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Recently, one of the largest retail companies in Korea introduced a mobile application that enables cus- 

tomers to store buy-one-get-one (BOGO) products in their virtual storage for later use. That is, customers 

who store the extra freebies in their virtual storage can drop by the store to pick them up in the future. 

Consequently, the application was successful in attracting customers. However, this type of promotion 

has significant implications for inventory levels. Since customers who buy the product do not need to 

take both products on the day of purchase, the promotion involves a high degree of uncertainty regard- 

ing the revisiting date. To deal with this uncertainty, we propose a robust multiperiod inventory model 

by addressing the approximation of a multistage stochastic optimization model. Without full information 

on the distribution, the inventory policy can be derived with support and the first and second moments 

of uncertainty factors. The presented model is different from previous studies in that the sum of the un- 

certainty factors in a particular interval is constrained to less than or equal to 1. This part is reformulated 

as a robust counterpart that retains tractability under modest data sizes. The results of the comparative 

simulation experiments show that the presented model provides a robust and stable solution against the 

worst-case scenario. We also obtain managerial insights from the experiments by varying the expiry date 

according to three types of customers’ revisiting tendencies. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

As the globalization of markets accelerates competition among

ompanies, sales promotion , which refers to short-term incentives

romoting the sale of a product or service, plays a prominent role.

mong the various types of sales promotions, the most frequently

ncountered in daily life is a price reduction . For instance, airline

ompanies and hotels reduce the price to promote the sale of re-

aining seats and rooms, respectively. In the case of a supermar-

et, the company reduces the prices of perishable foods each day

s closing time approaches. A similar tactic over a longer time

cale can be observed in the fashion industry, where a company

timulates customer demand through markdowns (clearance sales)

t the end of the selling season. Another common promotion is a

uy one get one free (BOGO) promotion. This promotion looks simi-

ar to a price reduction but can be more effective at attracting cus-
� This manuscript was processed by Associate Editor Zhang. 
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omers. According to Shampanier et al. [24] , customers generally

vervalue the benefit of free compared to a discounted price. Fur-

hermore, it can undoubtedly reduce stocks further than a price re-

uction, under the assumption that the same number of customers

rrive to purchase. 

Under a BOGO promotion, however, customers who want to

uy a relatively small quantity of products could be provided with

ore products than necessary. In the case of customers visiting

 convenience store, they might be limited by the weight of the

roduct, the capacity of their refrigerator at home, or the short

helf life of a perishable product. To relieve these limitations while

etaining the advantages of the BOGO promotion, GS Retail , one of

he largest retail companies in Korea, which operates more than

0 0 0 GS 25 convenience stores, launched the “My Own Refrigerator ”

MOR) mobile application. Customers who use the MOR applica-

ion can delay taking the second product ( freebie ), put it in their vir-

ual storage, and pick it up another day. This option eliminates the

oncerns regarding heavy loads, storage capacity, and short prod-

ct shelf life. As a result, more than ten million users have down-

oaded the MOR application since GS Retail launched it in March

011. 

https://doi.org/10.1016/j.omega.2019.102170
http://www.ScienceDirect.com
http://www.elsevier.com/locate/omega
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2019.102170&domain=pdf
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From the standpoint of the retailer, it is possible to amplify cus-

tomer demand through BOGO promotions with the MOR applica-

tion. Accordingly, high revenue and customer satisfaction can be

expected. However, the retailer still incurs the inventory holding

cost even after the products have actually been sold because cus-

tomers retain the second products in their virtual storage, which

corresponds to the actual shelf of the retailer. Thus, these products

not only incur holding costs but also occupy capacity. Even if the

product remains in the store’s inventory, it is a product that has al-

ready been sold to the customer and can no longer generate profit.

Most of all, there is high uncertainty as to when customers will

pick up their second products. Therefore, the retailer must order

products taking into account the quantity of the products on the

shelf that have already been sold. This suggests that a new method

for inventory control is required. 

The demand of customers who arrive at the store to buy the

promoted products can be estimated based on accumulated histor-

ical data over a long period. Concerning the second product, rel-

atively more uncertainty exists as to whether the customers will

pick up the product that day or not, or when the customers will

revisit the store. Furthermore, if customers who have already pur-

chased products through the MOR application face stockouts when

they revisit the store to pick up their second products, brand loy-

alty could drop sharply. BOGO promotions through MOR can in-

crease customer demand and generate high revenue, but they are

also accompanied by a significant potential penalty to brand image.

To deal with the uncertainty of revisiting customers, we considered

a robust optimization approach to the multiperiod inventory model

as a countermeasure against the worst-case scenario. 

Robust optimization has been actively studied in the context of

decision-making under uncertain data. In the robust optimization

scheme, input data have been regarded as an uncertain value be-

longing within a particular range rather than as a nominal value.

Robust optimization seeks the optimal solution under the worst-

case scenario that guarantees the feasibility of all possible realiza-

tions of uncertainty from the input data. For the inventory man-

ager, it is very important to build a flexible and robust model that

allows the company to respond to customer demand with a high

service level [10] . Soyster [25] first proposed the robust optimiza-

tion model with a box shape for the uncertainty set. Since then,

research has progressed on the structure of the set, providing a

less conservative solution while preserving the feasibility guaran-

tee and tractability. Ben-Tal and Nemirovski [5,6] developed the

robust optimization model under the uncertainty set in the form

of an ellipsoid shape, which provides a less conservative solution.

The polyhedral uncertainty set was then developed by Bertsimas

and Sim [8] . The box, ellipsoid, and polyhedral shapes have been

considered as the standard forms of the uncertainty set in the ro-

bust optimization context. Based on the fruitful development of ro-

bust optimization theory, various applications have been studied

(see [7,14,16] ). 

Most of the abovementioned studies are based on decision-

making in a static situation. A decision made before the realiza-

tion of all uncertain data is commonly referred to as a here and

now decision. In contrast, a wait and see decision can be applied

more naturally in a multistage decision process, based on the par-

tial realization of uncertain data. In the wait and see decision, de-

cision variables are separated by adjustable variables and nonad-

justable variables . Decision variables that are determined after the

realization of uncertain data are called adjustable variables. In con-

trast, decision variables that are determined before the realization

of uncertain data are called nonadjustable variables. By partition-

ing decision variables in this manner, an adjustable robust optimiza-

tion was established [4] . 

We examined in detail the robust multiperiod inventory prob-

lem that is relevant to this study. Bertsimas and Thiele [9] applied
 robust optimization to the multiperiod inventory model based

n a polyhedral uncertainty set. Although the model was devel-

ped based on a here and now decision in the multiperiod set-

ing, the robust counterpart was developed as a tractable linear

rogram. They adopted a budget of uncertainty, proposed by Bert-

imas and Sim [8] , by forcing the independence of the uncertain

ata over the period. Ben-Tal et al. [3] adapted the adjustable ro-

ust optimization approach to the retailer-supplier flexible com-

itment contract, which reduces the bullwhip effect by imposing

 penalty on a violation of the promised order quantity in advance

etween the retailer and supplier. By developing the problem as

n affinely adjustable robust counterpart with a min-max criterion,

hey solved the problem against the worst-case scenario efficiently.

ubsequently, See and Sim [23] solved the multiperiod inventory

roblem whose objective function is presented as the expectation

nder stochastic demand. They considered stochastic demand as a

actor-based demand model that is an affine function of the un-

ertainty factors. In detail, they substituted the objective function

s the reasonable upper bound presented by Chen and Sim [13] .

y adopting a linear decision rule, the inventory model was de-

eloped as a second-order cone problem. Meanwhile, Goh and Sim

15] developed ROME, a software program for solving the robust

ptimization problems. They also presented three problems: inven-

ory, project crashing, and portfolio selection problems. For the in-

entory problem, which is the most relevant to this study, they

odeled the problem with a constraint that requires satisfaction of

he fill rate rather than imposing a penalty cost on stockout inven-

ories. They applied a distributionally robust optimization approach

o the fill-rate constraint for all candidates of the distributions. Ang

t al. [2] studied a robust storage assignment problem which is

perated in the warehouse. They developed stochastic demand as

 factor-based demand model and solved the problem with the

inear decision rule. Another application in multiperiod inventory

ontrol is the empty container repositioning problem. Tsang and

ak [26] and Lee and Moon [19] adapted the linear decision rule

o the empty container repositioning problem under uncertain de-

and. For additional applications of the robust optimization, we

efer the reader to the review paper examined by Yanikoglu et al.

29] . 

As can be seen from the abovementioned studies, the structure

f the inventory model depends on the method of modeling the

tochastic demand. If the demand of purchasing the BOGO product

s restricted to a deterministic value and the demand of revisiting

ustomers who collect the second product is subject to uncertainty,

he latter can be developed as an affine function of uncertainty

actors. Accordingly, it has the same property in a factor-based de-

and model. Naturally, we developed a model based on the lin-

ar decision rule to deal with the factor-based demand model. In

his study, the sum of the uncertainty factors in a particular inter-

al is constrained to less than or equal to 1. This is different from

revious studies, which assumed the uncertainty factors as uncon-

trained random variables for each period. Also, uncertainty factors

onsidered in this study are not zero-mean random variables. To

istinguish the characteristics of this study from the previous re-

earch, we summarize the relevant literature in Table 1 . 

From the perspective of the application and modeling, the main

ontributions of this study are as follows: 

• We applied the robust optimization approach to deal with

uncertainty in operating the real-world mobile applica-

tion. Through various experiments, managerial insights were

identified that would be helpful to the retailer. 
• Previous studies considering the factor-based demand model

have mostly assumed zero-mean and unconstrained random

variables. In this study, the non zero-mean random variable

is considered and the sum of uncertainty factors over the
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Table 1 

Comparisons of this research and previous relevant studies. 

Authors (year) Uncertain demand Decision-making policy Mean and support of uncertainty factor Constraint of uncertainty factor 

Ben-Tal et al. (2004) [4] Box LDR 1 N/A 2 N/A 

Ben-Tal et al. (2005) [3] Box & Ellipsoid LDR N/A N/A 

Bertsimas and Thiele (2006) [9] Polyhedron Base stock policy N/A N/A 

Ben-Tal et al. (2009) [1] Box LDR N/A N/A 

Wei et al. (2011) [28] Polyhedron LDR N/A N/A 

See and Sim (2010) [23] Factor-based demand model LDR Zero mean and bounded support [ −z , z ] ∗ Unconstrained 

Goh and Sim (2011) [15] Factor-based demand model LDR Non-zero mean and positive bounded 

support [0 , z ] 

Unconstrained 

Ang et al. (2012) [2] Factor-based demand model LDR Zero mean and bounded support [ −z , z ] Unconstrained 

Tsang and Mak (2015) [26] Factor-based demand model LDR Zero mean and bounded support [ −z , z ] Unconstrained 

Lee and Moon (2019) [19] Factor-based demand model LDR Zero mean and bounded support [ −z , z ] Unconstrained 

This research Factor-based demand model LDR Non-zero mean and positive bounded 

support [0 , z ] 

Constrained 

LDR 1 and N/A 2 indicate the linear decision rule and not applicable, respectively. ∗For the bounded support, z and z are positive. 

Fig. 1. Two types of demands for each period. 
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periods is constrained. We developed a robust counterpart

that incorporates these features and described the process

in detail. 

The remainder of the paper is organized as follows: We intro-

uce the problem description of the inventory model for My Own

efrigerator (IMMOR) in Section 2 . Section 3 deals with the math-

matical formulation of the IMMOR. In Section 4 , we present com-

utational experiments and analyses. In Section 5 , we summarize

he findings of this research. 

. Problem description 

We consider a single-item multiperiod inventory model based

n the discrete time planning horizon t ∈ { 1 , . . . , T } . We will use

he term purchasing demand as the demand of the customer who

isits the store to buy the BOGO product through the MOR appli-

ation. For the demand of the customer who has already made a

ayment and drops by the store to pick up a second product, we

ill use the term revisiting demand . Each customer can take both

roducts at once or take one and revisit in the future to pick up

he second product. These two types of demand for each period

re illustrated in Fig. 1 . In practice, purchasing demand is more

redictable than revisiting demand because historical data for the

ormer have accumulated over a long period. Revisiting demand is

ess predictable since there is relatively little accumulated data. We

onsider purchasing demand as a deterministic demand and revis-

ting demand as a stochastic demand. For this study, we made the

ollowing assumptions: 

ssumption 1. Customers purchase one package of a promotion

roduct (a set of two products) and take either one or both prod-

cts at the time of purchase. 
ssumption 2. It is unknown when the customers will revisit the

tore to pick up the second product, but they will revisit before the

xpiry date from the purchasing date [ t, t + τ ) . 

ssumption 3. Purchasing demand is the deterministic demand,

nd revisiting demand is the stochastic demand. 

ssumption 4. The revisiting rate in the last period (t = T − 1) has

he value of 1. In other words, customers who buy the BOGO prod-

ct in the last period take two products because they know that

hey cannot take the second product in the future. 

ssumption 5. The BOGO promotion through the MOR application

s valid for a given planning horizon. That is, we assume that it is

vailable from t = 1 and ends without salvage value after t = T . 

The assumptions in this study are made based on the opera-

ion of MOR in practice. For more information about the applica-

ion, we refer readers to the App Store, Google Play , or the website

f GS25 ( http://gs25.gsretail.com ). Throughout the paper, we define

 � { 1 , . . . , T } and T 

− � { 1 , . . . , T − 1 } for brevity in expressing the

lanning horizon. 

.1. Demand modeling 

Let d t and 

˜ ξt denote the deterministic purchasing demand

nd stochastic revisiting demand, respectively. Denote by ˜ ρt �
( ̃  ρt 

t , ˜ ρt 
t−1 

, . . . , ˜ ρt 
t−τ+1 

) a vector of the revisiting rate , where τ is an

xpiry date from the purchase date. Each revisiting rate means the

robability of taking both products at period t , the probability of

evisiting to collect the second product at period t from the period

 − 1 , . . . , the probability of revisiting to collect the second prod-

ct at period t from the period t − τ + 1 . A set of vectors can be

http://gs25.gsretail.com
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Fig. 2. Matrix of uncertainty factors representing the revisiting rates. 
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represented by a matrix ˜ A , which is illustrated in Fig. 2 . We as-

sume that d t occurs in period t ∈ T 

− and it is scattered by a vector

of uncertainty factor ˜ ρt . Since each uncertainty factor follows the

probability distribution, it has a value between 0 and 1. Also, the

sum of the probabilities from t to t + τ − 1 is less than or equal to

1. The sum of these probabilities can be 1, but there is no guaran-

tee that all customers will pick up their second products. There-

fore, we set the sum to less than or equal to 1. Revisiting demand
˜ ξt can be modeled as an affine function of uncertainty factors ˜ ρt 

as follows: 

˜ ξt ( ̃  ρ) � 

t ∑ 

i = max ( 1 ,t−τ+1 ) 

d i ̃  ρt 
i (1)

where 

⎧ ⎨ ⎩ 

min ( t+ τ−1 ,T −1 ) ∑ 

i = t 
˜ ρ i 

t ≤ 1 

0 ≤ ˜ ρ i 
t ≤ 1 i ∈ { t, . . . , min ( t + τ − 1 , T − 1 ) } 

(2)

Each revisiting demand 

˜ ρt in period t ∈ T 

− is constrained by

(2) . The parameters related to the demand are summarized as fol-

lows: 

d t Deterministic purchasing demand in period t 

d t A vector of purchasing demands from period 1 to 

T − 1 , that is , d t � ( d 1 , d 2 , . . . , d T−1 ) 

˜ ρt 
i Revisiting rate from period i to t which is an unknown coefficient 

˜ ρt A vector of revisiting rates from period t to t − τ + 1 

˜ ξt Stochastic demand , which is the aggregated demand of 

revisiting demands in period t 

˜ ξt A vector of stochastic demands from period 1 to T − 1 , 

that is , ˜ ξt � d ′ t ̃  A 

and ˜ ξt = 

(
˜ ξ1 , ˜ ξ2 , . . . , ˜ ξT−1 

)
2.2. Sequences of the ordering decision 

The inventory manager observes the inventory level at the be-

ginning of each period and determines the order quantity to re-

spond to future demand. We assume backlog for understocked
nventory. Accordingly, the balance equation (flow conservation)

mong inventory level, order quantity, and demand is satisfied in

ach period. Also, we assume that order quantity cannot exceed an

pper limit for each period. The main objective is to identify a de-

ision that minimizes the total cost of the planning horizon t ∈ T

hile satisfying the balance equation and capacity of order quan-

ity. Without loss of generality, we assume the lead time of replen-

shment as 0. That is, if the product is ordered at the beginning of

he period t , it is replenished in the inventory just prior to the be-

inning of the period t + 1 . In a given planning horizon, the order

an be placed until t = T − 1 , and the salvage value of the inven-

ory level is 0 from the period T . The sequence of decision-making

n the planning horizon is illustrated in Fig. 3 . 

. Mathematical formulation of the IMMOR 

We considered two types of decision variables to respond to

urchasing demand and revisiting demand. The decision variables

 t and y t represent the order quantity to satisfy the demand d t 
nd 

˜ ξt , respectively. The inventory manager determines the order

uantities x t and y t from period t = 1 to period t = T − 1 . For each

rder, a unit purchasing cost c t occurs for x t and y t because they

re the order quantities for the same item. We assume that back-

ogging for each inventory level is allowed. Accordingly, the inven-

ory levels for each demand are represented by u t and v t , respec-

ively, where t ∈ T . If there is overstock (understock) at the end of

ach period, a unit inventory holding (backlog) cost occurs for each

roduct. It is assumed that the same unit inventory holding cost h t 
ccurs for the positive values of u t and v t . For the negative values

f u t and v t , different unit backlog costs, b t and p t , respectively, are

ssumed. We consider two types of the unit backlog cost ( b t � p t )

ecause the understocking revisiting demand is assumed to affect

he brand image, which incurs a significant opportunity cost. Con-

idering the capacity of the order quantity, the sum of x t and y t is

estricted to an upper limit C t in each period. Balance equations for

urchasing demand and revisiting demand are illustrated in Figs. 4

nd 5 , respectively. 

If the order quantity and inventory level are managed by one

ype of decision variable, it is difficult to figure out which demand

s not satisfied. In addition, a preferential response to revisiting de-
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Fig. 3. Sequences of decision making in the planning horizon. 

Fig. 4. Balance equation related to purchasing demand. 

Fig. 5. Balance equation related to revisiting demand. 
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and is required. By partitioning the decision variables for order

uantity and inventory level to the two types of decision variables

 x t , y t , and u t , v t ), and limiting the total order quantity by assign-

ng an enormous backlog cost to the stockout of revisiting demand,

he abovementioned issues can be handled. The inventory man-

ger will replace the order by giving priority to revisiting demand.

eanwhile, a fixed cost for replenishment can be considered, and

he decision variables can be regarded as integer values. Various

ypes of costs, such as remanufacturing, carbon emissions, defec-

ive items, or supplier selection, could be considered to make an

nventory model more realistic [11,12,21,22,27] . In this study, how-

ver, we formulated a mathematical model as a linear program in-

luding purchasing, inventory holding, and backlog costs to retain

ractability in the robust optimization approach. 

.1. Mathematical formulation of the IMMOR under deterministic 

emand 

In this section, we present a mathematical formulation based

n a linear program under deterministic demand. Before making

he order decision for the entire period, the inventory manager re-

ards the uncertainty factor as a deterministic value. Consequently,

evisiting demand is also considered as a deterministic value. The

athematical formulation under deterministic demand can be de-
eloped as follows: 

min 

∑ 

t∈ T 

−

[
c t (x t + y t ) + h t (u t+1 ) 

+ + h t (v t+1 ) 
+ 

+ b t (u t+1 ) 
− + p t (v t+1 ) 

−]
s . t . u t+1 = u t + x t − d t t ∈ T 

−;
v t+1 = v t + y t − ξt t ∈ T 

−;
x t + y t ≤ C t t ∈ T 

−;
x t , y t ≥ 0 t ∈ T 

−; (3) 

.2. Mathematical formulation of the IMMOR under stochastic 

emand 

If revisiting demand is regarded as a random variable as shown

n (1) , a multistage stochastic optimization model can be consid-

red. In this case, the objective function is expressed as an expec-

ation form E (·) and all decision variables are affected by uncer-

ainty factors. Accordingly, the multistage stochastic optimization

odel can be developed as follows: 

min E 

[∑ 

t∈ T 

−

(
c t 
(
x t 
(

˜ ρt−1 
)

+ y t 
(

˜ ρt−1 
))

+ h t 

(
u t+1 

(
˜ ρt 
))+ 

+ h t 

(
v t+1 

(
˜ ρt 
))+ + b t 

(
u t+1 

(
˜ ρt 
))− + p t 

(
v t+1 

(
˜ ρt 
))−)] 

s . t . v t+1 

(
˜ ρt 
)

= v t 
(

˜ ρt−1 
)

+ y t 
(

˜ ρt−1 
)

− d t t ∈ T 

−;
v t+1 

(
˜ ρt 
)

= v t 
(

˜ ρt−1 
)

+ y t 
(

˜ ρt−1 
)

− ˜ ξt 

(
˜ ρt 
)

t ∈ T 

−;
x t 
(

˜ ρt−1 
)

+ y t 
(

˜ ρt−1 
)

≤ C t t ∈ T 

−;
x t 
(

˜ ρt−1 
)
, y t 
(

˜ ρt−1 
)

≥ 0 t ∈ T 

−;
(4) 

.3. Robust optimization approach for the IMMOR 

In practice, it is difficult to obtain full information on random

emand, such as what distribution it follows. Even if the distri-

ution is estimated, evaluating the multistage expectation is in-

ractable. Therefore, instead of directly minimizing the expectation

f the objective function, we focused on minimizing the approxi-

ated upper bound of the function. By using the linear decision

ule, the upper bound of the objective function can be obtained

ithout considering the expected cost function. 

The most common form of the factor-based demand model in

he robust optimization context is as follows: 

 t ( ̃ z t−1 ) � d 0 t + 

N ∑ 

k =1 

d k t ̃  z k (5) 
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where 1 ≤ N 1 ≤ N 2 ≤ · · · ≤ N T −1 = N and the predefined uncer-

tainty factors, ˜ z k , are unfolded until k = 1 , · · · , N t . 

Recall that stochastic demand (1) is also an affine function of

uncertainty factors ˜ ρ. It indicates that the demand model (1) can

be interpreted as a special case of the factor-based demand model

(5) . Accordingly, we used stochastic demand (1) as the factor-based

demand model. 

3.3.1. Linear decision rule 

To solve the inventory problem under the factor-based demand

model, we adopted the linear decision rule (for the sake of brevity,

we will hereafter use the abbreviation “LDR”). By restricting de-

cision variables as affinely dependent on the uncertainty factors,

the inventory manager can delay the decision by observing the

realization of part of the uncertainty factors. Let x t 
LDR ( ̃  ρt−1 ) and

y t 
LDR ( ̃  ρt−1 ) denote the order decisions based on the LDR as fol-

lows : 

x t 
LDR 
(

˜ ρt−1 
)

= x 0 t + x t 
′ ˜ ρt−1 

y t 
LDR 
(

˜ ρt−1 
)

= y 0 t + y t 
′ ˜ ρt−1 

Since the decision is based on the realized uncertainty fac-

tors, which is referred to as the non − ant icipat i v e property, we

restricted the uncertainty factors that are unavailable in period t .

It can be incorporated by summing x 
i, j 
t ˜ ρ j 

i 
and y 

i, j 
t ˜ ρ j 

i 
until (i, j) ∈

{ (i, j) | i : i ≤ j, j : j ≤ t − 1 } . For brevity in representing the indices,

let N j � { i | i ≤ j } and M t � { j| j ≤ t − 1 } . Based on the LDR, the

order quantity for purchasing demand in each period is expressed

as follows: 

x t 
LDR 
(

˜ ρt−1 
)

= x 0 t + 

∑ 

j∈M t 

∑ 

i ∈N j 
x i, j 

t ˜ ρ j 
i 

(6)

The decision based on the LDR corresponding to the order

quantity for the revisiting demand can also be expressed as fol-

lows: 

y t 
LDR 
(

˜ ρt−1 
)

= y 0 t + 

∑ 

j∈M t 

∑ 

i ∈N j 
y i, j 

t ˜ ρ j 
i 

(7)

That is, the order decision is based on the observed information

available at the beginning of the period t . 

Remark 1. The inventory levels u t+1 and v t+1 also take an affine

structure with respect to ˜ ρt as follows: 

u t+1 

(
˜ ρt 
)

= u 

0 
t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u 

i, j 
t+1 ̃

 ρ j 
i 

(8)

v t+1 

(
˜ ρt 
)

= v 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
v i, j 

t+1 ̃
 ρ j 
i 

(9)

It is easy to show that inventory levels in (8) and (9) also fea-

ture the affine function of the uncertainty factors ˜ ρt . This func-

tion can be derived with the closed-form expression of the balance

equations as follows: 

u t+1 

(
˜ ρt 
)

= u 1 + 

t ∑ 

k =1 

x k 

(
˜ ρk −1 
)

−
t ∑ 

k =1 

d k 

v t+1 

(
˜ ρt 
)

= v 1 + 

t ∑ 

k =1 

x k 

(
˜ ρk −1 
)

−
t ∑ 

k =1 

˜ ξk 

(
˜ ρk 
)

As a result, the two types of decision variables related to the

inventory level also take the non-anticipative property. 

3.3.2. Upper bound of the expected positive parts 

We assumed that the inventory manager decides on the order

quantity based on stochastic demand in the absence of full infor-
ation. Therefore, minimizing the reasonable upper bound was fo-

used rather than directly minimizing the expectation value of the

bjective function. As shown in the stochastic optimization model

4) , the objective function includes the purchasing, inventory hold-

ng, and backlog costs over the entire planning horizon. For the

urchasing cost, the expected value can be obtained as follows: 

E 

(
c t 
(
x t 
(

˜ ρt−1 
)

+ y t 
(

˜ ρt−1 
)))

= E 

( 

c t 

( 

x 0 t + 

∑ 

j∈M t 

∑ 

i ∈N j 
x i, j 

t ˜ ρ j 
i 

+ y 0 t + 

∑ 

j∈M t 

∑ 

i ∈N j 
y i, j 

t ˜ ρ j 
i 

) ) 

= c t (x 0 t + y 0 t ) + c t E 

( ∑ 

j∈M t 

∑ 

i ∈N j 

(
x i, j 

t + y i, j 
t 

)
˜ ρ j 

i 

) 

= c t (x 0 t + y 0 t ) + c t 
∑ 

j∈M t 

∑ 

i ∈N j 

(
x i, j 

t + y i, j 
t 

)
μ j 

i 

where μ j 
i 
= E [ ̃  ρ j 

i 
] 

In the case of the inventory holding cost, we approximated the

pper bound of the expectation of the positive parts by adapting

he work of Chen and Sim [13] , who derived the upper bound

ased on the following theorem: 

heorem 1. (Chen and Sim [13] ) If uncertainty factors are zero-mean

andom variables with the positive definite covariance matrix under

he support set W which is second-order conic representable, the up-

er bound of E ((y 0 + y ′ ˜ z ) + ) , which is represented by π ( y 0 , y ), can

e obtained through the optimization problem as follows: 

(y 0 , y ) = min r 1 + r 2 + r 3 + r 4 + r 5 

s . t . y 10 + max 
˜ z ∈ W 

˜ z ′ y 1 ≤ r 1 

r 1 ≥ 0 

max 
˜ z ∈ W 

˜ z ′ ( −y 2 ) ≤ r 2 

y 20 ≤ r 2 

1 

2 
y 30 + 

1 

2 

∣∣∣∣∣y 30 , 

1 / 2 ∑ 

y 3 

∣∣∣∣∣
2 

≤ r 3 

inf 
μ> 0 

μ

e 
exp 

(
y 40 

μ
+ 

| u | 2 2 

2 μ2 

)
≤ r 4 

u j ≥ p j y 4 j j ∈ 
{

j : p j < ∞ 

}
y 4 j ≤ 0 j ∈ 

{
j : p j = ∞ 

}
u j ≥ −q j y 4 j j ∈ 

{
j : q j < ∞ 

}
y 50 + inf 

μ> 0 

μ

e 
exp 

(
− y 40 

μ
+ 

| v | 2 2 

2 μ2 

)
≤ r 5 

v j ≥ q j y 5 j j ∈ 
{

j : q j < ∞ 

}
y 5 j ≤ 0 j ∈ 

{
j : q j = ∞ 

}
v j ≥ −p j y 5 j j ∈ 

{
j : p j < ∞ 

}
y 10 + y 20 + y 30 + y 40 + y 50 = y 0 

y 1 + y 2 + y 3 + y 4 + y 5 = y 

r i , y i 0 ∈ R , y i ∈ R 

N , i = 1 , . . . , 5 

u , v ∈ R 

N (10)

The most distinctive difference between the model in this re-

earch and that of Chen and Sim [13] is the structure of the un-

ertainty set. In their work, each predefined uncertainty factor ˜ z

elongs to W which can be correlated but unconstrained over the

eriod. In this study, the sum of the uncertainty factors in a partic-

lar interval is constrained. Also, uncertainty factors are not zero-

ean random variables. The optimization problem (10) was de-

ived based on zero-mean random variables and support set W .

owever, we derived the upper bound of the expected positive
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arts based on non zero-mean random variables with support set

. 

emark 2. The reasonable upper bound can be obtained without

onsidering the information of the directional deviations which are

elated r 4 and r 5 ( [23] ). That is, the upper bound can be achieved

ven if p j and q j are set to ∞ . 

In this study, we derived the three upper bounds of the ex-

ected positive parts related to excess inventories as follows: 

E 

( 

(u 

0 
t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u 

i, j 
t+1 ̃

 ρ j 
i 
) + 

) 

≤
( 

u 

0 
t+1 + max 

˜ ρ∈ �

∑ 

j∈M t+1 

∑ 

i ∈N j 
u 

i, j 
t+1 ̃

 ρ j 
i 

) + 

= π1 
(
u 

0 
t+1 , u t+1 

)
he second upper bound can be derived by using the equality a + =
 + (−a ) + . Recall that the supports of the uncertainty factors are

efined in [0, 1]. Accordingly, the value of the expectation is not

anceled by zero mean as shown in [13,23] . 

 

( ( 

u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + ) 

= E 

( 

u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) 

+ E 

( ( 

−u 0 2 ,t+1 −
∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + ) 

= u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 

+ E 

( ( 

−u 0 t+1 −
∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + ) 

≤ u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 

+ E 

( ( 

−u 0 t+1 + max 
˜ ρ∈ �

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + ) 

= u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 

+ 

( 

−u 0 t+1 + max 
˜ ρ∈ �

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + 

= π2 
(
u 0 t+1 , u t+1 

)
he third upper bound can be derived by using the equality a + =

(a + | a | ) / 2 . As with the second upper bound, the value of the ex-

ectation is not canceled by zero mean, as shown in the follow-

ng: 

 

( 

(u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 
) + 

) 

= 

1 

2 
E 

( 

u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) 

+ 

1 

2 
E 

∣∣∣∣∣u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

∣∣∣∣∣
1 

2 
u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 
+ 

1 

2 

√ √ √ √ √ E 

⎡ ⎣ 

( 

u 0 
t+1 

+ 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) 2 
⎤ ⎦ 

 

1 

2 
u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 

+ 

1 

2 

√ √ √ √ √ (u 0 
t+1 

) 2 + 2 u 0 
t+1 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u i, j 

t+1 
+ E 

⎛ ⎝ 

( ∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) 2 
⎞ ⎠ 

 π3 (u 0 t+1 , u t+1 ) 
here E 

⎛ ⎝ 

( ∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) 2 
⎞ ⎠ 

 

∑ 

j,k ∈M t+1 

∑ 

i,l∈N j 

((
u i, j 

t+1 

)2 
(
σ

˜ ρ j 
i 

˜ ρ j 
i 

+ (μ j 
i 
) 

2 
)

+ 2 u i, j 
t+1 

u l,k 
t+1 

(
σ

˜ ρ j 
i 

˜ ρk 
l 

+ μ j 
i 
μk 

l 

)
+ (u l,k 

t+1 
) 

2 
(
σ ˜ ρk 

l 
˜ ρk 

l 
+ (μk 

l ) 
2 
))

nd σ indicates the covariance of the uncertainty factors . 

y minimizing the three bounds, π1 (u 0 
t+1 

, u t+1 ) , π
2 (u 0 

t+1 
, u t+1 ) ,

nd π3 (u 0 
t+1 

, u t+1 ) , in the following optimization problem (11) , the

ightest upper bound π(u 0 
t+1 

, u t+1 ) can be obtained. (
u 

0 
t+1 , u t+1 

)
� min 

3 ∑ 

i =1 

π i 
(
u 

0 
i,t+1 , u i,t+1 

)
s . t . 

3 ∑ 

i =1 

u 

0 
i,t+1 = u 

0 
t+1 

3 ∑ 

i =1 

u i,t+1 = u t+1 (11) 

o retain tractability in solving the optimization problem (11) ,

ssumption A is required. Otherwise, both the problem (11) and

he robust optimization model become intractable. 

ssumption A. Uncertainty factors ˜ ρ representing the revisiting

ates are the random variables distributed in the particular inter-

als as presented in (2) . Although the distribution is not known,

ach uncertainty factor ˜ ρ lies in a support set �, which is a poly-

edron, as shown in (2) . 

By adopting the work of Chen and Sim [13] , the optimization

roblem (11) for every t th period (t ∈ T 

−) can be expressed as the

pigraph form as follows: (
u 

0 
t+1 , u t+1 

)
= min r 1 ,t+1 + r 2 ,t+1 + r 3 ,t+1 

s . t . u 

0 
1 ,t+1 + max 

˜ ρ∈ �
˜ ρ′ 

u 1 ,t+1 ≤ r 1 ,t+1 

r 1 ,t+1 ≥ 0 ∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u 

i, j 
t+1 

+ max 
˜ ρ∈ �

˜ ρ′ ( −u 2 ,t+1 ) ≤ r 2 ,t+1 

u 

0 
2 ,t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
μ j 

i 
u 

i, j 
t+1 

≤ r 2 ,t+1 

1 

2 

u 

0 
3 ,t+1 + 

1 

2 

∣∣∣∣∣u 

0 
3 ,t+1 , 

1 / 2 ∑ 

u 3 ,t+1 

∣∣∣∣∣
2 

≤ r 3 ,t+1 

u 

0 
1 ,t+1 + u 

0 
2 ,t+1 + u 

0 
3 ,t+1 = u 

0 
t+1 

u 1 ,t+1 + u 2 ,t+1 + u 3 ,t+1 = u t+1 

r i,t+1 , u 

0 
i,t+1 ∈ R , u i,t+1 ∈ R 

T ×T 

i = 1 , 2 , and 3 (12) 

According to See and Sim [23] , π ( ·, ·) in the optimization prob-

em (10) is not exactly second-order cone representable because

f the infimum term ( inf μ> 0 
μ
e exp(·)) . However, the infimum term

ecomes redundant in this model because we assume p j and q j 
s ∞ . If the constraints associated with r 1 and r 2 , which still con-

ain the uncertainty factors, are well defined as a robust counter-

art, the remaining terms associated with the upper bound are

ll second-order cones. By replacing the max ( · ) term with the

ual linear program, we can derive the robust counterpart. Con-

ider max 
˜ ρ∈ �

˜ ρ′ u 1 ,t+1 in the first constraint. As shown in (2) , uncer-

ainty factors ˜ ρt in this model feature the polyhedron structure.
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For every period, t ∈ T 

−, we have the following inner optimization

problem: 

max 
∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

s . t . 
∑ min ( i + τ−1 ,t ) 

j= i ˜ ρ j 
i 

≤ 1 i ∈ { 1 , · · · , t } ;
0 ≤ ˜ ρ j 

i 
≤ 1 i ∈ N j , j ∈ M t+1 ;

˜ ρ j 
i 

= 0 i ∈ { i | i + τ ≤ j } , j ∈ { τ + 1 , · · · , t } ;
(13)

By strong duality, each inner optimization problem for every

period ( t ∈ T 

−) can be reformulated as a dual linear program as

follows: 

min 

∑ 

j∈M t+1 

∑ 

i ∈N j 
αi, j 

t+1 
+ 

t ∑ 

i =1 

β i 
t+1 

s . t . αi, j 
t+1 

+ β i 
t+1 ≥ u 

i, j 
t+1 

i ∈ N j , j ∈ M t+1 ;
αi, j 

t+1 
≥ 0 i ∈ N j , j ∈ M t+1 ;

β i 
t+1 ≥ 0 i ∈ { i | i ≤ t } ;

αi, j 
t+1 

= 0 i ∈ { i | i + τ ≤ j } , j ∈ { τ + 1 , . . . , t } ;

(14)

where αi, j 
t and β i 

t are the dual variables of each constraint in (13) ,

respectively. 

By replacing the max ( · ) term with the dual linear program

presented in (14) , the robust counterpart can be achieved. With

the same manner, max ( · ) term in the constraint related to r 2 
is also reformulated to the robust counterpart. By solving the ro-

bust counterpart of the optimization problem (12) , the tighter up-

per bound can be achieved than that of each bound. 

E 

( ( 

u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) + ) 

≤ π
(
u 0 t+1 , u t+1 

)
≤ min 

i =1 , 2 , 3 
π i 
(
u 0 t+1 , u t+1 

)
The upper bound of the expected costs related to backlogged

inventories can be derived similarly as follows: 

E 

( ( 
u 0 t+1 + 

∑ 

j∈M t+1 

∑ 

i ∈N j 
u i, j 

t+1 ̃
 ρ j 
i 

) −) 
≤ π
(
−u 0 t+1 , −u t+1 

)
≤ min 

i =1 , 2 , 3 
π i 
(
−u 0 t+1 , −u t+1 

)
3.3.3. Robust counterpart of the IMMOR 

Based on the LDR, the robust counterpart of the IMMOR (RIM-

MOR) can be formulated as follows: 

min 
∑ 

t∈ T 

−

⎡ ⎣ c t 
(
x 0 t + y 0 t 

)
+ c t 

⎛ ⎝ 

∑ 

j∈M t 

∑ 

i ∈N j 

(
x i, j 

t + y i, j 
t 

)
μ j 

i 

⎞ ⎠ 

+ h t π
(
u 0 t+1 , u 

i, j 
t+1 

)
+ h t π

(
v 0 t+1 , v 

i, j 
t+1 

)
+ b t π

(
−u 0 t+1 , −u i, j 

t+1 

)
+ p t π

(
−v 0 t+1 , −v i, j 

t+1 

)⎤ ⎦ 

s . t . u 0 t+1 = u 0 t + x 0 t − d t t ∈ T 

−;
u i, j 

t+1 
= u i, j 

t + x i, j 
t t ∈ T 

−, i ∈ N j , j ∈ M t ;
v 0 t+1 = v 0 t + y 0 t t ∈ T 

−;

u i, j 
t+1 

= 

⎧ ⎨ ⎩ 

−d i , t ∈ T 

−, j = t, 

j − τ + 1 ≤ i ≤ j;
v i, j 

t + y i, j 
t t ∈ T 

−, i ∈ N j , j ∈ M t ;
x 0 t + x t 

′ ˜ ρ + y 0 t + y t 
′ ˜ ρ ≤ C t t ∈ T 

−, ̃  ρ ∈ �;
x 0 t + x t 

′ ˜ ρ ≥ 0 t ∈ T 

−, ̃  ρ ∈ �;
y 0 t + y t 

′ ˜ ρ ≥ 0 t ∈ T 

−, ̃  ρ ∈ �;

(15)

Remark 3. RIMMOR does not need non-anticipative constraints

such as, u 
i, j 
t+1 

= 0 , v i, j 
t+1 

= 0 (t ∈ T 

−, i ∈ N j , j ∈ M t+1 ) or x 
i, j 
t = 0 ,
 

i, j 
t = 0 

(
t ∈ T 

−, i ∈ N j , j ∈ M t 

)
. Eqs. (6) –(9) already incorporate the

on-anticipative property by summing up the decision variables

ntil the available uncertainty factors in each period t . 

For the constraint representing the capacity of the order quan-

ity, the uncertainty factors also remain. Therefore, we reformu-

ated the constraint in each period ( t ∈ T 

−) as the robust coun-

erpart in the same manner from (13) to (14) : 

 

0 
t + x t 

′ ˜ ρ + y 0 t + y t 
′ ˜ ρ ≤ C t , ˜ ρ ∈ �

⇐⇒ x 0 t + y 0 t + max 
˜ ρ∈ �

⎛ ⎝ 

∑ 

j∈M t 

∑ 

i ∈N j 

(
x i, j 

t + y i, j 
t 

)
˜ ρ j 

i 

⎞ ⎠ ≤ C t 

⇐⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x 0 t + y 0 t + 

∑ 

j∈M t 

∑ 

i ∈N j θ
i, j 
t + 

∑ t−1 
i =1 δ

i 
t ≤ C t 

θ i, j 
t + δi 

t ≥ x i, j 
t + y i, j 

t i ∈ N j , j ∈ M t ;
θ i, j 

t ≥ 0 i ∈ N j , j ∈ M t ;
δi 

t ≥ 0 i ∈ { i | i ≤ t − 1 } ;
θ i, j 

t = 0 i ∈ { i | i + τ ≤ j } , j ∈ 
{ τ + 1 , . . . , t − 1 } ;

where θ i, j 
t and δi 

t are the dual variables . 

In the cases of constraints related to non-negative conditions of

ecision variables, the constraints of all periods ( t ∈ T 

−) can also

e reformulated by defining the inner optimization problems as

ollows: 

x 0 t + x t 
′ ˜ ρ ≥ 0 , ˜ ρ ∈ �

y 0 t + y t 
′ ˜ ρ ≥ 0 , ˜ ρ ∈ �

⇐⇒ 

⎧ ⎨ ⎩ 

x 0 t − max 
˜ ρ∈ �

∑ 

j∈M t 

∑ 

i ∈N j x 
i, j 
t ˜ ρ j 

i 
≥ 0 

y 0 t − max 
˜ ρ∈ �

∑ 

j∈M t 

∑ 

i ∈N j y 
i, j 
t ˜ ρ j 

i 
≥ 0 

y developing the dual linear program and substituting it for the

nner optimization problem, the robust counterpart can be derived.

e omit the expression of the robust counterpart which has the

ame process from (13) to (14) . As a result, the deterministic ap-

roximated second-order cone program is derived from the multi-

tage stochastic optimization model. We provide a small-size nu-

erical example in Appendix A to make it easier for readers to

nderstand. 

.3.4. Relation to the restricted linear decision rule 

Recall that Fig. 2 represents the coefficient matrix of the revis-

ting rate. When the duration of the entire period T is relatively

arger than the expiry date τ , most of the coefficients are zero.

ccordingly, the inventory balance equation associated with revis-

ting rates whose values are zero does not have an effect. In other

ords, the parts where the values of ˜ ρt are zero do not directly af-

ect the inventory level, leaving only the balance equation between

he relevant decision variables. By forcing the decision variables of

hese parts to zero, the solution space could be reduced, which

elps the commercial optimization solver to find a solution effi-

iently. In this manner, Ang et al. [2] proposed a restricted linear

ecision rule (RLDR). 

roposition 1. In this model, the objective value obtained by the

LDR provides the same objective value as the LDR, which was known

o provide an inferior solution from the robust counterpart model in

2] . 

We will support Proposition 1 through an example. Consider

he problem with planning horizon t ∈ { 1 , . . . , 8 } and an ex-

iry date τ as 3. Consequently, some revisiting rates, such as

( ̃  ρ4 
1 
, ˜ ρ5 

1 
, ˜ ρ5 

2 
, · · · ) , become zero. For simplicity, consider only the

alance equation for ˜ ρ4 
1 at t = 6 . According to the LDR, the ro-

ust counterpart includes the equation v 1 , 4 
6 

= v 1 , 4 
5 

+ y 1 , 4 
5 

in the

alance equation v 0 
6 

+ 

∑ 5 
j=1 

∑ 

i : i ≤ j v 
i, j 
6 

˜ ρ j 
i 

= v 0 
5 

+ 

∑ 4 
j=1 

∑ 

i : i ≤ j v 
i, j 
5 

˜ ρ j 
i 

+
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Table 2 

Results of Experiment 1. 

Data (total planning horizon_expiry date) when order capacity is 350 

20_5 20_10 25_5 25_10 25_15 30_10 35_5 35_8 

Objective value 34119.7 39939.3 31678.9 39706.8 45298.7 47253.3 54248.6 62904.0 

Computation time (s) 22.9 59.6 71.4 277.5 499.7 866.5 592.4 1434.5 
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p  

t  

c  

s  

f  

s  

d  

v  

t  

p  

s  

m  
 

0 
5 

+ 

∑ 4 
j=1 

∑ 

i : i ≤ j y 
i, j 
5 

˜ ρ j 
i 

− d 3 ̃  ρ5 
3 

− d 4 ̃  ρ5 
4 

− d 5 ̃  ρ5 
5 

. As presented in the

alance equation, v 1 , 4 
6 

= v 1 , 4 
5 

+ y 1 , 4 
5 

does not affect the inventory

evel. Restricting the relevant decision variables y 1 , 4 
5 

to zero can

llow the problem to be solved efficiently while retaining the ob-

ective value. 

. Computational experiments 

In this section, we describe the results of three types of compu-

ational experiments. The experiments were conducted to answer

he following research questions: 

(i) Does RIMMOR, which constrains the sum of the uncertainty

factors over the period to less than or equal to 1, retain

tractability until a modest data size, as the model of See and

Sim [23] does? 

(ii) How much robustness does RIMMOR guarantee when ran-

dom demand is realized compared to the deterministic

model which estimates the uncertainty factors? 

(iii) Depending on the propensity of the customer, what ten-

dency does the inventory policy of RIMMOR show? 

(iv) What tendency does total cost show when the expiry date

varies? 

Research questions (i), (ii), and (iii) and (iv), are answered by

xperiments (1)–(3), respectively. Results of Experiments (1)–(3)

nd analyses are described in Section 4.1 – 4.3. All computational

xperiments were conducted by FICO XPRESS-IVE version 7.2 with

n Intel Core TM i5-7400 CPU @ 3.0 GHz. 

RIMMOR needs the mean and covariance of the uncertainty fac-

ors. Most of the previous studies that considered a factor-based

emand model assumed the uncertainty factors as zero-mean ran-

om variables and unconstrained. Accordingly, the mean and co-

ariance could be easily derived. In the RIMMOR, however, each

ncertainty factor has support between 0 and 1, and the sum of

ncertainty factors within a certain interval is less than or equal

o 1. This makes deriving an accurate mean and covariance dif-

cult. Therefore, we estimated the mean and covariance through

ata sampling with 10,0 0 0 iterations. Pseudocode for the genera-

ion of the uncertainty factors is described in Appendix B . We as-

ume that all customers revisit the store because we want to ob-

erve protection against the worst case. Thus, we made the sum to

e 1 by forcing the last iteration of Algorithm 1 . 

.1. Experiment 1: tractability of the RIMMOR 

We conducted Experiment 1 to investigate the tractability of

he RIMMOR. Experiment 1 was conducted by varying the plan-

ing horizon and expiry date. The sample mean and covariance

ere estimated from data generated through Algorithm 1 . The re-

ults of Experiment 1 are presented in Table 2 . As can be seen

rom Table 2 , when the planning horizon increased, the computa-

ion time also increased. Furthermore, as the expiry date increased,

he computation time increased. Nevertheless, the RIMMOR was

ractable until a modest data size. In practice, a retailer who runs

he MOR application in a convenience store has one order cycle

er day. With the RIMMOR, the retailer can establish a one-month

lan for the BOGO promotion. 
.2. Experiment 2: robustness of the RIMMOR 

The solution obtained through the RIMMOR is a decision rule

or an order quantity. Thus, solving the optimization problem does

ot provide the order quantity for each period but establishes a

olicy. To figure out how the decision rule guarantees the protec-

ion of the realized uncertain data, we conducted comparative ex-

eriments. For the comparison group, simulation , we assume that

he inventory manager regards the uncertainty factors as deter-

inistic values by estimating the mean based on the data from

lgorithm 1 . Accordingly, uncertain demands were set as deter-

inistic values for the entire period. The order quantities were ob-

ained by solving the deterministic model (2). In this manner, sim-

lation results and policies from the LDR were compared through

0,0 0 0 iterations of the experiment. A summary of the results is

llustrated in Fig. 6 . 

As we can see from Fig. 6 , the robustness of RIMMOR was guar-

nteed compared to the simulation experiments. Although the ob-

ective values of the LDR were worse than the best case of the

eterministic model, the RIMMOR showed overwhelmingly better

esults for the worst case. The most important thing to recognize

s that the RIMMOR provided stable solutions in terms of the fluc-

uation. Even though uncertainty factors can be realized with any

alue, the difference between the minimum and maximum objec-

ive values was not significant. 

.3. Experiment 3: effect of duration of the expiry date under the 

ifferent customers’ revisiting propensities 

We conducted Experiment 3 to explore the effects of the du-

ation of the expiry date and customers’ revisiting propensities on

he total cost. One of the research questions was how the objec-

ive value changes by varying the expiry date. We could make two

onflicting inferences at the same time. First, we expected that

he total expectation cost would be lowered by the smoothing ef-

ect when the expiry date becomes longer. Second, we thought

hat a larger order quantity should be replenished to cope with

he worst-case scenario, which would incur a higher cost. We also

hought that customers’ revisiting tendencies might affect the to-

al cost. Therefore, Experiment 3 was conducted by varying the

xpiry date τ according to three types of customers: (i) a gen-

ral customer (GC) who was already considered in the previous sub-

ection; (ii) an impetuous customer (IC), who has a high revisiting

ate near the purchasing date; and (iii) a procrastinating customer

PC), who has a high revisiting rate when the expiry date ap-

roaches. For IC, we assumed that the two products are most likely

o be taken on the purchasing date and the revisiting rate de-

reases as the expiry date approaches. In the case of PC, it is as-

umed that the revisiting rate increases the further the expiry date

rom the purchasing date. Data generations for IC and PC are de-

cribed in Algorithms 2 and 3 in Appendix C . Using the generated

ata, we conducted Experiment 3 to explore how the objective

alue varies according to the duration of the expiry date and cus-

omer type. To demonstrate the validity of the objective value, ex-

ected value given perfect information (EV|PI) was introduced to sub-

titute the multistage stochastic optimization model (4) . Since the

odel (4) is difficult to solve directly, we solved each of the 10,0 0 0
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Fig. 6. Results of experiment 2. 

Fig. 7. Comparing between IC, GC, and PC by varying the expiry date τ in Experi- 

ment 3. 
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sets of randomly generated uncertainty factors through the deter-

ministic model (3) and considered the average value as EV|PI. EV|PI

was assumed that all information about the distribution of uncer-

tainty factors are known to the inventory manager. Accordingly,

EV|PI was used to validate the objective value from the RIMMOR.

The results of Experiment 3 are represented in Table 3 and illus-
rated in Fig. 7 . From Table 3 and Fig. 7 , we derived the following

bservations. 

bservation 1. In the case of IC, the objective value of the LDR did

ot show much variability even when τ increased. In contrast, the

bjective values of GC and PC show an increasing tendency when

increases. 

In the case of IC, sampling data showed that the sum of uncer-

ainty factors converged to 1 near the purchasing date. Although

increases, most of the revisiting demands near the expiry date

ere 0. Accordingly, extending the expiry date τ did not have a

ignificant impact and a noticeable difference was not shown in

he objective values. For GC, because the revisiting rate was dis-

ributed evenly during the period, customers who have the poten-

ial to revisit until the expiry date were considered. Accordingly,

ore conservative solutions were obtained. In the case of PC, the

reater the likelihood that the customer revisits in the distant fu-

ure, the higher the revisiting demand at the end of the planning

orizon. Consequently, Experiment 3 showed the results stated in

bservation 1. 

bservation 2. Results of Experiment 3 show that PC ≥ GC ≥ IC

or the LDR. 

In the case of PC, when τ increases, the revisiting demand ac-

umulates at the end of the period. Consequently, more inventory

s accumulated in advance to cope with cumulative revisiting de-
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Table 3 

Results of Experiment 3. 

Customer type Policy Data (total planning horizon_expiry date_capacity) 

10_2_280 10_3_280 10_4_280 10_5_280 10_6_280 10_7_280 

IC LDR 14826.8 15211.0 15515.7 15452.3 15473.0 15480.8 

EV|PI 14256.0 14410.4 13507.6 14535.7 14550.8 14558.8 

GC LDR 14827.6 15588.6 16254.3 16810.8 17254.4 17576.3 

EV|PI 14066.3 14431.9 15050.7 15595.7 16032.2 16348.7 

PC LDR 14827.3 15974.8 17133.6 18176.5 18969.5 19417.7 

EV|PI 14256.3 14836.5 15904.1 16931.5 17776.5 18395.5 
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ands, and a substantial penalty occurs due to the unacceptable

uantity of the order. For GC, revisiting demands are spread evenly.

s the expiry date τ is extended further from the purchase date,

evisiting demand also accumulates at the end of the period. Ac-

ordingly, we observed that the objective value increased as τ was

xtended. Notable results were observed for IC. Generated data

howed that the majority took the second item at the purchase

ate and gradually decreased from the next period. Thus, the back-

rder cost occurred by the order capacity was less than that of the

ther two cases and large variability in the objective value was not

bserved. 

Also, as can be seen from Fig. 7 , the LDR provided a reasonable

pper bound when EV|PI was regarded as a benchmark. Although

C exhibits the tendency related to the gap between LDR and EV|PI

hen the expiry date τ is 4, this can be interpreted as a smoothing

ffect of the revisiting demand in EV|PI. To sum up, the results of

xperiments 2 and 3 demonstrate that RIMMOR establishes a ro-

ust and stable plan against uncertainty factors while providing a

easonable upper bound in the multistage stochastic optimization

odel. 

.4. Managerial insights 

To provide managerial insights, we conducted computational

xperiments with the three types of customers tendencies. We

enerated three types of data to incorporate the property of GC,

C, and IC. From the results, we derived the following managerial

nsights for the retailer: 

(i) For certain products, customers are less likely to take both

items on the purchasing date and thus have a higher proba-

bility of revisiting in the future. For these products, we rec-

ommend setting the expiry date not too far in the future.

Perishable items or heavy products might be examples of

items that are not usually taken at once. 

(ii) Products that many customers want to take at the last mo-

ment before the expiry date show the greatest cost among

the three comparison experiments. This can be the case for

a product that is used for a relatively long time. For the re-

tailer, it is necessary to hold a large amount of inventory un-

til the end of the period, but sometimes this is difficult due

to the capacity of the order quantity. Therefore, we suggest

developing a way to induce customers to make a reserva-

tion on the purchase date to pick up the second product on

a certain date. Then, customers will not face stockouts and

retailers can reduce uncertainty. 

(iii) We recommend that BOGO promotions offered through

MOR be conducted for daily necessities. In the case of daily

necessities, there is a high possibility that customers will re-

turn again soon for the second product. Even if the expiry

date is set far into the future, the cost during the entire pe-
riod does not change significantly. N
. Conclusions 

MOR is an innovative application that has been downloaded by

ore than ten million customers. Customers using MOR can revisit

he store at a later date to take the second product that they have

arned through a BOGO promotion. For retailers, however, it is dif-

cult to respond efficiently with the existing inventory model due

o the high level of uncertainty with regard to the revisiting date.

ccordingly, we developed the RIMMOR and demonstrated through

omputational experiments that it could provide a reasonable in-

entory policy. 

The robust optimization approach presented in this study has

 distinctive feature that differentiates it from previous studies.

he sum of the uncertainty factors in a particular interval is con-

trained to less than or equal to 1. Constrained uncertainty fac-

ors from an inner optimization problem were reformulated into a

ual linear program to retain robustness and tractability. The ro-

ust counterpart was developed as a second-order cone program,

hich was tractable until a modest data size. Moreover, the robust

ounterpart provided a stable solution for the worst case without

ull information about the distribution. Compared with the EV|PI,

hich is the substitute for a multistage stochastic optimization

odel, the robust counterpart provided the reasonable bound de-

ived from only mean, support, and covariance of uncertainty fac-

ors. 

To the best of our knowledge, this research is the first attempt

o develop an IMMOR by adopting the robust optimization ap-

roach. Therefore, the opportunity for future research is immense.

aturally, an extension to a multi-item inventory model could be

onsidered. All items could be MOR-based BOGO products or a mix

f products that are not part of the promotion. RIMMOR could

lso be generalized as a buy-x-get-y promotion, or offering other

reebies, rather than the BOGO promotion [17] . When the model

s generalized, it will give flexibility to the retailer’s decision. The

romotion which returns the point to the customer, which has

 similar mechanism with BOGO can be considered. Moon et al.

20] explored this issue with supply chain coordination. If there

s an expiry date of available point and the customer uses the

eturned point to purchase an additional product, the inventory

odel presented in this study could be extended. A study on dy-

amic pricing of BOGO products was conducted by Kim et al. [18] .

f MOR is applied, a model simultaneously considering both pricing

nd inventory can be developed. 
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Appendix A 

Consider the problem under the planning horizon t ∈ { 1 , . . . , 5 } .
Assume an expiry date, τ , as 2 and initial inventory levels, u 1 and

v 1 , as 0. Table A.1 summarizes the relevant costs of this numer-

ical example. For the capacity of the order quantity, C t was as-

sumed as 30 for every period. Purchasing demands were assumed

as d t = (11 , 18 , 15 , 19) . Consequently, revisiting demands ˜ ξt were

developed as follows: 

˜ ξ1 ( ̃  ρ) = 11 ̃  ρ1 
1 

˜ ξ2 ( ̃  ρ) = 11 ̃  ρ2 
1 + 18 ̃  ρ2 

2 

˜ ξ3 ( ̃  ρ) = 18 ̃  ρ3 
2 + 15 ̃  ρ3 

3 

˜ ξ4 ( ̃  ρ) = 15 ̃  ρ4 
3 + 19 ̃  ρ4 

4 

We made the decision variables based on the LDR as follows: 

x t ( ̃  ρ) = 

{
x 0 1 , x 

0 
2 + x 1 , 1 

2 
˜ ρ1 

1 , x 
0 
3 + x 1 , 1 

3 
˜ ρ1 

1 + x 1 , 2 
3 

˜ ρ2 
1 + x 2 , 2 

3 
˜ ρ2 

2 , x 
0 
4 

+ x 1 , 1 
4 

˜ ρ1 
1 + x 1 , 2 

4 
˜ ρ2 

1 + x 2 , 2 
4 

˜ ρ2 
2 + x 2 , 3 

4 
˜ ρ3 

2 + x 3 , 3 
4 

˜ ρ3 
3 

}
y t ( ̃  ρ) = 

{
y 0 1 , y 

0 
2 + y 1 , 1 

2 
˜ ρ1 

1 , y 
0 
3 + y 1 , 1 

3 
˜ ρ1 

1 + y 1 , 2 
3 

˜ ρ2 
1 + y 2 , 2 

3 
˜ ρ2 

2 , y 
0 
4 

+ y 1 , 1 
4 

˜ ρ1 
1 + y 1 , 2 

4 
˜ ρ2 

1 + y 2 , 2 
4 

˜ ρ2 
2 + y 2 , 3 

4 
˜ ρ3 

2 + y 3 , 3 
4 

˜ ρ3 
3 

}
Accordingly, decision variables for the inventory levels also take

the affine function of uncertainty factors as follows: 

u t ( ̃  ρ) = 

{
u 

0 
1 , u 

0 
2 + u 

1 , 1 
2 

˜ ρ1 
1 , u 

0 
3 + u 

1 , 1 
3 

˜ ρ1 
1 + u 

1 , 2 
3 

˜ ρ2 
1 + u 

2 , 2 
3 

˜ ρ2 
2 , u 

0 
4 

+ u 

1 , 1 
4 

˜ ρ1 
1 + u 

1 , 2 
4 

˜ ρ2 
1 + u 

2 , 2 
4 

˜ ρ2 
2 + u 

2 , 3 
4 

˜ ρ3 
2 + u 

3 , 3 
4 

˜ ρ3 
3 , u 

0 
5 

+ u 

1 , 1 
5 

˜ ρ1 
1 + u 

1 , 2 
5 

˜ ρ2 
1 + u 

2 , 2 
5 

˜ ρ2 
2 + u 

2 , 3 
5 

˜ ρ3 
2 + u 

3 , 3 
5 

˜ ρ3 
3 

+ u 

3 , 4 
5 

˜ ρ4 
3 + u 

4 , 4 
5 

˜ ρ4 
4 

}

v t ( ̃  ρ) = 

{
v 0 1 , v 

0 
2 + v 1 , 1 

2 
˜ ρ1 

1 , v 
0 
3 + v 1 , 1 

3 
˜ ρ1 

1 + v 1 , 2 
3 

˜ ρ2 
1 + v 2 , 2 

3 
˜ ρ2 

2 , v 
0 
4 

+ v 1 , 1 
4 

˜ ρ1 
1 + v 1 , 2 

4 
˜ ρ2 

1 + v 2 , 2 
4 

˜ ρ2 
2 + v 2 , 3 

4 
˜ ρ3 

2 + v 3 , 3 
4 

˜ ρ3 
3 , v 

0 
5 

+ v 1 , 1 
5 

˜ ρ1 
1 + v 1 , 2 

5 
˜ ρ2 

1 + v 2 , 2 
5 

˜ ρ2 
2 + v 2 , 3 

5 
˜ ρ3 

2 + v 3 , 3 
5 

˜ ρ3 
3 

+ v 3 , 4 
5 

˜ ρ4 
3 + v 4 , 4 

5 
˜ ρ4 

4 

}
We will derive the balance equations concerning y, v , and 

˜ ξ
while omitting the balance equations for x, u , and d which are

easy to show. Balance equations for y, v , and 

˜ ξ for the entire peri-
Table A.1 

Related costs of the numerical example. 

Cost per unit Planning horizon t 

1 2 3 4 

c t 10 10 10 10 

h t 1.45 1.67 1.90 1.57 

b t 4.78 4.92 4.17 4.35 

p t 47.78 49.18 41.65 43.45 

A

 

s  

s  

i  

p

ds t ∈ { 1 , . . . , 5 } are derived in (A.1) as follows: 

 

0 
2 + v 1 , 1 

2 
˜ ρ1 

1 = v 0 1 + y 0 1 − 11 ̃  ρ1 
1 

⇔ 

{
v 0 2 = v 0 1 + y 0 1 

v 1 , 1 
2 

= −11 

v 0 3 + v 1 , 1 
3 

˜ ρ1 
1 + v 1 , 2 

3 
˜ ρ2 

1 + v 2 , 2 
3 

˜ ρ2 
2 = v 0 2 + v 1 , 1 

2 
˜ ρ1 

1 + y 0 2 

+ y 1 , 1 
2 

˜ ρ1 
1 − 11 ̃  ρ2 

1 − 18 ̃  ρ2 
2 

⇔ 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

v 0 3 = v 0 2 + y 0 2 

v 1 , 1 
3 

= v 1 , 1 
2 

+ y 1 , 1 
2 

v 1 , 2 
3 

= −11 

v 2 , 2 
3 

= −18 

v 0 4 + v 1 , 1 
4 

˜ ρ1 
1 + v 1 , 2 

4 
˜ ρ2 

1 + v 2 , 2 
4 

˜ ρ2 
2 + v 2 , 3 

4 
˜ ρ3 

2 + v 3 , 3 
4 

˜ ρ3 
3 

= v 0 3 + v 1 , 1 
3 

˜ ρ1 
1 + v 1 , 2 

3 
˜ ρ2 

1 + v 2 , 2 
3 

˜ ρ2 
2 + y 0 3 + y 1 , 1 

3 
˜ ρ1 

1 

+ y 1 , 2 
3 

˜ ρ2 
1 + y 2 , 2 

3 
˜ ρ2 

2 − 18 ̃  ρ3 
2 − 15 ̃  ρ3 

3 

 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

v 1 , 1 
4 

= v 1 , 1 
3 

+ y 1 , 1 
3 

v 1 , 2 
4 

= v 1 , 2 
3 

+ y 1 , 2 
3 

v 2 , 2 
4 

= v 2 , 2 
3 

+ y 2 , 2 
3 

v 2 , 3 
4 

= −18 

v 3 , 3 
4 

= −15 

v 0 5 + v 1 , 1 
5 

˜ ρ1 
1 + v 1 , 2 

5 
˜ ρ2 

1 + v 2 , 2 
5 

˜ ρ2 
2 + v 2 , 3 

5 
˜ ρ3 

2 + v 3 , 3 
5 

˜ ρ3 
3 

+ v 3 , 4 
5 

˜ ρ4 
3 + v 4 , 4 

5 
˜ ρ4 

4 

= v 0 4 + v 1 , 1 
4 

˜ ρ1 
1 + v 1 , 2 

4 
˜ ρ2 

1 + v 2 , 2 
4 

˜ ρ2 
2 + v 2 , 3 

4 
˜ ρ3 

2 + v 3 , 3 
4 

˜ ρ3 
3 + y 0 4 

+ y 1 , 1 
4 

˜ ρ1 
1 + y 1 , 2 

4 
˜ ρ2 

1 + y 2 , 2 
4 

˜ ρ2 
2 + y 2 , 3 

4 
˜ ρ3 

2 + y 3 , 3 
4 

˜ ρ3 
3 

− 15 ̃  ρ4 
3 − 19 ̃  ρ4 

4 

⇔ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

v 0 5 = v 0 4 + y 0 4 

v 1 , 1 
5 

= v 1 , 1 
4 

+ y 1 , 1 
4 

v 1 , 2 
5 

= v 1 , 2 
4 

+ y 1 , 2 
4 

v 2 , 2 
5 

= v 2 , 2 
4 

+ y 2 , 2 
4 

v 2 , 3 
5 

= v 2 , 3 
4 

+ y 2 , 3 
4 

v 3 , 3 
5 

= v 3 , 3 
4 

+ y 3 , 3 
4 

v 3 , 4 
5 

= −15 

v 4 , 4 
5 

= −19 

(A.1)

Based on the (A.1) , the solution, which is the inventory policy,

ould be obtained by solving the robust counterpart as follows: 

 t ( ̃  ρ) = { 16 . 12 , 14 . 88 , 15 , 11 } 
y t ( ̃  ρ) = 

{
13 . 88 , 15 . 12 , 9 . 88 + 5 . 12 ̃  ρ1 

1 + 5 . 12 ̃  ρ2 
1 , 3 . 73 

+ 4 . 13 ̃  ρ1 
1 + 4 . 13 ̃  ρ2 

1 + 11 . 14 ̃  ρ2 
2 + 11 . 14 ̃  ρ3 

2 

}
ppendix B 

We generated a random value from a uniform distribution with

upport [0, 1] for all non-zero ˜ ρ. Afterward, all ˜ ρ were normalized

o that the sum in the same row became 1. For the last elements

n each row, we forced the sum of the revisiting rate to be 1. The

seudocode is described in Algorithm 1 . 
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Algorithm 1 Generation of uncertainty factors. 

while i, j ∈ T 

− do 

if j ≥ i then 

˜ ρ j 
i 

← uniform (0, 1) 

end 

end 

while i, j ∈ T 

− do 

˜ ρ j 
i 

← ˜ ρ j 
i 
/ 
∑ 

j∈ T − ˜ ρ j 
i 

end 

A
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ppendix C 

For IC, we generated the random value based on the uniform

istribution whose support is [0, 1]. In succession, the next gen-

rated random value has the support between zero and the value

btained by subtracting the cumulative sum of generated random

alues from 1. We proceeded recursively in this manner and forced

he sum from purchasing date to the last revisiting date to be 1. In

he case of data generation for PC, IC data was generated and rear-

anged in the reverse order at the same row. The pseudocodes of

C and PC are described in Algorithms 2 and 3 , respectively. 

lgorithm 2 Generation of uncertainty factors IC. 

hile i, j ∈ T 

− do 

if j ≥ i then 

˜ ρ j 
i 

← uniform (0, 1 −∑ j−1 

k =1 
˜ ρ j 

i 
) 

end 

nd 

lgorithm 3 Generation of uncertainty factors PC. 

hile i, j ∈ T 

− do 

if j ≥ i then 

˜ ρ j 
i 

← uniform (0, 1 −∑ j−1 

k =1 
˜ ρ j 

i 
) 

end 

nd 

hile i, j ∈ T 

− do 

while k ∈ { 1 , · · · , τ } do 

˜ ρ i + k −1 
i 

← ˜ ρ i + τ−k 
i 

end 

nd 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.omega.2019.102170 . 
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