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ORIGINAL ARTICLE

Complexity and relaxation methods for minimising total average cycle
stock subject to practical constraints

Young-Soo Myunga and Ilkyeong Moonb

aBusiness Administration, Dankook University, Yongin, The Republic of Korea; bIndustrial Engineering, Seoul National University,
Gwanak-gu, The Republic of Korea

ABSTRACT
This paper considers the problem of minimising total average cycle stock that is subject to
practical constraints, as first studied by Silver and Moon and later by Hsieh, and Billionnet.
For the problem, reorder intervals of a population of items are restricted to a given set, and
the total number of replenishments allowed per unit time is limited. Previous researchers
proposed different mathematical programming formulations and relaxation methods without
identifying the computational complexity of the problem. In this study, we investigate the
computational complexity of the problem and analyse the proposed relaxation methods. We
identify NP-hard and polynomial time solvable cases of the problem and compare three dif-
ferent relaxations in terms of the lower bounds provided by each relaxation method. We
also show that the relaxation with the strongest bound can be solved using a linear time
greedy algorithm instead of a general-purpose linear programming algorithm.
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1. Introduction

Silver and Moon (1999) addressed the problem of
setting reorder intervals for items within a popula-
tion such that the total average stock is minimised.
In their research, the stock was subjected to a
restricted set of intervals, and a limit was placed on
the total number of replenishments allowed per unit
time. As Silver (2008) pointed out, a substantial gap
exists between the theory and practice of inventory
management, and researchers should strive to nar-
row it. The reorder interval problem provides a
good example for showing the narrowing of the gap
between the theory and practice of inventory man-
agement because, in practice, the reorder intervals
are usually selected from a set such as {1 day, 2 days,
… , 1 week, 2 weeks, 1month,… }. The many gro-
cers who invest in automated ordering must set the
reorder intervals to coincide with the intervals of
the delivery truck, which are quite regular and
determined in advance (Strother, 2018; Wells, 2017).
The second largest convenience store chain in Korea
recently developed a smart ordering system in which
items are sorted according to their reorder intervals,
which are 1 day, 2 days, 3 days, … , 1 week, 2weeks,
etc. (Cho, 2016). Therefore, the inventory ordering
problem with a restricted set of intervals has
become of practical concern since automated order-
ing has been implemented steadily.

The mathematical programming formulation
introduced by Silver and Moon clearly represented

the problem. The following notations were used in
this original work:

n ¼ number of items,
m ¼ number of possible discrete reorder intervals,
N ¼ maximum total number of replenishments per

unit time,
Di ¼ demand rate of item i; in units/unit time,

i¼ 1, 2, … , n,
vi ¼ unit variable cost of item i; in monetary units/

unit time, i¼ 1, 2, … , n,
wi � Divi

2 ; i¼ 1, 2, … , n,
ti ¼ decision variable representing the reorder inter-

val of item i; i¼ 1, 2, … , n,
Tj ¼ jth possible reorder interval, j¼ 1, 2, … , m,
T ¼ T1; :::;Tmf g:

The problem was described as follows:

min
Xn
i¼1

witi

subject to
Xn
i¼1

1
ti
� N

ti 2 T1; :::;Tmf g; i ¼ 1; 2; :::; n

By setting yi ¼ 1
ti
for each i and using a suitably

selected set of integer values Y ¼ Y1; :::;Ymf g; the formula-
tion was transformed into the equivalent problem, (P1).

P1ð Þ min
Xn
i¼1

wi
1
yi

(1)
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subject to
Xn
i¼1

yi � N (2)

yi 2 Y1; :::;Ymf g; i ¼ 1; 2; :::; n (3)

To handle the (P1) problem, Silver and Moon
(1999) developed a dynamic programming algo-
rithm that finds an optimal solution in pseudo-poly-
nomial time. They also presented a heuristic. Hsieh
(2001) showed that (P1) can be presented as a mul-
tiple-choice knapsack problem and developed a
heuristic that was based on the linear programming
(LP) relaxation of the multiple-choice knapsack
model. Using the formulation of Hsieh, Billionnet
(2003) proposed a way of using mixed integer pro-
gramming software for solving a large-scale prob-
lem. All the previous studies were based on the
conjecture that the problem is NP-hard, mainly
because the problem featured a knapsack-type con-
straint. However, because the objective function is
closely related to the constraint, the knapsack prob-
lem cannot be reduced to (P1), and hence, the NP-
hardness of the knapsack problem cannot be used
to verify the NP-hardness of (P1).

The previously cited studies also presented relax-
ation methods to obtain lower bounds of (P1).
Silver and Moon (1999) used the Lagrangian relax-
ation of (P1) without Constraint (3), and Hsieh
(2001) and Billionnet (2003) developed two slightly
different LP relaxations for Hsieh’s multiple-choice
knapsack model. Silver and Moon’s (P1) relaxation
can be solved by an analytical method, while both
LP relaxations are solved using general-purpose LP
algorithms. Billionnet (2003) indicated that the LP
relaxation used in the multiple-choice knapsack
problem provides tighter lower bounds than that of
Silver and Moon but did not compare them with
those obtained through the LP relaxation of Hsieh.

The first contribution of our study stems from
the investigation into the computational complexity
of (P1). In the next section, we prove that (P1) is
NP-hard and that it remains NP-hard even for cases
in which every item has the same demand rate and
unit variable cost. We also show that a polynomial
time algorithm solves (P1) for a special case in
which the possible number of orders per unit time,
Y1; :::;Ym; is an arithmetic sequence; i.e., Yj ¼
Y1 þ ðj� 1Þc for each j¼ 2, … , m. For example,
when possible numbers of orders are integer multi-
ples of a certain basic number, Y1; :::;Ym becomes
an arithmetic sequence. Analysis of the computa-
tional complexity of a problem is interesting and
valuable research from both theoretical and practical
points of view, and the same type of approach used
for some inventory problems can be found in
Akbalik, Hadj-Alouane, Sauer, and Ghribi (2017)
and Li, Chen, and Tang (2017).

The second contribution of our study comes
from the comparison of the three relaxations pro-
posed by previous researchers. We show that
Billionnet’s LP relaxation provides lower bounds
that are as good as or more constrained than those
of Hsieh’s LP relaxation method, and we show the
development of a linear time-greedy algorithm for
solving Billionnet’s LP relaxation problem, which
had originally been solved with a general-purpose
LP algorithm.

2. Problem complexity

In this section, we will show that (P1) is NP-hard.
For this purpose, we introduce the following deci-
sion version of the unbounded subset sum problem
(USSP) that is NP-complete.

USSP INSTANCE: A set of given integer num-
bers is a1 < a2 < � � � < ak and b.

QUESTION: Is there a set of integer numbers
x1; x2; :::; xk that satisfies

Pk
j¼1 ajxj ¼ b?

Theorem 1. (P1) is NP-hard.

Proof. We show that USSP is reducible to the deci-
sion version of (P1). Given an instance of USSP, an
instance of (P1) is associated with it by the follow-

ing procedure. Set n ¼ b
a1

l m
and select w1 � w2 �

� � � � wn such that ba1
ðb�1Þak <

wn
w1

< b
b�1 (C1). Set m ¼

kþ 1 and select Y1 such that Y1 >
wn b�1ð Þak�w1ba1
w1b�wnðb�1Þ

(C2). It is noteworthy that the numerator and
denominator are positive by C1; therefore, Y1 > 0:
Set N ¼ nY1 þ b and Yj ¼ Y1 þ aj�1 for each j¼ 2,
… , m. The answer to the question about the
instance USSP instance is yes if and only if the asso-
ciated (P1) has a feasible solution
with

Pn
i¼1 wi

1
yi
�Pn

i¼1 wi
1
Y1
� w1b

Y1Ym
:

For a solution vector fxjg of USSP withPk
j¼1 ajxj ¼ b; we constructed a solution vector,

fyig; using xjf g such that the number of yi variables

having a Yj value equals xj�1 for j¼ 2, … , m.

Because n ¼ b
a1

l m
; n >

Pk
j¼1 xj: We set the remain-

ing n�Pk
j¼1 xj variables equal to Y1: Also, we

assigned the largest Yj value to the yi with the larg-
est index as follows:

yi ¼
Y1; if 1 � i � n�

Xk
s¼1

xs

Ym; if i > n� xk

Yj; if n�
Xk
s¼j�1

xs � i � n�
Xk
s¼j

xs

8>>>>>><
>>>>>>:

We define a 0-1 indicator variable, dij; for each i
and j such that if yi is assigned to Yj; then dij is 1,
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and it is 0, otherwise. Thus, yi ¼
Pm

j¼1 Yjdij;Pn
i¼1 di1 ¼ n�Pk

s¼1 xs; and
Pn

i¼1 dij ¼ xj�1 for
j¼ 2, … , m. Clearly,

Pn
i¼1 yi ¼

Pn
i¼1

Pm
j¼1 Yjdij ¼Pn

i¼1fY1di1 þ
Pm

j¼2ðY1 þ aj�1Þdijg ¼ nY1 þ b and

Xn
i¼1

wi
1
yi
¼
Xn
i¼1

wi

Xm
j¼1

1
Yj

dij

¼
Xn
i¼1

wi
1
Y1

di1 þ
Xm
j¼2

1
Y1

� 1
Y1

þ 1
Yj

� �
dij

" #

¼
Xn
i¼1

wi
1
Y1

�
Xm
j¼2

1
Y1

� 1
Yj

� �
dij

" #

¼
Xn
i¼1

wi
1
Y1

�
Xm
j¼2

aj�1

Y1Yj
dij

 !

¼
Xn
i¼1

wi
1
Y1

�
Xn
i¼1

wi

Xm
j¼2

aj�1

Y1Yj
dij

�
Xn
i¼1

wi
1
Y1

� w1

Xn
i¼1

Xm
j¼2

aj�1

Y1Ym
dij

¼
Xn
i¼1

wi
1
Y1

� w1
1

Y1Ym

Xk
s¼1

asxs

¼
Xn
i¼1

wi
1
Y1

� w1
b

Y1Ym

To show the conditional part of the claim, we
use a given feasible solution, fyig; of (P1) withPn

i¼1 wi
1
yi
�Pn

i¼1 wi
1
Y1
� w1b

Y1Ym
: If dij is defined with

the same 0-1 indicator variables as we have
described, thenXn
i¼1

yi ¼
Xn
i¼1

Xm
j¼1

Yjdij ¼
Xn
i¼1

fY1di1 þ
Xm
j¼2

ðY1 þ aj�1Þdijg

¼ nY1 þ
Xn
i¼1

Xm
j¼2

aj�1dij � nY1þb:

Therefore, either
Pn

i¼1

Pm
j¼2 aj�1dij ¼ b orPn

i¼1

Pm
j¼2 aj�1dij � b� 1: We assume that the lat-

ter case is true. Therefore, we write

Xn
i¼1

wi
1
yi
¼
Xn
i¼1

wi

Xm
j¼1

1
Yj

dij

¼
Xn
i¼1

wi
1
Y1

�
Xn
i¼1

wi

Xm
j¼2

aj�1

Y1Yj
dij

�
Xn
i¼1

wi
1
Y1

� wn

Xn
i¼1

Xm
j¼2

aj�1

Y1Y2
dij

�
Xn
i¼1

wi
1
Y1

� wn
b�1
Y1Y2

>
Xn
i¼1

wi
1
Y1

� w1
b

Y1Ym

The last inequality stems from w1
b

Y1Ym
� wn

b�1
Y1Y2

¼
w1b Y1þa1ð Þ�wn b�1ð Þ Y1þakð Þ

Y1Y2Ym
> 0 (by C2). Therefore,

Pn
i¼1

Pm
j¼2 aj�1dij ¼ b: If we construct a solution

vector fxjg of USSP such that xj�1 ¼
Pn

i¼1 dij for

j¼ 2, … , m, then,
Pk

j¼1 ajxj ¼ b: w

C1 can be satisfied when w1 ¼ wn: In other
words, equal values of wi can be used to satisfy C1.
Therefore, even when every item has the same
demand rate and unit variable cost, the problem is
still NP-hard.

Corollary 1. (P1) remains NP-hard even
if w1 ¼ w2 ¼ � � � ¼ wn:

3. Polynomial time solvable case

In this section, we consider a special case in which
the number of possible orders per unit time,
Y1; :::;Ym; is an arithmetic sequence. We assume
that Yj ¼ Y1 þ ðj� 1Þc for each j¼ 2, … , m. We
show that the following algorithm optimally solves
this case:

Algorithm Exact
(Step 1) Set yi ¼ Y1 for i¼ 1, … , n; z ¼Pn
i¼1 wi

1
Y1
; N ¼ N � nY1:

(Step 2) Order the indices ði; jÞ for i¼ 1, … , n
and j¼ 2, … , m by the decreasing values of wi

Yj�1Yj
;

and when ties occur, place the index with smaller
i first.

(Step 3) For each index ði; jÞ in a given order,
if N � c � 0; set yi ¼ Yj; z ¼ z� wi

Yj�1Yj
; N ¼

N � c else STOP.

Theorem 2. The algorithm Exact optimally solves
(P1) when Yj ¼ Y1 þ ðj� 1Þc for each j¼ 2,… ,m.

Proof. Solution y�if g is obtained from Exact but it
is not an optimal solution of (P1). We let ŷi

� �
be

an optimal solution of (P1). Then, we conclude that
1 � i1 � n with y�i1 < ŷi1: As N �Pn

i¼1 y
�
i < c by

Step 3 of Exact, we conclude that 1 � i2 � n with
y�i2 > ŷi2: By ordering of indices ði; jÞ in Step 2, we
obtain wi1

y�i1ðy�i1þcÞ � wi2
ðy�i2�cÞy�i2 : Without loss of generality,

we assume that wi1
y�i1ðy�i1þcÞ <

wi2
ðy�i2�cÞy�i2 because we can

find the pair i1 and i2 by modifying y�if g through
the following process: If the two ratios are equal,
we simultaneously increase y�i1 and decrease y�i2 by
c; which does not change the objective value for
the modified y�if g: Then, the following relation-
ship holds:

wi1

ŷi1 � c
� �

ŷi1
� wi1

y�i1 y�i1 þ cð Þ <
wi2

y�i2 � cð Þy�i2
� wi2

ŷi2 ŷi2 þ c
� �

We construct a new solution y0i
� �

such that y0i1 ¼
ŷi1 � c; y0i2 ¼ ŷi2 þ c and y0i ¼ ŷi for all i other than
i1 and i2: Then,
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Xn
i¼1

wi
1
y0i
¼
Xn
i¼1

wi
1
ŷi
� wi1

1
ŷi1

þ wi1
1
y0i1

� wi2
1
ŷi2

þ wi2
1
y0i2

¼
Xn
i¼1

wi
1
ŷi
þ wi1c

ŷi1�c
� �

ŷi1
� wi2c
ŷi2 ŷi2 þ c
� � <Xn

i¼1

wi
1
ŷi

contradicting the optimality of ŷi
� �

. w

4. Relaxation methods

Silver and Moon (1999), Hsieh (2001), and
Billionnet (2003) proposed relaxation methods that
provide lower bounds of (P1). We compare their
relaxation methods and develop a linear time greedy
algorithm to solve the relaxation that provides the
strongest bound. For expositional convenience
herein, we use the following notation: For an opti-
misation problem, P, z(P) and F(P) denote the opti-
mal objective value and the feasible region of P,
respectively. Silver and Moon (1999) relaxed the
problem by discarding Constraint (3). Let ðP1Þ be
the problem (P1) without Constraint (3). Hsieh
(2001) and Billionnet (2003) proposed LP relaxa-
tions that were based on the following multiple
choice knapsack model:

P2ð Þ min ¼
Xn
i¼1

Xm
j¼1

wi
1
Yj

xij (4)

subject to
Xn
i¼1

Xm
j¼1

Yjxij � N (5)

Xm
j¼1

xij ¼ 1; i ¼ 1; 2; :::; n (6)

xij 2 0; 1f g; i ¼ 1; 2; :::; n; j ¼ 1; 2; :::;m (7)

where xij ¼1, if where yi ¼ Yj and 0, otherwise.
Let ðP2Þ be the LP relaxation of (P2) in which

Constraint (7) is replaced by non-negativity con-
straints. Billionnet (2003) showed that F P2ð Þ �
F P1ð Þ and that a data instance exists for which
z P1ð Þ < z P2ð Þ: To obtain a lower bound of (P2),
Billionnet (2003) solved ðP2Þ using a general-pur-
pose LP algorithm. Hsieh (2001) introduced a more
strengthened relaxation using the idea of Silver and
Moon (1999) that the optimal solution of (P2)
always satisfies y1 � y2 � � � � � yn: Hsieh added the
following constraints to (P2)

Xm
j¼1

Yjxij �
Xm
j¼1

Yjxiþ1;j i ¼ 1; 2; :::; n� 1 (8)

With Constraint (8), ðP2ÞbecomesðP3Þ: Clearly,
F P3ð Þ � F P2ð Þ; therefore, z P2ð Þ � z P3ð Þ: To obtain
an improved lower bound, Hsieh (2001) solved P3ð Þ
using a general-purpose LP algorithm that was
based on the interior point algorithm. Contrary to
expectation, we show that z P2ð Þ ¼ z P3ð Þ; in other

words, the optimal solution of ðP2Þ always satisfies
Constraint (8). We describe the relationships among
the three relaxations, including a proof, for z P2ð Þ ¼
z P3ð Þ; and we offer a proof for F P2ð Þ � F P1ð Þ that
is simpler than the one that appeared in
Billionnet (2003).

Theorem 3 (i) F P3ð Þ � F P2ð Þ � F P1ð Þ
(ii) z P1ð Þ � z P2ð Þ ¼ z P3ð Þ

Proof. (i) F P3ð Þ � F P2ð Þ is straightforward. To

show F P2ð Þ � F P1ð Þ; for an arbitrary feasible solu-
tion, fxijg; of ðP2Þ; we set yi ¼

Pm
j¼1 Yjxij for i¼ 1,

… , n. Then, we obtain yi 2 F P1ð Þ
because

Pn
i¼1 yi ¼

Pn
i¼1

Pm
j¼1 Yjxij � N:

(ii) Suppose that fxijg is an optimal solution of
ðP2Þ but

Pm
j¼1 Yjxij >

Pm
j¼1 Yjxiþ1;j for some i, 1 �

i � n� 1: If
Pm

j¼1
1
Yj
xij �

Pm
j¼1

1
Yj
xiþ1;j; interchange

the values of xij and xiþ1;j; and otherwise (i.e.,Pm
j¼1

1
Yj
xij >

Pm
j¼1

1
Yj
xiþ1;j) set the values of both xij

and xiþ1;j equal to the previous value of xiþ1;j: Then
the resulting solution does not increase the objective
value while satisfying the constraints of ðP3Þ: w

Theorem 3 states that the more constrained LP
relaxation, ðP3Þ; cannot provide better lower bounds
than ðP2Þ: We also show that a greedy algorithm
can be used to find an optimal solution of P2ð Þ
because ðP2Þ is a specific version of the linear mul-
tiple-choice knapsack problem. We propose a greedy
algorithm that is a simplified version of the algo-
rithm by Sinha and Zoltners (1979) for the linear
multiple-choice knapsack problem as a means of
solving ðP2Þ:
Algorithm Greedy

(Step 1) Set xi1 ¼1 for i¼ 1, … , n; z ¼Pn
i¼1 wi

1
Y1
; N ¼ N � nY1:

(Step 2) Order the indices ði; jÞ for i¼ 1, … , n
and j¼ 2, … , m by the decreasing values of wi

Yj�1Yj
;

and when ties occur, place the index with smaller
i first.

(Step 3) For each index ði; jÞ in a given order,
if N � Yj þ Yj�1 > 0; set xij ¼1; xi;j�1 ¼ 0; z ¼

z� wi
Yj�1Yj

; and N ¼ N � Yj þ Yj�1else set xij ¼ N
Yj
;

xi;j�1 ¼ 1� xij; z ¼ z� wi
Yj�1Yj

xij; and STOP.

When the indices ði; jÞ are preordered, the running
time of the algorithm Greedy is O(mn). However,
without preordering, the algorithm can be carried in
O(mn) using the algorithm from Zemel (1984).

5. Conclusions

In this paper, we addressed the problem of setting
reorder intervals for a population of items, as
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originally addressed by Silver and Moon (1999),
Hsieh (2001), and Billionnet (2003). In the three
previously published studies, the computational
complexity of the problem was not clearly identified
and different relaxations were used. In this paper,
we showed that the problem is NP-hard and
remains NP-hard even when every item has the
same demand rate and unit variable cost. We also
showed that when a restricted set of intervals satis-
fies a certain condition, the problem is polynomial
time solvable. We compared the relaxations pro-
posed in the three initial papers and found that the
more constrained LP relaxation of Hsieh (2001) can-
not provide better lower bounds than the relaxation
proposed by Billionnet (2003). We also showed that
the strongest relaxation by Billionnet (2003) can be
solved by a greedy algorithm for the linear multiple-
choice knapsack problem in linear time.
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