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a b s t r a c t 

Because of the extreme imbalance in intercontinental trade, the repositioning of empty containers creates 

a significant problem for shipping companies. There are many effort s to reduce the cost of repositioning 

empty containers, one of which is a foldable container. This paper proposes a robust formulation for the 

empty container repositioning problem considering foldable containers under demand uncertainty. The 

robust formulation can be used as a tractable approximation of a multistage stochastic programming for- 

mulation which is computationally intractable. Moreover, the robust formulation requires only limited 

information about the distribution of demand to replicate real-world situations. Computational results 

show that the proposed formulation performs well in terms of operating costs and there exists a signifi- 

cant cost-saving effect when foldable containers are used in maritime transportation. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the 1970s, the volume of maritime transport has in-

reased sharply because of an increase in worldwide trade. 17.1%

f world seaborne trade is transported in the form of containers in

017 ( UNCTAD, 2018 ). Because of the reusable nature of container-

zation, the container is returned to the port in an empty state

fter being used for transporting goods. The time delay between

ontainer use and return creates problematic and inconsistent de-

and and supply for the container. In addition, the extreme imbal-

nce in intercontinental container-shipping volume increases the

emand-supply mismatch of empty containers, which contributes

o a shortage of empty containers in export dominant ports and a

urplus of empty containers in import dominant ports. To satisfy

emand for empty containers, it is necessary to reposition empty

ontainers from surplus ports to deficit ports. On average, 20%

f total container movements by ocean transportation are empty.

epositioning of empty containers is non-value added transporta-

ion with enormous transportation costs and nonprofitable con-

umption of vessel capacity. Each time an empty container is repo-

itioned, an opportunity cost is incurred for shipping one loaded

ontainer, which cuts the shipping company’s profitability. There-

ore, it is important for the shipping company to reposition con-

ainers efficiently and effectively. The empty container reposition-

ng (ECR) problem is to determine an optimal repositioning sched-
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le to satisfy demand for empty containers. The key decision is

hen and how many empty containers are repositioned to a des-

ined port. 

There are many efforts to reduce the cost of repositioning

mpty containers, one of which is a foldable container. Foldable

ontainers can be transported in a package such that a few folded

ontainers occupy the same volume as one standard container. De-

pite high purchase costs and the additional folding and unfold-

ng costs of foldable containers, foldable containers have advan-

ages in the reduction of repositioning costs and saving in terms

f storage space and vessel capacity. There are two leading compa-

ies developing foldable containers: Holland Container Innovations

HCI) of the Netherlands and the Korea Railroad Research Insti-

ute. HCI presents a foldable container called 4FOLD and received

SO certification in 2013 ( Holland Container Innovations, 2019b ).

FOLD has been used by 15 shipping companies involving APL, the

orld’s third-largest shipping company, with 20% savings of total

peration cost on average. HCI shows that folding and unfolding

f 4FOLD can be done with standard lifting equipment by a two-

erson team less than four minutes, which makes the adoption of

oldable containers affordable. One successful example of adoption

f foldable containers is the Shanghai-Los Angeles-Chicago route

erved by APL ( Holland Container Innovations, 2019a ). The exports

n Chicago are much less than imports, which incurs huge amount

f empty repositioning. APL adopts 4FOLD containers in this route

nd folded empty container are packed in Chicago and transported

o Shanghai via Los Angeles. APL saves approximately 20% of the

otal operating costs with the reduction coming from hinterland

ransport and handling costs at the terminal. 

https://doi.org/10.1016/j.ejor.2019.08.004
http://www.ScienceDirect.com
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mailto:syl0119@snu.ac.kr
mailto:ikmoon@snu.ac.kr
https://doi.org/10.1016/j.ejor.2019.08.004


910 S. Lee and I. Moon / European Journal of Operational Research 280 (2020) 909–925 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

s  

r  

S  

o  

t  

t  

j  

a  

t  

m  

I  

t

2

 

c  

s  

W  

fl  

r  

c  

l  

v  

E

 

c  

r  

C  

i  

e  

d  

(  

E  

i  

p  

a  

d  

t  

i  

r  

s  

m  

o  

L  

o  

d  

d  

t  

u  

(  

o  

f  

s  

s  

p  

s  

t  

m  

e  

p  

l  

t  

a  
The introduction of foldable containers affects the operational-

level planning decisions at shipping companies, which makes the

decision process very complex. The flow of loaded containers is a

source of empty containers at the destined port, and the vessel ca-

pacity is shared by loaded and empty containers. It interconnects

two different decisions: the transportation quantity to satisfy de-

mand and the number of empty containers to reposition. When

we only consider standard containers to satisfy the demand, the

amount of loaded containers is equal to the demand. With the con-

sideration of using foldable containers in operational decisions, the

shipping company has to decide which type (standard or foldable)

of containers and quantities of containers to satisfy the demand.

The quantity and ratio of containers transported in one period af-

fect the number of returned empty containers in the future pe-

riod. Therefore, existing studies cannot be applied to the integrated

model of standard and foldable containers. 

Furthermore, in the competitive shipping industry, operational-

level planning requires decision making under uncertainty. Al-

though, the shipping company knows the exact demand in the

long-term contracts and establishes plan based on demand infor-

mation, decision makers face many short-term uncertainties, such

as weather, port congestion, and demand fluctuation, during im-

plementation. Moreover, uncertainties may prevent planned deci-

sions from being implemented, which may lead to suboptimal de-

cisions. Uncertainties can lead to serious operational failures in

the shipping industry. Among the various uncertainties, the uncer-

tainty of customer demand is the most influential; therefore, we

consider the uncertainty of demand in this study. 

A famous approach for dynamic decision making under uncer-

tainty is multistage stochastic programming in which the uncer-

tainty is characterized by a known probability distribution of pa-

rameters. Transportation and repositioning decisions in the ECR

problem are considered wait-and-see decisions. Hence, the ECR

problem can be modeled with a multistage stochastic program-

ming framework. However, data estimation, such as demand fore-

casting with historical data, is difficult in practice. It is impossible

to achieve complete knowledge about distributions of uncertain-

ties. Moreover, in general, multistage stochastic program is compu-

tationally intractable ( Shapiro & Nemirovski, 2005 ); therefore, we

utilize a robust optimization framework for which only limited in-

formation is required. Adjustable robust optimization, proposed by

Ben-Tal, Goryashko, Guslitzer, and Nemirovski (2004) , enables dy-

namic decision making under uncertainty in a robust optimization

framework. 

In this study, we consider the ECR problem with the adoption

of foldable containers. The shipping company decides the type and

quantity of empty containers in terms of two different decisions,

transporting and repositioning. We focus on the operational plan-

ning of ocean transportation between multiple ports over the plan-

ning horizon. We also consider demand uncertainty, which leads to

the multistage stochastic programming formulation. To tackle the

intractability of the multistage formulation, we adopt the concept

of adjustable robust optimization. Then, we show that the robust

formulation gives a tractable approximation of the stochastic pro-

gramming formulation. 

In summary, contributions of this paper are threefold. First, we

propose a mathematical model of the ECR problem considering the

use of foldable containers under uncertainty. To the best of our

knowledge, it is the first paper to address this topic. Second, we

propose the tractable robust formulations with limited information

on demand distribution, because it is very difficult to estimate de-

mand distribution precisely with historical data. The robust formu-

lations are used to approximate the multistage stochastic program-

ming formulation. Third, we show the cost-saving and storage-

saving effects of using foldable containers through the practical-

scaled numerical experiments. 
The remainder of this paper is organized as follows. In

ection 2 , we review literature related to the ECR problem and

tudies that addressed use of foldable containers. Then, we briefly

eview the literature related to adjustable robust optimization. In

ection 3 , we describe the problem definition and assumptions

f the problem. In Section 4 , we propose model formulations of

he ECR problem with foldable containers under demand uncer-

ainty. Then, we explain the main results of this paper, the ad-

ustable robust counterparts using a linear decision rule (LDR) and

 restricted linear decision rule (RLDR). In Section 5 , we present

he results of computational experiments and compare the perfor-

ance of the proposed model against a predetermined benchmark.

n Section 6 , we offer a brief discussion and suggest areas for fur-

her research. 

. Literature review 

The empty container repositioning (ECR) problem has attracted

onsiderable attention in academia. Many researchers have con-

idered various situations and proposed solution methodologies.

ang and Meng (2017) provided a recent review of container liner

eet deployment, and Lee and Song (2017) conducted an extensive

eview of ocean container transport. Song and Dong (2015) dis-

ussed the main causes of empty container repositioning and so-

utions to the ECR problems. Kuzmicz and Pesch (2019) addressed

arious aspects and solutions of ECR problems in the context of

urasian transportation. 

Several researchers have considered decision making under un-

ertainty in ECR problems through stochastic programming with

ecourse, inventory control-based policies, and robust optimization.

rainic, Gendreau, and Dejax (1993) proposed dynamic determin-

stic formulations for the empty container allocation problem and

xtended it to a two-stage stochastic programming formulation un-

er the uncertainties of demand and supply. Cheung and Chen

1998) proposed a two-stage stochastic network formulation of the

CR problem under uncertainties of demand, supply, and capac-

ty. They utilized the stochastic quasi-gradient method and an ap-

roximation procedure to obtain solutions. Song (2007) provided

n optimal policy for empty container repositioning with uncertain

emand that is similar to the optimal policy for inventory con-

rol. The structures of the optimal policy were characterized us-

ng the Markov decision process. Li, Liu, Leung, and Lai (2004) de-

ived the optimal threshold-type policies called ( U , D ) policy in a

ingle port case with demand uncertainty and they extended to

ulti-port case ( Li, Leung, Wu, & Liu, 2007 ). Using the convexity

f the cost function, they proposed a heuristic to obtain policies.

am, Lee, and Tang (2007) considered a dynamic stochastic model

f the container allocation problem and proposed an approximate

ynamic programming approach. Di Francesco, Crainic, and Zud-

as (2009) proposed a stochastic programming model with uncer-

ain data for empty container repositioning and solved the model

sing multi-scenario optimization. Erera, Morales, and Savelsbergh

2009) modeled the empty repositioning problem using a robust

ptimization framework. They considered interval uncertainty of

orecast values and proposed the concept of a recoverable plan

imilar to the concept of an adjustable robust counterpart. They

howed that the problem modeled using the recoverable plan is

olynomially solvable. Long, Lee, and Chew (2012) proposed a two-

tage stochastic programming model for empty container reposi-

ioning and solved the program with the Sample Average Approxi-

ation (SAA). They utilized the scenario aggregation to handle an

xtremely large number of scenarios. Shu and Song (2014) pro-

osed a two-stage robust optimization model considering both

oaded and empty containers. They discussed the complexities of

he formulations based on an l p -norm uncertainty set. von West-

rp and Schinas (2016) utilized a fuzzy optimization approach for
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Table 1 

Comparisons of recent papers related to this research. 

Authors (year) Foldable 

container 

Demand 

uncertainty 

Limited information 

of distribution 

Solution methodology 

Konings and Thijs (2001) � - 

Song (2007) � Markov decision process based optimal policy 

Li et al. (2007) � threshold-type control policy 

Lam et al. (2007) � approximate dynamic programming 

Di Francesco et al. (2009) � multi-scenario based stochastic programming 

Erera et al. (2009) � � robust optimization, adjustable robust optimization 

Shintani et al. (2010) � mixed integer linear programming 

Long et al. (2012) � two-stage stochastic programming, SAA 

Moon et al. (2013) � heuristic algorithm 

Myung and Moon (2014) � network flow model 

Shu and Song (2014) � � robust optimization, adjustable robust optimization 

Moon and Hong (2016) � LP-based GA and hybrid GA 

von Westarp and Schinas (2016) � fuzzy optimization 

Myung (2017) � network flow model 

Wang and Meng (2017) � network flow model, revised network simplex algorithm 

This paper � � � adjustable robust optimization 
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he container positioning problem. They considered profit maxi-

ization instead of relevant cost minimization and figured out the

rade-off between loaded and empty containers. Xie, Liang, Ma,

nd Yan (2017) captured the coordination issue in empty container

epositioning and proposed the inventory sharing game between

ecision makers at maritime logistics. They studied the equilib-

ium delivery quantity of empty containers under the decentral-

zed model. Except Erera et al. (2009) and Shu and Song (2014) ,

ost of the previous studies assumed the full distribtuional knowl-

dge of uncertainties which is limited in practice. Erera et al.

2009) and Shu and Song (2014) utilized the robust optimization

ramework to tackle this difficulty, however, their models were

imited to two-stage decisions. 

The foldable container is a newly commercialized technology

nd the studies of ECR with the use of foldable containers is re-

ently emerging. Konings and Thijs (2001) analyzed the economic

ffects of introducing foldable containers into ocean transport sys-

ems, and they discussed the technical and logistical conditions for

he successful use of foldable containers. Konings (2005) discussed

n economical analysis on the adoption of foldable containers con-

idering relevant costs. Shintani, Konings, and Imai (2010) dis-

ussed the economic impact of using foldable containers in hin-

erland repositioning of empty containers. They analyzed several

trategies of hinterland transportation in which foldable containers

ere used. Myung (2017) extended the results of Shintani et al.

2010) by offering efficient solution methods and obtained analyt-

cal solutions using a network formulation. Moon, Do Ngoc, and

onings (2013) proposed mathematical models considering fold-

ble and standard containers in maritime transport. They devel-

ped heuristic algorithms to solve the proposed models. Then,

yung and Moon (2014) proved that the Moon et al. (2013) model

an be reduced to a network flow model that can be solved in

olynomial time. Moon and Hong (2016) developed a mathemat-

cal model with standard and foldable containers and proposed a

inear programming-based genetic algorithm and a hybrid genetic

lgorithm to solve the model and they obtained near-optimal solu-

ions. Wang, Wang, Zhen, and Qu (2017) considered the ship type

ecision problem with the use of foldable containers in empty con-

ainer repositioning. They proposed a network flow model and ad-

ressed an exact algorithm based on a revised network simplex al-

orithm. To the best of our knowledge, there were no studies con-

idering uncertainty into the model of foldable containers. 

In this research, we utilize the concept of adjustable robust

ptimization to obtain a tractable approximation for a multi-

tage stochastic programming formulation with demand uncer-

ainty. Ben-Tal et al. (2004) proposed the concept of adjustable ro-
ust counterparts for which decisions can be adjusted dynamically

s uncertainty is realized over time. However, they showed that

he adjustable robust counterpart is NP-hard, so they proposed

he concept of an affinely adjustable robust counterpart (AARC)

here adjustable decisions are restricted to affine functions of un-

ertainty. Then, Ben-Tal, Golany, Nemirovski, and Vial (2005) ap-

lied AARC to a supply chain problem named the retailer-supplier

exible commitment problem. Chen and Sim (2009) proposed a

ractable deterministic approximation for the goal-driven stochas-

ic optimization model using a piecewise linear decision rule. For

his approximation, they developed upper bounds for the expecta-

ion of positive parts, which are shown in the objective function

f the model. See and Sim (2010) proposed the use of Chen and

im (2009) ’ s upper bounds to deal with a multiperiod inventory-

anagement problem. They developed a piecewise linear decision

ule named truncated linear decision rule, which extends the result

f the linear decision rule. 

In this paper, we propose a tractable approximation to the mul-

istage stochastic formulation of the ECR problem considering use

f foldable containers. We assume that demand is uncertain and

hat we have limited information on the distribution of uncer-

ainty such as mean and covariance. We utilize the adjustable ro-

ust optimization approach and a linear decision rule for tractabil-

ty. The summarized characteristics of our research are presented

t Table 1 . 

. Problem description 

In this section, we describe a cycle of container flows and prob-

em definition. Then, we explain the assumptions of the ECR prob-

em we deal with. To understand the ECR problem, container flow

ust be understood. A consignor sends cargo to the consignee by

cean transport, which is referred to as demand in the ECR litera-

ure. To meet demand , the shipping company sends empty contain-

rs to the consignor. The consignor fills the empty containers with

argo and sends these loaded containers to the port. The shipping

ompany transports the containers via an ocean-transport vessel

o the destination port where the consignee receives them. The

onsignee takes the newly arrived cargo out of the containers and

ends the emptied containers back to the depot of the shipping

ompany. The empty containers, upon return to the port, are refer-

nced as the supply in the ECR problem. 

Container flows of this problem are shown in Fig. 1 . 

1. At the beginning of period t , the customer demand from port i

to port j occurs. We aggregate the consignors located near port
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+ + + τ + + τ +

Port Port 

τ

consignor consignee

loaded

empty

Fig. 1. Cycle of container flows. 
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i and denote them as demand occurred at port i . We aggregate

consignees similarly. 

2. The shipping company sends empty containers from the de-

pot at port i to the consignor’s site to satisfy the demand. The

empty containers are packed at the consignor’s site and re-

turned to port i . It takes v i periods until empty containers are

sent to the consignor’s site and the loaded containers are re-

turned to port i . 

3. The shipping company transports loaded containers to port j via

the vessel with given transportation time τ ij . 

4. Cargo is delivered to the consignee and emptied at the con-

signeeâs site. Then, the emptied containers are returned to the

depot at port j . It takes v j periods until the loaded containers

are transported to the consignee’s site and the emptied con-

tainers are returned to the port. 

Because of the container flow and reusable property of contain-

ers, supplied empty containers are stacked at the import domi-

nant port. To meet the demand at the export dominant port, the

shipping company has to reposition empty containers. Empty repo-

sitioning consumes the vessel capacity which would be used for

loaded containers. Therefore, effective and efficient repositioning

plan is crucial to the profit of the shipping company. 

In our ECR problem, the shipping company considers both

transporting loaded containers and repositioning of empty contain-

ers over a planning horizon. Because empty repositioning incurs

costs and consumes vessel capacity, foldable containers are used

to reduce repositioning costs. Therefore, the shipping company de-

cides the type and quantity of containers to satisfy the demand.

According to the transportation decision, the shipping company

also decides the type and quantity of repositioned containers to

mitigate the trade imbalance. The objective of this problem is to

minimize the total operating cost over the planning horizon which

consists of transportation, repositioning, holding, penalty, folding,

and unfolding costs. One of the challenging decisions is when and

how many foldable containers are used, which makes the problem

complex. 

The assumptions of this problem are as follows: 

• The ECR is undertaken at multiple ports on a finite discrete

horizon of T periods. The vessel route is not considered, and

containers can be repositioned to any port during any period

according to given vessel capacity. 
• The vessel capacity K ijt from port i to port j in period t , which is

shared by loaded and empty containers, is given. The vessel ca-

pacity can represent the vessel schedule predetermined by the

shipping company. 
• The transportation lead time from port i to port j and the in-

land transportation time (devanning time) at port i are given. 
• Demand can be satisfied by both standard and foldable con-

tainers. When foldable containers stored at ports are used to

satisfy demand, the unfolding operation must be done before

transported to the consignor’s site. 
• Supplied empty containers and repositioned empty containers

are two sources of empty containers. 
• Unsatisfied demand is satisfied with a short-term lease and in-

curs a penalty cost. 
• Folding and unfolding of foldable containers can be executed

only in ports. 
• Foldable containers are repositioned in a folded state to occupy

less of the vessel capacity than standard containers do. 
• Supplied foldable containers from customers are delivered in

the unfolded state and used to satisfy demand. Excess foldable

containers are stored at a port after being folded. 
• The returned container after being emptied is the only source

of container supply. 

The vessel capacity represents the number of loaded and empty

ontainers in twenty-foot equivalent unit (TEU) that can be trans-

orted from port i to port j in period t . The capacity is given by

he shipping company in advance according to the fleet schedule.

or example, if K i jt = 0 , no vessel is available vessel in period t

o transport containers from port i to port j . Therefore, the vessel

apacity can characterize the vessel schedule determined by the

hipping company, which leads to the generalization of the first

ssumption. We assume the containers can be transported to any

ort during any period, but we can consider the vessel schedule

ith the vessel capacity. 

With the introduction of foldable containers, additional facil-

ty and manpower are needed. Because customers may have a

egative reaction to additional investments at their sites, fold-

ng and unfolding operations are limited to ports. Therefore, cus-

omers receive empty foldable containers in an unfolded state,

hich makes the customers indifferent about the choice of us-

ng standard or foldable containers. Although the customer may

e concerned about the strength of the foldable container, for this

tudy, the strength of the foldable container is assumed to be the

ame as a standard one. Hence, the demand can be satisfied by

ither standard or foldable containers. 

According to the assumptions, we propose model formulations

f the ECR problem considered. In the next section, we present

 deterministic and a multistage stochastic programming formu-

ation. Then, we introduce a robust formulation using a linear de-

ision rule and show that the robust formulation is a tractable ap-

roximation of the multistage stochastic formulation of the ECR

roblem. 
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. Model formulation 

In this section, we propose a deterministic linear program-

ing formulation with deterministic demand. Then, we regard

emand as a random variable that represents demand uncer-

ainty. We propose a multistage stochastic programming formu-

ation with non-anticipativity constraints. However, in general, a

ultistage stochastic programming formulation is computationally

ntractable; therefore, we utilize the concept of adjustable robust

ptimization for tractable approximation. 

The notations for the parameters are as follows: 

P ports 

T periods 

C S 
i j 

unit transportation cost of a standard container from port

i to port j

C F 
i j 

unit transportation cost of a foldable container from port

i to port j

R S 
i j 

unit repositioning cost of a standard container from port

i to port j

R F 
i j 

unit repositioning cost of a foldable container from port

i to port j

H 

S 
i 

holding cost of a standard container per unit per period

at port i 

H 

F 
i 

holding cost of a foldable container per unit per period

at port i 

P S 
i 

penalty cost of a standard container per unit per period

at port i 

P F 
i 

penalty cost of a foldable container per unit per period

at port i 

K i jt vessel capacity (TEUs) from port i to port j in period t

N number of foldable containers used to build one folded

pack 

F C i unit folding cost of a foldable container at port i 

UC i unit unfolding cost of a foldable container at port i 

τi j transportation time from port i to port j

νi inland transportation time (or devanning time) at port i 

D i jt demand for transporting containers from port i to port j

in period t

Decision variables used in this model are as follows: 

r S 
i jt 

repositioning quantity of standard containers from port i

to port j in period t

r F 
i jt 

repositioning quantity of foldable containers from port i

to port j in period t

x S 
i jt 

number of standard containers used to satisfy demand

from port i to port j in period t

x F 
i jt 

number of foldable containers used to satisfy demand

from port i to port j in period t

z S 
it 

inventory level of standard containers at port i at the end

of period t

z F 
it 

inventory level of foldable containers at port i at the end

of period t

The total operating cost consists of consists of transportation,

epositioning, holding, penalty, folding, and unfolding costs. The

ransportation costs consist of expenses incurred during container

ow. In other words, costs which are directly involved to the de-

ivery between consignors and consignees: empty container move-

ent to the consignors, ocean transportation by the vessel, and de-

ivery and return from consignees. Recent information technology

nables the shipping company to valuate the exact transportation

ost per unit delivery. The repositioning cost is the handling cost

f transporting empty containers to mitigate the trade imbalance.

he holding cost is incurred when empty containers are stored at

he depot in ports. The penalty cost is related to the short-term
easing cost incurred to meet unsatisfied demand. Folding and un-

olding costs are incurred when folding and unfolding operations

re executed at ports. 

Fig. 2 represents inflows and outflows at port i in period t in a

ime-space expanded network of the ECR model. According to the

ontainer flow and repositioning operation, two different sources

f empty containers, x ji,t−ν j −τ ji −νi 
and r ji,t−τ ji 

, are transported from

ort j . 

Using the above notation, we explain the balance equation of

ort i in period t . A balance equation is presented in Fig. 3 . Three

ypes of inflows were considered: repositioning quantities from

ther ports, number of supplied containers after use, and inven-

ory from the last period. It takes τ ji periods to reposition empty

ontainers from port j to port i . It takes v j + τ ji + v i periods to fin-

sh one cycle of container flows such that supplied containers are

eturned after one cycle. Three types of outflows were considered:

epositioning quantities to other ports, number of empty con-

ainers used to satisfy customer demand, and inventory amount.

ig. 3 presents the balance equation of standard containers, which

s the same for foldable containers. 

.1. Deterministic formulation 

First, we consider the deterministic demand. The model we de-

eloped is similar to that of Moon et al. (2013) and Tsang and Mak

2015) . An explanation of this deterministic formulation helps in

nderstanding the stochastic model. Let RC DET denote total repo-

itioning and transportation costs and HC DET denote total holding

nd penalty costs and FC DET denote total folding and unfolding

osts. 

RC DET = 

T ∑ 

t=1 

∑ 

i ∈ P 

∑ 

j∈ P 

(
R 

S 
i j r 

S 
i jt + C S i j x 

S 
i jt + R 

F 
i j r 

F 
i jt + C F i j x 

F 
i jt 

)

C DET = 

T ∑ 

t=1 

∑ 

i ∈ P 

(
H 

S 
i (z S it ) 

+ + H 

F 
i (z F it ) 

+ + P S i (z S it ) 
− + P F i (z F it ) 

−)

FC DET = 

T ∑ 

t=1 

∑ 

i ∈ P 

( 

F C i 

( ∑ 

j∈ P 
(x F ji,t−νi −ν j −τ ji 

− x F i jt ) 

) 

+ 

+ UC i 

( ∑ 

j∈ P 
(x F i jt − x F ji,t−νi −ν j −τ ji 

) 

) 

+ 

) 

he deterministic formulation is as follows: 

C DET = (1) 

in RC DET + HC DET + FC DET (2) 

 . t . z S it = z S i,t−1 + 

∑ 

j∈ P 
r S ji,t−τ ji 

−
∑ 

j∈ P 
r S i jt + 

∑ 

j∈ P 
x S ji,t−νi −ν j −τ ji 

−
∑ 

j∈ P 
x S i jt , 

∀ i ∈ P, t = 1 , . . . , T (3) 

z F it = z F i,t−1 + 

∑ 

j∈ P 
r F ji,t−τ ji 

−
∑ 

j∈ P 
r F i jt + 

∑ 

j∈ P 
x F ji,t−νi −ν j −τ ji 

−
∑ 

j∈ P 
x F i jt , 

∀ i ∈ P, t = 1 , . . . , T (4) 

x S i jt + x F i jt = D i jt , ∀ i, j ∈ P, t = 1 , . . . , T (5) 

r S i jt + 

1 

N 

r F i jt + x S i j,t−νi 
+ x F i j,t−νi 

≤ K i jt , ∀ i, j ∈ P, t = 1 , . . . , T 

(6) 

r S i jt , r 
F 
i jt ≥ 0 , x S i jt , x 

F 
i jt ≥ 0 , ∀ i, j ∈ P, t = 1 , . . . , T (7) 
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Fig. 2. Inflows and ouflows at port i in period t in a time-space expanded network of the ECR model. 

Fig. 3. Balance equation of standard containers. 
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The objective function represents total operating cost, including

repositioning, transportation, inventory holding, penalty, and fold-

ing/unfolding costs. Constraints (3) and (4) represent balance equa-

tions for standard and foldable containers, respectively. Constraint

(5) represents that the demand is satisfied with standard and fold-

able containers from the depot at the port. Constraint (6) is a ca-

pacity constraint for the vessel. It shows that when repositioning

foldable containers, 1/ N unit of capacity is used. Empty foldable

containers consume less capacity, which leads to more available

capacity for loaded containers that is a value-added activity for the

shipping company. Constraint (7) is a non-negativity constraint. 

Although repositioning and transportation decisions are based

on the number of containers, the above formulation is a linear

program. Because hundreds or thousands of containers are usu-

ally used, solutions that are rounded up are very close to the opti-

mal solution. Moreover, the formulation does not have any binary

variables. In many cases, rounding binary variables makes the op-

timal solution of a linear program highly suboptimal. Fortunately,

the ECR formulation does not contain any binary variables and the
uantity of containers is over hundreds, which makes the linear

rogram formulation of the ECR problem reasonable. 

.2. Multistage stochastic programming formulation 

We regard demand as a random variable to incorporate uncer-

ainties into the model. Multistage stochastic programming formu-

ation can be proposed with random demand. We denote stochas-

ic demand as ˜ d i jt and assume that stochastic demand, ˜ d i jt , is re-

lized dynamically over the planning horizon. At the beginning

f period, ˜ d i jt is realized, and then the shipping company makes

ransportation and repositioning decisions based on the demand

ealization and past information. Let RC STOC denote total expected

epositioning and transportation costs and HC STOC denote total ex-

ected holding and penalty costs and FC STOC denote total expected

olding and unfolding costs. 

RC STOC = E 

[
T ∑ 

t=1 

∑ 

i ∈ P 

∑ 

j∈ P 

(
R 

S 
i j r 

S 
i jt (ω) + C S i j x 

S 
i jt (ω) 

+ R 

F 
i j r 

F 
i jt (ω) + C F i j x 

F 
i jt (ω) 

)]

C STOC = E 

[
T ∑ 

t=1 

∑ 

i ∈ P 

(
H 

S 
i (z S it (ω)) + + H 

F 
i (z F it (ω)) + 

+ P S i (z S it (ω)) − + P F i (z F it (ω)) −
)]

FC STOC = E 

[
T ∑ 

t=1 

∑ 

i ∈ P 

(
F C i 

(∑ 

j∈ P 
(x F ji,t−νi −ν j −τ ji 

(ω) − x F i jt (ω)) 
)+ 

+ UC i 

(∑ 

j∈ P 
(x F i jt (ω) − x F ji,t−νi −ν j −τ ji 

(ω)) 

)
+ 
)]

he multistage stochastic programming formulation is as follows: 

C STOC = (8)

in RC STOC + HC STOC + FC STOC (9)
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i  

t  
 . t . z S it (ω) = z S i,t−1 (ω) + 

∑ 

j∈ P 
r S ji,t−τ ji 

(ω) −
∑ 

j∈ P 
r S i jt (ω) 

+ 

∑ 

j∈ P 
x S ji,t−νi −ν j −τ ji 

(ω) −
∑ 

j∈ P 
x S i jt (ω) , ∀ i ∈ P, t = 1 , . . . , T 

(10) 

z F it (ω) = z F i,t−1 (ω) + 

∑ 

j∈ P 
r F ji,t−τ ji 

(ω) −
∑ 

j∈ P 
r F i jt (ω) 

+ 

∑ 

j∈ P 
x F ji,t−νi −ν j −τ ji 

(ω) −
∑ 

j∈ P 
x F i jt (ω) , ∀ i ∈ P, t = 1 , . . . , T 

(11) 

x S i jt (ω) + x F i jt (ω) = D i jt (ω) , ∀ i, j ∈ P, t = 1 , . . . , T (12) 

r S i jt (ω) + 

1 

N 

r F i jt (ω) + x S i j,t−νi 
(ω) + x F i j,t−νi 

(ω) ≤ K i jt , 

∀ i, j ∈ P, t = 1 , . . . , T (13) 

r S i jt (ω) = r S i jt (ξ ) , r F i jt (ω) = r F i jt (ξ ) , 

∀ ξ ∈ �t (ω) , t = 1 , . . . , T , ω ∈ � (14) 

x S i jt (ω) = x S i jt (ξ ) , x F i jt (ω) = x F i jt (ξ ) , 

∀ ξ ∈ �t (ω) , t = 1 , . . . , T , ω ∈ � (15) 

r S i jt (ω) , r F i jt (ω) ≥ 0 , x S i jt (ω) , x F i jt (ω) ≥ 0 , ∀ i, j ∈ P, t = 1 , . . . , T 

(16) 

ω ∈ � represents a possible realization or scenario of random

emand over T periods where � represents a set of all possible

ealizations or scenarios. The objective function contains expecta-

ions over all possible realizations, which reflects the risk-neutral

ecision making of the shipping company. Decision variables de-

end on the possible realization of demand. Constraints (14) and

15) represent non-anticipativity constraints where �t ( ω) denotes

 set of scenarios whose demand is the same as ω until t period.

 non-anticipativity constraint means that the decisions only de-

end on the past realizations and do not depend on the future.

herefore, if any two different demand scenarios have the same

emand history until period t , the decision on the subsequent pe-

iod must be the same for both demand scenarios. For example,

uppose that ω 1 and ω 2 have the same demand history until pe-

iod t , i.e., d i jk (ω 1 ) = d i jk (ω 2 ) for k = 1 , . . . , t . Then, the decisions

n period t should be the same, that is, x i jt (ω 1 ) = x i jt (ω 2 ) and

 i jt (ω 1 ) = r i jt (ω 2 ) for both standard and foldable cases. 

The presented formulation accounts for decision making under

emand uncertainty; however, in general the optimal solution is

ifficult to obtain ( Shapiro & Nemirovski, 2005 ) because the eval-

ation of E [(·) + ] in the multistage setting is extremely difficult.

oreover, the formulation requires complete knowledge of the dis-

ribution of demand uncertainty, which is needed for the evalua-

ion of expectation in the objective function. In practice, it is dif-

cult to estimate the distribution precisely from historical data.

herefore, in many practical circumstances, the first and second

oments are estimated based on past data to reach the best pos-

ible forecast of future demand. With estimations of the first and

econd moments, we need a tractable and distributionally robust

pproach to handle the expectation of positive parts E [(·) + ] . To in-

orporate those practical conditions, we adopt an adjustable robust

ptimization technique similar to that of Ben-Tal et al. (2005) ; it

equires only limited information on distributions and is computa-

ionally tractable when using a linear decision rule. 
.3. Adjustable robust counterpart 

In this research, we consider multistage decision making under

ncertainty, which means that decisions are made after observing

ast data realization. Decisions can represent wait-and-see deci-

ions which depend on a portion of uncertain data. This adjusta-

ility can be represented by adjustable robust counterpart which

as proposed by Ben-Tal et al. (2004) . Therefore, we adopt the ad-

ustable robust optimization technique and the concept of a linear

ecision rule. For this direction, we need to make two preparations

efore proposing an adjustable robust counterpart. First, we will

ntroduce the factor-based demand model which represents affine

arameterizations of uncertainty based on uncertain factors. Sec-

nd, we adopt upper bounds to the expectations of the positive

arts which appear at the objective function of the multistage for-

ulation. The following contents are extended from the results of

ee and Sim (2010) . 

.3.1. Factor-based demand model 

For utilizing the concept of the adjustable robust counterpart,

e utilize a factor-based demand model similar to the model

f See and Sim (2010) . A factor-based demand model represents

he uncertain demand which is affinely dependent on uncertain

actors. We need a specific assumption of uncertain factors for

ractability. 

ssumption 1. The uncertain factors ˜ z = 

{
˜ z i jt 

}
(i, j∈ P,t=1 , ... ,T ) are

ero mean random variables with a covariance matrix �. Uncer-

ain factors ˜ z are distributed in the conic quadratic representable

upport set, W . 

The support set W is conic quadratic representable if W is rep-

esented by a quadratic cone or a second-order cone, e.g., W = 

{
z ∈

 

n | z 1 ≥
√ 

z 2 
2 

+ · · · + z 2 n 

}
. W would be intervals, polyhedrons, or

llipsoids. This assumption is essential for the tractability of the

ormulation. Without this assumption, the robust counterpart over

would be intractable. 

Under Assumption 1 , we can express the factor-based demand

s follows: 

 i jt ( ̃ z ) = d 0 i jt + 

∑ 

i ′ ∈ P 

∑ 

j ′ ∈ P 

T ∑ 

k =1 

d k i ′ j ′ i jt ̃  z i ′ j ′ k ∀ i, j ∈ P, t = 1 , . . . , T (17) 

 

k 
i ′ j ′ i jt = 0 ∀ i, j ∈ P, t = 1 , . . . , T , k ≥ t + 1 (18) 

or example, consider demand for two ports and two peri-

ds. Then, d 121 ( ̃ z ) = d 0 
1 , 2 , 1 

+ d 1 
1 , 2 , 1 , 2 , 1 ̃

 z 1 , 2 , 1 + d 1 
2 , 1 , 1 , 2 , 1 ̃

 z 2 , 1 , 1 and

 122 ( ̃ z ) = d 0 
1 , 2 , 2 

+ d 1 1 , 2 , 1 , 2 , 2 ̃
 z 1 , 2 , 1 + d 2 1 , 2 , 1 , 2 , 2 ̃

 z 1 , 2 , 2 + d 1 2 , 1 , 1 , 2 , 2 ̃
 z 2 , 1 , 1 + 

 

2 
2 , 1 , 1 , 2 , 2 ̃

 z 2 , 1 , 2 which are affine functions of ˜ z . d 211 ( ̃ z ) and d 212 ( ̃ z )

an be represented similarly. 

Eq. (17) shows that the uncertain demand is affinely dependent

n uncertain factors ˜ z i jt . As uncertain factors are realized dynam-

cally, Eq. (18) shows that the uncertain demand is depend only

n the realized uncertain factors. See and Sim (2010) showed that

any demand models, such as the independently distributed de-

and, ARMA(p, q) demand process, and any other demand mod-

ls characterized by random factors, can be expressed as a factor-

ased model. 

.3.2. Bound on expectations of positive parts 

One of the most difficult things in the multistage stochastic

rogramming formulation is the evaluation of the expectation in

he objective function. It requires the complete knowledge of dis-

ribution, which is restricted in practice. Even if the distribution

s known precisely, the evaluation of the expectation is compu-

ationally intractable in multistage case. Therefore, we use upper
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bounds similar to those of Scarf (1958) with assumption of lim-

ited information about the distribution of the uncertain factors.

The upper bounds provide tight bounds on expectations of positive

parts E [(·) + ] with distributionally robust properties. Expectations

of positive parts E [(·) + ] appear in the objective function of the

multistage stochastic programming formulation, for example, hold-

ing and penalty costs E [ H 

S 
i 
(z S 

it 
) + + P S 

i 
(z S 

it 
) −] . Hence, we need the

bound on E [(·) + ] with distributionally robust and tractable prop-

erties. Chen and Sim (2009) proposed the bounds in the form of

affine functions of random factors. Therefore, we adopt the results

of Chen and Sim (2009) . 

Theorem 1 ( Chen & Sim, 2009 ) . Under Assumption 1 on uncertain

factors, the following functions, �i ( y o , y ), i ∈ {1, 2, 3} are the upper

bounds of E 

[
(y o + y ′ ˜ z ) + 

]
where x + = max { x, 0 } : 

1. �1 (y 0 , y ) := 

(
y 0 + max 

˜ z ∈W 

˜ z ′ y 
)+ 

2. �2 (y 0 , y ) := y 0 + 

(
− y 0 + max 

˜ z ∈W 

˜ z ′ (−y ) 
)+ 

3. �3 (y 0 , y ) := 

1 
2 y 0 + 

1 
2 

√ 

y 2 
0 

+ y ′ �y 

Proof. We refer the reader to Chen and Sim (2009) for the

proof. �

Remark 1. Chen and Sim (2009) The first bound in Theorem 1 is

derived from the positive part of support of the uncertain factors.

The second bound is derived from the negative part of support of

the uncertain factors. The third bound is derived from the covari-

ance of the uncertain factors. 

Remark 2. Chen and Sim (2009) proposed five upper bounds of

expectation of positive parts. However, the last two bounds re-

quire the estimation of forward and backward deviations defined

by Chen, Sim, and Sun (2007) , which may reflect a new concept

for practitioners. Therefore, for the simplicity and applicability in

the shipping industry, we omit the last two bounds. 

Theorem 1 shows that the three bounds are upper bounds on

the expectations of positive parts, respectively. Then, Chen and Sim

(2009) integrated these bounds for better bound. 

Theorem 2 ( Chen & Sim, 2009 ) . Let 

�(y 0 , y ) := min 

y i 0 , y i 

3 ∑ 

i =1 

�i (y i 0 , y i ) 

s . t . 

3 ∑ 

i =1 

y i 0 = y 0 , 

3 ∑ 

i =1 

y i = y . 

�( y 0 , y ) is a better upper bound of the expectation of positive parts

than the three bounds from Theorem 1 , that is, 

E 

[
(y o + y ′ ˜ z ) + 

]
≤ �(y 0 , y ) ≤ min 

i =1 , 2 , 3 
�i (y 0 , y ) 

Proof. We refer the reader to Chen and Sim (2009) for the

proof. �

The epigraph form of the bound in Theorem 2 , �( y 0 , y ) ≤ M , is 

∃ y i 0 ∈ R , y i ∈ R 

N , r i ∈ R , i = 1 , 2 , 3 

s . t . r 1 + r 2 + r 3 ≤ M 

y 10 + max 
˜ z ∈W 

˜ z ′ y 1 ≤ r 1 

0 ≤ r 1 

max 
˜ z ∈W 

˜ z ′ (−y 2 ) ≤ r 2 

y 20 ≤ r 2 
e
1 

2 

y 30 + 

1 

2 

√ 

y 2 
30 

+ y 3 ′ �y 3 ≤ r 3 

y 10 + y 20 + y 30 = y 0 

y 1 + y 2 + y 3 = y 

here N is the dimension of uncertain factors ˜ z . 

emark 3. Under Assumption 1 , the bound in Theorem 2 is

 second-order cone program (SOCP), which is computationally

ractable and solved efficiently with a commercial solver. With this

ound, we can approximate the objective function of the multi-

tage stochastic programming formulation. 

Theorem 2 shows that the integration of the three bounds

rom Theorem 1 generates a better bound than the three up-

er bounds provided separately. Hence, we adopt the bound from

heorem 2 to propose the adjustable robust counterparts. 

.3.3. Linear decision rule (LDR) formulation 

In this section, we explain the LDR and propose a robust for-

ulation based on the LDR. We show that the LDR formulation is

 second-order cone program which is computationally tractable

nd can be solved using commercial solvers. Then, we show that

he LDR formulation is a tractable approximation of a multistage

tochastic programming formulation for the ECR problem. 

Ben-Tal et al. (2004) showed that the adjustable robust coun-

erpart is NP-hard, so they proposed an affinely adjustable robust

ounterpart (AARC) for tractability. The idea of AARC is to restrict

ecisions to affine functions of uncertainties. An LDR is based on

he same concept of an AARC, which means that the repositioning

ecisions are restricted to affine functions of random factors. 

 

S 
i jt ( ̃ z ) = r S, 0 

i jt 
+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

r S,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k ∀ i, j ∈ P, t = 1 , . . . , T (19)

 

F 
i jt ( ̃ z ) = r F, 0 

i jt 
+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

r F,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k ∀ i, j ∈ P, t = 1 , . . . , T (20)

 

S,k 
i ′ j ′ i jt 

= 0 ∀ i, j ∈ P, t = 1 , . . . , T , k = t + 1 , . . . , T (21)

 

F,k 
i ′ j ′ i jt 

= 0 ∀ i, j ∈ P, t = 1 , . . . , T , k = t + 1 , . . . , T (22)

or example, consider repositioning decisions of standard con-

ainers for two ports and two periods. Then, r S 
121 

( ̃ z ) = r S, 0 
1 , 2 , 1 

+
 

S, 1 
1 , 2 , 1 , 2 , 1 ̃

 z 1 , 2 , 1 + r S, 1 
2 , 1 , 1 , 2 , 1 ̃

 z 2 , 1 , 1 and r S 
122 

( ̃ z ) = r S, 0 
1 , 2 , 2 

+ r S, 1 
1 , 2 , 1 , 2 , 2 ̃

 z 1 , 2 , 1 +
 

S, 2 
1 , 2 , 1 , 2 , 2 ̃

 z 1 , 2 , 2 + r S, 1 
2 , 1 , 1 , 2 , 2 ̃

 z 2 , 1 , 1 + r S, 2 
2 , 1 , 1 , 2 , 2 ̃

 z 2 , 1 , 2 which are affine func-

ions of ˜ z . r S 
211 

( ̃ z ) and r S 
212 

( ̃ z ) can be represented similarly. 

Eqs. (19) and (20) show that the repositioning decisions for

tandard and foldable containers are restricted to affine functions

f ˜ z , respectively. Eqs. (21) and (22) show the non-anticipativity of

he repositioning decisions. Other decision variables, x ijt , are also

ffinely dependent on random factors ˜ z . We omit non-anticipativity

onstraints for brevity. 

 

S 
i jt ( ̃ z ) = x S, 0 

i jt 
+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

x S,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k ∀ i, j ∈ P, t = 1 , . . . , T (23)

 

F 
i jt ( ̃ z ) = x F, 0 

i jt 
+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

x F,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k ∀ i, j ∈ P, t = 1 , . . . , T (24)

We can approximate the expected repositioning and transport-

ng costs by using the LDR for repositioning and transporting de-

isions. For example, consider repositioning and transporting costs

f the standard container case. The foldable container case can be

xpressed similarly. 
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i  

(  

i  

i

T  

c

i

P  

t

 

a  

d  

c  

c  ∑
 

u

z

H  

s  

t  

f  

o

E [ R S i j r 
S 
i jt ( ̃ z ) + C S i j x 

S 
i jt ( ̃ z )] 

≤ E 

[ 

R S i j 

( 

r S, 0 
i jt 

+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

r S,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k 

) 

+ C S i j 

( 

x S, 0 
i jt 

+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

x S,k 
i ′ j ′ i jt ̃

 z i ′ j ′ k 

) ] 

 R S i j r 
S, 0 
i jt 

+ C S i j x 
S, 0 
i jt 

he first inequality holds by the LDR and the second equality holds

y the zero-mean assumption of uncertain factors. We can approx-

mate the expected holding and penalty costs, and the folding and

nfolding costs by the LDR and the bound from Theorem 2 . For ex-

mple, consider the holding and penalty costs of the foldable con-

ainer case. 

E [ H 

S 
i (z S it ( ̃ z )) + + P S i (z S it ( ̃ z )) −] 

E 

[ 

H 

S 
i 

( 

z S, 0 
it 

+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

z S,k 
i ′ j ′ it ̃  z i ′ j ′ k 

) + 

+ P S i 

( 

z S, 0 
it 

+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

z S,k 
i ′ j ′ it ̃  z i ′ j ′ k 

) −]

H 

S 
i �(z S, 0 

it 
, z S i,t ) + P S i �(−z S, 0 

it 
, −z S i,t ) 

he first inequality holds by the LDR and the second inequality

olds by the bound from Theorem 2 . Expected folding and unfold-

ng costs can be approximated similarly. 

Using the LDR and bounds from Theorem 2 , we propose the

DR formulation for the ECR problem. Let RC LDR denote total repo-

itioning and transportation costs using the LDR and HC LDR denote

otal holding and penalty costs using the LDR and Theorem 2 . Let

C LDR denote total folding and unfolding costs using the LDR and

heorem 2 . 

RC LDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

∑ 

j∈ P 

(
R 

S 
i j r 

S, 0 
i jt 

+ C S i j x 
S, 0 
i jt 

+ R 

F 
i j r 

F, 0 
i jt 

+ C F i j x 
F, 0 
i jt 

)

C LDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

(
H 

S 
i �(z S, 0 

it 
, z S i,t ) + H 

F 
i �(z F, 0 

it 
, z F i,t ) 

+ P S i �(−z S, 0 
it 

, −z S i,t ) + P F i �(−z F, 0 
it 

, −z F i,t ) 
)

FC LDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

(
F C i �

(∑ 

j∈ P 
(x F, 0 

ji,t−νi −ν j −τ ji 
− x F, 0 

i jt 
) , 

∑ 

j∈ P 
( x F ji,t−νi −ν j −τ ji 

− x F i jt ) 

)

+ UC i �

(∑ 

j∈ P 
(x F, 0 

i jt 
−x F, 0 

ji,t−νi −ν j −τ ji 
) , 

∑ 

j∈ P 
( x F i jt −x F ji,t−νi −ν j −τ ji 

) 

)

he LDR formulation is as follows: 

C LDR = (25) 

in RC LDR + HC LDR + FC LDR 

s . t . z S, 0 
it 

= z S, 0 
i,t−1 

+ 

∑ 

j∈ P 
r S, 0 

ji,t−τ ji 
−

∑ 

j∈ P 
r S, 0 

i jt 
+ 

∑ 

j∈ P 
x S, 0 

ji,t−νi −ν j −τ ji 
−

∑ 

j∈ P 
x S, 0 

i jt 
,

∀ i ∈ P, t = 1 , . . . , T (26) 

z S,k 
i ′ j ′ it = z S,k 

i ′ j ′ i,t−1 
+ 

∑ 

j∈ P 
r S,k 

i ′ j ′ ji,t−τ ji 
−

∑ 

j∈ P 
r S,k 

i ′ j ′ i jt 
+ 

∑ 

j∈ P 
x S,k 

i ′ j ′ ji,t−νi −ν j −τ ji 

−
∑ 

j∈ P 
x S,k 

i ′ j ′ i jt 
, ∀ i ′ , j ′ , i ∈ P, t = 1 , . . . , T , k ≤ t 

(27) 

z F, 0 
it 

= z F, 0 
i,t−1 

+ 

∑ 

j∈ P 
r F, 0 

ji,t−τ ji 
−

∑ 

j∈ P 
r F, 0 

i jt 
+ 

∑ 

j∈ P 
x F, 0 

ji,t−νi −ν j −τ ji 
−

∑ 

j∈ P 
x F, 0 

i jt 
, 

∀ i ∈ P, t = 1 , . . . , T (28) 
z F,k 
i ′ j ′ it = z F,k 

i ′ j ′ i,t−1 
+ 

∑ 

j∈ P 
r F,k 

i ′ j ′ ji,t−τ ji 
−

∑ 

j∈ P 
r F,k 

i ′ j ′ i jt 
+ 

∑ 

j∈ P 
x F,k 

i ′ j ′ ji,t−νi −ν j −τ ji 

−
∑ 

j∈ P 
x F,k 

i ′ j ′ i jt 
, ∀ i ′ , j ′ , i ∈ P, t = 1 , . . . , T , k ≤ t 

(29) 

x S, 0 
i jt 

+ x F, 0 
i jt 

= d 0 i jt , ∀ i, j ∈ P, t = 1 , . . . , T (30) 

x S,k 
i ′ j ′ i jt 

+ x F,k 
i ′ j ′ i jt 

= d k i ′ j ′ i jt , ∀ i ′ , j ′ , i, j ∈ P, t = 1 , . . . , T , k ≤ t (31) 

r S, 0 
i jt 

+ 

1 

N 

r F, 0 
i jt 

+ x S, 0 
i j,t−νi 

+ x F, 0 
i j,t−νi 

+ 

∑ 

i ′ , j ′ ∈ P 

t ∑ 

k =1 

(
r S,k 

i ′ j ′ i jt 
+ 

1 

N 

r F,k 
i ′ j ′ i jt 

+ x S,k 
i ′ j ′ i j,t−νi 

+ x F,k 
i ′ j ′ i j,t−νi 

)
˜ z i jk ≤ K i jt , 

∀ i, j ∈ P, t = 1 , . . . , T , ̃  z ∈ W (32) 

The objective function includes the upper bounds of the ex-

ectations of positive parts. Because the bounds are second-order

ones, the objective function is a second-order cone. Moreover, the

ounds are derived only with mean, support, and covariance of un-

ertainties. Hence, the above formulation does not need any dis-

ributional assumptions. All constraints, except Constraint (32) , are

inear and Constraint (32) can be transformed to a robust coun-

erpart under Assumption 1 . If the uncertain factors have interval

r ellipsoidal uncertainty, then the transformed robust counterpart

s computationally tractable. Hence, if we assume that Constraint

32) can be transformed to be tractable, then the LDR formulation

s computationally tractable. From this, we can obtain the follow-

ng result. 

heorem 3. TC STOC ≤ TC LDR , where TC STOC is the optimal expected

ost of the multistage stochastic programming formulation, and TC LDR 

s the optimal expected cost under the linear decision rule. 

roof. The proof is similar to that of See and Sim (2010) . We refer

he reader to the electronic companion of See and Sim (2010) . 

First, we will show that the inventory levels of standard

nd foldable containers are expressed as affine functions of ran-

om factors. We only show the proof of the standard container

ase, because the foldable container case is the same. Note that

onstraint (10) is z S 
it 
( ̃ z ) = z S 

i,t−1 
( ̃ z ) + 

∑ 

j∈ P r S ji,t−τ ji 
( ̃ z ) − ∑ 

j∈ P r S i jt 
( ̃ z ) +

 

j∈ P x S ji,t−νi −ν j τ ji 
( ̃ z ) − ∑ 

j∈ P x S i jt 
( ̃ z ) . By summation over period t and

sing the linear decision rule, we can obtain 

 

S 
it ( ̃ z ) = z S, 0 

i 0 
+ 

t ∑ 

τ=1 

∑ 

j∈ P 
r S, 0 

ji,τ−τ ji 
−

t ∑ 

τ=1 

∑ 

j∈ P 
r S, 0 

i j,τ

+ 

t ∑ 

τ=1 

∑ 

j∈ P 
x S, 0 

ji,t−νi −ν j −τ ji 
−

t ∑ 

τ=1 

∑ 

j∈ P 
x S, 0 

i j,τ

+ 

∑ 

i ′ , j ′ , j∈ P 

t ∑ 

τ=1 

t ∑ 

k =1 

r S,k 
i ′ j ′ ji,τ−τ ji 

˜ z i ′ j ′ k −
∑ 

i ′ , j ′ , j∈ P 

t ∑ 

τ=1 

t ∑ 

k =1 

r S,k 
i ′ j ′ i j,τ

˜ z i ′ j ′ k 

+ 

∑ 

i ′ , j ′ , j∈ P 

t ∑ 

τ=1 

t ∑ 

k =1 

x S,k 
i ′ j ′ ji,t−νi −ν j −τ ji 

˜ z i ′ j ′ k −
∑ 

i ′ , j ′ , j∈ P 

t ∑ 

τ=1 

t ∑ 

k =1 

x S,k 
i ′ j ′ i jτ

˜ z i ′ j ′ k 

= z S, 0 
it 

+ 

∑ 

i ′ , j ′ ∈ P 
z S,k 

i ′ j ′ i jt ̃
 z i ′ j ′ k 

ence, z S, 0 
it 

is also an affine function of random factors and con-

traints (26) and (27) are derived. The linear decision rule solu-

ion is a feasible solution of the multistage stochastic programming

ormulation. Under the linear decision rule and by Theorem 2 , we

btain 
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t  

H  

T  

i

F

T

T

 

s

 

 

 

 

 

 

 

E 

( ∑ 

i, j∈ P 

(
R 

S 
i j r 

S 
i jt ( ̃ z ) + C S i j x 

S 
i jt ( ̃ z ) + R 

F 
i j r 

F 
i jt ( ̃ z ) + C F i j x 

F 
i jt ( ̃ z ) 

))

+ E 

(∑ 

j∈ P 
H 

S 
i 

(
z S it ( ̃ z ) 

)+ + H 

F 
i 

(
z F it ( ̃ z ) 

)+ + P S i 

(
z S it ( ̃ z ) 

)−+ P F i 

(
z F it ( ̃ z ) 

)−
)

+ E 

(∑ 

i ∈ P 
F C i 

(∑ 

j∈ P 
(x F ji,t−νi −ν j −τ ji 

(ω) − x F i jt (ω)) + 
))

+ E 

(∑ 

i ∈ P 
F C i 

(∑ 

j∈ P 
(x F i jt (ω) − x F ji,t−νi −ν j −τ ji 

(ω)) + 
))

≤
∑ 

i, j∈ P 

(
R 

S 
i j r 

S, 0 
i jt 

+ C S i j x 
S, 0 
i jt 

+ R 

F 
i j r 

F, 0 
i jt 

+ C F i j x 
F, 0 
i jt 

)
+ 

∑ 

i ∈ P 

(
H 

S 
i �(z S, 0 

it 
, z S i,t ) + H 

F 
i �(z F, 0 

it 
, z F i,t ) 

)
+ 

∑ 

i ∈ P 

(
P S i �(−z S, 0 

it 
, −z S i,t ) + P F i �(−z F, 0 

it 
, −z F i,t ) 

)

+ 

∑ 

i ∈ P 

(
F C i �

(∑ 

j∈ P 
(x F, 0 

ji,t−νi −ν j −τ ji 
− x F, 0 

i jt 
) , 

∑ 

j∈ P 
( x F ji,t−νi −ν j −τ ji 

−x F i jt ) 
)

+ UC i �

(∑ 

j∈ P 
(x F, 0 

i jt 
− x F, 0 

ji,t−νi −ν j −τ ji 
) , 

∑ 

j∈ P 
( x F i jt − x F ji,t−νi −ν j −τ ji 

) 

))
. 

Therefore, we conclude TC STOC ≤ TC LDR . �

Theorem 3 shows that the LDR formulation is a tractable ap-

proximation of the multistage stochastic programming formulation.

The optimal solution of the multistage stochastic programming for-

mulation is difficult to obtain; however, the optimal solution of the

LDR formulation can be used. We show the analysis of LDR formu-

lation performance and a comparison against a benchmark in the

numerical experiments section. 

4.3.4. Restricted linear decision rule (RLDR) formulation 

Although the LDR formulation is computationally tractable, it

has a lot of decision variables because each decision is dependent

on all possible uncertainties. For example, each repositioning de-

cision, r ijt , has | P | × | P | × | T | + 1 variables in the LDR formulation.

For a simpler formulation, we propose a restricted linear decision

rule (RLDR) similar to the idea of Ang, Lim, and Sim (2012) . A re-

stricted linear decision rule means that decision rules are restricted

to affine functions of the uncertain factors ˜ z i j rather than all pos-

sible realizations of the uncertain factors. For example, the repo-

sitioning decision from port i to port j would not be affected by

random factors 
{

˜ z k,l 

}
k,l 	 = i, j . Therefore, the RLDR may perform well

in practice despite the additional assumptions required. The RLDR

is as follows: 

r S i jt ( ̃ z ) = r S, 0 
i jt 

+ 

t ∑ 

k =1 

r S,k 
i jt ̃

 z i jk ∀ i, j ∈ P, t = 1 , . . . , T 

r F i jt ( ̃ z ) = r F, 0 
i jt 

+ 

t ∑ 

k =1 

r F,k 
i jt 

˜ z i jk ∀ i, j ∈ P, t = 1 , . . . , T 

x S i jt ( ̃ z ) = x S, 0 
i jt 

+ 

t ∑ 

k =1 

x S,k 
i jt ̃

 z i jk ∀ i, j ∈ P, t = 1 , . . . , T 

x F i jt ( ̃ z ) = x F, 0 
i jt 

+ 

t ∑ 

k =1 

x F,k 
i jt 

˜ z i jk ∀ i, j ∈ P, t = 1 , . . . , T 

For example, consider repositioning decisions of standard

containers for two ports and three periods. Then, r S 
121 

( ̃ z ) =
r S, 0 

1 , 2 , 1 
+ r S, 1 

1 , 2 , 1 ̃
 z 1 , 2 , 1 , r S 

122 
( ̃ z ) = r S, 0 

1 , 2 , 2 
+ r S, 1 

1 , 2 , 2 ̃
 z 1 , 2 , 1 + r S, 2 

1 , 2 , 2 ̃
 z 1 , 2 , 2 , and

r S 
123 

( ̃ z ) = r S, 0 
1 , 2 , 3 

+ r S, 1 
1 , 2 , 3 ̃

 z 1 , 2 , 1 + r S, 2 
1 , 2 , 3 ̃

 z 1 , 2 , 2 + r S, 3 
1 , 2 , 3 ̃

 z 1 , 2 , 3 which are
ffine functions of ˜ z 12 . In the opposite direction, r S 
211 

( ̃ z ) =
 

S, 0 
2 , 1 , 1 

+ r S, 1 
2 , 1 , 1 ̃

 z 2 , 1 , 1 , r S 
212 

( ̃ z ) = r S, 0 
2 , 1 , 2 

+ r S, 1 
2 , 1 , 2 ̃

 z 2 , 1 , 1 + r S, 2 
2 , 1 , 2 ̃

 z 2 , 1 , 2 , and

 

S 
213 

( ̃ z ) = r S, 0 
2 , 1 , 3 

+ r S, 1 
2 , 1 , 3 ̃

 z 2 , 1 , 1 + r S, 2 
2 , 1 , 3 ̃

 z 2 , 1 , 2 + r S, 3 
2 , 1 , 3 ̃

 z 2 , 1 , 3 which are

ffine functions of ˜ z 21 . 

To utilize the RLDR, an additional assumption on demand is

eeded. Random demand d i jt ( ̃ z ) should be a function of ˜ z i j rather

han of ˜ z . In other words, d i jt ( ̃ z ) depends only on the random fac-

ors related to the ( i , j ) pair. Therefore, d i jt ( ̃ z ) can be represented

s follows: 

 i jt ( ̃ z ) = d 0 i jt + 

t ∑ 

k =1 

d k i jt ̃  z i jk . 

ithout this assumption, the RLDR would be infeasible. Therefore,

e assume the above assumption in the RLDR formulation. 

Using the RLDR and bounds from Theorem 2 , we propose

he RLDR formulation of the ECR problem. Let RC RLDR denote to-

al repositioning and transportation costs using the RLDR and

C RLDR denote total holding and penalty costs using the RLDR and

heorem 2 . Let FC RLDR denote total folding and unfolding costs us-

ng the RLDR and Theorem 2 . 

RC RLDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

∑ 

j∈ P 

(
R 

S 
i j r 

S, 0 
i jt 

+ C S i j x 
S, 0 
i jt 

+ R 

F 
i j r 

F, 0 
i jt 

+ C F i j x 
F, 0 
i jt 

)

HC RLDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

(
H 

S 
i �(z S, 0 

it 
, z S i,t ) + H 

F 
i �(z F, 0 

it 
, z F i,t ) 

+ P S i �(−z S, 0 
it 

, −z S i,t ) + P F i �(−z F, 0 
it 

, −z F i,t ) 
)

C RLDR = 

T ∑ 

t=1 

∑ 

i ∈ P 

(
F C i �

(∑ 

j∈ P 
(x F, 0 

ji,t−νi −ν j −τ ji 
− x F, 0 

i jt 
) , 

∑ 

j∈ P 
( x F ji,t−νi −ν j −τ ji 

− x F i jt ) 

)

+ UC i �

(∑ 

j∈ P 
(x F, 0 

i jt 
−x F, 0 

ji,t−νi −ν j −τ ji 
) , 

∑ 

j∈ P 
( x F i jt −x F ji,t−νi −ν j −τ ji 

) 

)

he RLDR formulation is as follows: 

C RLDR = 

min RC RLDR + HC RLDR + FC RLDR (33)

 . t . z S, 0 
it 

= z S, 0 
i,t−1 

+ 

∑ 

j∈ P 
r S, 0 

ji,t−τ ji 
−

∑ 

j∈ P 
r S, 0 

i jt 

+ 

∑ 

j∈ P 
x S, 0 

ji,t−νi −ν j −τ ji 
−

∑ 

j∈ P 
x S, 0 

i jt 
, ∀ i ∈ P, t = 1 , . . . , T (34)

z S,k 
j,i,i,t 

= z S,k 
j,i,i,t−1 

+ r S,k 
j,i,t−τ ji 

+ x S,k 
j,i,t−νi −ν j −τ ji 

, 

∀ i, j ∈ P, t = 1 , . . . , T , k ≤ t (35)

z S,k 
i, j,i,t 

= z S,k 
i, j,i,t−1 

− r S,k 
i, j,t 

− x S,k 
i, j,t 

, ∀ i, j ∈ P, t = 1 , . . . , T , k ≤ t 

(36)

z F, 0 
it 

= z F, 0 
i,t−1 

+ 

∑ 

j∈ P 
r F, 0 

ji,t−τ ji 
−

∑ 

j∈ P 
r F, 0 

i jt 
+ 

∑ 

j∈ P 
x F, 0 

ji,t−νi −ν j −τ ji 
−

∑ 

j∈ P 
x F, 0 

i jt 
,

∀ i ∈ P, t = 1 , . . . , T (37)

z F,k 
j,i,i,t 

= z F,k 
j,i,i,t−1 

+ r F,k 
j,i,t−τ ji 

+ x F,k 
j,i,t−νi −ν j −τ ji 

, 

∀ i, j ∈ P, t = 1 , . . . , T , k ≤ t (38)

z F,k 
i, j,i,t 

= z F,k 
i, j,i,t−1 

− r F,k 
i, j,t 

− x F,k 
i, j,t 

, ∀ i, j ∈ P, t = 1 , . . . , T , k ≤ t 

(39)
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Table 2 

Mean of demand process, μ0 
i j 

. 

From-to NB SH BS VC LA 

NB – 50 50 300 400 

SH 50 – 50 300 400 

BS 100 100 – 200 300 

VC 150 150 100 – 100 

LA 200 200 150 100 –

5
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f  
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o  

b  

c  

u  

v  
x S, 0 
i jt 

+ x F, 0 
i jt 

= d 0 i jt , ∀ i, j ∈ P, t = 1 , . . . , T (40) 

x S,k 
i jt 

+ x F,k 
i jt 

= d k i jt , ∀ i, j ∈ P, t = 1 , . . . , T , k ≤ t (41) 

r S, 0 
i jt 

+ 

1 

N 

r F, 0 
i jt 

+ x S, 0 
i j,t−νi 

+ x F, 0 
i j,t−νi 

+ 

t ∑ 

k =1 

(
r S,k 

i jt 
+ 

1 

N 

r F,k 
i jt 

+ x S,k 
i j,t−νi 

+ x F,k 
i j,t−νi 

)
˜ z i jk ≤ K i jt , 

∀ i, j ∈ P, t = 1 , . . . , T , ̃  z ∈ W (42) 

Fewer decision variables of the RLDR formulation are used than

n the LDR formulation. Hence, we can obtain the result shown in

heorem 4 . 

heorem 4. TC STOC ≤ TC LDR ≤ TC RLDR , where TC RLDR is the optimal

xpected cost under the RLDR. 

roof. The first inequality comes from Theorem 3 . The second in-

quality is true because the RLDR formulation is a formulation

hat adds constraints to the LDR formulation, and the objective

unction of the RLDR formulation is larger than that of the LDR

ormulation. �

Theorem 4 shows that the RLDR formulation is also a tractable

pproximation. However, the expected cost of the RLDR formu-

ation is worse than that of the LDR formulation. Despite the

orse RLDR performance, the size of the RLDR formulation is much

maller than that of the LDR formulation. Therefore, the RLDR for-

ulation is easy to handle and has competitive advantages in prac-

ice. We analyzed the performance and computation time for the

alidity of the RLDR formulation and compare the RLDR against a

enchmark. 

. Computational experiments 

In this section, we present the numerical analysis of the pro-

osed formulations based on the expected operating costs, compu-

ation time, and optimality gap against the benchmark. We define

xpected value given perfect information (EV|PI) for the benchmark

gainst the proposed models. Then, we conduct simulations for

urther analysis such as cost-saving effects of foldable containers,

ost ratio of total operating costs, and container storage at depots

f ports. The following results were solved using Xpress software

ersion 7.9 on a PC with an Intel(R) Core(TM) i5-6600 CPU 3.30

Hz with 32.00GB of RAM. 

.1. Expected value given perfect information (EV|PI) 

For validating the performance of the proposed model, we need

 benchmark for comparison. However, it is difficult to obtain an

ptimal solution of a multistage stochastic programming formu-

ation, so we utilize an alternative of TC STOC which is possible to

alculate. Therefore, we define expected value given perfect infor-

ation (EV|PI) as follows: 

V | PI = E D [ TC DET | D ] ≈ 1 

K 

K ∑ 

k =1 

(
TC DET | D k 

)
V|PI represents the expected value of the total operating costs

iven the information of demand. We generate K samples of de-

and scenarios and calculate TC DET for each demand scenario.

hen, we calculate EV|PI as an expectation over K samples. EV|PI

an be an alternative of TC STOC , because it is similar to multistage

cenario generation approach. EV|PI would be less than the objec-

ive function value, because it is calculated based on the complete

nowledge about future demand. Therefore, it can be used as a

enchmark for comparing the performances of the robust formu-

ations. 
.2. Demand process 

In this experiment, we utilize the demand process proposed by

raves (1999) , which can be represented as the factor-based de-

and model. To compare performances of the LDR and RLDR for-

ulations, we assume that the demand only depends on random

actors ˜ z i j . Then, the demand is expressed as follows: 

 i jt ( ̃ z ) = d 0 i jt + 

t ∑ 

k =1 

d k i jt ̃  z i jk 

= μ0 
i jt + 

t−1 ∑ 

k =1 

α ˜ z i jk + ̃

 z i jt ∀ i, j ∈ P, t = 1 , . . . , T 

In this demand process, d k 
i jt 

= α for k = 1 , . . . , t − 1 and d t 
i jt 

= 1 .

e assume that ˜ z i jt are independent uniformly distributed random

ariables in [ −z̄ i j , ̄z i j ] . Supports of uncertain factors, z̄ i j , are listed

n Appendix A ( Table A.19 ). When α = 1 , the demand process is a

andom walk, and when α = 0 , the demand process is a stationary

.i.d. process. In this experiment, we use two different values of

∈ {0, 0.25}. 

.3. Computational results 

We consider a numerical example of five ports and 20 planning

eriods. The five ports represent Ningbo (NB), Shanghai (SH), Bu-

an (BS), Vancouver (VC), and Los Angeles (LA), respectively, which

re five major ports in the North America (NA)-Asia shipping net-

ork. We consider the NA-Asia instance, because the trade imbal-

nce between NA and Asia is highly significant. We set a base pe-

iod of 4 days to set the transportation time between Asian ports

s 1 period and the transportation time to cross the Pacific Ocean

s 4 periods or 16 days. We refer to the vessel schedule announced

y Maersk, the world’s largest shipping company. We assume that

he inland transportation time ν is 1 base period and N = 4 , which

eans that four folded foldable containers are used to build one

ack such as 4FOLD of HCI. The demand parameters shown in

able 2 are determined by referring to the monthly cargo volume

ata for each port. To reflect the trade imbalance, we set the mean

f demand from the export dominant ports to the import domi-

ant ports to be double for the return direction. We assume that

he number of supplied containers determined before the begin-

ing of the planning horizon and the initial inventory of contain-

rs are given. We also assume that the initial inventory of fold-

ble containers are one over ten of that of standard containers. For

implicity, we assume that the parameters are the same over the

lanning horizon, for example, μ0 
i jt 

= μ0 
i j 

for all t . We let H 

S 
i 

= 0 . 2 ,

 

F 
i 

= 0 . 1 , P S 
i 

= 2 , P F 
i 

= 4 , F C i = 0 . 1 , and UC i = 0 . 1 for all five ports.

he unit holding cost of foldable containers is the half of that of

tandard containers, because foldable containers are stored with

olded state. The penalty cost of foldable containers is twofold that

f standard containers, because the purchase cost and leasing cost

f foldable containers are much expensive. The transportation time

etween ports, other cost parameters, capacity, and supports of un-

ertain factors are listed in Appendix A . [ −z̄ i j , ̄z i j ] is the interval of

niform distribution of ˜ z i jt , so we can calculate the standard de-

iation with z̄ i j . We use these parameters as a baseline, and vary



920 S. Lee and I. Moon / European Journal of Operational Research 280 (2020) 909–925 

Table 3 

Computational results with different holding costs 

Expected Cost Time (s) Gap (%) 

α HC EV|PI LDR RLDR LDR RLDR LDR RLDR 

0 0.2 193,141 193,252 193,451 11418.9 1815.9 0.057 0.161 

0.1 161,704 161,832 162,109 14423.8 2713.2 0.079 0.250 

0.04 142,437 142,552 142,779 11216.9 2173.1 0.081 0.240 

0.25 0.2 193,146 193,696 194,362 14344.5 2795.5 0.285 0.629 

0.1 161,715 162,614 163,217 12368.6 2361.5 0.556 0.929 

0.04 142,446 143,236 143,761 12268.0 2532.0 0.554 0.923 

Table 4 

Computational results using standard containers only with different holding costs. 

Expected Cost Time (s) Gap (%) 

α HC EV|PI LDR RLDR LDR RLDR LDR RLDR 

0 0.2 218,071 218,164 218,280 746.2 200.0 0.043 0.096 

0.1 174,037 174,128 174,243 673.9 231.4 0.053 0.119 

0.04 147,616 147,698 147,803 605.1 227.5 0.056 0.127 

0.25 0.2 218,077 218,700 219,069 777.1 193.2 0.286 0.455 

0.1 174,045 174,697 175,070 751.8 162.8 0.375 0.589 

0.04 147,626 148,256 148,616 605.6 217.2 0.427 0.671 

Table 5 

Comparisons between using standard containers only and using standard and foldable containers both. 

Standard & Foldable Standard Gap (%) 

α HC EV|PI LDR RLDR EV|PI LDR RLDR EV|PI LDR RLDR 

0 0.2 193,141 193,252 193,451 218,071 218,164 218,280 11.43 11.42 11.37 

0.1 161,704 161,832 162,109 174,037 174,128 174,243 7.09 7.06 6.96 

0.04 142,437 142,552 142,779 147,616 147,698 147,803 3.51 3.48 3.40 

0.25 0.2 193,146 193,696 194,362 218,077 218,700 219,069 11.43 11.43 11.28 

0.1 161,715 162,614 163,217 174,045 174,697 175,070 7.08 6.92 6.77 

0.04 142,446 143,236 143,761 147,626 148,256 148,616 3.51 3.39 3.27 
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the cost parameters, such as holding, transportation, and reposi-

tioning costs. Finally, we generate 10,0 0 0 samples for calculating

the benchmark EV|PI. 

The computational results with various holding costs and the

values for α are summarized in Table 3 . We set the holding cost

H 

S 
i 

as {0.2, 0.1, 0.04} for a resulting P S 
i 
/H 

S 
i 

ratio of {10, 20, 50}.

The structure of the optimal solutions of inventory models often

depends on the ratio P S 
i 
/H 

S 
i 

. The ECR model is similar to inven-

tory models, which makes the experiments with varying holding

costs meaningful. The performance gap of the LDR formulation

presented in Table 3 is calculated by ( TC LDR − EV | PI ) / EV | PI × 100 .

The gap of the RLDR formulation is calculated similarly. 

The expected costs show that the result of Theorem 4 holds,

and the performance gap shows that the expected costs of both the

LDR and RLDR formulations are very close to the EV|PI. Bertsimas,

Iancu, and Parrilo (2010) showed that the LDR can be optimal

in specific conditions such as convex objective functions and the

box uncertainty set. There are a few studies about an optimality

and a performance guarantee of the LDR in the multistage setting

( Bertsimas & Goyal, 2012; Bertsimas, Goyal, & Lu, 2015; El Housni

& Goyal, 2017 ). The tight performance gap from Table 3 would be

justified by the theoretical results, even though the LDR and RLDR

formulations are based on the multistage setting and bounds from

Theorem 2 . The performance gap can be interpreted as the price

of robustness, which means that additional cost is incurred to ob-

tain distributionally robust properties. The computation time of the

LDR formulation is over 10,0 0 0 seconds, which might seem unrea-

sonable. However, the length of time between the decisions on the

first period and the next uncertainty realization is one base period

or 4 days, which is sufficient for updating the data and solving the

LDR formulation. Therefore, the LDR formulation can be used in
he rolling horizon manner, that is, the formulation over the en-

ire planning horizon is solved and only the first decision is im-

lemented. Then, the realized uncertainty data is updated and the

ormulation is solved with the updated data. The computation time

f the RLDR formulation is much less than that of the LDR formula-

ion, because the number of variables are quite small. The smaller

omputation time of the RLDR formulation offers a competitive ad-

antage in practice. 

To analyze the cost-saving effect for the use of foldable con-

ainers, we compare the computational results against the results

f using only standard containers. The computational results for

sing only standard containers at various holding costs are sum-

arized in Table 4 . We compared two cases and show the find-

ngs in Table 5 . The gap shows that in our experiments, at most

1.43% cost savings is realized when foldable containers are used

n maritime transport. The cost-saving effect decreases as the hold-

ng cost H i decreases because the considerable cost saving using

oldable containers occurs in the holding cost part. However, the

ost-saving effect might be overestimated because the expected to-

al cost represents the expected operating costs over the planning

orizon. The operating costs do not include fixed or purchase costs

f the foldable containers, which may be very costly. Nevertheless,

 considerable cost saving may be realized for using commercial-

zed foldable containers. 

The shipping industry is highly affected by crude oil prices, be-

ause transportation and repositioning costs are proportional to

rude oil prices. The computational results with various reposi-

ioning and transportation costs (TC) are summarized in Table 6 .

e denote three different parameters as {1,2,4} such that trans-

ortation and repositioning costs are once, twice, and four times

he costs in Appendix A , respectively. The computational results for
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Table 6 

Computational results with different transport/repositioning costs. 

Expected Cost Time (s) Gap (%) 

α TC EV|PI LDR RLDR LDR RLDR LDR RLDR 

0 1 193,141 193,252 193,451 11536.8 1767.9 0.057 0.161 

2 321,818 321,953 322,311 10777.9 2361.2 0.042 0.153 

4 577,061 577,234 577,530 10460.1 2364.2 0.030 0.081 

0.25 1 193,146 193,696 194,362 14163.4 2795.6 0.285 0.629 

2 321,837 322,947 323,685 13390.6 2443.9 0.345 0.574 

4 577,101 578,322 578,915 14216.3 2548.8 0.212 0.314 

Table 7 

Computational results using standard containers only with different transport/repositioning 

costs. 

Expected Cost Time (s) Gap (%) 

α TC EV|PI LDR RLDR LDR RLDR LDR RLDR 

0 1 218,071 218,164 218,280 808.1 193.8 0.043 0.096 

2 347,883 347,956 348,031 696.7 221.0 0.021 0.042 

4 603,707 603,893 603,931 896.3 230.6 0.031 0.037 

0.25 1 218,077 218,700 219,069 767.7 193.3 0.286 0.455 

2 347,901 348,544 348,898 613.0 204.2 0.185 0.287 

4 603,828 604,801 604,936 985.9 192.7 0.161 0.183 

Table 8 

Comparisons between using standard containers only and using standard and foldable containers both. 

Standard & Foldable Standard Gap (%) 

α TC EV|PI LDR RLDR EV|PI LDR RLDR EV|PI LDR RLDR 

0 1 193,141 193,252 193,451 218,071 218,164 218,280 11.43 11.42 11.37 

2 321,818 321,953 322,311 347,883 347,956 348,031 7.49 7.47 7.39 

4 577,061 577,234 577,530 603,707 603,893 603,931 4.41 4.41 4.37 

0.25 1 193,146 193,696 194,362 218,077 218,700 219,069 11.43 11.43 11.28 

2 321,837 322,947 323,685 347,901 348,544 348,898 7.49 7.34 7.23 

4 577,101 578,322 578,915 603,828 604,801 604,936 4.43 4.38 4.30 

Table 9 

Computational results with different folding/unfolding costs. 

Expected Cost Time (s) Gap (%) 

α FC EV|PI LDR RLDR LDR RLDR LDR RLDR 

0 0.05 160,909 161,021 161,301 12616.2 2637.4 0.070 0.244 

0.1 161,704 161,832 162,109 14423.8 2713.2 0.079 0.250 

0.2 163,294 163,436 163,681 10641.1 2128.0 0.087 0.237 

0.4 166,273 166,394 166,598 12961.6 2633.5 0.073 0.196 

0.25 0.05 160,918 161,760 162,368 12722.9 2818.0 0.523 0.901 

0.1 161,715 162,614 163,217 12368.6 2361.5 0.556 0.929 

0.2 163,305 164,268 164,813 14135.0 2730.1 0.590 0.923 

0.4 166,283 167,175 167,676 18427.4 2927.7 0.536 0.838 
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sing both standard and foldable containers and using only stan-

ard containers are summarized in Tables 6 and 7 . Comparisons

etween the two cases are represented in Table 8 . With varying

ransportation and repositioning costs, we observe a tight perfor-

ance gap and a significant cost-saving effect using foldable con-

ainers. 

The adoption of foldable containers leads to a new type of

ost, folding and unfolding costs. The folding and unfolding op-

rations need additional labor, which makes the introduction of

olding containers difficult in areas where labor costs are high. The

omputational results with various folding and unfolding costs (FC)

re summarized in Tables 9 and 10 . We use four different param-

ters for FC as {0.05, 0.1, 0.2, 0.4} with holding cost HC = 0.1. The

ower folding cost represents the case when the additional labor

ost of folding/unfolding operations is small. The changes in total

osts are relatively small compared to the changes in the HC or
C cases, because most of the total operating costs are transporta-

ion costs, and the portion of folding and unfolding costs is small.

owever, the cost-saving effects decrease as folding and unfolding

osts increase, because the utilization of foldable containers may

ecrease when folding and unfolding costs are high. We note in

able 10 that the total costs of the standard container case have

ot changed, because the total costs are not affected by folding

nd unfolding costs. For further analysis, we compare the trans-

ortation and repositioning quantities of foldable containers with

arious folding and unfolding costs in Section 5.4 . 

In summary, we observed that the LDR and RLDR formulations

erform closely to that of the EV|PI, which reflects the applica-

ility in practice. The performance gap is tight and endurable for

obustness and tractability. In addition, the computation time of

he RLDR formulation is shorter than that of the LDR formula-

ion, which reflects a competitive advantage in practice. Finally, we
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Table 10 

Comparisons between using standard containers only and using standard and foldable containers both. 

Standard & Foldable Standard Gap (%) 

α FC EV|PI LDR RLDR EV|PI LDR RLDR EV|PI LDR RLDR 

0 0.05 160,909 161,021 161,301 174,037 174,128 174,243 8.16 8.14 8.02 

0.1 161,704 161,832 162,109 174,037 174,128 174,243 7.63 7.60 7.49 

0.2 163,294 163,436 163,681 174,037 174,128 174,243 6.58 6.54 6.45 

0.4 166,273 166,394 166,598 174,037 174,128 174,243 4.67 4.65 4.59 

0.25 0.05 160,918 161,760 162,368 174,037 174,128 174,243 8.15 7.65 7.31 

0.1 161,715 162,614 163,217 174,037 174,128 174,243 7.62 7.08 6.76 

0.2 163,305 164,268 164,813 174,037 174,128 174,243 6.57 6.00 5.72 

0.4 166,283 167,175 167,676 174,037 174,128 174,243 4.66 4.16 3.92 

Table 11 

Comparisons of average total operating cost over simulations. 

Standard and foldable Standard Gap (%) 

α HC EV|PI LDR RLDR EV|PI LDR RLDR EV|PI LDR RLDR 

0 0.2 193141.0 193779.8 193869.4 218071.0 218144.4 218218.7 11.43 11.17 11.16 

0.1 161704.0 162186.2 162366.5 174036.6 174111.7 174185.3 7.09 6.85 6.79 

0.04 142436.6 143012.4 143035.5 147616.0 147681.8 147744.3 3.51 3.16 3.19 

0.25 0.2 193146.3 193961.9 194371.9 218076.6 218454.4 218622.0 11.43 11.21 11.09 

0.1 161714.6 162591.6 163030.8 174045.0 174446.0 174620.9 7.08 6.80 6.64 

0.04 142446.4 143311.4 143569.8 147626.0 147994.8 148163.4 3.51 3.16 3.10 

Fig. 4. Average cost ratio over total operating costs. 
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observed that operating costs can be reduced significantly by using

foldable containers. 

5.4. Simulation results 

The optimal solutions of the LDR and RLDR formulations are op-

timal affine policies, that is, we obtain optimal parameters of affine

policies. To see the obtained optimal policies perform well on ac-

tual uncertainty realizations, it is necessary to implement the poli-

cies with uncertainty realizations and analyze the results. Based

on the affine policies, the actual decisions such as repositioning

and transportation quantities are calculated when the uncertainties

are realized. Therefore, we implement the affine policies from the

LDR and RLDR formulations with actual uncertainty realizations
nd compare the results with EV|PI. To evaluate the total operat-

ng costs of implementing optimal policies, we conduct simulations

ith scenarios of uncertainty realizations. We use the same sam-

les for calculating EV|PI with varying holding costs and values of

. We calculate the transporting and repositioning decision based

n the optimal policies and uncertainty realization. Since the de-

isions of the LDR and RLDR formulations are the number of con-

ainers, we round transporting and repositioning quantities to be

ntegers. The average of total operating costs over 10,0 0 0 samples

nd gap using foldable containers are summarized in Table 11 . The

ap shows the savings in operating costs using foldable containers

hen implementing optimal policies. 

The cost ratio over total operating costs are presented in Fig. 4 .

C represents average repositioning and transportation costs over
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Fig. 5. Average storage of empty containers at ports. 

Table 12 

Total transportation and repositioning quantities of foldable containers between NA-Asia network. 

LDR RLDR 

NA to Asia Asia to NA NA to Asia Asia to NA 

α FC TQ RQ TQ RQ TQ RQ TQ RQ 

0 0.05 47.1 2535.3 10900.8 0.0 0.0 2544.5 10950.8 0.0 

0.1 366.6 2531.0 10897.6 0.0 164.0 2356.5 10764.6 0.0 

0.2 392.5 2503.0 10873.7 0.0 99.0 2128.3 10523.4 0.0 

0.4 0.0 293.4 8706.1 0.0 0.0 0.0 8464.5 0.0 

0.25 0.05 27.3 2832.5 11292.7 0.0 0.0 2817.5 11290.1 0.0 

0.1 331.8 2823.3 11252.4 0.0 183.0 2501.9 10921.4 0.0 

0.2 339.7 2632.1 11028.4 0.0 161.0 1976.7 10355.7 0.0 

0.4 0.0 2.3 8402.6 0.0 0.0 0.0 8439.1 0.0 
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amples and HC represents average holding and penalty costs over

amples. FC represents folding and unfolding costs over samples.

DR and LDR S represent the total operating cost and the cost ra-

io of the LDR formulation when using standard and foldable con-

ainers and using only standard containers, respectively. RLDR and

LDR S are defined similarly. Fig. 4 shows that even though the

olding and unfolding costs are added, the significant savings of

olding and penalty costs lead to reduction in the total operat-

ng costs. As unit holding cost decreases, the proportion of holding

osts in total operating costs decreases and the cost-saving effect

iminishes. One of the most influential advantages of using fold-

ble containers is the saving in holding costs. 

Another important advantage is the saving of storage space at

he port. Empty standard containers occupy substantial space at

he port, which causes port congestion and operations delays. Fold-

ble containers are stored in the folded state at the port, which

eads to considerable storage saving. The average storage at each

ort is presented in Fig. 5 . Although the number of empty con-

ainers is not meaningfully reduced, the space taken for storage at

he port diminishes substantially. The decline in import dominant

orts such as Vancouver and Los Angeles is particularly notable,

ecause supplied empty containers are typically stacked in import

ominant ports. The saving in port storage leads to mitigation of
ort congestion and unnecessary operations that can not be cap-

ured by the cost-saving effect. 

The utilization of foldable containers is highly influenced by

he additional costs of using foldable containers, such as fold-

ng and unfolding costs. When using foldable containers, folding

nd unfolding operations are required with additional labor. There-

ore, decisions about operations of foldable containers can change

 lot depending on the folding and unfolding costs. We conduct

imulations over various folding and unfolding costs and summa-

ize transportation and repositioning quantities of foldable con-

ainers between NA and Asia in Table 12 . TQ (RQ) represents to-

al transportation (repositioning) quantities of foldable containers

ver the planning horizon, respectively. We compare two cases,

A to Asia (from VC, LA to NB, SH, BS) and Asia to NA (from

B, SH, BS to VC, LA), for analyzing decisions between imbalanced

orts. Since the ports on the NA side are import-oriented ports,

mpty containers are stocked at NA ports and foldable containers

re repositioned from NA to Asia. However, as the folding and un-

olding costs increase, the repositioning of foldable containers de-

reases drastically. Because of insufficiencies of empty containers

t Asian ports, repositioning of foldable containers does not occur

nd foldable containers are used to transport goods from Asia to

A. In this case, the utilization of foldable containers decreases as
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Table A.13 

Transportation time between ports, τ ij . 

From-to NB SH BS VC LA 

NB – 1 1 4 4 

SH 1 – 1 4 4 

BS 1 1 – 4 4 

VC 4 4 4 – 2 

LA 4 4 4 2 –

Table A.14 

Unit transportation cost of standard containers, C S 
i j 

From-to NB SH BS VC LA 

NB – 1 1 2 2 

SH 1 – 1 2 2 

BS 1 1 – 2 2 

VC 2 2 2 – 1 

LA 2 2 2 1 –

Table A.15 

Unit transportation cost of foldable containers, C F 
i j 

. 

From-to NB SH BS VC LA 

NB – 1 1 2 2 

SH 1 – 1 2 2 

BS 1 1 – 2 2 

VC 2 2 2 – 1 

LA 2 2 2 1 –

Table A.16 

Unit repositioning cost of standard containers, R S 
i j 

. 

From-to NB SH BS VC LA 

NB – 0.8 0.8 1.6 1.6 

SH 0.8 – 0.8 1.6 1.6 

BS 0.8 0.8 – 1.6 1.6 

VC 1.6 1.6 1.6 – 0.8 

LA 1.6 1.6 1.6 0.8 –

Table A.17 

Unit repositioning cost of foldable containers, R F 
i j 

. 

From-to NB SH BS VC LA 

NB – 0.4 0.4 0.8 0.8 

SH 0.4 – 0.4 0.8 0.8 

BS 0.4 0.4 – 0.8 0.8 

VC 0.8 0.8 0.8 – 0.4 

LA 0.8 0.8 0.8 0.4 –

Table A.18 

Capacity, K ij . 

From-to NB SH BS VC LA 

NB – 300 300 1200 1600 

SH 300 – 300 1200 1600 

BS 400 400 – 800 1200 

VC 600 600 400 – 400 

LA 800 800 600 400 –

i  

i  

c  

c  

t  

n  

w  

t

folding and unfolding costs increase. Therefore, it is clear that deci-

sions about foldable containers are influenced by folding/unfolding

costs, which may affect the adoption and active utilization of fold-

able containers. 

6. Conclusions 

In this paper, we consider the ECR problem with foldable con-

tainers under demand uncertainty. For incorporating demand un-

certainty into the decision-making process, we propose a multi-

stage stochastic programming formulation. However, in general, a

multistage stochastic formulation is computationally intractable;

therefore, we adopt the adjustable robust optimization technique

and propose a tractable formulation with the LDR and RLDR. The

two robust formulations are tractable approximations of a multi-

stage stochastic programming formulation and have distribution-

ally robust properties. Hence, we evaluate the performances of pro-

posed formulations and compare the results with EV|PI benchmark.

Furthermore, we validate the advantages of using foldable contain-

ers by showing the cost-saving and storage-saving effects through

simulations with scenarios. We expect our model to serve as a

bridge for analyzing the advantages of foldable containers under

uncertainties. 

For further research, we intend to extend our study to account

for the pooling effects of foldable containers. In inventory man-

agement models, a centralized system with one large distribution

center leads to lower variability than a decentralized system with

many distribution centers. Likewise, we can view empty containers

as inventory and repositioning decisions of empty containers as or-

dering decisions. There may be risk pooling effects similar to those

in inventory management models, that is, the variability of operat-

ing costs may decrease because multiple folded containers act like

one standard container. On the other hand, because of the tremen-

dous operating costs of hinterland transport, the use of foldable

containers in hinterland transport proves to be another interesting

topic. In addition, port congestion and empty container movement

with trucks are important topics in maritime logistics. Therefore,

the use of foldable containers in hinterland transport will be influ-

ential to shipping companies and container terminals. 
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Appendix A. Parameters 

We generated instances for numerical experiments by aggregat-

ing several vessel schedules of Maersk, the world’s largest shipping

company. We considered the NA-Asia shipping network provided

by Maersk (2019) . The transportation time between Ningbo and

Shanghai is 1–3 days, and the transportation time between Busan

and Shanghai or Ningbo is 2–3 days according to the announced

schedule. The transportation time to cross the Pacific Ocean is 10–

20 days, depending on the ports and schedule. Therefore, we set a

base period of 4 days to set the transportation time between Asian

ports as 1 period and the transportation time to cross the Pacific

Ocean as 4 periods ( Table A.13 ). It is worth mentioning that actual

travel time is not linearly dependent on the distance. 

Likewise, the transportation cost also is not linearly dependent

on the travel time or travel distance. There is a lot of demand be-

tween NA-Asia compared to the demand between Asian ports. The

shipping company can enjoy the advantages of economies of scale
n transportation between NA-Asia. Moreover, transportation costs

nclude inland transportation costs and loading and unloading

osts which must occur when the container is transported. These

osts represent a considerable portion of transportation costs. For

he above reasons, the unit transportation cost between ports does

ot depend on the actual travel time or travel distance. Therefore,

e set unit transportation costs between Asian ports as 1 and be-

ween Asia and NA as 2 ( Tables A.14 and A.15 ). 
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Table A.19 

Support of uncertain factors, z̄ i j . 

From-to NB SH BS VC LA 

NB – 5 5 10 20 

SH 5 – 5 10 20 

BS 8 8 – 8 10 

VC 8 8 8 – 8 

LA 10 10 8 8 –

R

A  

B  

 

B  

 

B  

B  

 

B  

 

C  

C  

C  

 

C  

D  

 

E  

 

E  

G  

H  

H  

 

K  

 

K  

 

K  

 

L  

 

L  

 

L  

L  

 

L  

 

M  

 

M  

 

M  

M  

 

M  

 

S  

S  

S  

S  

 

S  

 

S  

 

S  

T  

 

U

W  

 

W  

v  

 

X  

 

eferences 

ng, M. , Lim, Y. F. , & Sim, M. (2012). Robust storage assignment in unit-load ware-
houses. Management Science, 58 (11), 2114–2130 . 

en-Tal, A. , Golany, B. , Nemirovski, A. , & Vial, J.-P. (2005). Retailer-supplier flexible
commitments contracts: A robust optimization approach. Manufacturing & Ser-

vice Operations Management, 7 (3), 248–271 . 

en-Tal, A. , Goryashko, A. , Guslitzer, E. , & Nemirovski, A. (2004). Adjustable ro-
bust solutions of uncertain linear programs. Mathematical Programming, 99 (2),

351–376 . 
ertsimas, D. , & Goyal, V. (2012). On the power and limitations of affine policies in

two-stage adaptive optimization. Mathematical Programming, 134 (2), 491–531 . 
ertsimas, D. , Goyal, V. , & Lu, B. Y. (2015). A tight characterization of the perfor-

mance of static solutions in two-stage adjustable robust linear optimization.
Mathematical Programming, 150 (2), 281–319 . 

ertsimas, D. , Iancu, D. A. , & Parrilo, P. A. (2010). Optimality of affine policies

in multistage robust optimization. Mathematics of Operations Research, 35 (2),
363–394 . 

hen, W. , & Sim, M. (2009). Goal-driven optimization. Operations Research, 57 (2),
342–357 . 

hen, X. , Sim, M. , & Sun, P. (2007). A robust optimization perspective on stochastic
programming. Operations Research, 55 (6), 1058–1071 . 

heung, R. K. , & Chen, C.-Y. (1998). A two-stage stochastic network model and solu-

tion methods for the dynamic empty container allocation problem. Transporta-
tion science, 32 (2), 142–162 . 

rainic, T. G. , Gendreau, M. , & Dejax, P. (1993). Dynamic and stochastic models for
the allocation of empty containers. Operations research, 41 (1), 102–126 . 

i Francesco, M. , Crainic, T. G. , & Zuddas, P. (2009). The effect of multi-scenario
policies on empty container repositioning. Transportation Research Part E: Logis-

tics and Transportation Review, 45 (5), 758–770 . 

l Housni, O. , & Goyal, V. (2017). Beyond worst-case: A probabilistic analysis of
affine policies in dynamic optimization. In Advances in neural information pro-

cessing systems (pp. 4756–4764) . 
rera, A. L. , Morales, J. C. , & Savelsbergh, M. (2009). Robust optimization for empty

repositioning problems. Operations Research, 57 (2), 46 8–4 83 . 
raves, S. C. (1999). A single-item inventory model for a nonstationary demand pro-

cess. Manufacturing & Service Operations Management, 1 (1), 50–61 . 

olland Container Innovations (2019a). 4fold customer cases. http://hcinnovations.
nl/4fold- customer- cases/ .[Online; accessed 23-May-2019]. 

olland Container Innovations (2019b). About holland container innovations. http:
//hcinnovations.nl/about- holland- container- innovations- hci/ . [Online; accessed

23-May-2019]. 
onings, R. (2005). Foldable containers to reduce the costs of empty transport? A

cost benefit analysis from a chain and multi-actor perspective. Maritime Eco-

nomics & Logistics, 7 (3), 223–249 . 
onings, R. , & Thijs, R. (2001). Foldable containers: a new perspective on reducing

container-repositioning costs. European journal of transport and infrastructure re-
search EJTIR, 1 (4) . 
uzmicz, K. A. , & Pesch, E. (2019). Approaches to empty container reposition-
ing problems in the context of Eurasian intermodal transportation. Omega, 85 ,

194–213 . 
am, S.-W. , Lee, L.-H. , & Tang, L.-C. (2007). An approximate dynamic programming

approach for the empty container allocation problem. Transportation Research
Part C: Emerging Technologies, 15 (4), 265–277 . 

ee, C.-Y. , & Song, D.-P. (2017). Ocean container transport in global supply chains:
Overview and research opportunities. Transportation Research Part B: Method-

ological, 95 , 442–474 . 

i, J.-A. , Leung, S. C. H. , Wu, Y. , & Liu, K. (2007). Allocation of empty containers
between multi-ports. European Journal of Operational Research, 182 (1), 400–412 . 

i, J.-A. , Liu, K. , Leung, S. C. H. , & Lai, K. K. (2004). Empty container management
in a port with long-run average criterion. Mathematical and Computer Modelling,

40 (1–2), 85–100 . 
ong, Y. , Lee, L. H. , & Chew, E. P. (2012). The sample average approximation method

for empty container repositioning with uncertainties. European Journal of Oper-

ational Research, 222 (1), 65–75 . 
aersk (2019). Shipping from Asia to North America. https://www.maersk.com/

global- presence/shipping- from- asia- to- north- america . [Online; accessed 23-
May-2019]. 

oon, I. , Do Ngoc, A.-D. , & Konings, R. (2013). Foldable and standard containers
in empty container repositioning. Transportation Research Part E: Logistics and

Transportation Review, 49 (1), 107–124 . 

oon, I. , & Hong, H. (2016). Repositioning of empty containers using both standard
and foldable containers. Maritime Economics & Logistics, 18 (1), 61–77 . 

yung, Y.-S. (2017). Efficient solution methods for the integer programming models
of relocating empty containers in the hinterland transportation network. Trans-

portation Research Part E: Logistics and Transportation Review, 108 , 52–59 . 
yung, Y.-S. , & Moon, I. (2014). A network flow model for the optimal allocation

of both foldable and standard containers. Operations Research Letters, 42 (6–7),

4 84–4 88 . 
carf, H. (1958). A min-max solution of an inventory problem. Studies in the mathe-

matical theory of inventory and production . 
ee, C.-T. , & Sim, M. (2010). Robust approximation to multiperiod inventory man-

agement. Operations research, 58 (3), 583–594 . 
hapiro, A. , & Nemirovski, A. (2005). On complexity of stochastic programming

problems. In Continuous optimization (pp. 111–146). Springer . 

hintani, K. , Konings, R. , & Imai, A. (2010). The impact of foldable containers on con-
tainer fleet management costs in hinterland transport. Transportation Research

Part E: Logistics and Transportation Review, 46 (5), 750–763 . 
hu, J. , & Song, M. (2014). Dynamic container deployment: two-stage robust model,

complexity, and computational results. INFORMS Journal on Computing, 26 (1),
135–149 . 

ong, D.-P. (2007). Characterizing optimal empty container reposition policy in pe-

riodic-review shuttle service systems. Journal of the Operational Research Society,
58 (1), 122–133 . 

ong, D.-P. , & Dong, J.-X. (2015). Empty container repositioning. In Handbook of
ocean container transport logistics (pp. 163–208). Springer . 

sang, H.-T. , & Mak, H.-Y. (2015). Robust Optimization Approach to Empty Container
Repositioning in Liner Shipping. In Handbook of ocean container transport logis-

tics (pp. 209–229). Springer . 
NCTAD (2018). Review of Maritime Transport 2018. United Nations Publication . 

ang, K. , Wang, S. , Zhen, L. , & Qu, X. (2017). Ship type decision considering empty

container repositioning and foldable containers. Transportation Research Part E:
Logistics and Transportation Review, 108 , 97–121 . 

ang, S. , & Meng, Q. (2017). Container liner fleet deployment: A systematic
overview. Transportation Research Part C: Emerging Technologies, 77 , 389–404 . 

on Westarp, A. G. , & Schinas, O. (2016). A fuzzy approach for container position-
ing considering sustainable profit optimization. Transportation Research Part E:

Logistics and Transportation Review, 92 , 56–66 . 

ie, Y. , Liang, X. , Ma, L. , & Yan, H. (2017). Empty container management and coordi-
nation in intermodal transport. European Journal of Operational Research, 257 (1),

223–232 . 

http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0014
http://hcinnovations.nl/4fold-customer-cases/
http://hcinnovations.nl/about-holland-container-innovations-hci/
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0022
https://www.maersk.com/global-presence/shipping-from-asia-to-north-america
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30656-3/sbref0039

	Robust empty container repositioning considering foldable containers
	1 Introduction
	2 Literature review
	3 Problem description
	4 Model formulation
	4.1 Deterministic formulation
	4.2 Multistage stochastic programming formulation
	4.3 Adjustable robust counterpart
	4.3.1 Factor-based demand model
	4.3.2 Bound on expectations of positive parts
	4.3.3 Linear decision rule (LDR) formulation
	4.3.4 Restricted linear decision rule (RLDR) formulation


	5 Computational experiments
	5.1 Expected value given perfect information (EV|PI)
	5.2 Demand process
	5.3 Computational results
	5.4 Simulation results

	6 Conclusions
	Acknowledgments
	Appendix A Parameters
	References


