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Abstract: Troop movement involves transporting military personnel from one location to another 

using available means. To minimize damage from enemies, the military simultaneously uses recon-

naissance and transportation units during troop movements. This paper proposes a vehicle routing 

problem considering reconnaissance and transportation (VRPCRT) for wartime troop movements. 

The VRPCRT is formulated as a mixed-integer programming model for minimizing the completion 

time of wartime troop movements and reconnaissance, and transportation vehicle routes were de-

termined simultaneously in the VRPCRT. For this paper, an ant colony optimization (ACO) algo-

rithm for the VRPCRT was also developed, and computational experiments were conducted to com-

pare the ACO algorithm’s performance and that of the mixed-integer programming model. The 

performance of the ACO algorithm was shown to yield excellent results even for the real-size prob-

lem. Furthermore, a sensitivity analysis of the change in the number of reconnaissance and trans-

portation vehicles was performed, and the effects of each type of vehicle on troop movement were 

analyzed. 
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1. Introduction 

Troop movement involves transportation of military personnel from one location to 

another using available means. In wartime, rapid and efficient troop movement offers 

many benefits in battle. For instance, efficient troop movement saves time and resources, 

which can be used for combat preparation and future operations. To win a battle, the 

commander must concentrate combat power at the opportune place and time to achieve 

a relative advantage over the enemy. Therefore, in the process of rearranging troops, effi-

cient and rapid movement is essential. 

Because the situations are uncertain during wartime, the commander makes a lot of 

efforts to reduce the uncertainty, and reconnaissance is one of the efforts to reduce the 

uncertainty. During troop movement, a surprise attack by an unexpected enemy at a spec-

ified area is a major threat (uncertainty) for the commander. To avoid this uncertainty, the 

commander deploys his reconnaissance units before troop movement to conduct patrol 

specified area, and gathers information to reduce uncertainty through reconnaissance 

units. The prevention of surprise and the gathered information through reconnaissance 

makes the wartime situation relatively stable and static for the commander. In other 

words, reconnaissance is an essential process to turn an uncertain situation into a stable 

and static situation, which is also stated in the field manual. Therefore, when performing 

reconnaissance before troop movement, a static and stable wartime situation can be as-

sumed. 
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The procedure for tactical troop movement in wartime consists of two parts. First, 

the reconnaissance troops patrol the area where the units and equipment will be trans-

ported. Second, the transportation troops move the units and equipment to the area where 

the reconnaissance troops have patrolled. Because of enemy threats, such as an ambush 

or surprise attack, the reconnaissance troops are deployed to protect the vehicle move-

ment undertaken by the transportation unit during an operation. Figure 1 represents an 

example of the procedure for tactical troop movement in wartime. 

Troop movement is usually performed using a ground vehicle or helicopter, and in 

some cases, the troops move on foot. Troop movement using vehicles is associated with 

the vehicle routing problem (VRP) and the pickup and delivery problem (PDP). The VRP 

and the PDP have been studied for approximately 30 years and have been used in many 

areas of study. Swersey and Ballard [1] introduced a school bus-routing problem. Yan and 

Chen [2] applied the PDP to a carpooling system. Koc and Karaoglan [3] studied green 

vehicle routing problems, which emphasize environmental protection in logistical activ-

ity. Zhang and Xiong [4] dealt with a grain emergency vehicle scheduling problem for 

grain distribution in a disaster area and developed a hybrid algorithm combining artificial 

immune and ant colony optimization algorithm. Vincent et al. [5] proposed a hybrid ve-

hicle routing problem (HVRP), in which plug-in hybrid electric vehicles were considered. 

They developed simulated annealing heuristic algorithm for the HVRP. Koç et al. [6] stud-

ied an electric vehicle routing problem. In their problem, shared charging stations were 

considered. Calvet et al. [7] studied a stochastic multi depot vehicle routing problem in 

which limited fleets of vehicles are available to reflect practical situations. 

  
(a) (b) 

Figure 1. (a) Reconnaissance troops patrol the destination; (b) Transportation troops move units 

and equipment at the destination. 

Chemla et al. [8] studied an M-M type of PDP for bike-sharing systems. In their study, 

only one commodity and a capacitated single vehicle were allowed to visit a node several 

times. The authors proposed an efficient algorithm for the problem and a theoretical result 

concerning the algorithm. Dumas et al. [9] studied a pickup and delivery problem with 

time windows (PDPTW), which is a generalized VRP. In the problem, a vehicle route sat-

isfies constraints, such as those related to transportation requests, capacity, time windows, 

and precedence. They presented an exact algorithm using column generation. Lau and 

Liang [10] proposed a two-phase-method algorithm for the PDPTW. In the first phase, the 

algorithm was constructed by combining an insertion and a sweeping heuristic to obtain 

an initial solution. In the second phase, a tabu search was used for improving the initial 

solution. 

Cordeau [11] dealt with a dial a ride problem (DARP). In the problem, various con-

straints, such as capacity, duration, paring, precedence, and time window constraints, 
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were considered and introduced in a mixed-integer programming (MIP) formulation. A 

branch-and-cut algorithm, based on new valid inequalities for the DARP, was introduced. 

Malapert et al. [12] studied the PDP with two-dimensional loading constraints in which 

items were two-dimensional rectangles. Männel and Bortfeldt [13] proposed a PDP with 

three-dimensional loading constraints (3L-PDP). In the 3L-PDP, the vehicle capacity and 

requests were expressed in the form of a three-dimensional rectangle. They used a hybrid 

algorithm for the model. Pankratz [14] came up with a grouping-genetic algorithm for the 

PDPTW. 

Montané and Galvao [15] dealt with the VRP using simultaneous pickup and delivery 

(VRPSPD) and developed a tabu search algorithm for it. Chen and Wu [16] also studied the 

VRPSDP and suggested a new hybrid heuristic algorithm by combining record-to-record 

travel and tabu lists. Çatay [17] introduced an effective ACO algorithm for the VRPSPD. 

After the PDP was introduced, heuristic and meta-heuristic algorithms for solving it 

were developed. Lu and Dessouky [18] presented a new insertion-based construction heu-

ristic for the PDPTW. The crossing-length percentage (CLP), which is used to quantify the 

visual attractiveness of the solution, was introduced in their study. The CLP used in their 

heuristic algorithm improved the quality of the solution. Computational experiments 

showed that the proposed heuristic was better than a sequential-insertion heuristic and a 

parallel-insertion heuristic. Melachrinoudis et al. [19] proposed a double-request DARP 

with soft time windows and suggested a tabu search heuristic as the solution method. 

Ruiz et al. [20] developed a biased random-key genetic algorithm for the open vehicle 

routing problem with capacity and distance constraints. They tested their algorithm 

through three sets of benchmark problems. Salavati-Khoshghalb et al. [21] studied the 

vehicle routing problem with stochastic demands under an optimal restocking policy. 

They developed an exact algorithm which modified the integer L-shaped algorithm to 

solve the problem. Pasha et al. [22] proposed an optimization model for the vehicle rout-

ing problem with a “factory-in-a-box”. They developed an evolutionary algorithm to 

solve the problem and performed numerical experiments to test their algorithm’s perfor-

mance by comparing three meta-heuristic algorithms, including tabu search, variable 

neighborhood search, and simulated annealing. 

Zhang et al. [23] dealt with a multi-objective vehicle routing problem with flexible time 

windows. They developed a solution method combining an ant colony optimization and three 

mutation operators. Trachanatzi et al. [24] introduced the environmental prize-collecting ve-

hicle routing problem (E-PCVRP), which was extended from the prize collecting vehicle rout-

ing problem. In the E-PCVRP, the objective is CO2 emissions minimization, not cost minimi-

zation of the total distance traveled. They developed the firefly algorithm based on coordi-

nates to solve the E-PCVRP. Theeb et al. [25] optimize a logistic plan considering the electric 

vehicle routing problem, and Huang et al. [26] studied the routing problem in global produc-

tion planning. 

Metaheuristics and nature-inspired algorithms have been widely used to solve com-

plex decision problems in various domains such as scheduling, medicine, data classifica-

tion, multi-objective optimization, and online learning. Their performance has been 

proved through numerous studies 

Dulebenets [27] studied a truck scheduling problem at a cross-docking facility and 

developed a delayed start parallel evolutionary algorithm to solve the problem. D’Angelo 

et al. [28] used genetic programming to distinguish bacterial and viral meningitis. Panda 

and Majhi [29] proposed a salp swarm algorithm(SSA) that trained the multilayer percep-

tron for the task of data classification. Liu et al. [30] proposed a many-objective evolution-

ary algorithm consisting of an angle-based selection strategy and a shift-based density 

estimation strategy to solve many objective optimization problems. Zhao and Zhang [31] 

studied online learning based evolutionary many-objective algorithm. Shimizu and 

Sakaguchi [32] developed hybrid meta heuristic algorithm considering multi depot VRP. 

Ant colony optimization (ACO) algorithm is developed among various meta-heuris-

tic algorithms to solve the traveling salesman problem (TSP) and the VRP efficiently. As 
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the ACO algorithm was first proposed, many ACO variations have been developed to 

solve the VRP faster and more efficiently. Dorigo et al. [33] introduced the ant system 

(AS), the first ACO algorithm used to solve the TSP. They compared it with other meta-

heuristics, such as the tabu search, simulated annealing, and a genetic algorithm. Hu et al. 

[34] developed the continuous orthogonal ant colony, in which the orthogonal design 

method was used to search the solutions effectively. 

Dorigo and Gambardella [35] introduced the ACS, which was extended from the AS. The 

local pheromone updating rule and new state transition rule were applied to the ACS. Stützle 

and Hoos [36] developed the MAX–MIN ant system (MMAS), which was derived from the 

AS. Only the best ants, found globally, were used to update the pheromone trails, which were 

limited for each solution to avoid stagnation in the MMAS. Blum and Dorigo [37] introduced 

the hyper-cube of the ACO, in which the pheromone value was limited between 0 and 1. 

Favaretto et al. [38] developed the ACS for the VRP with multiple time windows. Fuellerer et 

al. [39] studied the two-dimensional loading-vehicle routing problem and the proposed ACO 

algorithm based on the AS. Yousefli [40] developed the fuzzy AC approach to consider the 

project scheduling problem. Tchoupo et al. [41] developed a meta-heuristic based on the ACO 

combined with dedicated local search algorithms for the PDPTW. 

In this study, transportation and reconnaissance troops (vehicles) are considered simul-

taneously, and their routes are needed to be coordinated. Bae and Moon [42] extended a multi-

depot VRP by considering two different types of service vehicles: delivery and installation. 

The service level, which refers to the time interval between delivery and installation, was pro-

posed in the model. They also developed a new hybrid genetic algorithm. Aldaihani and Des-

souky [43] studied the problem, which deals with integrating fixed route service (buses) and 

general PDP (taxis). They proposed a three-stage heuristic construction algorithm that pro-

vides an approximate solution. The differences among VRP studies that deal with multi types 

of vehicles performing different tasks are summarized in Table 1. 

Table 1. Characteristics of literature review. 

 This Study Bae and Moon [42] 
Aldaihani and  

Dessouky [43] 

Application 
Troop movement in 

wartime 

Delivery and 

installation of 

electronics 

Dial a ride 

Vehicle Types 

Reconnaissance and 

transportation 

vehicle 

Delivery and 

installation vehicle 
Taxis and buses 

Vehicle 

Movement 
VRP + PDP VRP + VRP Fixed route + PDP 

Solution Approach 

Ant colony 

optimization 

algorithm 

Genetic algorithm 

Three-stage heuristic 

construction 

algorithm 

The VRPCRT is NP-hard, because it is a generalization of PDP. Due to complexity of 

NP-hard, many heuristic algorithms were developed to solve it. An ant colony optimiza-

tion (ACO) algorithm based on the ant colony system (ACS) was proposed to solve the 

VRPCRT in this study. 

The contribution of this paper is as follows. First, we applied the VRP to the military 

field. Koo and Moon [44] introduced a wartime logistic model considering frontline 

change to contribute the military field. However, their model was developed using a lo-

cation allocation problem, not the vehicle routing problem. VRPs are frequently used in 

real-life peacetime situations, such as those related to transportation or logistic systems. 
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Despite clear applications for wartime, fewer VRPs have been used to study military sit-

uations compared to the implementation and research of them for peacetime, such as with 

transportation or logistic systems. For the study described in this paper, by applying the 

VRP to the military field, procedures of troop movement were modeled with the VRPCRT. 

Second, the VRPCRT was extended from the traditional PDP. During troop move-

ment in wartime, reconnaissance troops (vehicles) have to visit destinations only for pa-

trol, and transportation troops (vehicles) have to visit origins to carry units before moving 

to destinations. In other words, the reconnaissance and transportation vehicles move in 

the form of traditional VRP and PDP, respectively. In the traditional VRP and PDP, a sin-

gle type of vehicle routes was determined. However, transportation and reconnaissance 

vehicle routes were determined simultaneously in the VRPCRT. Constraints, such as pair-

ing or precedence, in the PDP were included in the VRPCRT. Of note, in the VRPCRT, 

transportation vehicle routes were influenced by reconnaissance vehicle routes according 

to the procedure of troop movement; this condition was formulated as a time window 

constraint. 

Third, this study could contribute to wartime logistics’ sustainability by providing 

efficient vehicle routes for troop movements. Several studies that were related to sustain-

ability focused on the efficient use of resources and environmental impacts. Especially, 

electric and green vehicle problems, which are intended to have less environmental im-

pact, are studied. VRPs related to carpooling or carsharing could also contribute to sus-

tainability from the point of resource saving. 

In this study, reconnaissance and transportation vehicle routes for efficient troop 

movements in wartime were determined, and efficient troop movements could be ex-

pected to save many resources in wartime. In other words, even though the VRPCRT did 

not consider environmental factors directly as electric or green vehicles, the VRPCRT 

could be regarded as a contribution to sustainability. 

This paper is organized as follows. The problem formulation for the VRPCRT is de-

scribed in Section 2. The ACO algorithm for the VRPCRT is presented in Section 3, and the 

computational results are revealed in Section 4. Finally, the conclusions are offered in Sec-

tion 5. 

2. Problem Formulation 

2.1. Problem Description and Assumptions 

This study was aimed at developing a model for tactical troop movement in wartime. 

The model was developed on a complete network. The node set, W, is partitioned into {J, 

P, D}, for which J = {0} is the depot, P = {1, 2, …, n} is the set of origin nodes, and D = {n + 

1, …, 2n} is the set of destination nodes. Each arc is associated with travel time, ���. For 

the PDP, a request specifies the locations where people are picked up and where they are 

delivered [34]. The request described for the PDP applies equally to the VRPCRT. Each 

node i ∈ W is associated with the loading requirement (in some military units), ��, and 

the boarding and disembarking time, ��� , such that �� = 0,  ��� = 0, �� = −���� (� =

1, … , �). Each node i ∈ D is associated with the reconnaissance time, ��� . Set K contains 

reconnaissance vehicles with a maximum route time, ��, and set S consists of transporta-

tion vehicles. Each transportation vehicle has capacity, ��, and maximum route time, ��. 

Dual time windows were used for destination nodes.  

A time window [0, ��� ] for the reconnaissance vehicle is associated with node i∈ D, 

for which ���  refers to the latest time for reconnaissance. A time window [��+��� , ��� ] for 

the transportation vehicle is associated with node i ∈ D for which ���  and �� represent 

the latest time for transportation and arrival time of the reconnaissance vehicle, respec-

tively. The time windows for transportation indicate that transportation vehicles can visit 

only destination nodes that have been patrolled by a reconnaissance vehicle. 
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The transportation vehicle in the troop movement procedure is similar to that of the 

PDP, which was designed to determine a route and schedule for pickup and delivery re-

quests between origin and destination pairs [11]. In the PDP, the route of the transporta-

tion vehicle satisfies the precedence, pairing, capacity, maximum route time, and time 

window constraints. The precedence constraint means that a vehicle visits the origin be-

fore moving to a destination, and a pairing constraint is used so that the customer’s pickup 

and delivery request is fulfilled by the same vehicle [45]. Figure 2 shows an example of 

requests and a vehicle route that satisfies the precedence and pairing constraints. 

  
(a) (b) 

Figure 2. (a) Origin and destination of each request; (b) Vehicle route satisfying paring and prece-

dence constraints. 

In the VRPCRT, reconnaissance vehicles visited only the destination nodes and neces-

sarily satisfied the time window and maximum route time constraints. This reconnaissance 

activity at a destination during troop movement was performed by reconnaissance troops. 

Transportation vehicles satisfied the constraints of the PDP, such as pairing, precedence, ca-

pacity, and time window constraints, and thus were used in the VRPCRT to describe the trans-

portation troops that move units and equipment from an origin to a destination. 

Figure 3 represents the feasible routes for the reconnaissance and transportation ve-

hicle in the VRPCRT. Figure 3 shows that the transportation vehicle waits at the P1 node 

until the reconnaissance vehicle leaves the D1 node, and then it visits the D1 node after 

the reconnaissance vehicle at the D1 node has advanced to the D3 node. If the reconnais-

sance vehicle at the D1 node is delayed, then the arrival time for transportation vehicle at 

the D1 node is also delayed. Hence, the transportation vehicle route was affected by the 

reconnaissance vehicle route because of the time window constraints of transportation, as 

explained in the previous paragraph. In other words, the time windows of the transpor-

tation vehicles in the VRPCRT were not given as parameters, because they depended on 

the reconnaissance vehicle routes. 
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Figure 3. The VRPCRT model. 

The following assumptions about the model were used to develop the VRPCRT: 

(1) Two types of vehicles (reconnaissance and transportation) and two types of nodes 

(origin and destination) were used. 

(2) A single depot was used, and all vehicles departed from and returned to the depot. 

(3) Destination nodes must be visited exactly once by a reconnaissance vehicle, and 

origin and destination nodes must be visited once by a transportation vehicle. 

(4) A transportation vehicle can only visit a destination node that has been patrolled by 

a reconnaissance vehicle. 

(5) Requests of each troop must be served by a transportation vehicle.  

(6) Loading requirement (in some military units) at all nodes cannot exceed the capacity 

of the transportation vehicle. 

(7) All vehicles must satisfy the time window constraints of each node and the maximum 

route time constraints. 

2.2. Model Formulation 

An MIP model was developed for troop movement in wartime. Sets, parameters, and 

decision variables of the model are described as follows: 

Sets 

P: set of origin nodes for requests, P = {1, 2, 3, …, n} where n is the total number of 

requests 

D: set of destination nodes for requests, D = {n + 1, n + 2, …, 2n} where n is the total 

number of requests 

J: depot, J = {0} 

W: set of all nodes, W = P ∪ D ∪ J 

K: set of reconnaissance vehicles 

S: set of transportation vehicles 

U: P ∪ D 

Decision variables 

��: arrival time of the reconnaissance vehicle at node i ∀ i ∈ D 

��: arrival time of the transportation vehicle at node i ∀ i ∈ U 

a��: arrival time of the reconnaissance vehicle at the depot ∀ j ∈ J, k ∈ K 

b��: arrival time of the transportation vehicle at the depot ∀ j ∈ J, s ∈ S 

 ���� = � 
1, if reconnaissance vehicle visits  node � from node �   
0, otherwise                                                                                 

∀ i, j ∈ D∪J, k ∈ K 

���� = �
1, if transportation vehicle visits  node � from node �
 0, otherwise                                                                             

 ∀ i, j ∈ W, s ∈ S 

Q��: loading requirement (in some military units) in transportation vehicle S after vis-

iting node i ∀ i ∈ U, s ∈ S 
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Parameters 

��� : latest time for reconnaissance at node i ∀ i ∈ D 

��� : latest time for transportation at node i ∀ i ∈ D 

���: travel time between nodes i and j ∀ i, j ∈ W 

��: loading requirement to board at node i ∀ i ∈ P 

����: loading requirement that disembark at node i (−��) ∀ i ∈ D 

��� : reconnaissance time at node i ∀ i ∈ D 

���: boarding and disembarking times at node i ∀ i ∈ U 

��: maximum route time for vehicle k ∀ k ∈ K 

��: maximum route time for vehicle s ∀ s ∈ S 

��: capacity for vehicle s ∀ s ∈ S 

M: big M 

The formulation of the VRPCRT can be stated as follows: 

Minimize τ 

�� ≤ � ∀ � ∈ W (1) 

� � ����

�∈�∪��∈�

 =  1 ∀ � ∈ D (2) 

� � ����

�∈��∈�

 =  1 ∀ � ∈ U (3) 

� ����

�∈�∪�

= � ����

�∈�∪�

 ∀ � ∈ D ∪ J,  � ∈ K (4) 

� ����

�∈�

= � ����

�∈�

 ∀ � ∈ W, � ∈ S (5) 

� ����

�∈�

=  1    ∀ � ∈ J, � ∈ K (6) 

� ����

�∈�

=  1       ∀ � ∈ J, � ∈ S (7) 

� ����

�∈�

= � ����,��

�∈�

 ∀ � ∈ P,  � ∈ S (8) 

��,���  ≤  ����  −  (�� + ���)                       ∀ � ∈ P, � ∈ S (9) 

 ��  ≥ �� + ��� + ��� + � �� ����

�∈�

− 1�  ∀ � ∈ D ∪ J,   � ∈ D (10) 

��  ≥ �� + ���+ ��� + � �� ����

�∈�

− 1�        ∀ � ∈ W,     � ∈ U (11) 

�� ≥ ���  ≥ �� + ��� +  ��� + ������ − 1�   ∀ � ∈ D,  � ∈ J, � ∈ K (12) 

�� ≥ ���  ≥ �� + ���+ ��� + ������ − 1�     ∀ � ∈ U,  � ∈ J, � ∈ S (13) 

�� + ��� ≤ ���                             ∀ � ∈ D (14) 
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�� + ��� ≤   ��  ≤ ���                    ∀ � ∈ D (15) 

�� ≥  ���  ≥  ��� + �� + ������ − 1� ≥   0 ∀ �, � ∈ W, � ∈ S (16) 

The objective function minimizes the maximum arrival time of any transportation 

vehicle. Because it is important to minimize the total distance from a cost perspective in 

peacetime, in most of VRPs, the objective function is to minimize the total distance trav-

eled by vehicles. However, the VRPCRT is a model for troop movement in wartime, and 

it is most important to complete the mission quickly in wartime. The completion time of 

troop movement is the time at which all units arrive at their designated destination, and 

objective function should be selected as shown in the formulation of the VRPCRT to ter-

minate troop movement as soon as possible. If the objective function of the VRPCRT is to 

minimize the total distance traveled by vehicles, the completion time of troop movement 

may be longer. This could be fatal in wartime. Constraint (2) represents the destination 

nodes that must be visited exactly once by a reconnaissance vehicle. Constraint (3) indi-

cates that the origin and destination nodes must be visited once by a transportation vehi-

cle. Constraints (4) and (5) ensure that the vehicle that visited the node is the same vehicle 

that is leaving the node. Constraints (6) and (7) refer to the reconnaissance and transpor-

tation vehicle, respectively, that depart from the depot. Constraint (8) indicates that each 

request is served by the same transportation vehicle. Constraint (9) guarantees that the 

transportation vehicle visits the origin nodes before the destination nodes. Constraints 

(10) and (11) represent relationships between the arrival time of the reconnaissance and 

transportation vehicles to nodes. Constraints (12) and (13) are related to the maximum 

route time for the reconnaissance and transportation vehicles. Constraints (14) and (15) 

specify the time window constraints, and constraint (16) dictates the vehicle capacity con-

straint. 

2.3. Numerical Example 

In this section, the VRPCRT was validated by solving the numerical example through 

Xpress-IVE Version 1.24 (http://www.fico.com, accessed on 2018.08.24) optimization soft-

ware. Small data sets consisting of seven nodes are presented in the numerical example. 

The nodes in this example consist of three origins, three destinations, and one depot. 

Travel times between each node and the parameters for the model are presented in Tables 

2 and 3, respectively. All parameters for this example were generated randomly. 

Table 2. Travel times between nodes in the numerical example. 

 P1 P2 P3 D1 D2 D3 Depot 

P1 0 49 42 69 41 30 54 

P2 49 0 78 49 69 62 102 

P3 42 78 0 70 14 67 45 

D1 69 49 70 0 56 95 110 

D2 41 69 14 56 0 69 58 

D3 30 62 67 95 69 0 58 

Depot 54 102 45 110 58 58 0 
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Table 3. Parameters in the numerical example. 

Parameter Input Value 

Number of reconnaissance vehicles 1 

Number of transportation vehicles 2 

Boarding and disembarking time 3 

Reconnaissance time 15 

Latest time for reconnaissance at destination node 250 

Latest time for transportation at destination node 300 

Maximum route time for reconnaissance vehicle 400 

Maximum route time for transportation vehicle 400 

Capacity of transportation vehicle 50 

Loading requirement to board P1(10), P2(15), P3(25) 

The routes and arrival times of each vehicle are described in Table 4 and illustrated 

in Figure 4. The optimal value provided by the model was 228, which refers to the com-

pletion time of the troop movement. Transportation vehicles satisfied the precedence, par-

ing, and capacity constraints in the numerical example, and both transportation and re-

connaissance vehicles satisfied the time window and the maximum route time constraints 

in the numerical example. 

Table 4. Results from the numerical example. 

Vehicle Type Route Color Vehicle Route (Arrival and Waiting Time) 

Reconnaissance 

vehicle 1 Orange 
Depot D3 D2 D1 Depot  

Arrival time  58 142 213   

Transportation 

vehicle 1 

Green 

Depot P3 D3 P1 D1 Depot 

Arrival time  45 115 148 228  

Waiting time    8   

Transportation 

vehicle 2 Blue 
Depot P2 D2 Depot   

Arrival time  102 174    
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Figure 4. Each vehicle routes in the numerical example. 

The main feature of the VRPCRT is that the reconnaissance vehicle route affects the 

route of the transportation vehicle. In other words, transportation vehicles must visit the 

destination nodes that the reconnaissance vehicles have patrolled. In this example, all 

transportation vehicles visited the destination nodes after the reconnaissance vehicles 

completed the assignment such that transportation vehicle 1 waited at the P1 node until 

after the reconnaissance vehicle completed duty at the D1 node. 

3. Ant Colony Optimization Algorithm 

In this section, the proposed ACO algorithm for the VRPCRT is described. The ACO 

algorithm is a meta-heuristic developed to solve combinatorial optimization problems, 

such as the TSP or VRP. The ACO algorithm was based on the idea that ants leave phero-

mone trails when they are searching for food. The pheromone affects the way the ants 

move, so it is an important factor for the ACO algorithm. In the natural world, the phero-

mone accumulates along the route of ants searching for food or evaporates over time. 

Similarly, the pheromone accumulates or evaporates according to the parameters and 

rules of the ACO algorithm. 

The proposed ACO algorithm for the VRPCRT in the study is based on the ACS al-

gorithm that features the local pheromone updating and transition rule that differs from 

the AS [46]. The proposed ACO algorithm was also modified by considering characteris-

tics of the VRPCRT. 

The process for running the ACO algorithm for the VRPCRT consists of three steps. 

The first step involves construction of a solution such that the ants (vehicles) select each 

node probabilistically and repeats this process until feasible solutions (routes) were gen-

erated. The second step requires local pheromone updating. Whenever ants constructed 

a feasible solution, local pheromone updating was performed to change the probability 

that the ants would choose each node. In the third step, the global pheromone updating 

is performed. It affected the probability that ants would select each node according to the 

best solution, which had been constructed in the first step. The three steps of the proposed 

ACO algorithm were repeated as described to discover and improve feasible solutions. 

The procedure for the developed ACO algorithm is as shown in Algorithm 1. 

3.1. Construction of a Solution 

In this section, the process of construction of a solution is described. For the PDP, 

only the routes of the transportation vehicles are considered as the feasible solutions. 
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Meanwhile, the model presented in this paper takes into account both reconnaissance and 

transportation vehicles simultaneously, so the feasible solution refers to route pairs of re-

connaissance and transportation vehicles that satisfy the constraints. 

For the creation of a feasible solution for the VRPCRT, a reconnaissance vehicle route 

was made. Then, the transportation vehicle route was determined according to the recon-

naissance vehicle route. Because the time window constraints of the transportation vehicle 

were affected by the reconnaissance vehicle route, the reconnaissance vehicle route must 

be fixed first to determine the transportation vehicle route. 

In the ACO algorithm, vehicles are represented by ants. Therefore, for this study, 

reconnaissance and transportation ants represent reconnaissance and transportation ve-

hicles, respectively. The reconnaissance route was made as follows: the number of ants 

(vehicles) was given, and every reconnaissance ant was located at the depot. One of the 

ants is selected randomly. It selects one of the feasible nodes that can visit from its current 

node through transition rule and adds the feasible node to its route. The next ant, also 

selected randomly, moves to a feasible node and creates a route, different from the first 

ant, by adding feasible nodes. This process was repeated until the reconnaissance ants 

(vehicles) visit all the destination nodes and satisfy all the constraints at the same time. 

The reconnaissance routes were thus created by the time the process was ended. After the 

reconnaissance routes were made, transportation routes were made in the same way. 

Whenever it adds a feasible node to its route, the ant (vehicle) follows the transition 

rule for constructing a route [47]: The ant selects the node with the highest [���]� ∙ [���]� 

value with probability ��. If the node with the highest [���]� ∙ [���]� value is not selected 

(with probability 1 − ��), then the ant selects another node j with probability ���  as fol-

lows: 

��� =

⎩
⎪
⎨

⎪
⎧ [���]� ∙ [���]�

∑ [���]� ∙ [���]�
�∈��

�

,   �� � ∈ ��
�     

0                 otherwise

    

In this equation, ��
� represents the set of feasible nodes when ant k is positioned at 

node i. The term ��� stands for a pheromone between node i and j. The ηij value is a heu-

ristic reciprocal of the time value for travel between node i and j. The parameters are q0, α, 

and β. In addition, several feasible solutions were generated by repeating the first step in 

each iteration of the ACO algorithm. 

3.2. Pheromone Updating 

The pheromone affects how ants move in the natural world. Therefore, for the ACO 

algorithm, the pheromone affects the node selection of ants (vehicles). Because the proba-

bility of node selection in construction of a solution depends on the pheromone, the prob-

ability of node selection changes as the pheromone updating progresses. For the VRPCRT, 

���
�  and ���

�  refer to the respective pheromones between node i and j for the reconnais-

sance and transportation ants. The pheromones are distinguished in the ACO algorithm 

to create various feasible solutions in the first step. Pheromones for reconnaissance and 

transportation ants are updated, independently. Two types of pheromone updating were 

used for the ACO algorithm: local and global. 

Local pheromone updating was performed whenever a feasible solution was generated 

in the first step. When the reconnaissance and transportation ants visit node j from node i 

along the feasible solution (route), local pheromone updating was performed as follows [47]: 

���
� ← (1 − ��) ⋅ ���

� +  �� ⋅ ��
� 

���
� ← (1 − ��) ⋅ ���

� +  �� ⋅ ��
�  

The initial pheromones for the reconnaissance and transportation ant (vehicle) are ��
� 

and ��
� , respectively, and �� is a parameter to control the evaporation rate during local 

pheromone updating. The first step and local pheromone updating were repeated several 
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times for each iteration. When first step and local pheromone updating finished in an itera-

tion, the global pheromone updating was performed. When global pheromone updating is 

processed, only the best solution is required. The best solution is the feasible solution that 

has the minimum objective value among the feasible solutions generated from the iteration. 

Therefore, global pheromone updating was executed only once for each iteration. 

When the reconnaissance and transportation ant (vehicle) visits node j from node i using the 

best solution (the best route), global pheromone updating was performed as follows [36]: 

���
� ← �1 − ��� ⋅ ���

� +  �/�� 

���
� ← �1 − ��� ⋅ ���

� +  �/�� 

The term Q refers to a parameter, and �� is the objective function value for the best 

route in the kth iteration. 
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4. Computational Experiment 

In this section, the computational experiment for the model is presented. The discus-

sion consists of two parts. First, a comparison is described for the performance between 

the proposed ACO algorithm and a MIP model. The MIP model was solved with Xpress-

IVE Version 1.24, and the ACO algorithm was coded by JAVA Eclipse. Second, a sensitiv-

ity analysis on the changes in the number of vehicles is explained. All computational ex-

periments were conducted by a computer featuring 8GB RAM and Intel(R) Core (TM) i5-

3470 CPU with 3.20 GHz. 

4.1. Parameter Tuning 

Because the performance of metaheuristic algorithm is greatly affected by the param-

eter values, it is important to estimate appropriate parameter values. Before executing the 

proposed ACO algorithm, parameter tuning analysis was conducted to estimate the ap-

propriate parameter values. The best process for tuning analysis is to confirm the perfor-

mance of ACO algorithm for combination of every parameter values. However, this pro-

cess for tuning analysis is difficult to conduct due to many combinations. Tuning analysis 

was performed to estimate the appropriate parameter value. First, we generated the test 

Algorithm 1. Procedure of ACO Algorithm for the VRPCRT 

Input parameters for ACO algorithm(��, ��, �, �, �, q�)  

       ��
�, ��

� : initial pheromones  

 I: number of iterations that algorithm repeated 

A: number of feasible solutions in each iteration  

Output final_sol, final_value 

1: begin algorithms 

2: initialize  final_sol, final_value, ��
�, ��

�  

3: for � = 1 to I  

4:     initialize ��, best_sol, best_value 

5:     for � = 1 to A                         // Construction of a solution 

6:          while do          // Construction of reconnaissance vehicle route 

7:                Select one of reconnaissance ant k 

8:                Move ant k to a feasible node with transition rule       

9:          until ��
� = { } for all k ∈ K 

10:         while do          // Construction of transportation vehicle route 

11:               Select one of transportation ant s 

12:               Move ant s to a feasible node with transition rule       

13:         until ��
� = { } for all s ∈ S 

14:         Get feasible value and feasible solution //  

15:         Local pheromone update // updating based on feasible solution 

16:         If �� ≥ feasible value then   

17:               �� ⟵ feasible value 

18:               best_sol ⟵ feasible solution 

19:     end for 

20:     best_value ⟵ �� 

21:     Global pheromone update    // updating based on best_sol 

22:     If final_value ≥ best_value 

23:         final_value ⟵ best_value   

24:         final_sol ⟵ best_sol:  

25: end for 

26: End algorithm 
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sample for tuning analysis and found the optimal solution for the test sample. Second, for 

the test sample, the eight parameters were adjusted randomly until the ACO algorithm 

found the optimal solution. Third, the parameters used when the optimal solution was 

found were selected as appropriate parameters. The selected parameters of the ACO al-

gorithm are presented in Table 5. 

Table 5. Parameters for Experiment 1. 

4.2. Experiment 1 

For the first part of the experiment, the performance of the proposed ACO algorithm 

was verified. Data sets for the computational experiment were randomly generated. Pa-

rameters of the ACO in Table 5 are used, and the results of the computational experiment 

are shown in Tables 6–8. Each experiment consisted of 10 instances. The ACO algorithm 

was run 10 times for each instance. 

Table 6. Experiment 1 results with 13 nodes. 

 
MIP 

(Optimal) 

ACO 

(Best) 

ACO 

(Average) 
Gap 

13-1 211 211 211.0 0% 

13-2 222 222 222.3 0% 

13-3 199 199 199.0 0% 

13-4 231 231 231.6 0% 

13-5 226 226 226.3 0% 

13-6 219 219 219.0 0% 

13-7 219 221 221.3 0.91% 

13-8 196 196 196.9 0% 

13-9 230 230 230.4 0% 

13-10 238 238 241.2 0% 

Table 7. Experiment 1 results with 15 nodes. 

 
MIP 

(Optimal) 

MIP  

(Feasible) 

Time 

(Seconds) 

ACO 

(Best) 

ACO 

(Average) 
Gap 

15-1 253 - 483 265 268.6 4.74% 

15-2 - 312 7200 255 268.6 - 

15-3 258 - 927 260 272.6 0.78% 

15-4 - 265 7200 265 269.8 - 

15-5 253 - 369 254 255.3 0.40% 

15-6 230 - 2452 230 239.0 0% 

15-7 262 - 5459 269 275.5 2.67% 

15-8 - 229 7200 203 203.0 - 

15-9 280 - 5820 282 288.2 0.71% 

15-10 217 - 249 217 225.7 0% 

  

� � � �� �� �� A I 

0.25 0.97 70 0.5 0.05 0.0003 250 400 
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Table 8. Experiment 1 results with 17 nodes. 

 
MIP 

(Optimal) 

MIP 

(Feasible) 

Time 

(Seconds) 

ACO 

(Best) 

ACO 

(Average) 
Gap 

17-1 - 228 7200 227 232.0 - 

17-2 - 321 7200 295 303.1 - 

17-3 216  3185 216 221.4 0% 

17-4 - 313 7200 298 308.6 - 

17-5 - 287 7200 288 290.1 - 

17-6 - 261 7200 245 255.0 - 

17-7 - 255 7200 250 256.9 - 

17-8 - 252 7200 255 274.0 - 

17-9 - 246 7200 231 245.5 - 

17-10 - 239 7200 225 239.4 - 

As shown in Table 6, the optimal value of each instance was found by the MIP Model 

through Xpress-IVE. The optimal solution was acquired within 30 s, and the ACO algo-

rithm solution was found immediately. The gap between the optimal value and the value 

found by the ACO was within 1%. 

For the case of 15 nodes, the computational experiment time was limited to 7200 s 

per instance, and the optimal solution was obtained for seven of 10 instances. The optimal 

value and experiment time for the MIP, conducted through Xpress-IVE, are presented in 

Table 7. The ACO algorithm found a feasible solution within 20 s for all instances, and the 

gap was within 5% for the instance in which the optimal solution was obtained. The ACO 

algorithm found better solutions than the feasible solutions obtained by the MIP model 

using Xpress-IVE within 7200 s for the instances that did not reach an optimal solution 

(instance 15-2, 8) 

The computational experiment time also was limited to 7200 s for the case of 17 

nodes. The results are presented in Table 8. The optimal solution was obtained for only 

one of 10 instances (instance 17-3), and feasible solutions were found for the other in-

stances. The ACO algorithm found the solution within 60 s and found the optimal solution 

in instance 17-3. In some instances (17-1, 2, 4, 6, 7, 9, and 10), the ACO algorithm found 

better feasible solutions than the MIP model that was conducted using Xpress-IVE. 

4.3. Experiment 2 

The second experiment was a sensitivity analysis related to the changing number of 

vehicles. The change in the number of vehicles can be divided into three cases: (1) the 

number of reconnaissance vehicles remained constant and the number of transportation 

vehicles changed, (2) the number of transportation vehicles remained constant and the 

number of reconnaissance vehicles changed, and (3) the total number of vehicles remained 

constant and the ratio of reconnaissance to transportation vehicles changed. The ACO al-

gorithm was used for sensitivity analysis. Data sets and parameters for this experiment 

were randomly generated. Cases 1 and 2 each featured 21 nodes, and the Case 3 featured 

51 nodes. The computational experiments for the sensitivity analysis were limited to 300 s. 

The parameters of Experiment 2 for the ACO are presented in Table 9. The parame-

ters used in Experiment 2 are different from those in Experiment 1. Experiment 1 was 

computational experiment to confirm the performance of the proposed ACO algorithm. 

However, Experiment 2 was a computational experiment to confirm the change in trend 

of the objective function according to the number of vehicles. Therefore, parameters “A” 

and “I” were adjusted so that the experiment could be terminated quickly within a limited 

time. 
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Table 9. Parameters for Experiment 2. 

� � � �� �� �� A I 

0.25 0.97 70 0.5 0.05 0.0003 100 200 

Table 10 shows the results of the sensitivity analysis for Case 1, and Figure 5 presents 

graphs showing the average results of Case 1: as the number of transportation vehicles 

increased, the completion time for troop movements also decreased. Additionally, the rate 

of change of the completion time for the troop movement decreased as the number of 

transportation vehicles increased. 

Table 10. Sensitivity analysis results for Case 1. 

Number of 
Transportation 

Vehicles 

ACO (Instance 1) ACO (Instance 2) ACO (Instance 3) 
Number of 

Reconnaissance 
Vehicles 

Number of 
Reconnaissance 

Vehicles 

Number of 
Reconnaissance 

Vehicles 

1 3 5 1 3 5 1 3 5 

1 637 603 591 556 519 490 663 639 604 

2 406 367 353 327 287 281 434 341 341 

3 340 312 295 252 225 230 319 261 259 

4 312 269 256 241 200 198 313 233 226 

5 312 236 214 226 172 175 295 215 212 

 

Figure 5. Sensitivity analysis results for Case 1. 

Table 11 shows the sensitivity analysis results for Case 2, and Figure 6 features graphs 

showing the average results of Case 2: As the number of reconnaissance vehicles in-

creased, the completion time for troop movement also decreased. However, the rate of 

change of completion time for the troop movement did not change significantly when the 

number of reconnaissance vehicles was increased. 
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Table 11. Sensitivity analysis results for Case 2. 

Number of 
Reconnaissance 

Vehicles 

ACO (Instance 1) ACO (Instance 2) ACO (Instance 3) 

Number of 
Transportation 

Vehicles 

Number of 
Transportation 

Vehicles 

Number of 
Transportation 

Vehicles 

1 3 5 1 3 5 1 3 5 

1 637 340 312 556 252 226 663 319 295 

2 633 313 264 535 239 183 624 310 231 

3 603 312 236 519 225 172 639 261 215 

4 597 299 226 511 222 172 616 264 215 

5 591 295 214 490 230 175 604 259 212 

 

Figure 6. Sensitivity analysis results for Case 2. 

Table 12 and Figure 7 present the sensitivity analysis results for Case 3. As shown in 

Figure 7, the experimental results of Case 3 generally took a convex shape. The proportion 

of the transportation vehicle was confirmed as necessarily greater than the reconnaissance 

vehicle proportion to minimize the completion time for troop movement when the total 

number of vehicles remained constant. The completion time for troop movement in-

creased as the number of transportation vehicles decreased when the proportion of the 

reconnaissance vehicles was greater than the proportion of transportation vehicles. Ac-

cording to the sensitivity analysis results, the completion time for troop movement de-

creased as the total number of vehicles increased, and the number of transportation vehi-

cles was found to have exerted greater influence on the completion time of troop move-

ment than did the number of reconnaissance vehicles. 
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Table 12. Sensitivity analysis results for Case 3. 

Number of 
Reconnaissance 

Vehicles 

Number of  
Transportation 

Vehicles 

ACO 

Instance 1 Instance 2 Instance 3 Average 

1 9 596 608 596 600 

2 8 392 478 439 436 

3 7 452 437 451 447 

4 6 460 426 440 442 

5 5 486 456 435 459 

6 4 556 543 509 536 

7 3 690 649 656 665 

8 2 995 892 857 915 

9 1 1593 1563 1699 1618 

 

Figure 7. Sensitivity analysis results for Case 3. 

5. Conclusions 

In a major contribution from this study, the new model for troop movement in war-

time was developed by extending the PDP. The following differences characterize the 

PDP and the VRPCRT: In the PDP, only transportation vehicles are considered, and the 

transportation vehicle routes are determined using various constraints. Time windows for 

transportation vehicles at each node are deterministic as parameters in the PDP. In the 

VRPCRT, as proposed in this study, reconnaissance and transportation vehicles were con-

sidered, and both vehicle routes were determined simultaneously. 

This study could be considered a sustainability contribution for wartime logistics by 

providing efficient vehicle routes for troop movements. The VRPCRT was developed to 

save and efficiently use resources for troop movements in wartime, and through the 

VRPCRT, efficient troop movements and resource saving could be possible. 

In this study, the VRPCRT, which is the mathematical model for determining tactical 

troop movements, and the ACO algorithm were developed. The ACO algorithm’s perfor-

mance was tested through computational experiments and was shown to yield excellent 

results, even for the real-sized problem. The sensitivity analysis on the number of vehicles 

was performed using the ACO algorithm developed for the model. The troop movement 

in wartime was sensitive to the number of transportation vehicles. 
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A sensitivity analysis related to the number of vehicles was performed, and it con-

firmed that the transportation vehicles affected troop movement more than the reconnais-

sance vehicles did. If the size of the input data for computational experiments is increased 

or the maximum running time for solving the problem is extended, it could be thought 

that a better insight may be derived. 

The limitation of this paper is as follows. First, the performance of the ACO algorithm 

is influenced greatly by the chosen parameters. However, optimal parameters of the pro-

posed ACO algorithm were not suggested in this paper. Second, drones, unmanned aerial 

vehicles (UAVs), satellites, helicopters, and many other types of equipment are used for 

reconnaissance in wartime situations. However, only reconnaissance vehicles were con-

sidered in the VRPCRT. Future studies may include the following: 

 Studies on metaheuristics, selecting optimal parameters for the proposed ACO algo-

rithm proposed in this paper, are also suggested. 

 Military UAV and the associated features (e.g., wide observation range) could be 

studied for the VRPCRT. 

 Multiple depots for reconnaissance and transportation vehicles could be considered 

in the VRPCRT. 

 An alternative metaheuristic algorithm for the VRPCRT could be developed (e.g., 

genetic algorithm, tabu search algorithm, simulated annealing algorithm). 
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