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a b s t r a c t

This paper presents an online advertising assignment problem that generalizes the online version
of the bipartite matching problem. Specifically, it focuses on the Display Ads problem, which is a
generalization of the edge-weighted and capacitated matching problem. The display ads problem
has been studied alongside the property of free disposal, in which an advertisement is allowed to
be matched more times than its capacity. Although the problem with free disposal is tractable, the
problem situation might be restricted and challenging to apply to other types of problems. The
objective of this research on the display ads problem is to maximize the total weight of matched
edges while considering a strict capacity constraint. This paper analyzes two online input orders
(adversarial and probabilistic orders) to the problem. For the adversarial order, we design deterministic
algorithms with worst-case guarantees and prove the competitive ratios of them. Upper bounds for
the problem are also proposed. For the probabilistic order, stochastic online algorithms, consisting
of scenario-based stochastic programming and Benders decomposition, are presented. We conduct
numerical experiments of the stochastic online algorithm in two probabilistic order models (known
IID and random permutation).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With an increase in online users, online advertising has be-
come a significant source of income for many Internet-based
companies. According to an Internet Advertising Bureau (IAB)
report [1], Internet advertising revenue in the United States was
$88.0 billion in 2017. The main advantages of online advertising
are traceability, cost-effectiveness, reach, and interactivity. They
facilitate the continuous popularity of online advertising [2]. For
these reasons, managers who place online advertisements on
their websites need to develop decision-making processes to
maximize revenue. One such process involves rapidly selecting an
appropriate advertisement from among those in a set of available
advertisements, and then assigning it on the website, a placement
defined as ‘‘a slot’’ [3].

In this study, an online advertising assignment problem that
managers solve corresponds to a bipartite matching problem
in graph theory. The problem can be interpreted as finding an
optimal matching among the ads and the slots because the as-
signment of advertisements is generally decided either by auction
or through contracts [4]. Unlike with a matching problem, in
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which cardinality is maximized, the objective of the online adver-
tising assignment problem is to find connections, through which
revenue is maximized, between the ads and the slots. Each edge
(connection) has a weight. The weight of the edge might be a
prediction of click-through probability, an estimate of targeting
quality, or a bid submitted by the advertiser [5,6]. When an
advertisement is assigned to a slot, the weight corresponding to
the edge is realized.

In reality, we do not know the information on weights before-
hand, making the problem uncertain. Because of this, managers
focus on the online version of the problem [7–9]. In other words,
we define a bipartite graph for which information about the
nodes on the left-hand side is known in advance, and for which
the nodes on the right-hand side arrive online (one node at a
time). The nodes on the left-hand side represent ads, and those
on the right-hand side represent slots. When a node on the right-
hand side arrives, the edges and weights incident on the node are
revealed. An online algorithm of the problem selects one of the
edges (an ad is displayed on the slot) or discards them (no ad is
displayed on the slot). The decision is irrevocable [10–26]. Online
algorithms must complete each request of assignment without
knowing the future sequence of the nodes on the right-hand
side [27].

If each node on the left-hand side has an integer capacity
(the maximum number of being matched to the nodes on the
right-hand side), we call the situation Display Ads problem. The
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problem is a generalization of the edge-weighted and capacitated
online bipartite matching problem. Feldman et al. [6] gave a
(1 − 1

e )-competitive algorithm for the display ads problem in
the adversarial order when the value of each capacity is big. Ko-
rula and Pál [28] developed a 1

8 -approximation algorithm for
the online weighted bipartite matching problem in the random
order. Kesselheim et al. [29] showed better result by providing an
1
e -approximation algorithm in the random order. Feldman et al.
[30] and Bhalgat et al. [31] implemented fairness and smooth de-
livery constraints for the display ads problem. For edge-weighted
bipartite matching [32], proposed a near-optimal algorithm for
the edge-weighted b-matching problem. Sun et al. [33] proposed
a randomized algorithm, which gives a near-optimal solution.

In the display ads problem Feldman et al. [6], introduced the
property (assumption) referred to as free disposal. The definition
of the free disposal assumption is that each node on the left-hand
side is allowed to be matched more times than its capacity, (c),
but the managers gain only for the ‘‘c’’ highest weights matched.
In other words, the assumption allows for violating the capacity
constraint. Previous research introduced the assumption in the
display ads problem to obtain bounded competitive ratios in the
adversarial order [6,30,31]. Although the problem is tractable
when the assumption is allowed, the problem situation might
be restricted. If some advertisers are sensitive to the number
of times their advertisements are displayed, the solutions with
the assumption might cause issues with trust. That is because
there is a possibility that an ad can be displayed more times than
its capacity, while other ads miss the chance to be displayed.
Also, the display ads problem that allows for the free disposal
assumption is challenging to apply to other types of problems
(e.g., scheduling or resource allocation) in which resources, such
as humans and machines, are strictly limited.

The Adwords problem is similar to the display ads problem in
terms of application of online bipartite matching problems. The
adwords problem has an individual budget instead of an integer
capacity for each node on the left-hand side and the objective
of the problem is to maximize the total budget spent [16,34–
44]. Bhaskar et al. [35] proposed the adwords problem without
a small-bid assumption, which is a relaxed capacity constraint.
Like Bhaskar et al. [35], we propose a display ads problem that
does not allow for the free disposal assumption. We call our
problem ‘‘the display ads problem without free disposal’’. The
objective of this problem is to maximize the total weight of edges
matched, while considering the strict capacity constraint.

This paper presents the analyses of two online input orders
(adversarial and probabilistic orders) to the problem. For the
adversarial order, we design deterministic algorithms with worst-
case guarantees and prove the competitive ratios of them. Upper
bounds for the problem also are proposed. For the probabilistic
order, information on the probability distribution of the future
coming slots is known. In real-life situations, the company can
stochastically estimate the input sequence by using historical
data. We consider two probabilistic order models (known IID
and random permutation) in this paper. The two probabilistic
orders are generally used as stochastic input models of the online
matching problem [4].

This paper presents stochastic online algorithms with scenario-
based stochastic programming and Benders decomposition. The
stochastic online algorithm is based on the algorithms presented
in Feldman et al. [6] and Legrain and Jaillet [42]. Upon each arrival
of a node on the right-hand side, the algorithm estimates future
scenarios of remaining slots and solve optimization problems to
make a good decision for the current slot. The algorithm is used
in this study to handle the uncertainty reasonably. Numerical
experiments on various future scenarios are conducted to show
improved performances over the algorithm of Feldman et al. [6].

The former (adversarial) is a theoretical perspective, while the
latter (probabilistic) is a practical perspective. Table 1 shows
the comparison between this study and recent research on the
display ads problem. The literature in Table 1 is categorized by
equal/unequal edge weight, 1/N(with free disposal)/N(without
free disposal) capacity, and theoretical/practical approaches.

2. Display ads problem without free disposal

The display ads problem without free disposal is defined as
follows [4,6,32,33]. For an edge-weighted bipartite graph G =
(A, T , E, w), A is a set of advertisements (left); T is a set of
slots (right); E is a set of edges of graph G; and w is a set of
weights for E. We know the information on A in advance and
each advertisement i ∈ A has capacity Ci, which is the maximum
number of being matched to T . However, we do not know any
information of T , E, and w, except |T |. The set of T arrives online,
one node at a time. When a node j ∈ T arrives, all edges
incident to j as well as the weights, wij of each are revealed. The
algorithm matches a connection between a node j and one of
the advertisements available or leaves the node unmatched. The
decision made is irrevocable. To resolve the absence of non-trivial
competitive ratios, we assume that the online algorithms know
the range of the weights [Li,Ui] for each advertisement i.

A mathematical formulation for the display ads problem is as
follows:

max
|A|∑
i=1

|T |∑
j=1

wijxij (1)

s.t.
|A|∑
i=1

xij ≤ 1 ∀j ∈ T (2)

|T |∑
j=1

xij ≤ Ci ∀i ∈ A (3)

xij ∈ {0, 1} ∀i ∈ A, j ∈ T (4)

The binary decision variable, xij is 1 if advertisement i ∈ A is
matched to slot j ∈ T ; 0 otherwise. The objective function (1)
maximizes the total weight of the edges matched while satis-
fying the capacity constraint for each advertisement. Constraint
(2) ensures that a slot can display at most one advertisement.
Constraint (3) limits the number of times each advertisement can
be displayed.

This paper focuses on the online version of the problem and
proposes online algorithms to solve the problem. This paper deals
with two online input orders: adversarial and probabilistic. We
assume that there is no knowledge of the arrival order of T in
the adversarial order, but there is the arrival order of T under the
probabilistic structure in the probabilistic order. For the sake of
simplicity and tractability, the weight range for each advertise-
ment i (wij ∈ [Li,Ui], ∀j adjacent to i) is assumed to be known in
advance. If the online algorithm finds a matching M for graph G
then the objective value of the algorithm is

∑
(i,j)∈M wij. We use

the notation of ‘‘competitive ratio’’ to measure the performance
of the online algorithm. The competitive ratio is defined as the
ratio of the value obtained by the online algorithm (ALG) to the
optimal offline objective value (OPT ) given a bipartite graph G .
For every graph G = (A, T , E, w) and every order of T , the online
algorithm is c-competitive if ALG ≥ c · OPT .

The remainder of the paper is organized as follows. Section 3
presents deterministic algorithms and some theorems for the
adversarial order. Section 4 introduces stochastic online algo-
rithms with scenario-based stochastic programming and Benders
decomposition for the probabilistic order. Section 5 provides nu-
merical results of the stochastic online algorithm that is pre-
sented in Section 4. Section 6 offers contributions and conclusions
of this study.
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Table 1
Comparison between recent research and this study.
Author (year) Edge-weighted Capacity Approach

Feldman et al. (2009) [6] Unequal N(wa) Tc
Korula and Pál (2009) [28] Unequal 1 T
Haeupler et al. (2011) [17] Unequal 1 T/Pd

Bhalgat et al. (2012) [31] Unequal N(w) T/P
Kesselheim et al. (2013) [29] Unequal 1 T
Jaillet and Lu (2014) [19] Equal 1 T/P
Chen and Wang (2015) [13] Unequal 1 T/P
Ting and Xiang (2015) [32] Unequal N(w/ob) T
Bhaskar et al. (2016) [35] Unequal N(w/o) T
Sun et al. (2017) [33] Unequal 1 T
Huang et al. (2018) [18] Unequal 1 T/P
This Paper Unequal N(w/o) T/P

aw indicates ‘with free disposal assumption.’
bw/o indicates ‘without free disposal assumption.’
cT indicates a theoretical approach.
dP indicates a practical approach.

3. Deterministic algorithms for adversarial order

In this section, deterministic algorithms are described for the
display ads problem without free disposal. We have no knowl-
edge of the arrival order of T over any bipartite graph G =
(A, T , E, w) We assume that the range of the weights for an
advertisement i ∈ A is [Li,Ui] and the capacity of it is Ci. A simple
deterministic algorithm, called Greedy, is defined as follows:

Algorithm 1: Greedy
while a new node j ∈ T arrives do

if all neighbors of j are unavailable (not or full connected) then
continue;

else
match j to that available neighbor i which has the
maximum value of wij;

end
end

For Algorithm 1, we prove the following competitive ratio:

Theorem 1. Algorithm 1 has a competitive ratio of 1
1+M1

for the
display ads problem without free disposal (M1 := max(Ui

Li
),∀i ∈ A).

(See proof in Appendix A.1.)

For this problem, we consider a worst case in which the
competitive ratio of any deterministic algorithms could be af-
fected: For example, for an advertisement i ∈ A, a deterministic
algorithm has already matched i to Ci nodes in T . All the edges
matched have low weights. Then, a node in T , which is the only
neighbor of i, arrives. The weight of the edge between them is
extremely high. To avoid this case, we propose Algorithm 2 which
is based on the techniques developed by Ting and Xiang [32]. For
Algorithm 2, we define variables xi, as the number of matched
edges between i and the nodes in T .

For Algorithm 2, we prove the following competitive ratio as
follows:

Theorem 2. Algorithm 2 has a competitive ratio of 1
1+M2

for the
display ads problem without free disposal (M2 := max

(
Ci · ⌊

Ci
ki
⌋
−1
·

(Ui
Li
)

1
ki
)
such that ki := min(Ci, ⌈ln

Ui
Li
⌉), ∀i ∈ A). (See proof in

Appendix A.2.)

In this paper, we propose an integrated algorithm that com-
bines Algorithm 1 and Algorithm 2, and prove the following
lemma:

Algorithm 2: Greedy with sub_ads
for each i ∈ A do

if Li = Ui then
ki ← 1;

else
ki ← min(Ci, ⌈ln

Ui
Li
⌉)

end
Decompose a variable xi into ki variables xi0, xi1, . . . , xi(ki−1)
and set all variables to 0;

end
while a new node j ∈ T arrives do

t ← 1;
while t ≤ |A| do

i← a neighbor of j such that the weight of edge between
them is the t th highest among that of all edges adjacent
to j;
if i = ∅ then

break;
end
Find an integer value p such that

wij ∈ [Li(
Ui
Li
)

p
ki , Li(

Ui
Li
)
p+1
ki

)
;

if xip < ⌊
Ci
ki
⌋ then

match j to i and xip ← xip + 1, break;
else

t ← t + 1;
end

end
end

Algorithm 3: Greedy + Greedy with sub_ads
if M1 ≤ M2 then

run Algorithm 1;
else

run Algorithm 2;
end

M1 := max(Ui
Li
) and M2 := max

(
Ci · ⌊

Ci
ki
⌋
−1
· (Ui

Li
)

1
ki
)
such that

ki := min(Ci, ⌈ln
Ui
Li
⌉),∀i ∈ A

Lemma 1. Algorithm 3 has a competitive ratio ofmax
( 1
1+M1

, 1
1+M2

)
for the display ads problem without free disposal.
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Feldman et al. [6] presented a simple upper bound for the
problem.

Theorem 3. No deterministic algorithm for the display ads problem
achieves a competitive ratio better than 1

2 even though free disposal
is allowed.

Proof. We consider an instance from G = (A, T , E, w) in which
A = {i1, i2} and T = {j1, j2}. The capacity of each advertisement
is 1. When j1 arrives first, we know that wi1j1 and wi2j1 have the
same weight (let the weight be w). Once j1 has been matched, j2
arrives. The edge incident to the same advertisement matched to
j1 is revealed only and the weight of the edge is w. As j2 cannot
be matched when it arrives, a deterministic algorithm can obtain
w. However, the optimal objective value is 2w. □

Using Theorem 3, we give the following lemma:

Lemma 2. Algorithm 3 can be an optimal algorithm when Li =
Ui, ∀i.

Proof. When Li = Ui for every advertisement i ∈ A, the values
of M1 and M2 in Algorithm 3 are all equal to 1. Hence, the
competitive ratio of the algorithm can be 1

2 . As the upper bound
of the competitive ratio is 1

2 according to Theorem 3, Algorithm
3 can be an optimal algorithm when Li = Ui, ∀i. □

To show that Algorithm 3 features a good competitive ratio
even when Li ̸= Ui, we prove an upper bound on the competitive
ratio for any deterministic algorithm and show that the gap
between the upper bound and competitive ratio is not large. We
present the following theorem, which is based on the techniques
developed by Ting and Xiang [32], to get an upper bound.

Theorem 4. No deterministic algorithm for the display ads problem
without free disposal can have a competitive ratio larger than
min( 12 , K1, K2). K1 := min

( 1

( UiLi
)
1
Ci

)
and K2 := min

( 1
⌈ln Ui

Li
⌉

·
e

e−1

)
, ∀i ∈

A. (See proof in Appendix A.3.)

When the ratio of Li and Ui is very small, the upper bound and
lower bound each approaches 1

2 . Otherwise, we divide the bounds
into two cases according to the relative size of Ci compared to the
ratio of Li and Ui. When Ci is small, the upper bound approaches
K1 and the lower bound does 1(

1+( UiLi
)
1
Ci

) . When Ci is large, the

upper bound approaches K2 and the lower bound does 1(
1+⌈ln Ui

Li
⌉

) .
The gaps between the upper and lower bounds are not large when
the ratio of Li and Ui is close to 1 or Ci is very large or small
compared to the ratio of Li and Ui. It implies that the deterministic
algorithm presented shows good performances in the adversarial
order. When it comes to randomized algorithms, Sun et al. [33]
proposed a near-optimal algorithm for the problem. For this
reason, we do not cover randomized algorithms in this paper.

4. Stochastic algorithms for probabilistic order

In this section, we assume that the managers already know
information on the probability distribution for the future coming
slots. Stochastic online algorithms are proposed for the display
ads problem in the probabilistic order. The algorithm combines
the primal–dual algorithms developed by Feldman et al. [6] with
scenario-based stochastic programming and Benders decomposi-
tion proposed by Legrain and Jaillet [42]. The algorithm in the
probabilistic order is a practical approach. Numerical experiments
of stochastic processes are conducted, and the results are pre-
sented in Section 5. We uses two stochastic models according to
information of the sequence on the right-hand nodes: the known
IID and random permutation models.

4.1. Known IID model

For the known IID model, we assume that there are some types
of nodes in T . For a collection K of node types, the managers
know a probability distribution on K in advance. For each slot,
a type node k ∈ K is drawn from the probability distribution. We
suppose that the jth slot has just arrived (such that kj, which is
a node type at slot j, is revealed) and that the managers decide
an advertisement to be displayed on the slot. The parameters
and decision variables for stochastic programming formulation
are introduced in Table 2.

A stochastic programming formulation at the time of the jth
slot is as follows:

max
∑

i

wikjxi +
∑
ω∈Ωj

pw
∑

i

∑
k

wikyω
ik (5)

s.t.
|A|∑
i=1

xi ≤ 1 (6)

|A|∑
i=1

yω
ik ≤ Tω

jk ∀ω ∈ Ωj, k ∈ K (7)

xi +
∑
k

yω
ik ≤ C left

i ∀ω ∈ Ωj, i ∈ A (8)

x ∈ B|A| (9)

yω
ik ∈ N ∀i ∈ A, k ∈ K , ω ∈ Ωj (10)

The objective function (5) maximizes the weight for the jth
slot and the expected total weight obtained from the remaining
future slots. Constraint (6) ensures that the jth slot can display
at most one advertisement. Constraint (7) guarantees that the
number of slots for type k allocated to all advertisements in
scenario ω cannot exceed Tω

jk . Constraint (8) limits the capacity
left for each advertisement and each scenario. Constraints (9) and
(10) define xi and yω

ik as binary and integer variables, respectively.
The stochastic formulation can be decomposed using Benders

decomposition [45]:
Master problem

max
∑

i

wikjxi +
∑
ω∈Ωj

pωS(x, ω) (11)

s.t.
|A|∑
i=1

xi ≤ 1 (12)

x ∈ B|A| (13)

Slave problems (for each x and ω)

S(x, ω) = max
∑

i

∑
k

wikyω
ik (14)

s.t.
|A|∑
i=1

yω
ik ≤ Tω

jk ∀k ∈ K (15)∑
k

yω
ik ≤ C left

i − xi ∀i ∈ A (16)

yω
ik ∈ N ∀i ∈ A, k ∈ K (17)

For each x and ω, the objective value of the slave problem
can be calculated to solve the problem. The value can be ap-
proximated by using the dual of the slave problem. αω

k and βω
i

are dual variables corresponding to the first and second type of
constraint for each slave problem, respectively. Using the weak
duality theorem, we show that S(x, ω) ≤

∑
k T

ω
jkα

ω
k +

∑
i(C

left
i −

xi)βω
i for every x and ω. The objective value of the dual problem
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Table 2
Parameters and decision variables (known IID)
Ωj Set of future sample scenarios at j ∈ T
pω Probability of a scenario ω ∈ Ωj
wik Weight of the edge between i ∈ A and k ∈ K
Tω
jk Number of slots for type k in scenario ω

C left
i Capacity left for an advertisement i

xi Binary decision variable, whose value is 1 if ad i is allocated to slot j, 0 otherwise
yω
ik Number of slots for type k allocated to advertisement i for scenario ω (integer variable)

can be a cut for the master problem:
Dual slave problems

min
∑
k

Tω
jkα

ω
k +

∑
i

(C left
i − xi)βω

i (18)

s.t. αω
k + βω

i ≥ wik ∀i ∈ A, k ∈ K (19)

αω
k ≥ 0, βω

i ≥ 0, ∀i ∈ A, k ∈ K (20)

Master problem with an added cut

max
∑

i

wikjxi +
∑
ω∈Ωj

pωSω (21)

s.t.
|A|∑
i=1

xi ≤ 1 (22)

Sω
≤

∑
k

Tω
jkα

ω
k

+

∑
i

(C left
i − xi)βω

i ∀ω ∈ Ωj (23)

x ∈ B|A| (24)

Because the master problem with an added cut is a maxi-
mization problem, the inequality Sω

≤
∑

k T
ω
jkα

ω
k +

∑
i(C

left
i −

xi)βω
i becomes equality. Accordingly, the objective function of the

master problem is replaced by
∑

i wikjxi +
∑

ω∈Ωj
pω
[
∑

k T
ω
jkα

ω
k +∑

i(C
left
i − xi)βω

i ]. If the constants are eliminated, then the ob-
jective function can be

∑
i wikjxi −

∑
ω∈Ωj

pω
[
∑

i β
ω
i xi]. By using

the value of the dual variables βω
i , we develop a stochastic online

algorithm with the primal–dual algorithm, which is presented in
Section 4.3.

4.2. Random permutation model

For the random permutation model, we assume that there are
|T | node types in T and the number of slots for each type is 1.
For a collection K of node types, it becomes K = |T | and T =
{1, 2, . . . , |T |}. That is, a sequence on the right-hand side nodes
becomes one of the random permutations of T . The probability
of each sequence is identical. Like with the known IID model, we
suppose that the jth slot has just arrived (such that a type at slot j
is revealed) and that the managers choose an advertisement to be
displayed on the slot. The parameters and decision variables for
stochastic programming formulation are introduced in Table 3.

A stochastic programming formulation at the time of the jth
slot is as follows:

max
∑

i

wijxi +
∑
ω∈Ωj

pj
∑

i

∑
k≥j+1

wω
ikx

ω
ik (25)

s.t.
|A|∑
i=1

xi ≤ 1 (26)

|A|∑
i=1

xω
ik ≤ 1 ∀ω ∈ Ωj, k ≥ j+ 1 (27)

xi +
∑
k≥j+1

xω
ik ≤ C left

i ∀ω ∈ Ωj, i ∈ A (28)

x ∈ B|A| (29)

xω
ik ∈ B ∀i ∈ A, k ≥ j+ 1, ω ∈ Ωj (30)

The objective function (25) maximizes the weight for the jth
slot and the expected total weight obtained by the remaining
future slots. Constraints (26) and (27) ensure that each slot of
each scenario can display at most one advertisement. Constraint
(28) limits the capacity left for each advertisement and each
scenario. Constraints (29) and (30) define xi and xω

ik as binary
variables, respectively. Like the known IID model, the stochastic
formulation can be decomposed by using Benders decomposi-
tion [45]:
Master problem

max
∑

i

wijxi +
∑
ω∈Ωj

pjS(x, ω) (31)

s.t.
|A|∑
i=1

xi ≤ 1 (32)

x ∈ B|A| (33)

Slave problems (for each x and ω)

S(x, ω) = max
∑

i

∑
k

wω
ikx

ω
ik (34)

s.t.
|A|∑
i=1

xω
ik ≤ 1 ∀k ≥ j+ 1 (35)∑

k≥j+1

xω
ik ≤ C left

i − xi ∀i ∈ A (36)

xω
ik ∈ B ∀i ∈ A, k ≥ j+ 1 (37)

For each x and ω, the objective value of the slave problem can be
calculated to solve the problem. The value can be approximated
by using the dual of the slave problem. αω

k and βω
i are dual vari-

ables corresponding to the first and second type of constraint for
each slave problem, respectively. Using the weak duality theorem,
we show that S(x, ω) ≤

∑
k T

ω
jkα

ω
k +

∑
i(C

left
i − xi)βω

i for every x
and ω. The objective value of the dual problem can be a cut for
the master problem:
Dual slave problems

min
∑
k

αω
k +

∑
i

(C left
i − xi)βω

i (38)

s.t. αω
k + βω

i ≥ wik ∀i ∈ A, k ≥ j+ 1 (39)

αω
k ≥ 0, βω

i ≥ 0, ∀i ∈ A, k ≥ j+ 1 (40)

Master problem with an added cut

max
∑

i

wijxi +
∑
ω∈Ωj

pjSω (41)

s.t.
|A|∑
i=1

xi ≤ 1 (42)
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Table 3
Parameters and decision variables (random permutation)
Ωj Set of future sample scenarios at j ∈ T , |Ωj|= (|T |−j)!
pj Probability of each scenario at j ∈ T , pj = 1

|Ωj |

wω
ik Weight of the edge between i ∈ A and k ∈ K for scenario ω (k ≥ j+ 1)

C left
i Capacity left for an advertisement i

xi Binary decision variable, whose value is 1 if ad i is allocated to slot j, 0 otherwise
xω
ik Binary decision variable, whose value is 1 if advertisement i is allocated to slot k in the scenario ω; 0 otherwise (k ≥ j+ 1)

Sω
≤

∑
k≥j+1

αω
k

+

∑
i

(C left
i − xi)βω

i ∀ω ∈ Ωj (43)

x ∈ B|A| (44)

Because the master problem with an added cut is a maximization
problem, the inequality Sω

≤
∑

k≥j+1 αω
k +

∑
i(C

left
i − xi)βω

i be-
comes equality. Accordingly, the objective function of the master
problem is replaced by

∑
i wijxi+

∑
ω∈Ωj

pj[
∑

k≥j+1 αω
k +

∑
i(C

left
i −

xi)βω
i ]. If the constants are eliminated, then the objective function

can be
∑

i wijxi −
∑

ω∈Ωj
pj[

∑
i β

ω
i xi]. By using the value of the

dual variables βω
i , we develop a stochastic online algorithm with

the primal–dual algorithm, which is presented in Section 4.3.

4.3. Stochastic algorithms using primal–dual algorithms

Feldman et al. [6] provided a primal–dual algorithm to obtain
a good competitive ratio for the display ads problem. Primal and
dual linear programming (LP) formulations for the display ads
problem are as follows:
Primal LP

max
|A|∑
i=1

|T |∑
j=1

wijxij (45)

s.t.
|A|∑
i=1

xij ≤ 1 ∀j ∈ T (46)

|T |∑
j=1

xij ≤ Ci ∀i ∈ A (47)

xij ≥ 0 ∀i ∈ A, j ∈ T (48)

Dual LP

min
|T |∑
j=1

αj +

|A|∑
i=1

βi (49)

s.t. αj + βi ≥ wij ∀i ∈ A, j ∈ T (50)

αj ≥ 0, βj ≥ 0 ∀i ∈ A, j ∈ T (51)

The algorithm uses the dual variables βi to display an adver-
tisement on a slot. First, the dual variables βi are all initialized
to 0. When a slot j ∈ T arrives online, select an advertisement
i that maximizes wij − βi among the advertisements available,
and is displayed on slot j. If wij − βi < 0, then leave slot j
unassigned because the solution is infeasible for the dual. If the
advertisement is displayed, then set xij := 1, αj := wij − βi, and
βi is updated with one of the update rules (i.e. greedy, uniform
weighting, or exponential weighting). The rules were proposed
by Feldman et al. [6] as a means to obtain good competitive ratios.
The algorithm proceeds until all slots of T arrive. At each iteration,
the primal solution gives a feasible integer solution and the dual
solution is also feasible. The value of βi plays a role in adjusting
the weight wij by increasing βi as the number of advertisement

i displayed increases. Therefore, the managers need to decide an
appropriate value for βi and use it in the algorithm.

This paper presents a stochastic online algorithm that is based
on the primal–dual algorithm. The algorithm updates βi with∑

ω∈Ωj
pω
· βω

i (known IID model) or
∑

ω∈Ωj
pj · βω

i (random per-
mutation model) that is obtained by the stochastic programming
formulation. Compared with βi, these values can be more appro-
priate because they reflect stochastic information. A primal–dual
algorithm with stochastic information is shown as follows:

Algorithm 4: Primal–dual algorithm with stochastic information
xij ← 0 ∀i ∈ A, j ∈ T ;
βi ← 0, C left

i ← Ci ∀i ∈ A;
t ← 1;
while a new node j ∈ T arrives do

Select i ∈ A which maximizes the value wij − βi and satisfies
C left
i > 0;

if i ∈ A is selected then
xij ← 1 and C left

i ← C left
i − 1;

Update βi by one rule (e.g. greedy, uniform weighting, or
exponential weighting);

end
if t ≡ 0 (mod ∆) then

Solve the stochastic programming formulation at the
time of t th slot to obtain βω

i ;
Update either βi ← λ · βi + (1− λ) ·

∑
ω∈Ωj

pω
· βω

i

(known IID) ∀i ∈ A or βi ← λ · βi + (1− λ) ·
∑

ω∈Ωj
pj · βω

i
(random permutation) ∀i ∈ A (0 ≤ λ ≤ 1);

end
t ← t + 1;

end

This algorithm selects advertisement i ∈ A by using updated
for values βi for each slot. If the stochastic programming formu-
lation is solved at the time of each slot, then the algorithm takes
much computation time. To shorten the computation time, the
algorithm uses the stochastic technique only for every ∆ slots. A
parameter λ (0 ≤ λ < 1) is introduced to adjust the effect of the
stochastic technique. The effect is greater when the value of λ is
small. Section 5 provides the numerical results obtained with the
stochastic online algorithm.

5. Computational experiments

In this section, the performances of the primal–dual algorithm
and primal–dual algorithm with stochastic information were an-
alyzed. The algorithms were run with JAVA language in Windows
7 on a PC with an Intel R⃝ CoreTM i5-4690 CPU 3.5 GHz with 16.00
GB of RAM. IBM ILOG CPLEX version 12.8 was used to obtain
the dual variables βω

i for each scenario. For this experiment, we
use the ‘experimental ratio’ as the ratio of the value obtained by
Algorithm 4 to the optimal offline objective value at each bipartite
graph. We used the following instances in this experiment: 50
advertisements (|A| = 50) and 200 slots (|T | = 200). The capacity
of each advertisement was set to an integer between 1 and 4. The
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Fig. 1. Results for different value of |Ωj| (Known IID).

Fig. 2. Results for different value of |Ωj| (Random permutation).

ratio of Ui
Li

was limited to 10 for each advertisement. The number
of node types was set to 20 (|K | = 20) and the sequence of slots
follows a multinomial distribution in the known IID model.

To obtain values for βω
i , we solve the (dual) slave problem for

each scenario. Many future scenarios are drawn for the time of
each slot. If we consider all the scenarios drawn, the computation
time might be time-consuming for the (dual) slave problems.
Figs. 1 and 2 present the experimental ratios and computation
times for different values of |Ωj|. We used λ = 0 and ∆ = 1. The
values in Figs. 1 and 2 mean the average values for 100 data sets.

The experimental ratio increased by 6.2% (known IID) and 9.4%
(random permutation) when we apply Algorithm 4 (|Ωj| = 1).
The computation times increased linearly in both of the two
probabilistic models as |Ωj| increases, but the increasing rate was
higher in the random permutation model. The experimental ratio
tended to increase with increasing values of |Ωj|. The increase
in the experimental ratio was shown to be more apparent in
the known IID model than in the random permutation model.
The known IID model showed statistically significant differences
between the average experimental ratios from |Ωj| = 0 to 5.
Meanwhile, the random permutation showed statistically signifi-
cant differences from |Ωj| = 0 to 4. This implies that the adjusted
dual variable βω

i calculated by using future scenarios showed
better performance than βi obtained by the previous update rule.
However, it does not always mean that the performance improves
as the number of future scenarios increases. Hence, we decided
to set |Ωj| to 5 (the known IID) and 4 (the random permutation)
for the following analysis, which created a trade-off between the
experimental ratios and the computation times, as presented in
Figs. 1 and 2. Sensitivity analysis of the parameters λ and ∆ was
performed for the two stochastic models to derive meaningful
insights about using the algorithm with stochastic information.

Fig. 3. Experimental ratios for different values of ∆ (λ = 0).

Fig. 4. Experimental ratios for different values of ∆ (λ = 0.3).

Figs. 3–6 present the experimental ratios for different values of
the parameters λ and ∆. The values in Figs. 3–6 are average values
for 100 data sets. Figs. 3–6 show that the primal–dual algorithm
with stochastic information performed better as the value of ∆
decreased for the two probabilistic orders. It means that the
more frequently we use the adjusted dual variable βω

i , the more
likely we obtain high experimental ratios. The differences in the
experimental ratio were as much as 6.2%, depending on ∆ (1 to
50). In addition, the figures show that the experimental ratios
were affected by the value of λ. The effect of the value of λ tended
to be no higher than that of the value of ∆. Overall, λ = 0.3
showed the best results for these experiments.

Figs. 7–10 present the computation times for different val-
ues of the parameters λ and ∆. The average computation times
ranged between 0.03 and 1.95 s (known IID) and between 0.11
and 7.52 s (random permutation). The small value of ∆ means
that the algorithm takes much computation time because the
number of stochastic programming formulations to be solved
increases. It is crucial to determine the value of ∆ by considering
the experimental ratios and computation times. we decided to set
λ to 0.3 and ∆ to 10 for the following analysis, for the following
analysis, which created a trade-off between the experimental
ratios and computation times, as presented in Figs. 3–10. The em-
pirical results for different ratios of Ui

Li
, |A|, and |T | are presented

in the next subsections.

5.1. Results for known IID model

Fig. 11 presents the empirical results for different ratios of
Ui
Li

(between 10 and 1000). Fig. 11 shows the average values for
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Fig. 5. Experimental ratios for different values of ∆ (λ = 0.6).

Fig. 6. Experimental ratios for different values of ∆ (λ = 0.9).

Fig. 7. Computation times for different values of ∆ (λ = 0).

100 data sets. To compare the performances of the primal–dual
algorithm with stochastic information (Algorithm 4), we present
the results for the primal–dual algorithm using a greedy update
rule as well. The average differences in experimental ratios be-
tween the two algorithms ranged between 10.5% and 14.6%. The
difference tended to increase as Ui

Li
increased, but the tendency

was not high. The ratio of Ui
Li

considerably affects the worst-case
bound obtained by Algorithm 3, while it did not highly affect the
experimental ratios obtained by Algorithm 4 in the known IID
model. Regardless of the ratios of Ui

Li
(between 10 and 1000), the

Fig. 8. Computation times for different values of ∆ (λ = 0.3).

Fig. 9. Computation times for different values of ∆ (λ = 0.6).

Fig. 10. Computation times for different values of ∆ (λ = 0.9).

experimental ratios of the primal–dual algorithm with stochastic
information showed more than 98%.

Fig. 12 presents the experimental ratios for different values
of |A| and |T | (6 cases). Fig. 13 shows the computation times for
different values of |A| and |T |. The values are average values for
100 data sets under Ui

Li
= 100. The experimental ratios tended to

slightly increase as |A| and |T | increased in both of the two ap-
proaches. This implies that as |A| and |T | increase, advertisements
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Fig. 11. Results for different ratios of Ui/Li (Known IID).

Fig. 12. Experimental ratios for different values of |A| and |T | (Known IID).

not assigned yet are more likely to have the opportunity to be
displayed on the remaining slots. The results from Algorithm 4
showed nearly 99% experimental ratio and the difference of 13 ∼
14% compared to the greedy approach in these experiments. The
computation times ranged between 0.18 and 9.75 s and tended
to show the tendency of increasing exponentially.

5.2. Results for random permutation model

Fig. 14 presents the empirical results for different ratios of
Ui
Li

(between 10 and 1000). Fig. 14 shows the average values
for 100 data sets. The average differences in experimental ratios
between the two algorithms ranged between 10.5% and 30.1%.
The difference tended to increase as Ui

Li
increased. It showed

more distinct differences than in the known IID model. Like that
for the known IID model, the ratio of Ui

Li
did not highly affect

the experimental ratios obtained by Algorithm 4 in the random
permutation model. Regardless of the ratios of Ui

Li
(between 10

and 1000), the experimental ratios of Algorithm 4 showed nearly
99%.

Fig. 15 presents the experimental ratios for different values
of |A| and |T | (6 cases). Fig. 16 shows the computation times for
different values of |A| and |T |. The values are average values for
100 data sets under Ui

Li
= 100. The experimental ratios tended

Fig. 13. Computation times for different values of |A| and |T | (Known IID).

Fig. 14. Results for different ratios of Ui/Li (Random permutation).

to slightly increase as |A| and |T | increased in both of the two
approaches. Like that for the known IID model, this implies that
as |A| and |T | increase, advertisements that had missed the chance
of being displayed on the past slots are more likely to have the
opportunity to be displayed on the remaining slots. Algorithm 4
showed more than 99% experimental ratios and the difference
of 19 ∼ 27% compared to the greedy approach in these experi-
ments. The computation times ranged between 0.67 and 102.04 s
and tended to show the tendency of increasing exponentially. In
these experiments, the random permutation model showed more
effective results in terms of experimental ratios, but less efficient
results in terms of computation times compared to the known IID
model.

5.3. Discussions

This subsection presents managerial insights and limitations
for the findings of Algorithms 3 and 4. First, we presented Algo-
rithm 3 to solve the display ads problem without free disposal in
the adversarial order. Through mathematical proofs, we showed
that Algorithm 3 might be a near-optimal algorithm, according to
the value of Ci and [Li,Ui]. The results not only show the improved
worst-case guarantees but also lend a theoretical contribution to
research on the edge-weighted and capacitated online bipartite
matching problem. Notably, the rule for matching between an
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Fig. 15. Experimental ratios for different values of |A| and |T | (Random
permutation).

Fig. 16. Computation times for different values of |A| and |T | (Random
permutation).

ad and a slot in Algorithm 3 can apply to other types of online
bipartite matching problems.

There are some limitations of Algorithm 3. We need weight
ranges for advertisements to obtain non-trivial competitive ratios
because we excluded the free disposal assumption. The weight
ranges might be challenging to know in advance. Also, Algorithm
3 is not a randomized algorithm. We should consider a random-
ized algorithm with the matching rule in Algorithm 3 to obtain
better worst-case guarantees for future research.

Second, Algorithm 4, used in the probabilistic orders, offers
some managerial insights. Even though we dealt with the display
ads problem considering a strict capacity constraint, the simula-
tion results showed that Algorithm 4 can be a robust approach
to solving the problem if we know probabilistic information of
the coming slots. Overall, Algorithm 4 found more than 95%
ratios (close to 99% ratios in random permutation) in all cases
of the numerical experiments. Algorithm 4 was not presented to
guarantee worst-case bounds; however, through the simulation
results we showed that the algorithm tends to find near-optimal
solutions.

There are a lot of future scenarios in each slot. We arbitrar-
ily selected sample scenarios, (|Ωj|), and solved the stochastic
programming problem with those sample scenarios, because it
would take a tremendous amount of time to consider all future

scenarios. Through the simulation results, we showed more than
97% ratios, even in a small number of scenarios (4-5). There
is a possibility that a small number of scenarios lead to bias.
However, the simulation results found that the bias might not
have a significant impact on the experimental ratios.

It is crucial to decide appropriate values of ∆ and λ when we
use Algorithm 4 to solve the problem. The parameter ∆ is related
to the trade-off between effectiveness and efficiency. The param-
eter λ is used to adjust the effect of the stochastic technique. We
found that using only the adjust dual variable βω

i (λ = 0) does
not always lead to better results through the experiments. Thus,
it is recommended that managers decide appropriate values of ∆

and λ through their own simulation results.
From a practical point of view, the simulation results from

Algorithm 4 can apply to a wide range of fields. For example, the
managers would need Algorithm 4 to solve the online advertising
assignment problem in which some advertisers are sensitive to
the number of times their ads are displayed. It would also be
helpful to solve other types of problems (e.g., scheduling or
resource allocation) that can correspond to the online bipartite
matching problem [35,42]. In these problems, the number of
resources (e.g., humans, machines, hotel rooms, and so on) is
limited, which has to present a strict capacity constraint.

There are some limitations of Algorithm 4. The first is that
we need to estimate probabilistic information of arriving slots as
accurately as possible. We need machine learning techniques to
infer the probability distribution of arriving slots. Also, when we
use Algorithm 4, the results might be different depending on |Ωj|,
∆, and λ. It might be a difficult task to find appropriate values
without knowing historical data and conducting simulations.

6. Conclusions

This paper describes the display ads problem, which is a
generalization of the edge-weighted and capacitated online bi-
partite matching problem. Unlike the existing literature, this pa-
per presents the problem without a free disposal assumption to
avoid undermining fairness between advertisements. To obtain
bounded competitive ratios, we assume that the online algo-
rithms know the range of the weights [Li,Ui] for each advertise-
ment i. This paper presents the analyses of the two online input
orders (the adversarial and probabilistic orders) to the problem.
For the adversarial order, the deterministic online algorithms
with worst-case guarantees are proposed. For the probabilis-
tic order, the stochastic online algorithm with scenario-based
stochastic programming and Benders decomposition is proposed
to solve the problem.

The proposed solution methodologies this paper presents
showed good performances in solving the problem. The deter-
ministic online algorithm showed good performances for the
analysis with the upper bound on the competitive ratio. The
online stochastic algorithms provided better performances than
the primal–dual algorithm did through the numerical experi-
ments of the two probabilistic orders. The appropriate values of
λ and ∆ must be chosen according to the trade-off between the
competitive ratio and computation time. The solution method-
ologies provided good and realistic solutions in the real-time
environment of the assignment problem. Therefore, we expect
that the algorithms would be useful for managers who work on
assigning online advertisements for a website.
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Appendix. Proof of theorems

A.1. Proof of Theorem 1

For simplicity, we assume that all capacities in A have the
value of 1. Let E∗ denote the set of optimal edges given by the
offline algorithm, and let E′ denote the set of edges produced by
Algorithm 1. Let OPT and ALG be the objective values obtained by
the offline and Algorithm 1, respectively.

The edges in E′ can be divided into two types: E′∩E∗ and E′\E∗.
The total value of the weights from E′∩E∗ is the same in OPT and
in ALG (value is K ). For every edge ei ∈ E′\E∗, there may exist at
most two edges f 1i and f 2i that are for E∗\E′ as shown in Fig. 17.
(f 1i (f

2
i ): the edges incident with b(a) in E∗\E′, respectively). Let

ALGi denote the weight of the edge ei and OPTi denote the total
weight obtained from the edges f 1i and f 2i . We obtain ALGi ≥ Li
and OPTi < ALGi + Ui. It follows that ALGi

OPTi
>

Li
Li+Ui

.
Now we analyze E∗\E′. Let p denote |E′\E∗|, noting that E∗\E′ ⊂⋃

i=1,...,p(f
1
i ∪ f 2i ). Otherwise, the two nodes adjacent to the edge

e (e ∈ E∗\E′ but e /∈
⋃

i=1,...,p(f
1
i ∪ f 2i )) have no degree in

E′. This finding contradicts the procedure used for Algorithm 1
because, in this case, the edge e would be included in E′ while
Algorithm 1 proceeds. Therefore, ALG ≥ K +

∑
i=1,...,p Li and

OPT < K +
∑

i=1,...,p(Li + Ui). According to these inequalities,
we obtain

ALG
OPT

>
K +

∑
i=1,...,p Li

K +
∑

i=1,...,p(Li + Ui)
≥

∑
i=1,...,p Li∑

i=1,...,p(Li + Ui)

≥ min(
Li

Li + Ui
) =

1
1+max(Ui/Li)

=
1

1+M1

A.2. Proof of Theorem 2

Let E∗ denote the set of optimal edges given by the offline
algorithm and E′ denote the set of edges produced by Algorithm
2. Let OPT and ALG be the objective values obtained by the offline
and Algorithm 2, respectively. For Algorithm 2, each i ∈ A is
decomposed into ki nodes (we call them sub_ads). Each sub_ad
has one of the ki disjoint ranges within [Li,Ui] and is matched to
at most ⌊ Ciki ⌋ nodes in T . Let E′′ denote the set of edges produced
by Algorithm 2 using the sub_ads.

We note that each edge in E∗ can be mapped to one node (or
sub_ad) matched in E′′. Let eij ∈ E∗ and wij ∈

[
Li(

Ui
Li
)

p
ki , Li(

Ui
Li
)
p+1
ki

)
.

There are two cases when j ∈ T arrives: First, xi,p is less than
⌊
Ci
ki
⌋. In this case, the algorithm can match j to a sub_ad s1 ∈ A

corresponding to xu,v (which may be xi,p). We map eij to node
j ∈ T . It follows that wij ≤ ws1j. Second, xi,p is ⌊ Ciki ⌋. We
map eij to sub_ad s2 ∈ A corresponding to xi,p. Let E′′(s2) =
{es2j|es2j ∈ E′′}. In this instance, ⌊ Ciki ⌋ edges in E′′(s2) have already

been matched and each edge has a weight of more than Li(
Ui
Li
)

p
ki .

Let ALG(E′′(s2)) be the total weight of the edges in E′′(s2). It follows
that ALG(E′′(s2)) ≥ ⌊ Ciki ⌋ · Li(

Ui
Li
)

p
ki .

The edges in E∗ can be divided into two types: E∗1 and E∗2 For
E∗1, the edges are mapped from the first case and E∗2 = E∗\E∗1. Let
OPT (E∗1) and OPT (E∗2) be the total weight of the edges for E∗1 and
E∗2, respectively. For the first case, we map eij ∈ E∗1 to node j ∈ T
and any two edges in E∗1 cannot be mapped to the same node in
T . We have wij ≤ ws1j. Therefore, OPT (E

∗

1) ≤ ALG. In the second

case, we have ALG(E′′(s2)) ≥ ⌊ Ciki ⌋ · Li(
Ui
Li
)

p
ki . As wij ≤ Li(

Ui
Li
)
p+1
ki ,

ALG(E′′(s2)) ≥ ⌊ Ciki ⌋ · Li(
Ui
Li
)

p
ki ≥ ⌊

Ci
ki
⌋ · ( Ui

Li
)−

1
ki · wij. It follows that

wij ≤ ⌊
Ci
ki
⌋
−1
· (Ui

Li
)

1
ki · ALG(E′′(s2)). Note that each i ∈ A matches at

most Ci nodes in T . We have
∑

j∈T |eij∈E∗2
wij ≤ Ci · ⌊

Ci
ki
⌋
−1
· (Ui

Li
)

1
ki ·

ALG(E′′(s2)) = M2 · ALG(E′′(s2)). Because
∑

s2∈A
ALG(E′′(s2)) = ALG,∑

i∈A
∑

j∈T |eij∈E∗2
wij = OPT (E∗(s2)) ≤ M2 · ALG. We know OPT =

OPT (E∗1) + OPT (E∗2). Therefore, OPT ≤ (1 + M2) · ALG and the
competitive ratio can be 1

1+M2
.

A.3. Proof of Theorem 4

Theorem 3 proves to be 1
2 . First, we define a deterministic

algorithm DA. Let OPT and ALG be the objective values obtained
by the offline and deterministic algorithm DA, respectively. Next,
we prove K1 using an instance. Assume that A = {i} and its
capacity is Ci. A sequence (j1, j2, . . . , j(Ci+1)) of Ci + 1 nodes in T
arrives online advertisement i and all nodes in T are adjacent.
Let wijk = Li(

Ui
Li
)
k−1
Ci for 1 ≤ k ≤ Ci + 1. For any deterministic

algorithm, we could find a p value such that jp is not matched to
i. When jp is not matched to i in DA, the adversary stops the input
sequence. Consider an instance with T = {j1, j2, . . . , jp} arriving
online. If p = 1, ALG = 0. It follows that the competitive ratio of
this instance would be 0. If 2 ≤ p ≤ Ci, ALG =

∑p−1
k=1 Li(

Ui
Li
)
k−1
Ci and

OPT =
∑p

k=1 Li(
Ui
Li
)
k−1
Ci . The ratio is

ALG
OPT
=

∑p−1
k=1 Li(

Ui
Li
)
k−1
Ci∑p

k=1 Li(
Ui
Li
)
k−1
Ci

≤

∑p−1
k=1 Li(

Ui
Li
)
k−1
Ci∑p

k=2 Li(
Ui
Li
)
k−1
Ci

=
1

(Ui
Li
)

1
Ci

= K1.

If p = Ci + 1, then

ALG
OPT
=

∑p−1
k=1 Li(

Ui
Li
)
k−1
Ci∑p

k=2 Li(
Ui
Li
)
k−1
Ci

=
1

(Ui
Li
)

1
Ci

= K1.
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Therefore, an upper bound of the competitive ratio can be K1.
We also show the way to derive K2. Assume that A = {i}

with capacity Ci. There are ⌈ln Ui
Li
⌉ types of nodes in T (Li ̸=

Ui). Each type has Ci nodes that arrives continuously. A se-
quence (j1, j1, . . . , j1, j2, j2, . . . , j2, . . . , j

⌈ln Ui
Li
⌉
, j
⌈ln Ui

Li
⌉
, . . . , j

⌈ln Ui
Li
⌉
)

of nodes in T arrives online and advertisement i and all nodes in T
are adjacent. Let wijk = Li(e)k−1 for 1 ≤ k ≤ ⌈ln Ui

Li
⌉. The adversary

for any deterministic algorithm DA proceeds as follows: (Define
Y := ⌈ln Ui

Li
⌉)

(1) Ci nodes corresponding to j1 arrive online: If the number of
nodes matched to i (say x1) is less than or equal to Ci/Y , the
adversary stops the input sequence. In other words, x1 ≤ C1/Y .
The competitive ratio can be ALG

OPT ≤
Li·(Ci/Y )
Li·Ci

=
1
Y ≤ K2. Otherwise,

the adversary continues in (2).
(2) Ci nodes corresponding to j2 arrive online: If the number of
nodes matched to i (say x1 + x2) is less than or equal to 2 · Ci/Y ,
the adversary stops the input sequence. Because x1 > Ci/Y and
x1 + x2 ≤ 2 · Ci/Y , we have x2 ≤ Ci/Y . Then ALG is at most
Li · (Ci/Y ) + Li · e · (Ci/Y ). The competitive ratio can be ALG

OPT ≤
Li·(e+1)·(Ci/Y )

Li·e·Ci
=

1
Y ·

e+1
e ≤ K2. Otherwise, the adversary continues

in (s), where s = 3.
(s) (3 ≤ s ≤ Y−1) Ci nodes corresponding to js arrive online: If the
number of nodes matched to i (say

∑s
l=1 xl) is less than or equal

to s · Ci/Y , the adversary stops the input sequence. As x1 > Ci/Y ,
x1 + x2 > 2 · Ci/Y , . . ., x1 + x2 + · · · + xs−1 > (s − 1) · Ci/Y , and
x1+x2+· · ·+xs ≤ (s)·Ci/Y , we have xs ≤ Ci/Y . Then ALG is at most
Li · (Ci/Y )+ Li · e · (Ci/Y )+ · · · + Li · es−1 · (Ci/Y ). The competitive
ratio can be ALG

OPT ≤
Li·(es−1+···+e+1)·(Ci/Y )

Li·es−1·Ci
=

1
Y ·

es−1+···+e+1
es−1

≤ K2.
Otherwise, the adversary continues in step (s + 1).
(Y) Ci nodes corresponding to jY arrive online: By definition,
x1 + x2 + · · · + xY ≤ Ci = Y · (Ci/Y ). The competitive ratio
can be ALG

OPT ≤
Li·(eY−1+···+e+1)·(Ci/Y )

Li·eY−1·Ci
=

1
Y ·

eY−1+···+e+1
eY−1

≤ K2.
Therefore, an upper bound of the competitive ratio can be K2.
(*limn→∞ 1+ 1

e + · · · +
1
en =

e
e−1 ).
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