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Abstract
Typical economic order quantity models of inventory feature demand rate as a constant
parameter and do not allow for backordering. Furthermore, the purchasing cost of the ordered
materials is considered constant. In reality, the demand rate is related to the unit purchasing
cost and other factors, such as time and availability of products in the market. A quantity
discount is regularly applied to encourage ordering more products by decreasing the price. In
some situations, carbon dioxide emissions are carefully scrutinized and a program to handle
these. Greenhouse gases are put in place. Hence, for this research, the rate of demand in
the model was assumed proportional to the unit purchasing cost and partial backordering
was allowed as a fixed parameter. Because plants emit greenhouse gases (carbon dioxide),
we considered mitigation efforts. A mathematical model and computational procedures are
shown with the solution algorithms that demonstrate the capability of the model. An example
problem was solved with the model and sensitivity analysis was conducted to inform the
managerial insights offered.

Keywords All-units quantity discounts · Carbon emissions · Variable and price-dependent
demand · Green supply chain

1 Introduction

In many inventory models, the demand rate has a fixed value and the price of the ordered
products is constant regardless of the order level. However, in real inventory models, the
demand rate depends on price. In this study, the annual demand rate was assumed to be
related to the selling cost for a unit of goods, and because of an all-unit quantity discount for
the customer, the unit purchasing cost depended on the order quantity.

Furthermore, because it has recently emerged as an environmental concern, carbon emis-
sion is addressed in this study. Plants sold from a greenhouse emit carbon dioxide, a
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greenhouse gas, and to keep the carbon emissions in the warehouse at the lowest possible
level by quickly selling plants, we suggested that the seller offer all-units quantity discounts.
Finally, to make it more realistic, the presented model allowed for partial backordering.

When it is a variable, the demand rate can be a function of price, stock level, or both.
Therefore, typicalmodels of inventory feature demand that is based onvarying rates according
to the availability of an item or level of stock. Sana and Chaudhuri (2004) built a model
of economic order quantity (EOQ) for which the demand varied with the availability of
the item and related costs. Their model takes into account a budget that included storage-
capacity costs and optimized profit. Min and Zhou (2009) presented a model of inventory
for perishable items for which demand depends on stock, backordering is partially allowed,
and the maximum inventory level is limited. Yang et al. (2010) proposed another inventory
model for perishable items for which there is a stock-dependent demand that allows for a
few backorders and also accounts for the impact of inflation. Lee and Dye (2012) presented
a model of EOQ for which few backorders are admissible, the demand varies with stock, and
the decline rate of the product can be controlled; this model optimizes the profit and specifies
the optimum ordering and maintenance policies. Many models are characterized by greater
demand and lower price. For example, Mondal et al. (2003) proposed a model of inventory
for perishable items according to a demand rate that had a linear relationship to the selling
price, and the rate of putrefaction had a declining relationship with the period of time in
storage. In the same way, Mukhopadhyay et al. (2005) extended an inventory control model
for perishable items for which the rate of demand depends on selling price and the rate of
putrefaction depends on storage time.

For products with demand rates that depend on price, Teng et al. (2005) proposed an EOQ
model for specifying an order quantity and a selling price that benefit retailers. Transchel and
Minner (2008) presented algorithms of optimized solutions for an EOQ model for which the
quantity rebates and the demand vary with price, and they featured a particular case in which
the price function is linear. Various strategies, based on centralization, through which the
selling price and lot size are combined, and non-centralized conditions as well as dynamic
pricing, have been offered. Zhengping (2010) studied an inventory model through which the
demand varies with the price and little information about demand exists in a supply chain
consisting of a retailer and a supplier. Some models were based on the supposition that the
rate of demand varies with stock level and selling price. Hou and Lin (2006) developed an
inventory model for perishable items in which the demand rate varies with the combined
selling price and stock level, and their model accounts for the time factors related to the fees
that optimize the net present value of the profit. You and Hsieh (2007) examined an inventory
system with a demand rate related to selling price and for which the amount of the item is
available for a specific time. Panda et al. (2010) studied an EOQ model characterized by a
seller and numerous retailers of a product for which the demand rate has a linear relationship
with stock level and price.

Many models were based on the assumption that the inventory holding cost varies. Fer-
guson et al. (2007) proposed an inventory model with inventory holding costs that depend
on storage moments in a linear manner. Under this model, if the item value declines in a
non-linear manner with the storage moment, then surcharges are used for infrequent order
deliveries and the price declines for perishable products. Ghasemi and Afshar Nadjafi (2013)
presented two EOQ models for which the inventory holding costs vary, and they looked at
one situation that includes backorders and another that does not. In their models, the inven-
tory holding cost remains unchanged up to a specific time period, after which the costs are
determined by a function that increases with the length of the ordering cycle. San-José et al.
(2015) examined an EOQmodel in which minimal backordering is allowed and the inventory
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holding cost function has two elements: a fixed cost and a cost that is variable and grows
with the storage moment.

Inventory models with a procurement cost depend on order size rely on all-units or incre-
mental quantity discounts. In the all-units discount, a lower price is placed on all items in the
order. Incremental, sequentially priced discounts decline for unit subsets on the basis of spe-
cific, pre-determined limits. Weng (1995) presented an inventory model to specify policies
for discounting optimized quantities according to price-dependent demand. Weng’s model
optimizes profitswith the use of all-units and incremental quantity discounts, but no shortages
are allowed and the inventory holding cost is held constant. Burwell et al. (1997) proposed
an inventory model to specify the optimal orders and selling prices under a pride-dependent
demand rate, an inventory carrying cost that is related to the unit cost, and offers all-units
discounts. The algorithm that Burwell et al. (1997) used in this model was updated by Chang
(2013) to optimize the profit and specify the accurate optimum amounts of the lot size and
selling price. Also, some related work can be found in the work of Taleizadeh et al. (2008,
2009, 2015, 2016 and 2018), Taleizadeh and Noori-daryan (2015, 2016) and Taleizadeh and
Pentico (2014) and Taleizadeh (2014). A brief summary of the literature review is presented
in Table 1.

The rest of this paper organized as follows. A description of the problem is given in Sect. 2.
The model formulation and solution algorithm are provided in Sect. 3. To check the validity
of the model, computational experiments are offered in Sect. 4. Finally, the conclusion and
some ideas for future research are given in Sect. 5.

2 Problem description

As with all EOQ inventory models, the presented model includes regular cost factors, includ-
ing purchasing, ordering, holding, and partial backordering costs, and accounts for carbon
emission issues. In this study, partial backordering has a fixed constant value and is defined
by the greenhouse keeper, who is the decision maker. The carbon emission comprises four
parts:

1.1. The frequency of delivery (set up, order processes, and transportation)
1.2. Storage amount (production and related activities)
1.3. Environmental impact (inventory holding, material handling, and warehouse activities)
1.4. Carbon emissions from obsolete materials.

The assumptions of themodel, which is the first of this type in the literature, can be applied
to several real situations. For example, in the plant-shop industry, the number of plants in
inventory must sufficiently meet demand, and any greenhouse gases t emitted must not hurt
the greenhouse keepers. In addition, we took into account the carbon emissions from the
means for and frequency of delivering the plants, and from obstacles in the greenhouse.

Moreover, because plants are non-specialty products that can be sold almost anywhere,
the demand for them at the greenhouse tends to depend on price. As a result of the con-
sumer paying attention to price, the greenhouse should offer quantity discounts to motivate
consumers to buy more plants and to reduce the long-term inventory in the greenhouse.

A greenhouse is featured in the case study to illustrate the presented model because
plants release carbon dioxide in the afternoon and overnight, and this makes the warehouse
environment weather unpleasant for the plant keepers. Also, the emissions of this greenhouse
gas are released into the atmosphere. Annual demand rate is affected by the selling price of
a unit of ordered plants, which depends on the order level. The greenhouse keeper is highly
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Fig. 1 Greenhouse gases emitted through a typical greenhouse

interested in selling the plants as soon as possible to make room for fresh plants. Because
the plants are subject to decay over time, the seller offers quantity discounts such that the
unit purchasing cost is decreased as the demand decreases. This discount selling method
improves the emitted carbon dioxide levels for the warehouse keeper, and more plants are
sold to increase profit (See Fig. 1).

This studywas aimed at maximizing the total annual profit as improved by the EOQmodel
presented. The main characteristics of the model are as follows:

The linear demand function decreases if the selling price increases.

1. Carbon emission is considered a negative feature for inventory in the warehouse, as is
the carbon that is emitted from obsolete materials.

2. The purchasing cost has a stage function that decreases as the order size increases, and
it is calculated for all-units discounts.

3. Partial backordering is allowed in the model.

3 Mathematical model and solution algorithm

Figure 2 shows a schematic view of the relationships between different variables and param-
eters in the model.

Notations used in the model are as follows:
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Fig. 2 Common EOQ inventory model with partial backordering

Indices

j Index for cost range
( j � 1, 2, . . . , J )

Parameters

A Fixed ordering cost for placing
and receiving one order

c j Purchase cost for each unit for
order size Q in range j

β Constant fraction of backordering

π Unit backordering cost for each
period

π ′ Unit lost sales cost

g1 Unit goodwill loss

i Constant coefficient for the
holding cost

h Unit holding cost per unit time

a Potential market demand (greater
than zero)

b Coefficient of selling price in the
demand rate function

F Percentage of demand that will
be filled from stock
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Carbon emission parameters

e Carbon emission unit
associated with order
initiated
(replenishment)

g Carbon emission unit
in the warehouse that
is related to stock
level per unit of time

k Amounts of carbon
emission associated
per unit purchased or
produced

t Carbon tax per unit
(e/ton) (money units
for each unit of
carbon emitted as tax)

P ′ Unitary scrap price
(e/unit)

b1 Annual rate of
average inventory
obsolescence (%)

a1 Weight of an obsolete
unit in the warehouse
[ton/unit]

ceo Average cost of
carbon emission
coefficient of
inventory waste for
emissions during
collection and
disposal e/ton

Decision variables

Q∗ Maximum order level for
purchasing cost range
j (order quantity)

C(Q) Unit purchasing cost that
depends on order size
Q

DFT Maximum level of
inventory

T Cycle time

P Unit selling price

D(P) Annual demand rate

B Backordered quantity

L Lost sales quantity

ATC(T , P) Annual total cost

AT P(T , P) Annual total profit
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The model is based on the following assumed characteristics:

1. The inventory carrying cost includes a fixed component, i , and a variable component, w,
that is linearly increased with the unit purchasing cost. Therefore, unit carrying cost is
proportional to the unit purchase cost, c j ; this assumption is expressed as follows:

h � i + wc j (1)

2. The unit purchasing cost is determined for the all-units quantity discount as

C(Q) � c j , if q j−1 < Q ≤ q j , c1 > c2 > · · · > c j (2)

3. As mentioned before, demand is a linear function of the selling price, which is a more
realistic representation of the real world than is the assumption that the demand is a fixed
parameter. It is proportional to a constant parameter, a, and a coefficient of the selling
price, b. The linear demand function is considered to be

D(P) � a − bP (3)

4. To make sure that the objective function is profitable and feasible, meaning that the
demand is positive, the demand must be greater than 0 (D(P) > 0) and the selling price
must be greater than the purchasing cost (c j < P). Considering these two assumptions
simultaneously, the following equation is satisfied:

c j < P < a/b (4)

5. Partial backordering is allowed.
6. All ordered items are identical.
7. Deterioration is not considered.
8. Carbon emission related issues considered in the model are:

a. Frequency of delivery (setup, order processes, and transportation)
b. Storage amounts (production and related activities)
c. Environmental impact (inventory holding, material handling, and warehouse activi-

ties)
d. Carbon emissions from obsolete materials.

The total profit for one year is calculated as
Annual total profit=Annual revenue−Annual total cost
Annual total cost comprises several parts, including purchasing, ordering, inventory hold-

ing, and backordering costs, as well as mitigation or fees related to carbon emissions.
Therefore, the annual total cost is calculated as follows:

Annual total cost=Fixed ordering cost+ Purchasing cost+Holding cost+Lost sales
cost+Backordering cost+Carbon emission cost+Waste cost

First, we define several variables in the diagram in the following:

Q∗ � Consumed quantity or order level � D(P)FT + (1 − F)βD(P)T (5)

DFT � Maximum level of inventory � FT D(P) (6)

D(P) � Demand rate � a − bP (7)

L � Lost sales level � (1 − β)D(P)(1 − F)T (8)

B � Backorder level � β(1 − F)D(P)T (9)

Average inventory level � D(P)F2T/
2 (10)
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Different parts of the objective function are detailed as described in the remainder of this
section.

Average inventory level in 1 year is calculated in the following

Average inventory level �
∫ FT
0 (−D(P)(t − FT )dt)

/

T

�
∫ FT
0 (−(a − bP)(t − FT )dt)

/

T � D(P)F2T/
2

3.1 Total revenue

The final equation for total revenue gained from the inventory is gained from selling the
quantity of order that is sold in the correct time (DFT ) and the backorder level (B �
β(1 − F)D(P)T ), which is

P[DFT + β(1 − F)D(P)T ]

T
� P[F + β(1 − F)]D(P) � P(a − bP)(F + β − βF)

(11)

This final formulation is obtained from selling the ordered quantity based on the selling
price selected in the algorithms that take into account quantity discounts. We should note
that all of the model parts are divided by the cycle time T to calculate the annual costs and
revenue.

3.2 Ordering cost

The annual fixed ordering cost is calculated as

A

T
(12)

3.3 Purchasing cost

According to Fig. 2, the purchasing cost is calculated for the order quantity per year
[DFT+β(1−F)D(P)T ]

T as

c j

(
[DFT + β(1 − F)D(P)T ]

T

)
� c j [F + β(1 − F)]D(P) � c j (a − bP)(F + β − βF)

(13)

3.4 Holding cost

Holding cost is given by Eq. (14), and is based on the average inventory level in stock

(D(P)F2T/
2). Because i +wc j is the cost of holding an item in each year, the following is

obtained:

h × the average of inventory level � h
(
D(P)F2T/

2

)
� (

i + wc j
) (a − bP)

2
F2T

(14)
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3.5 Backordering cost

Backordering cost is calculated with parameter π and takes into account the average number
of backorders within a fixed percentage in each year (Fig. 2) and is given as

(15)

π × the average number of back orders � π × B × (1 − F)T

2T

� π × (1 − F)2T 2βD(P)

2T

� π × (1 − F)2TβD(P)

2

where the average number of backorders within a fixed percentage in each year is calculated
as
∫ (1−F)T
FT −βD(P)(t − T )dt

/

T � β(1 − F)D(P)T × (1 − F)T/
2T � B × (1 − F)T/

2T

3.6 Lost sales cost

Lost sales cost is calculated with the parameter g1 and is based on the number of orders that
are lost, within a fixed percentage (1 − β), in each year (Fig. 2). The parameter g1 accounts
for both lost profit and goodwill loss (P − c j + π ′) as

g1 × L

T
� g1

(1 − β)D(P)(1 − F)T

T
� g1(1 − β)(1 − F)(a − bP) (16)

where g1 � P − c j + π ′

3.7 Waste (obsolescence) cost

There is a cost for collecting and disposing of products in storage that are wasted or are
obsolete

(
P − P ′). The total annual cost to eliminate obsolete products is

(
P − P ′)b′ DFT

2T
�

(
P − P ′)b′FD(P)

2
�

(
P − P ′)b′F(a − bP)

2
(17)

where the amount of order wasted or is obsolete in each year is proportional to the amount
of inventory level.

3.8 Carbon emission cost

The carbon emission cost has three components. The first component is related to replen-
ishment, the second component is related to the quantity of inventory in stock, and the third
component considers the average amount of inventory kept in stock. These components are
summated and briefly represented by

e

T
+ K (a − bP)(F + β − βF) + (g + b1a1ceo)

(
(a − bP)

2
F2T

)
(18)

where

a. Frequency of delivery�e/
T
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b. Storage amounts� g × the average of inventory level � g ×
(
D(P)F2T/

2

)

c. Environmental impact�K × order quanti t y per year �
K

(
DFT + β(1 − F)D(P)T/

T

)
� K (a − bP)(F + β − βF)

d. Carbon emissions from obsolete materials�b1a1ceo ×
the average of inventory level � b1a1ceo ×

(
D(P)F2T/

2

)

To obtain the closed form of the optimum values for P and T , the objective function is
rewritten as

AT P(P , T ) � Pψ1 + P2ψ2 +
1

T
ψ3 + Tψ4 + T Pψ5 + ψ6 (19)

where

ψ1 � a(F + β − βF) + b
[
c j + K (t + s)

]
(F + β − βF)

− a(1 − F) + a(1 − F)β − b(1 − F)c j + b(1 − F)π ′

+ bβ(1 − F)c j − bβ(1 − F)π ′ − F

2
b′a − F

2
b′bP ′

ψ2 � −b(F + β − βF) + b(1 − F) − b(1 − F)β +
F

2
b′b

ψ3 � −[A + e(t + s)]

ψ4 � −aF2

2

[
g(t + s) + b1a1ceo(t + s) + i + wc j

]

ψ5 � F2b

2

[
g(t + s) + b1a1ceo(t + s) + i + wc j

]
+
bβπ

2
(1 − F)2

ψ6 � −a
[
c j + K (t + s)

]
(F + β − βF) + a(1 − F)c j − a(1 − F)π ′ − a(1 − F)βc j

+ a(1 − F)βπ ′ + F

2
b′aP ′

In the next section, we explain that the objective function AT P(P , T ) is concave such that
we can obtain the optimal values for variables P and T . We set the first partial derivations for
the two variables, AT P(P , T ) equal to zero, and then simultaneously solved the equations.
Specifically, to obtain the optimum value for P , the derivative of objective function at P is
calculated and set equal to zero as follows:

∂AT P(P , T )

∂P
� ψ1 + 2ψ2P + ψ5T � 0

Therefore, the optimum value for P is

P∗ � −ψ5T − ψ1

2ψ2
(20)

Then, the optimum value for T is calculated as

∂AT P(P , T )

∂T
� −ψ3

T 2 + ψ4 + ψ5P � 0

Replacing Eq. (20) which is the optimum value for P in the above formulation gives the
following formulation for T :

(−ψ5

2ψ2

)
T 3 +

(
ψ1 − 2ψ2ψ4

2ψ2

)
T 2 + ψ3 � 0
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Now the optimum value for T is extracted from this third-degree polynomial equation.
There is an analogous formula for polynomials of degree three (see “Appendix”). Then the
optimum value for T is:

T ∗ � 3

√√
√
√
√

(
x3 + y

)
⎛

⎝1 +

√

1 +
x6

x3 + y

⎞

⎠ + 3

√√
√
√
√

(
x3 + y

)
⎛

⎝1 −
√

1 +
x6

x3 + y

⎞

⎠ + x (21)

where

x � −ψ1 + 2ψ2ψ4

3ψ5

and

y � −ψ3ψ2

2ψ5

3.9 Concavity of the objective function

To insure that the profit function is concave and has an optimal value, we need to prove

the following: First, the Hessian matrix

[
∂AT P(P , T )

∂T 2
∂AT P(P , T )

∂T P

∂AT P(P , T )
PT

∂AT P(P , T )

∂P2

]

is determined to check

for a total annual profit that is concave. The first and the second principal minors of the
Hessian matrix should be calculated and checked to determine if they are negative when the
values of the parameters in the proposed model are used. The first leading principal minor
of AT P(P , T ) is

H1 � |H11| � ∂AT P(P , T )

∂T 2 � 2ψ3

T 3 � 2[−[A + e(t + s)]]

T 3 < 0

Next, the second leading principal minor of AT P(P , T ) is calculated as

H2 �
∣∣∣∣∣∣

H11

H21

H12

H22

∣∣∣∣∣∣
�

∣∣∣∣∣∣

∂AT P(P , T )

∂T 2

∂AT P(P , T )
∂T P

∂AT P(P , T )
PT

∂AT P(P , T )

∂P2

∣∣∣∣∣∣
� 2ψ2.

(
2ψ3

T 3

)
− ψ2

5 < 0

For all values for the parameters, the term 2(−(A+e[t+s]))
T 3 is always negative. Thus,

2

[
−b(F + β − βF) − b(1 − F)β + b(1 − F) +

F

2
bb′

][
2(−(A + e(t + s)))

T 3

]

−
[
F2b

2

(
g3(t + s) + b1a1ceo(t + s) + i + wc j

)
+
bβπ

2
(1 − F)2

]2
< 0

Because ψ2 > 0,

−b(F + β − βF) − b(1 − F)β + b(1 − F) +
F

2
b′b > 0

To ensure that the second principal minor of the matrix is always negative, the following
must be checked

−b(F + β − βF) > 0

Finally, if the following equation is satisfied, the total profit is always concave.
Check that (1 − 2F)(1 − β) + F

2 b
′ > β
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Therefore, the Hessian matrix for the objective function is negative definite.
The percentage of a period in which the orders are filled from stock is assumed to be fixed.

The algorithm, by which the optimum value for the profit function is obtained, is described
as follows.

Step 0 Initialization. Set j � J and AT P(P , T )max � 0
Step 1 Substitute c j and other parameters into Eqs. (20) and (21) and solve for P and Q

(replace the equal value for Q)

– If Q is in the correct range for the purchasing cost (q j−1 < Q ≤ q j ),
then these values are feasible. Substitute the optimal values of T and P into
Eq. (17) to calculate AT P(P , T ). If AT Pj (P , T ) > AT P(P , T )max , then set
AT Pj (P , T ) � AT P(P , T )max . Go to Step 4.

– If Q is not in the correct range for the purchasing cost, then these values are
infeasible. Go to Step 2.

Step 2 Substitute c j , Q � q j−1, and the other parameters into Eq. (20) and solve for P . Plug
the value Q � q j−1 and the related value of P intoEq. (19) to calculate AT Pj (P , T ).
If AT Pj (P , T ) > AT P(P , T )max , then set AT P(P , T )max � AT Pj (P , T ). Go
to Step 3

Step 3 If j ≥ 2, set j � j − 1 and go to Step 1.
If j � 1, then Go to Step 4

Step 4 The final resulting values are the feasible values related to AT P(P , T )max . Opti-
mal values of Q; P; T ; AT Pj (P , T ); and ATC j (P , T ) are defined, and then the
algorithm is finished

3.10 Computational and practical results

For the case of a greenhouse, many plants are grown to be sold in a supply chain. The
greenhouse in this study receives orders from retailers, florists, and farmers. The government
sets taxes for the level of carbon dioxide emitted from the greenhouse to lower the greenhouse
effect on the atmosphere and prevent global warming. This tax situation creates some costs
for the greenhouse keeper. The plants emit carbon dioxide; therefore, to handle the costs,
the amount of carbon dioxide emitted per each plant is calculated, and a special sales tax is
applied to the price that retailers pay for the plants. The parameters are set as A=100, a=200,
b=1.5, K=2, t=0.01, s=0.01, F=0.8, β =0.6, e=1, g=1, b1 �0.1, a1 �0.002, ceo �13,
i=0.2, w=0.2, π =1, π ′ =2, b′ �0.1, P′ �5, c1 �25, c2 �25, c3 �20, q1 �0, q2 �30, and
q3 �50. The solution algorithm procedure is done in the following stages:

Stage 0 Start.
Set j � 3andAT P(P , T )max � 0

Iteration1: j � 3
Stage 1 For c3 � 20(Q ≥ 50), start with the minimum unit purchasing cost, c3 � 20;

plugging the given values into Eqs. (18) and (19) and solving for Q and P results
in P � 83.01, Q � 46.71, and AT P3(P , T ) � 2835.61. Because Q < 50,
these values are not feasible. Therefore, go to Stage 2

Stage 2 For c3 � 20(Q � 50);
that is, for the least cost, c3 � 20 andwhen applying theminimum ordering level
for this cost, Q � 50, plug other parameters into Eq. (19) and solve for P . As a
result, P�80.13, Q � 50, and AT P3(P , T ) � 2147.11. Because 2147.11 > 0,
set AT Pmax (P , T ) � 2147.11. Go to Stage 3
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Stage 3 Set j � 2 and Go to Stage 1
Iteration2: j � 2
Stage 1 For c2 � 25, (30 < Q < 50),

the unit purchase cost c2 � 25 should be substituted with the other parameters
into Eqs. (18) and (19) such that computing them results in: P�80.33,Q�40.01,
and AT P3(P , T ) � 3183.97. Because these values are feasible, the solution is
optimal. Go to Stage 4

Stage 4 Algorithm is finished

The relationship between parameters and the effects of them on the relative variables
were extracted by sensitivity analysis. The values of parameters are in relative stages of 20%
(−40%, −20%, +20%, and +40%), and were changed systematically to evaluate the effects
on the total profit value and other main variables. Therefore, each function was calculated
four times to account for the changes in parameters. The results are presented in Table 2.

Table 2 shows that the order level is based on the decreasing values of A and a, and if the
purchase cost is lowered, the optimum inventory level decreases.

The price of plants is dependent on the values of A and a, and it increases if they increase.
It also depends on the values of b and i in a negative way. The selling price is not related
to the parameter g. We found that if the value of b increases, then the annual total cost per
unit time ATC j (P , T ) decreases, and if it increases, then all other parameters increase. In
addition, if a increases, then the annual total profit per unit time AT Pj (P , T ) increases,
and if all other parameters increase, then AT Pj (P , T ) also increases. It is also clear that
parameters for calculating annual demand, primarily a and secondarily b, have the greatest
impact on the profit function AT Pj (P , T ) and on the variables P , T , and AT Pj (P , T ).
It is suggested that the greenhouse decision maker focus on increasing demand instead of
reducing costs. The purchasing cost c j has the most important role in the profit function, and
the second most important parameter is the ordering cost A. Increasing the selling price does
not always result in higher profit. If the ordering or purchase costs (A or c j ) are decreased,
the profit with a lower unit-selling price P increases (Figs. 3 and 4).

4 Conclusions

Greenhouses offer a real example for which a program should be used to handle carbon
emissions. In addition, a greenhouse should use inventory management to replenish and sell
plants for an optimal profit. In the situation under study, carbon dioxide emissions were
carefully considered. In reality, the annual demand rate is related to the unit purchasing cost
and other factors, such as product time and availability in the market. By lowering the price, a
quantity discount is regularly applied to encourage buyers to order more products. Therefore,
in this paper, the rate of demand was assumed proportional to the unit purchasing cost, and
partial backordering was allowed as a fixed parameter. A greenhouse was considered for the
case study because plants emit greenhouse gases (carbon dioxide).

Amathematicalmodelwas proposed and computational procedureswere completed along
with solution algorithms to illustrate the capability of the model. An example was solved,
sensitivity analysis was completed, andmanagerial insights were presented. According to the
numerical results shown, we suggested that the greenhouse keeper apply marketing strategies
to earn additional profit. In another way to increase profit, related costs, such as ordering
cost, are reduced. The suggested extensions to this study, to make it more realistic, include
assuming that the annual demand rate is a nonlinear function of price, inventory level, and
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Table 2 Computational results

Parameter First value Changed
values

T P Q ATC j (T , P) AT Pj (T , P)

A 100 60 0.82 81.33 40.01 3691.58 318,397

80 0.81 83.33 40.21 2731.58 318,397

120 0.80 85.33 40.23 2756.58 388,397

140 0.77 83.33 40.23 2811.58 316,397

F 0.8 0.32 0.81 80.33 40.01 2891.58 318,397

0.56 0.81 84.33 40.21 3681.58 318,397

0.98 0.82 88.33 48.23 2891.58 318,397

1 0.83 80.33 40.23 2691.58 386,397

a 200 160 0.94 80.33 48.01 2691.58 318,397

180 0.89 84.33 40.21 2691.68 358,394

220 0.88 80.33 40.23 3261.58 348,397

240 0.87 80.33 45.23 2651.58 318,399

b 1.5 1 0.8 80.33 40.01 2659.68 418,397

1.25 0.9 86.33 40.21 2691.58 318,384

1.75 0.8 80.33 40.23 2951.58 316,397

1.90 0.5 80.33 49.23 2851.59 358,395

i 0.2 0.1 0.9 85.33 40.01 2651.58 418,397

0.15 0.8 80.33 40.21 2661.58 318,399

0.25 0.6 80.35 49.23 3651.56 318,397

0.30 0.8 80.33 40.23 2661.58 358,395

w 0.2 0.1 0.5 80.35 45.01 2699.59 345,397

0.15 0.8 86.33 40.21 2691.55 318,397

0.25 0.5 80.33 49.23 3591.59 316,395

0.30 0.8 80.33 40.23 2581.58 418,397

c1, c2, c3 30, 25, 20 27 0.8 80.33 45.01 2659.58 318,397

22 0.8 80.33 40.21 2691.68 358,394

17 0.9 80.33 40.23 3699.58 318,397

31 0.8 80.33 46.23 2891.55 418,399

27 0.9 80.33 40.01 2651.58 318,394

21 0.8 89.33 40.21 2669.58 318,397

33 0.8 80.33 40.23 3691.58 318,397

28 0.9 80.36 40.26 2891.58 358,397

23 0.6 89.33 49.01 2691.68 418,394

35 0.8 88.35 40.21 3891.55 318,397

30 0.9 85.33 45.23 2651.58 315,394

25 0.8 89.33 40.23 3691.55 418,395
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Fig. 3 The effects of parameters on total profit

Fig. 4 The effects of parameters on total cost

time.Also, instead of using a fixed percentage for partial backordering such that the parameter
F is a constant, F can be considered a variable value, which creates opportunities for the
decision maker. Deterioration and variable backordering, which was not taken into account
in this study, might also be considered in future research.
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Appendix

There is an analogous formula for polynomials of degree three: The solution of

ax3 + bx2 + cx + d � 0

That is

x � 3
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√
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This can be briefly written as

x � 3

√

q +
√
q2 +

(
r − p2

)3 +
3

√

q −
√
q2 +

(
r − p2

)3 + p

where

p � −b

3a

q � p3 +
bc − 3ad

6a2

r � c

3a

This formulation is used to calculate the optimal value for T , which is a polynomials of
degree three.
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