272,118 48,756 320,874
15 1346 73,787 4038 77,825 3981 276,082 47,772 323,854
16 1238 71,711 3714 75,425 3905 279,990 46,860 326,850
17 1130 69,634 3390 73,024 3849 283,676 46,188 329,864
18 1026 67,515 3078 70,593 3821 286,860 45,852 332,712
19 944 65,000 2832 67,832 3818 289,278 45,816 335,094
20 888 61,410 2664 64,074 3836 290,781 46,032 336,813
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Table 4
Optimal combinations of the start time of the markdown sale and order quantity, and the profits of the retailer, manu-
facturer, and system from the numerical experiments in the decentralized system

Case 1 Case 2 Case 3 Case 4

Start time of markdown sale t = 17.44 t = 18.12 t = 0.00 t = 20.00
Order quantity 1179 1695 2966 3836
Profit of the retailer 59,496 91,034 104,927 290,781
Profit of the manufacturer 12,969 18,654 8,898 46,032
Profit of the system 72,465 109,688 113,825 336,813

of the start time of the markdown sale and the order quantity, and the profits of the retailer,
manufacturer, and system, are described in Table 4. The answers to questions (i)–(iv) are presented
in Observations 1–4.

Observation 1. As shown in Fig. 2, when the start time of the markdown sale tm increased, the optimal
order quantity q∗ of the retailer decreased.

Because the probability distribution of the aggregated demand during the planning horizon
follows N(a − bp + (T−tm)

T αbp, σ 2), when tm becomes larger, the lower demand occurs. On the
contrary, when tm approaches 0, the total demand of the customer increases. As shown in Inequality
(3) in Corollary 1, when tm approaches T , the range of the lower and upper bounds of q∗ is close
to F −1(

p−c
p ) + a − bp, while the range is widened when tm approaches 0. If the sale price (1 − α) · p

is not less than the purchase cost cr + w, the retailer places more order than F −1(
p−c

p ) + a − bp to
cover the demand, which is larger than the demand ξ . Consequently, the optimal order quantity q∗

for the retailer tends to increase with decreasing tm. Thus, the inverse property between the optimal
order quantity of the retailer and the start time of the markdown sale tm was observed.

Observation 2. As shown in Case 3, the maximum profit of the retailer was generated when the
markdown sale started at tm = 0. On the contrary, in Case 4, the maximum profit of the retailer was
reached when the markdown sale started at tm = T . In Cases 1 and 2, the retailer would choose the
optimal start time of the markdown sale t∗

m as 17.44 and 18.12, respectively.

Corollary 2. If the wholesale price w is set to be less than −cr + 2p − αp − a
b , it is a sufficient condition

for the retailer starting the markdown sale at tm = 0 where the manufacturer makes the relatively larger
profit compared to the opposite case.

Proof. Since the expected profit function of the retailer is concave with respect to tm, when the first
derivative of the function has negative value at tm = 0, it also has a negative value even after tm = 0.
Therefore, when the wholesale price w is set to be less than −cr + 2p − αp − a

b , the retailer acquires
the maximum expected profit when the markdown sale starts at tm = 0 (see Appendix E). At this
time, the optimal order quantity of the retailer is as follows:

lim
tm→0+

∂�r(q, tm)

∂q
= (1 − α) · p · (1 − F (q − (a − bp) + αbp)) − (

cr + w
)
.
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Accordingly,

lim
tm→0+

q∗ = F −1
(

(1 − α) · p − (cr + w)

(1 − α) · p

)
+ a − bp + αbp. �

Corollary 3. If the following inequality is satisfied, the maximum profit of the retailer occurs when the
markdown sale starts at tm = T :

(a − bp + αbp)

(
p − (cr + w)

p

)
− b · (p − (cr + w)) +

∫ p−(cr+w)

p

−∞
x f (x)dx > 0.

Proof. The proof process of Corollary 3 is similar to that of Corollary 2. Since the expected profit
function �r is strictly concave with respect to tm, if the value of the first derivative of the function
is positive at tm = T , then the maximum profit is reached at this point (see Appendix F). Thus, the
optimal order quantity of the retailer is as follows:

lim
tm→T−

∂�r(q, tm)

∂q
= p · (1 − F (q − (a − bp) + αbp)) − (cr + w).

Accordingly,

lim
tm→T−

q∗ = F −1
(

p − (cr + w)

p

)
+ a − bp. �

Observation 3. According to Observation 1, the optimal order quantity q∗ by the retailer decreased as
tm increased. Because the profit function of the manufacturer follows �m = wq − cmq, it is proportional
to the order quantity of the retailer. Therefore, the manufacturer prefers that the retailer starts the
markdown sale at tm = 0.

Customer demand is assumed to be controllable according to the start time of the markdown
sale. From the perspective of the manufacturer, it is profitable when the retailer orders as many as
possible. Therefore, the manufacturer prefers the start time of the markdown sale at tm = 0, which
amplifies the customer demand.

Observation 4. The overall profit of the system also depends on the retailer’s start time of the markdown
sale. For example, in Case 1, which is illustrated in Fig. 2a, the system profit reached the maximum
value when tm was determined at tm = 0, but the retailer benefited from starting the markdown sale at
another time.

In Cases 1 and 2, the most profitable start time of the markdown sale for the retailer differed
from that of the manufacturer and the overall system. Especially for Case 1, for the manufacturer
or system, the maximum profit was gained when the markdown sale started at t = 0, but the retailer
determined the start time at t = 17.44. Meanwhile, for Cases 3 and 4, the retailer determined the
start time of markdown sale, which also generated the maximum profits of the manufacturer and
system despite the decentralized system. Although the optimal start time of the markdown sale
of the retailer coincided with that of the manufacturer, the supply chain was not coordinated. It
is necessary to analyze the optimal combination of a start time of the markdown sale and order
quantity from a system point of view. Also, an appropriate distribution of the maximum system
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profit is required. The supply chain coordination based on the centralized system is discussed in the
next section.

4. Analysis of a centralized system

In this section, an optimal combination (t∗∗
m , q∗∗) from the system perspective are considered. We

adopted a revenue-sharing contract rather than a buy-back contract because the newsvendor model
does not consider leftover stock. The main purpose of the contract is to change the profit structure
to reach the Pareto optimum. Based on the Stackelberg game, the manufacturer who is the leader
determines the contract parameters and the retailer who is the follower subsequently decides on
a start time of the markdown sale and an order quantity. Under the revenue-sharing contract,
the transfer payment from a retailer to a manufacturer includes a certain fraction of the retailer’s
revenue � and the wholesale price w. The determination of the appropriate wholesale price proposed
by Cachon and Lariviere (2005) is modified and the sufficient condition for this model is proposed
for the revenue-sharing contract.

In the case of the decentralized system, because w is larger than cm, the optimal order quantity
from the viewpoint of the system is not placed. To establish the revenue-sharing contract, the
manufacturer must provide the retailer with a wholesale price w that is less than cm and receive a
certain percentage of the revenue � from the retailer.

4.1. Revenue-sharing contract

We suggest a revenue-sharing contract to overcome the relatively small profit of the system due to the
decision from each standpoint. Under the revenue-sharing contract, the expected profit functions
of the retailer and manufacturer, respectively, are as follows:

�r(q, tm) = R1(q, tm) + R2(q, tm) − (w + cr) · q − (1 − �) · (R1(q, tm) + R2(q, tm)) (6)

�m(q, tm) = (1 − �) · (R1(q, tm) + R2(q, tm)) + wq − cmq. (7)

The total expected profit function of the supply chain system �s is as follows:

�s(q, tm) = R1(q, tm) + R2(q, tm) − (cr + cm) · q. (8)

From the system perspective, the optimal combination (t∗∗
m , q∗∗) can be obtained through the

Algorithm proposed in Section 3 by replacing the wholesale price w with the manufacturer’s per-
unit cost cm. Denote q∗

r , q∗
m, and q∗

s by the optimal order quantities for the retailer, manufacturer,
and system, respectively. If a certain fraction of the retailer’s revenue � and wholesale price w satisfy
Equations (9) and (10), then q∗

r = q∗
m = q∗

s holds true, which means the supply chain is coordinated:

� = w + cr

cr + cm
(9)

w = −cr + (cr + cm) · �. (10)
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Corollary 4. If the following Inequality (11) is satisfied, then the maximum profit of the system occurs
when the retailer starts the markdown sale at tm = 0:

a − bp + αbp − b · (p − cr − cm) < 0. (11)

Proof. It can be easily proved by referring to the proof of the Corollary 2 by replacing the wholesale
price w with the manufacturer’s cost per-unit cm. �

The optimal order quantity by the retailer, manufacturer, and system, respectively, are as follows:

q∗
r = F −1

(
� · (1 − α) · p − (w + cr)

� · (1 − α) · p

)
+ a − bp + αbp

q∗
m = F −1

(
(1 − �) · (1 − α) · p − (cm − w)

(1 − �) · (1 − α) · p

)
+ a − bp + αbp

q∗
s = F −1

(
(1 − α) · p − (cr + cm)

(1 − α) · p

)
+ a − bp + αbp.

When Equations (9) and (10) are satisfied, then q∗
r = q∗

m = q∗
s holds true and the supply chain is

coordinated.

Corollary 5. If the following Inequality (12) is satisfied, then the maximum profit of the system occurs
when the retailer starts the markdown sale at tm = T :

(a − bp + αbp)

(
p − (cr + w)

p

)
− b · (p − cr − cm) +

∫ p−(cr+cm )

p

−∞
x f (x)dx > 0. (12)

Proof. The proof of Corollary 5 can be easily completed by replacing the wholesale price with the
manufacturer’s cost per unit in the proof of Corollary 3. �

In this case, the optimal order quantity by the retailer, manufacturer, and system, respectively,
are as follows:

q∗
r = F −1

(
� · p − (w + cr)

� · p

)
+ a − bp

q∗
m = F −1

(
(1 − �) · p − (cm − w)

(1 − �) · p

)
+ a − bp

q∗
s = F −1

(
(p − (cr + cm)

p

)
+ a − bp.

When Equations (9) and (10) hold true, the supply chain is coordinated with q∗
r = q∗

m = q∗
s . Other-

wise, the optimal combination of the start time of the markdown sale and order quantity can be
obtained by the Algorithm using cm instead of w. Under the coordination, the optimal combination
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Table 5
Optimal combinations of the start time of the markdown sale and order quantity, and the profits of the retailer, manu-
facturer, and system from the numerical experiments in the centralized system

Case 1 Case 2 Case 3 Case 4
(� = 0.75) (� = 0.83) (� = 0.92) (� = 0.86)

Start time of markdown sale t = 0.00 t = 17.62 t = 0.00 t = 20.00
Order quantity 3269 1809 2982 4115
Profit of the retailer 67,260 91,523 104,946 290,998
Profit of the manufacturer 22,420 18,746 8903 47,372
Profit of the system 89,680 110,269 113,849 338,370

(t∗∗
m , q∗∗) from the system is also the optimal combination for the retailer and manufacturer. By

inserting the optimal combination (t∗∗
m , q∗∗) into the profit functions (6), (7), and (8), the maximum

expected profits of the retailer, manufacturer, and system, respectively, are obtained.

4.2. Numerical experiments of the centralized system

Numerical experiments were conducted to characterize the centralized system. The parameter
setting from Table 2 was also used for the experiments, except for the wholesale price w and a
certain fraction of the retailer’s revenue �. A summary of the numerical experiment is provided in
Table 5.

As can be seen from Table 5, all expected profits were higher than those shown in Table 4.
The optimal order quantities by the retailer, manufacturer, and system were equal, showing that
the supply chain was coordinated. Although setting w as less than cm led to the revenue of the
manufacturer as a negative value, the profit of the manufacturer was higher than the decentralized
system. Notably, for Cases 1, 2, and 4, the optimal order quantities increased through coordination,
but order quantity decreased in Case 3. In this case, the wholesale price w was set to be relatively
small according to Corollary 2. For the retailer, the total purchasing cost was reduced, which resulted
in placing a larger order quantity. Table 5 shows that the optimal start time of the markdown sale
was consistent with the decentralized system in Cases 3 and 4. In Cases 1 and 2, however, the
optimal start time of the markdown sale changed with the coordination. That is, when the start
time of markdown sale is considered, supply chain coordination is required to match the optimal
start time of markdown sale as well as the optimal order quantity.

5. Conclusions

As the inventory management for perishable items becomes critical to a company, it is necessary
to adjust the customer demand by taking the start time of the markdown sale into consideration
at the end of the selling season. In preparation for the end of the selling season, the retailer should
consider not only the order quantity but also the start time of the markdown sale. However, it
can be disadvantageous to the manufacturer because the profit depends on the decision of the
retailer. That is, the decision in each perspective cannot reach the system’s maximum profit. Using
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a revenue-sharing contract based on the appropriate fraction of the retailer’s revenue and wholesale
price, the maximum profit from the perspective of the system can be obtained.

5.1. Managerial insights

Research on the newsvendor model and supply chain coordination has been widely conducted.
Also, variations of the model with regard to pricing have been widely developed. To the best of our
knowledge, however, research considering the start time of a markdown sale is scarce. Our study
produced the following managerial insights:

(i) When a retailer sets the start time of the markdown sale individually, it can result in being quite
disadvantageous to the manufacturer. The profit of the manufacturer depends on the order
quantity of the retailer when the wholesale price is fixed. Therefore, the manufacturer prefers
that the retailer starts the markdown sale as soon as possible to amplify customer demand.
However, the retailer determines the optimal order quantity depending on the given external
factors; that is, it is difficult to match each preference of a start time of the markdown sale in
the decentralized system.

(ii) When the manufacturer sets the wholesale price appropriately, the preferred start time of
the markdown sale from the retailer and manufacturer can coincide. In this case, the profit
difference between the decentralized and centralized system is relatively small, but the supply
chain is not coordinated.

(iii) In general, a supply chain coordination based on the newsvendor model means that the optimal
order quantity from the system point of view equals that of the retailer and manufacturer while
the system profit is maximized. However, when the concept of determining the optimal start
time of the markdown sale is introduced, not only matching the order quantity but also the
start time must be considered. In other words, the supply chain coordination is achieved when
the optimal combination (t∗∗

m , q∗∗) is realized.

5.2. Directions for future study

We investigated the insights from the newsvendor model by adding the notion of a start time of the
markdown sale in both decentralized and centralized systems. Because the research of this concept
is still insufficient, plenty of variations can be considered through this study. In terms of demand
modeling, several methodologies could lead to practical results. In addition, because this study is
extended based on the single-period newsvendor model, new insights can be found by extending the
model to the multi-period, multi-item, multi-retailer, or multi-echelon model. This study is expected
to be a cornerstone for numerous upcoming future studies.
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Appendix A

E[min(q, D)]

= E[D|D ≤ q] · Pr(D ≤ q) + E[q|D ≥ q] · Pr(D ≥ q)

= E

[tm

T
(a − bp) + tm

T
ε|tm

T
(a − bp) + tm

T
ε ≤ q

]
· Pr

(tm

T
(a − bp) + tm

T
ε ≤ q

)
+ E

[
q|tm

T
(a − bp) + tm

T
ε ≥ q

]
· Pr

(tm

T
(a − bp) + tm

T
ε ≥ q

)

= tm

T
· (a − bp) · F

(
T
tm

q − (a − bp)

)
+ tm

T
· E

[
ε|ε ≤ T

tm
q − (a − bp)

]

· Pr
(

ε ≤ T
tm

q − (a − bp)

)
+ q · Pr

(
ε ≥ T

tm
q − (a − bp)

)

= tm

T
(a − bp) · F

(
T
tm

q − (a − bp)

)
+ tm

T
·

∫ T
tm

q−(a−bp)

−∞ x f (x)dx

Pr
(
ε ≤ T

tm
q − (a − bp)

)

+ q ·
[

1 − F
(

T
tm

q − (a − bp)

)]
= tm

T
· (a − bp)F

(
T
tm

q − (a − bp)

)

+ tm

T

∫ T
tm

q−(a−bp)

−∞
x f (x)dx + q ·

[
1 − F

(
T
tm

q − (a − bp)

)]
.

E
[
min[max(q − D, 0), D′]

]
= Pr(D ≤ q ≤ D + D′) · (q − E[D|D ≤ q ≤ D + D′]) + Pr(D + D′ ≤ q)

· E[D′ | D + D′ ≤ q]

= Pr
(

tm

T
(a − bp) + tm

T
ε ≤ q ≤ a − bp + ε + T − tm

T
αbp

)

·
(

q − E

[
tm

T
(a − (1 − α) · bp) + T − tm

T
ε | a − bp + ε + T − tm

T
αbp

])

+ Pr
(

a − bp + ε + T − tm

T
αbp ≤ q

)

· E
[

T − tm

T
(a − (1 − α) · bp) + T − tm

T
ε | a − bp + ε + T − tm

T
αbp ≤ q

]
,

where

Pr
(

tm

T
(a − bp) + tm

T
ε ≤ q ≤ a − bp + ε + T − tm

T
αbp

)
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·
(

q − E

[
tm

T
(a − bp) + tm

T
ε | tm

T
(a − bp) + tm

T
ε ≤ q ≤ a − bp + ε + T − tm

T
αbp

])

= Pr
(

q − (a − bp) − T − tm

T
αbp ≤ ε ≤ T

tm
q − (a − bp)

)
·
(

q − tm

T
(a − bp)

)

− tm

T

∫ T
tm

q−(a−bp)

q−(a−bp)− T−tm
T αbp

x f (x)dx

=
(

q − tm

T
(a − bp)

)
·
(

F
(

T
tm

q − (a − bp)

)
− F

(
q − (a − bp) − T − tm

T
αbp

))

− tm

T

∫ T
tm

q−(a−bp)

q−(a−bp)− T−tm
T αbp

x f (x)dx

and

Pr
(

a − bp + ε + T − tm

T
αbp

)

· E
[

T − tm

T
(a − (1 − α)bp) + T − tm

T
ε|a − bp + ε + T − tm

T
αbp ≤ q

]

= F
(

q − (a − bp) − T − tm

T
αbp

)

·
(

T − tm

T
(a − (1 − α)bp) + T − tm

T

∫ q−(a−bp)− T−tm
T αbp

−∞
x f (x)dx

· 1

F
(

q − (a − bp) − T−tm
T αbp

)
⎞
⎠

= T − tm

T
(a − bp + αbp)F

(
q − (a − bp) − T − tm

T
αbp

)

+ T − tm

T

∫ q−(a−bp)− T−tm
T αbp

−∞
x f (x)dx.

Thus,

E
[
min[max(q − D, 0), D′]

]
=

(
q − tm

T
(a − bp)

)
F

(
T
tm

q − (a − bp)

)

−
(

q − (a − bp) − T − tm

T
αbp

)
F

(
q − (a − bp) − T − tm

T
αbp

)
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− tm

T

∫ T
tm

q−(a−bp)

q−(a−bp)− T−tm
T αbp

x f (x)dx + T − tm

T

∫ q−(a−bp)− T−tm
T αbp

−∞
x f (x)dx.

Accordingly,

�r(q, tm) = p · E[min(q, D)] + (1 − α)p · E
[
min((q − D)+, D′)

] − (cr + w)q

= p
tm

T
(a − bp)F

(
T
tm

q − (a − bp)

)
+ p

tm

T

∫ T
tm

q−(a−bp)

−∞
x f (x)dx

+ pq
(

1 − F
(

T
tm

q − (a − bp)

))
+ (1 − α)

[
p
(

q − tm

T
(a − bp)

)
F

(tm

T
q − (a − bp)

)

−
(

q − (a − bp) − T − tm

T
αbp

)
· F

(
q − (a − bp) − T − tm

T
αbp

)

− tm

T

∫ T
tm

q−(a−bp)

q−(a−bp)− T−tm
T αbp

x f (x)dx + T − tm

T

∫ q−(a−bp)− T−tm
T αbp

−∞
x f (x)dx

]

− (cr + w)q.

∂�r(q, tm)

∂q
= p(a − bp) f

(
T
tm

q − (a − bp)

)
+ p

(
T
tm

q − (a − bp)

)
+ p

(
1 − F

(
T
tm

q − (a − bp)

))

− pq
T
tm

f
(

T
tm

q − (a − bp)

)
+ (1 − α)p

(
F

(
T
tm

q − (a − bp)

))
+

(
T
tm

q − (a − bp)

)

· f
(

T
tm

q − (a − bp)

)
− F

(
q − (a − bp) − T − tm

T
αbp

)
−

(
q − (a − bp) − T − tm

T
αbp

)

· f
(

q − (a − bp) − T − tm

T
αbp

)
−

(
T
tm

q − (a − bp)

)
f
(

T
tm

q − (a − bp)

)

+ tm

T

(
q − (a − bp) − T − tm

T
αbp

)
f
(

q − (a − bp) − T − tm

T
αbp

)

+ T − tm

T

(
q − (a − bp) − T − tm

T
αbp

)
f
(

q − (a − bp) − T − tm

T
αbp

)
− (cr + w)

= p
(

1 − F
(

T
tm

q − (a − bp)

))

+ (1 − α)p
(

F
(

T
tm

q − (a − bp)

)
− F

(
q − (a − bp) − T − tm

T
αbp

))
− (cr + w)

∂2�r(q, tm)

∂q2
= − T

tm
αp f

(
T
tm

q − (a − bp)

)
− (1 − α)p f

(
q − (a − bp) − T − tm

T
αbp

)
< 0.

∵ The probability density function f (·) is always nonnegative.
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Appendix B

∂�r(q, tm)

∂q
= p

(
1 − F

(
T
tm

q − (a − bp)

))

+(1 − α)p
(

F
(

T
tm

q − (a − bp)

)
− F

(
q − (a − bp) − T − tm

T
αbp

))
− (cr + w)

⇐⇒ αF
(

T
tm

q∗ − (a − bp)

)
+ (1 − α)F

(
q∗ − (a − bp) − T − tm

T
αbp

)
= p − (cr + w)

p
.

Because the range of F (·) is between 0 and 1 and its value varies according to the q∗, p−(cr+w)

p

can be expressed as a convex combination of F ( T
tm

q∗ − (a − bp)) and F (q∗ − (a − bp) − T−tm
T αbp).

Thus, there exists a unique q∗ maximizing the expected profit function of the retailer �r. Also,
F ( T

tm
q∗ − (a − bp)) is always larger than F (q∗ − (a − bp) − T−tm

T αbp) because T
tm

q − (a − bp) ≥
q − (a − bp) − T−tm

T αbp holds true and F (·) has the nondecreasing property.

Appendix C

∂�r(q, tm)

∂tm
= p

T
(a − bp)F

(
T
tm

q − (a − bp)

)
+ p

T

∫ T
tm

q−(a−bp)

−∞
x f (x)dx

+ (1 − α)p
[

− 1
T

(a − bp)F
(

T
tm

q − (a − bp)

)
− αbp

T
F

(
q − (a − bp) − T − tm

T
αbp

)

− 1
T

∫ T
tm

q−(a−bp)

−∞
x f (x)dx

]
= αp

T

[
(a − bp)F

(
T
tm

q − (a − bp)

)

− (1 − α)bpF
(

q − (a − bp) − T − tm

T
αbp

)
+

∫ T
tm

q−(a−bp)

−∞
x f (x)dx

]
.

∂2�r(q, tm)

∂t2
m

= αp
T

[
− qT

t2
m

(a − bp) f
(

T
tm

q − (a − bp)

)
− αb2 p2

T
(1 − α)

· f
(

q − (a − bp) − T − tm

tm
αbp

)
− qT

t2
m

(
T
tm

q − (a − bp)

)
f
(

T
tm

q − (a − bp)

)]

= −αpq2T
t3
m

f
(

T
tm

q − (a − bp)

)
−

(
αbp
T

)2

(1 − α)p f
(

q − (a − bp) − T − tm

T
αbp

)
< 0.
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Appendix D

Let H be a Hessian matrix of �r(q, tm) as follows: H =
⎡
⎣ ∂2�r(q,tm)

∂q2

∂2�r(q,tm)

∂q∂tm
∂2�r(q,tm)

∂tm∂q
∂2�r(q,tm)

∂t2
m

⎤
⎦. Using the second

partial derivative test, it is easy to show that the determinant of the Hessian matrix, D, is larger than
0:

D =
[
− T

tm
αp f

(
T
tm

q − (a − bp)

)
− (1 − α)p f

(
q − (a − bp) − T − tm

T
αbp

)]

·
[
−αpq2T

tm
3

f
(

T
tm

q − (a − bp)

)
−

(
αbp
T

)2

(1 − α)p f
(

q − (a − bp) − T − tm

T
αbp

)]

−
(

αpqT
tm

2
f
(

T
tm

q − (a − bp)

)
− 1

T
f
(

q − (a − bp) − T − tm

T
αbp

))2

.

D can be summarized as follows:

D = A · f
(

T
tm

q − (a − bp)

)2

+ B · f
(

T
tm

q − (a − bp)

)
f
(

q − (a − bp) − T − tm

T
αbp

)

+ C · f
(

q − (a − bp) − T − tm

T
αbp

)2

.

Coefficient A is canceled to 0. In the case of B, all coefficients have nonnegative conditions. Coef-

ficient C consists of (((1 − α) · α)2 p2(
bp
T )

2 − 1
T 2 ). The first term is always nonnegative. The second

term can be offset by part of the coefficient of B, 2αpq
tm

2 f ( T
tm

q − (a − bp)) f (q − (a − bp) − T−tm
T αbp).

Since inequalities pq 
 α, T ≥ tm, and 2 f ( T
tm

q − (a − bp)) ≥ f (q − (a − bp) − T−tm
T αbp) hold true,

coefficient C is nonnegative. Accordingly, the Hessian matrix H is negative definite and the profit
function has the unique combination (t∗∗

m , q∗∗), which is the maximizer of the function.

Appendix E

As shown in Observation 3, the manufacturer’s maximum profit occurs when the retailer starts the
markdown sale at tm = 0. Consider the condition that the expected profit function of the retailer
decreases with increasing tm that the first derivative of �r by tm is negative.

∂�r(q, tm)

∂tm
= αp

T

[
(a − bp)F

(
T
tm

q − (a − bp)

)
− (1 − α)bpF

(
q − (a − bp) − T − tm

T
αbp

)

+
∫ T

tm
q−(a−bp)

−∞
x f (x)dx

]
.
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Recall Equation (3),

αF
(

T
tm

q∗ − (a − bp)

)
+ (1 − α)F

(
q∗ − (a − bp) − T − tm

T
αbp

)
= p − (cr + w)

p
.

When the retailer places an optimal order quantity q∗ from her standpoint, the above equation
holds. By substituting the second term of the left-hand side with the first derivative of the profit
function by tm, it can be represented as follows:

αp
T

(
(a − bp + αbp)F

(
T
tm

q∗ − (a − bp)

)
− b(p − cr − w) +

∫ T
tm

q∗−(a−bp)

−∞
x f (x)dx

)
.

Let the first derivative of the expected profit function with respect to tm becomes negative.

(a − bp + αbp)F
(

T
tm

q∗ − (a − bp)

)
− b(p − cr − w) +

∫ T
tm

q∗−(a−bp)

−∞
x f (x)dx < 0.

The above inequality holds true even when the maximum value of the left-hand side has a negative
value. To show the maximum value of the left-hand side, let q∗ as the upper bound and tm as the
limit to 0:

a − bp + αbp − bp + bcr + bw < 0.

For the wholesale price w, a sufficient condition in Corollary 2 can be shown:

w < 2p − cr − αp − a
b

Appendix F

Let the first derivative of the expected profit function with respect to tm become positive when tm
equals T :

(a − bp + αbp)F
(

T
tm

q∗ − (a − bp)

)
− b(p − cr − w) +

∫ q∗−(a−bp)

−∞
x f (x)dx > 0.

When tm equals T , q∗ equals F −1(
p−(cr+w)

p ) + a − bp by Corollary 1. Thus, the following inequality
holds true, which is the sufficient condition shown in Corollary 3:

(a − bp + αbp)

(
p − (cr + w)

p

)
− b(p − cr − w) +

∫ F −1
(

p−(cr+w)

p

)

−∞
x f (x)dx > 0.
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