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Abstract
This paper developed a stochastic modelling framework to determine the locations and trans-
port capacities of drone facilities for effectively copingwith a disaster. The developedmodel is
applicable to emergency planning that incorporates drones into humanitarian logistics while
taking into account the uncertain characteristics of drone operating conditions. Because of
the importance of speedy decision making in disaster management, a heuristic algorithm was
developed using Benders decomposition, which generates time-efficient high-quality solu-
tions. The linear programming rounding method was used to make the algorithm efficient.
Computational experiments demonstrated the superiority of the developed algorithm, and a
sensitivity analysis was carried out to gain additional insights.

Keywords Humanitarian logistics · Facility location · Stochastic programming · Drone

1 Introduction

E-commerce is experiencing double-digit growth, and one of the e-commerce giants, Ama-
zon, has recently announced the consideration of rapid delivery using drones, also known as
unmanned aerial vehicles (UAVs) (Ham2018).With the recent popularization of e-commerce
and the beginning of the Fourth Industrial Revolution, the study of logistics has regained
momentum, and delivery by drone will be the next big development in the field. Drones are
evolving beyond their military origin to become powerful business tools, and incorporating
them makes delivery service faster and more convenient.

In the context of disaster management, drones can become very useful as a mode of
transportation in humanitarian logistics because they do not need preexisting paths to make
deliveries. While trains, boats, and trucks follow restricted pathways, drones can move any-
where and everywhere. Therefore, if a natural disaster strikes and roads are damaged, drones
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can be used as an alternative to serve the destroyed region. However, several concerns are
associated with launching drones. Although integrating drones into humanitarian logistics
seems efficient and convenient, some features of drones, such as the limited payload or the
limited flight time, must be considered. Therefore, studying the operation methods that take
into account the uncertain conditions of drone operation is imperative.

For this study, we were concerned with battery capacity, which is a key element of drone
operation research. The energy consumption of drones is heavily influenced by payload,
weather, and other environmental conditions. Because of the fluctuation in battery consump-
tion, the maximum flight distance of a drone also inevitably varies. Therefore, we proposed a
method to utilize drones efficiently in disaster situations while considering this uncertainty.

Various disasters do a great deal of damage and destroy tangible assets such as buildings
and equipment. Worse, the catastrophic and fatal aftermath affect the economy and human
life. To minimize damage and encourage fast recovery, the appropriate commodities must be
delivered to the correct places and to the right people at the perfect time. To deal with this
challenge, outstanding response-facility location models, involving the location and selec-
tion of distribution centers, warehouses, shelters, medical centers, and other facilities, are
essential. In this study, we presented a drone facility location problem that determines the
locations, numbers, and transport capacities of drone facilities. A drone facility is an infras-
tructure where drones can be docked, recharged, and restocked before flying out again for
another delivery. Considering the uncertain characteristics of drone operation simultaneously,
we developed a stochastic facility location model for a disaster-affected region where drones
can be used as a mode of transportation for emergency supplies to demand points.

The remainder of this study was organized as follows: In the next section, we reviewed
various important study and underlined research gap. In Sect. 3, we presented the formulation
of a drone facility location model (DFLM) with stochastic coverage. We also presented the
development of an efficient heuristic algorithm using Benders decomposition in Sect. 4.
Numerical experiments were reported in Sect. 5, and conclusions were offered in Sect. 6.

2 Literature review

2.1 Drone operation research

As drones play a growing role in various fields, the study of drones also has increased in
practical and academic importance. Much research using drones has already been carried
out to understand these trends. Evers et al. (2014) developed the optimization model of
information gathering in intelligence, surveillance and reconnaissancemissions using drones.
They introduced planning based on the orienteering problem to find tours for the drones that
are effective in the face of uncertain fuel usage between targets. Burdakov et al. (2017) studied
the problem of scheduling drone replacements while maintaining sufficient coverage during
a perimeter-guarding task. Replacement strategies were separately introduced for odd and
even numbers of drones, and the optimality of each replacementwas proven. Kim et al. (2017)
proposed a robust approach for finding an optimal flight schedule for drones by considering
uncertain battery duration. A box uncertainty set was used to describe the uncertainty of
schedule changes, and a numerical example was designed to show the feasibility of the
proposed approach.

Interest in research for integrating drones into disaster management has also increased in
recent years. Merwaday and Guvenc (2015) introduced a new way of using drones. They
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explained that when the communications infrastructure has been damaged during natural
disasters, drones can be rapidly deployed as unmanned aerial base stations as part of the
network architecture for public safety communications. Chowdhury et al. (2017) considered
the drone as amode of transportation to deliver emergency commodities in a disaster-affected
region and developed a continuous approximation model that determines the distribution
center locations, corresponding service regions, and the order quantities.

These previous studies on the technology and simple applicability of drones are insufficient
for practical drone operations. Existing literature on drones hasmostly focused on topics other
than the planning or optimization of drone operations (Otto et al. 2018). Only a few studies
have attempted anoptimization approach that extended the traveling salesmanproblem (TSP).
Murray and Chu (2015) and Agatz et al. (2018) published representative studies, and they
formulated the TSP with a drone and a flying sidekick TSP. Various optimization approaches
to drone operations as well as application of TSP should be extensively studied. A drone
facility location problem that we studied in this paper can satisfy this need.

2.2 Facility location problem

Facility location has created challenging problems for many years. Because of the increasing
severity of disasters, researchers have paid significant attention to a facility location model in
disaster management. Therefore, a rich body of literature features facility location problems.
Recently, Boonmee et al. (2017) conducted a survey on the facility location problems related
to emergency humanitarian logistics and highlighted the extensive range of these types of
problems developed since the 1950s. In addition, Ahmadi-Javid et al. (2017) classified differ-
ent types of non-emergency and emergency healthcare facility locations in terms of location
management, and they reviewed the literature based on location classification.

The model we presented in this paper belongs to a broad class of a set covering location
problems that have been used to place a set of facilities in such a way that demand points can
be served within some previously defined time or distance. Farahani et al. (2012) presented a
literature review on set covering problems in facility location. Because they presented a very
comprehensive review by considering publications through 2012, we discussed research that
has emerged since 2013.

In many set covering location problems, a demand point is problematically assumed to
be covered completely if it lies within the coverage radius of a facility and not covered at
all outside the radius (Karatas 2017). Because this unrealistic modeling presumption may
lead to potential errors and unjustified solutions, many researchers of recent facility location
problem have expanded the model to deal with the uncertainty or to suggest a new framework
considering advanced concepts such as cooperative coverage and demand sharing or like
ideas.

Various methodologies have been studied to manage the uncertainty. For optimization
under uncertainty, two approaches have been mainly used: One is stochastic optimization,
in which uncertain parameters are allocated in a probability distribution, and the other is
robust optimization. Meng and Shia (2013) formulated a new set covering model based on
customer-determined stochastic critical distance. Pereira and Averbakh (2013) studied the
robust set covering problem featuring uncertain costs. They developed three exact algorithms
to find a robust deviation solution, two of which were based on Benders decomposition.
Paul and MacDonald (2016) developed a stochastic optimization model to determine the
locations and capacities of distribution centers such that losses were minimized in the event
of a disaster. Data from an earthquake-related disaster in the Northridge region of California
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were used to validate the model. Tayal et al. (2017) formulated a new sustainable stochastic
dynamic facility layout problem and optimized the material handling and rearrangement
costs using various meta-heuristic techniques. Grass et al. (2018) proposed an accelerated L-
shaped method to solve a realistic large-scale two-stage stochastic problem. They developed
a realistic large-scale case study for the hurricane-prone south-eastern coast of the United
States. Lee and Han (2017), Zhang et al. (2017), Khodaparasti et al. (2018), and Marín
et al. (2018) also proposed set covering location models that accounted for uncertainty and
developed efficient solution algorithms in recent years.

As can be seen from the literature review, stochastic facility location research has been
actively conducted. However, few studies on integrating drones into a facility location prob-
lem have been published. Unlike that of previous studies, the developed model presented
in this paper was used to consider the location of drone facilities for the efficient operation
of drones, which is expected to be a new transportation mode and catalyst for innovation
in disaster management and logistics. To the best of our knowledge, no attempts have been
made to determine the location of drone facilities for which the stochastic flight distance of
the drones was addressed. In addition, the DFLM was formulated as a set covering model
in which the allocation of drones and the probability that a drone returns to a facility were
considered. These practical constraints narrow the gap between the model and practice.

3 Drone facility location problemwith stochastic coverage

As mentioned before, one of the critical factors that should be considered when operating
drones is battery capacity, which can translate to traveling time.Weather circumstances, such
as typhoons, have a great impact on the fuel consumption of a drone. Therefore, expected
flight distance of a drone is not deterministic. In this study, we examined the effects of these
uncertainties on disaster management and applied the stochastic optimization.

Uncertainty in travel timewas addressed byGoldberg et al. (1990), who analyzed themean
and standard deviation of travel time using data from theTucsonEmergencyMedical Services
system. Possible traveling time leads to themaximumflight distance. So, themaximumflying
duration of each drone is stochastic in thismodel. Because of the randomness of themaximum
flight distance of drones, customer demand covered by a drone facility varies (Fig. 1). This
variability of coverage requires more difficult decisionmaking than the previous set-covering
locationmodels Therefore, we studied an extended version of the set-covering locationmodel
by introducing the stochastic flight distance of drones.

Our objectivewas to find the optimal locations and transport capacities of facilities accord-
ing to theminimization of total relevant costs.We assumed that the sets of candidate locations,
distance between them, and demands are known. The unit of demandwas defined as the quan-
tity of goods that can be transported by one drone delivery. Regardless of delivery distance,
a drone can transport supplies only once per period, due to the need for maintenance and
battery charging. Therefore, 50 drones are required for delivery to meet 50 demands in a
particular location at a specific time. Generally, the facility location problem yields a deci-
sion outcome that has long-term effects, so the parameters of the system, such as demand
points, operating and distribution costs, and environmental factors, may vary over time. Also,
facility additions can be made at different times. In disaster situations, the parameters are
particularly subject to variability; that is, decision of the location and the timing for building
a facility becomes more critical. Therefore, we decided the operational timing and location
for the drone facilities and the process for allocating customers to these drone facilities. The
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Fig. 1 Variable conditions for drone coverage of customer demand

transport capacity of the drone facility, which is the number of drones available for delivery,
is determined simultaneously.

3.1 Notations

In this section, all the used sets, parameters, and decision variables are presented and dis-
cussed. The developed drone facility location problem involves three given sets: customers,
potential locations of facilities to serve customer demands, and time periods. Let I be the set
of facility candidate locations, J be the set of customers, and T be the set of time buckets
over the planning horizon. The sets and parameters are defined to develop the mathematical
model as follows:

s jt Demand of customer zone j ∈ J in time t ∈ T
S The largest value of all demands (i.e. max

j,t
s j t )

di j Distance between candidate location i ∈ I and customer zone j ∈ J
fi Opening cost of a drone facility at location i ∈ I
oi Operating cost of a drone facility at location i ∈ I
ci Operation and maintenance cost of a drone at location i ∈ I
n Maximum number of drones that a drone facility can operate in a unit time
N Total number of drones that can be operated in a unit time
α Objective probability that a drone returns to a drone facility
λ Parameter of the flight distance distribution
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Four decision variables are used to construct the developed mathematical model. The
decision variables, except integer variable Uit , are binary. A description for each of the
decision variables follows:

Xit 1 if a drone facility is operated at site i in time t , 0 otherwise.
Yi jt 1 if customer j is covered by a drone facility at site i in time t , 0 otherwise.
Zit 1 if a drone facility at site i is opened in time t , 0 otherwise.
Uit Number of drones operating from a drone facility at site i in time t .

3.2 Chance constraints

A chance constraint, also known as a probabilistic constraint, is necessary to manage the
stochasticity of the proposed model. The chance constraint, which represents the probability
that a drone returns safely to the drone facility is greater than or equal to α, is shown as
follows:

Prob
(
d ≥ 2di j

) ≥ α (1)

where d is a random variable that represents the distance traveled by a drone. In this study,
the probability that a drone returns to the drone facility is considered instead of service level.
If we had considered service level as a constraint, the drone delivery would be determined
from the customer standpoint. So the drone may not return to the drone facility under a
service level constraint. This failure to return causes disruption in the next delivery because
the number of drones deployed in each drone facility is minimized. Therefore, the probability
that a drone returns safely is a more important consideration than service level.

As an application of the chance constraints, the exponential effect of distance was applied.
The exponential effect has been widely used in logistics because it is convenient to imple-
ment. Beckmann (1999) addressed the effect when the market share of goods or services
decreases exponentially as the distance between supplier and customers increases. Berman
et al. (2003) suggested the exponential effect as an alternative function for the coverage
level. The exponential effect is partially covered when a demand node is between the lower
and upper limits of the critical distance within the level of coverage; this position reflects
a decreasing function of distance between a node and the closest facility. In our study, the
method for dealing with the exponential effect differed from that of other studies. Our model
captures the exponential effect by assuming that the flight distance of drones are exponen-
tially distributed. This assumption leads to stochastic coverage of a facility. The probability
density function and the cumulative distribution function of d , respectively, are shown as
follows:

f (d) �
{

λe−λd d ≥ 0

0 d < 0

F(d) �
{
1 − eλd d ≥ 0

0 d < 0

The constraint shown in Eq. (1) can be transformed to a tractable constraint using expo-
nential distribution. Remark 1 demonstrates the way we dealt with chance constraints under
the assumption of the flight distance of drones.
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Remark 1 (Chance constraints)

Prob
(
d ≥ 2di j

) ≥ α

⇒ 1 − F
(
2di j

) ≥ α

⇒ e−2λdi j ≥ α

Prob
(
d ≥ 2di j

) × X jt ≥ α × Yi jt ⇒ e−2λdi j × X jt ≥ α × Yi jt

3.3 Mathematical model of DFLM(P)

This subsection describes the model that determines the optimal location, the opening time
of drone facilities, and the number of drones deployed from each facility over the planning
time horizon.

minimize
∑

i∈I

∑

t∈T
(oi Xit + fi Zit + ciUit ) (2)

subject to

e−2λdi j Xit ≥ αYi jt ∀i ∈ I , j ∈ J , t ∈ T (3)
∑

i∈I
Yi j t ≥ s jt

S
∀ j ∈ J , t ∈ T (4)

Xi,t − Xi,t−1 ≤ Zit ∀i ∈ I , t ∈ T (5)

Uit ≥
∑

j∈J

s j t Yi j t ∀i ∈ I , t ∈ T (6)

Uit ≤ nXit ∀i ∈ I , t ∈ T (7)
∑

i∈I
Uit ≤ N ∀t ∈ T (8)

X ∈ B|I |×|T |, Y ∈ B|I |×|J |×|T |, Z ∈ B|I |×|T |,U ∈ Z |I |×|T |
+ (9)

The objective function (2) minimizes the sum of the total relevant costs comprising the
costs of opening drone facilities and the operation and maintenance of drones and drone
facilities. Constraints (3) guarantee that the probability of drone return to a facility is higher
than a target level. Constraints (4) guarantee that demands are covered. Constraints (5) link
constraints of the decision for opening a facility. Constraints (6) represent the minimum
number of drones needed to satisfy demand.Constraints (7) ensure that drones can be operated
only in operating facilities. Constraints (8) indicate that the maximum number of drones can
be operated in a unit time. Constraints (9) demonstrate the binary and integer nature of the
decision variables.

3.4 Discussion of the DFLM

Several features of the model warrant some discussion either to indicate practical constraints
for which the DFLM differs from the related models found in the literature or to point out
the flexibility that the DFLM affords. Remarks on the DFLM are in order.

First, it is necessary to analyze how the chance constraints affect the coverage of a drone
facility. In the deterministic approach, the coverage of the drone facility is fixed, whereas in
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the stochastic approach, there is no clear boundary of coverage. Froma practical point of view,
the chance constraints do not provide a broader feasible solution region than deterministic
constraints. Constraints (3) can be replaced by the followingConstraints (3–2) under a general
deterministic assumption:

1

λ
Xit ≥ 2di j Yi j t ∀i ∈ I , j ∈ J , t ∈ T (3–2)

Constraints (3–2) mean that a customer’s round-trip distance from the operating drone
facility should be shorter than the possible flight distance that a drone can cover. Constraints
(3) and (3–2) are similar in form, with the difference in the cost of the decision variables.
Because λ and dij are positive values, the following inequality is obtained:

αe2λdi j ≥ 2λdi j for ∀1
e

≤ α

The objective probability that a drone returns to a facility is usually greater than 0.8 or
0.9 considering the practicality. Therefore, the chance constraint was seen to enforce tighter
bounds on the coverage of a drone facility in the real application.

Second, it may be questioned whether it is reasonable to consider the operation and
maintenance costs of the drones, not the purchase cost. There was a lack of evidence that the
purchase cost of the droneswould vary depending on the location of the facility. Therefore, the
costs associated with the drones are imposed as constants in proportion to the total amount
of demand, and taking the purchase cost into account does not cause trade-off with other
decision variables.

Third, compared to terrestrial base stations, a drone facility, such as a drone dock, can be
easily established to provide on-demand coverage for customers. Therefore, the number of
facilities can be easily adjusted as needed. In a typical multi-period facility location model,
operating facilities are maintained until all deliveries are made, but in this model, the facility
may be abandoned. These changes are undertaken because not only the costs of opening
the drone facility but also the operating costs incurred during each period were considered.
If the allocated demand area were satisfied by other nearby facilities, then a facility could
temporarily suspend operations. This ease of response to change by drone facilities provides
flexibility for decision making and enables the DFLM to be used for relatively quick and
accurate reactions to disasters or for the relatively more efficient design of supply chains.

4 Solution techniques using Benders decomposition and linear
programming relaxation

The very core of decisionmaking in humanitarian logistics is the agility that can save asmuch
time as possible. Most real-life applications of the response facility location problem are
extensive and difficult to solve economically. Furthermore, the lag time due to slow decision
making takes away precious moments from the golden time during which the majority of
causalities are saved. In addition, multiple runs are often required in disaster management
because of difficulties in precisely ascertaining future networks, demands and costs. Benders
decomposition, a strategy for solving large-scale optimization problems, offers a fix to this
situation.

The Benders decomposition algorithm is used to solve a master problem (MP) and a
slave problem (SP) iteratively. The SP solution provides information on the assignment of
the MP variables in every iteration. Such information, expressed as a Benders cut, restricts
assignments that are unacceptable. The Benders cut narrows the search space of the feasible
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region, which eventually leads to optimality. Benders cuts generated to solve one problem
can be valid in a modified version of the same problem, with few revisions or additional
effort. (Geoffrion and Graves 1974). Therefore, the Benders decomposition approach offers
the possibility of making sequences of related runs in considerably reduced computing times.
These useful characteristics enable effective responses to a changing disaster situation.

4.1 Master problem and slave problem

By the use of Benders decomposition, the developed problem, P, is decomposed into the MP
that solves X , Y , and Z variables and the slave problem, SP

(
X̄ , Ȳ , Z̄

)
, that solves only the

U variables by fixing the X , Y , and Z variables to the MP solution and referring to them as
X̄ , Ȳ , Z̄ . The MP is solved to plan the location and the opening time of a drone facility, and
the SP is solved to determine the optimal number of drones that should be deployed from
each drone facility. The mathematical models of theMP and SP for the DFLM are as follows:

Master problem (MP)

minimize
∑

i∈I

∑

t∈T
(oi Xit + fi Zit ) + σ

subject to

Constraints (3), (4), (5) and σ ≥ 0

X ∈ B|I |×|T |, Y ∈ B|I |×|J |×|T |, Z ∈ B|I |×|T |

Slave problem (SP)

minimize
∑

i∈I

∑

t∈T
ciUit

subject to

Constraints (8)

Uit ≤ n X̄it ∀i ∈ I , t ∈ T (10)

Uit ≥
∑

j∈J

s j t Ȳi j t ∀i ∈ I , t ∈ T (11)

U ∈ Z |I |×|T |
+ (12)

4.2 Benders cuts using linear programming relaxation of the slave problem

The generation of valid Benders cuts is the basis of Benders decomposition. Good Benders
cuts guarantee the convergence of the iterations and determine how fast the algorithm con-
verges (Chu and Xia 2004). However, it is difficult to generate valid Benders cuts for the
model in this study because of the duality gap of the integer programming in the SP. One
possible way to use Benders cuts is to employ the no-good cutmethod to exclude only current
tentative assignment of MP variables that are unacceptable. Such no-good cuts result in an
enumerative search and thus slow convergence. However, quick decision making is impor-
tant in humanitarian logistics. Therefore, this strategy is impractical because it may lead to
enumerating all extreme points in the SP.
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Linear programming (LP) relaxation can be an alternative to this matter. LP relaxation
is a standard technique for designing approximation algorithms. It is done by assuming that
decision variables in the SP are real numbers. Then, valid Benders cuts can be generated
efficiently according to the strong duality property. Fractional solutions can be rounded off
to obtain feasible integer solutions. This approach is usually called an LP-rounding method,
and it has been successfully used as a strategy for the relaxed Benders algorithm. Shmoys
et al. (1997) offered exemplary research by applying LP-rounding strategy to relax the SP
into an LP problem. The relaxed SP (RSP) can be formulated with decision variable V which
is the relaxation ofU . Dual values and variables are very useful in the Benders cut generation.
The RSP can be converted to the dual problem as follows:

Dual of slave problem (DSP)

maximize
∑

i∈I

∑

t∈T

⎛

⎝
∑

j∈J

s j t Ȳi j t Pit − n X̄it Qit

⎞

⎠ −
∑

t∈T
N Rt

subject to

Pit − Qit − Rt ≤ ci ∀i ∈ I , t ∈ T

Pit , Qit , Rt ≥ 0 ∀i ∈ I , t ∈ T

where Pit , Qit and Rt are dual variables of the SP. If the DSP is unbounded (such that the
primal SP is infeasible), the extreme rays are used to add feasibility cuts to the restricted
MP, RMP. If both the primal and dual SP have finite optimal solutions, but the two optimal
solutions are different, then a new optimality cut is added to the RMP. Feasibility cuts and
optimality cuts are defined in Remark 2.

Remark 2 (Feasibility and optimality cuts) The feasibility cut is

∑

i∈I

∑

t∈T

⎛

⎝
∑

j∈J

s j t P R
(k)
i t Yi j t − nQR

(k)
i t Xit

⎞

⎠ −
∑

t∈T
N RR

(k)
t ≤ 0

where PR
(k)
i t , QR

(k)
i t , and RR

(k)
t are extreme rays of the feasible regions in the SP for iteration

k.
The optimality cut is

σ ≥
∑

i∈I

∑

t∈T

⎛

⎝
∑

j∈J

s j t P̄
(k)
i t Yi j t − nQ̄(k)

i t Xit

⎞

⎠ −
∑

t∈T
N R̄(k)

t t

where P̄(k)
i t , Q̄(k)

i t , and R̄(k)
i t are extreme points for interation k.

4.3 Heuristic algorithm for the DFLM

According to Benders decomposition and LP-rounding, the heuristic algorithm was devel-
oped for fast decision making. Algorithm 1 presents a pseudo-code of the developed heuristic
approach.
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Algorithm 1 Heuristic algorithm for the DFLM

Step 1 Initialization. Construct the initial master problem, MP(0). Set the number of iter-
ation k � 0 and a tolerance parameter ε ≥ 0. Initialize ∅̄(0)

MP � 0, ∅̄(0)
SP � 0, and

UB � ∞.
Step 2 Problem solving procedure

i. Solve MP(k). If it is feasible, obtain the optimal solution X̄ (k), Ȳ (k), Z̄ (k) and
the optimal objective value ∅̄(k)

MP . Otherwise, set ∅̄(k)
MP � ∞ and go to Step 4.

ii. Construct the slave problem SP
(
X̄ (k), Ȳ (k), Z̄ (k)

)
. Relax SP

(
X̄ (k), Ȳ (k), Z̄ (k)

)
to

the LP problem RSP
(
X̄ (k), Ȳ (k), Z̄ (k)

)
. If RSP

(
X̄ (k), Ȳ (k), Z̄ (k)

)
is feasible, then

obtain the optimal solution V̄ (k) and the optimal objective value ∅̄(k)
SP .

Step 3 Cut generation procedure. Return the current ∅̄(k)
MP , ∅̄(k)

SP as the result value, and

updateUB � ∑

i∈I
∑

t∈T

(
oi X̄

(k)
+ fi Z̄

(k)
)
+ ∅̄(k)

SP . Generate a valid Benders cut and add

it to the master problem, MP(k) to construct MP(k+1). If RSP
(
X̄ (k), Ȳ (k), Z̄ (k)

)
is

feasible, add optimality cut; otherwise add feasibility cut.

Step 4 Termination. Terminate if
UB−∅̄(k)

MP

∅̄(k)
MP

≤ ε. If ∅̄(k)
MP � ∞, then the problem, P , is

infeasible. If Algorithm 1 terminates and P is feasible, round up V̄ (k) to Ū (k) and
return the current

(
X̄ (k), Ȳ (k), Z̄ (k), Ū (k)

)
as a solution of P . Otherwise, set k � k+1

and go back to Step 2.

Finite convergence of Algorithm 1 is assured for any given ε ≥ 0. The variables X , Y ,

and Z are binary, and a feasible region of MP consists of a discrete set. Therefore, Algorithm
1 terminates in a finite number of steps according Theorem 2.4 in Geoffrion (1972).

The process of rounding the relaxed decision variables to the next integer for the number of
drones appears in Step 4. Fractional solutions are infeasible because the DFLM is originally
an integer programming problem. Hence, this process is necessary and can guarantee the
feasibility of the solution. Rounding off to the nearest integer, rather than the higher one,
offers a possible solution for a decision maker who prefers a lower cost and is not concerned
that the number of returning dronesmight fall below the target level. In our opinion, satisfying
the constraints takes priority over costs in humanitarian logistics. The objective probability
for a drone returning to a facility is directly related to a smooth restoration. Therefore, a
rounding-up constraints-oriented approach was chosen for the algorithm.

4.4 Discussion of the heuristic algorithm

Some notable characteristics of the algorithm are described in this section. A drone facility
can presumably operate a sufficient number of drones because drones incur lower fixed and
operation costs than other means of transportation. Condition (13) means the bound that
allows for a sufficient number of drones for delivery.

min(n, N ) ≥ max
t

∑

j∈J

s j t (13)

It is not difficult to verify that these assumptions make the SPs and RSPs always feasible.
If Condition (13) is satisfied, Constraints (7) and (8) in the DFLM become redundant. Then,
Constraints (8) and (10) can be removed from the SP without changing the solution, and the
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SP can always find a feasible solution. Therefore, in this situation, only the optimality cut is
added to MP.

Under the condition that demand s jt is given as an integer, SP is easily solved. Because
Ȳi j t is the binary solution of Yi jt satisfying the constraints in MP. Uit � ∑

j∈J s j t Ȳi j t for∀i ∈ I , t ∈ T is an optimal solution for a feasible SP. For the SP with integer demand,
an optimal solution to the respective LP relaxation is the same. The duality gap is zero in
this case, and the SP holds strong duality. Therefore, if ε converges to zero, the heuristic
algorithm for the DFLM becomes exact algorithm and finds an optimal solution.

5 Computational results

To verify the performance of the DFLM and evaluate the efficiency of the developed algo-
rithm, computational experiments were conducted with an Intel(R) Core(TM) 3.2 GHz
processor with 8 GB RAM in the Microsoft Windows 10 operating system. The mathe-
matical model and the heuristic algorithm for the DFLM were solved with FICO Xpress
version 7.3 (http://www.fico.com). Examples were generated according to instances on the
Euclidean plane of simple location problems from the Benchmarks Library (http://www.
math.nsc.ru/AP/benchmarks/english.html). The transportation costs between nodes in the
benchmark sets were converted to distances between nodes.

5.1 Description of experiments

According to the DFLM, the size of a problem was determined by the number of facility
candidate locations (|I |), the number of customers (|J |), and the size of the time bucket (|T |).
The maximum numbers of facility candidate locations and customers were limited to 100
because of the dimension of the matrix in Benchmarks Library. Table 1 shows 30 different
problem classes ranging from small to large.

Many parameters have been generated on the basis of work by Shavarani et al. (2018),
who studied the San Francisco case. As noted in Shavarani et al. (2018), no accurate data on
the costs related to a response facility are available. Therefore, we randomly generated the
opening and the operating costs of a drone facility from the uniform distribution. Operation
andmaintenance cost of a drone was generated by referring to Shavarani et al. (2018). Table 2
shows the range of the costs and demands that had integer values.

Amazon reported that the drones to be used for delivery feature a travel radius of 16 km,
which is equivalent to an endurance of 32 km for round trip delivery (Shavarani et al. 2018).
Therefore, the parameter for the flight distance distribution of a drone was set to 0.00003125.
The default setting for the objective probability that a drone returns to a facility is 0.8. For
convenience in the analysis, parameters n and N were each set to 10,000 to prevent an
infeasible solution. In the following three subsections, computational results and the analysis
were presented.

5.2 Sensitivity analysis on different parameter

Sensitivity analysis can be done by changing some input parameters in the DFLM. First, we
examined the probability that a drone returns to a facility, which affects the chance constraints
and is related to the success rate of delivery. Table 3 shows a trade-off between costs and
target levels. Some obvious managerial insights can be confirmed through the results. The
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Table 1 Problem classes
generated from Benchmarks
Library

Class Code in
Library

|I | |J | |T |

C1 111 10 10 3

C2 211 10 20 3

C3 311 10 30 3

C4 411 10 40 3

C5 511 10 50 3

C6 611 10 60 3

C7 711 10 70 3

C8 811 10 80 3

C9 911 10 90 3

C10 1011 10 100 3

C11 1111 100 10 3

C12 1211 100 20 3

C13 1311 100 30 3

C14 1411 100 40 3

C15 1511 100 50 3

C16 1611 100 60 3

C17 1711 100 70 3

C18 1811 100 80 3

C19 1911 100 90 3

C20 2011 100 100 4

C21 2111 10 10 4

C22 2211 20 20 3

C23 2311 30 30 3

C24 2411 40 40 3

C25 2511 50 50 3

C26 2611 60 60 3

C27 2711 70 70 3

C28 2811 80 80 3

C29 2911 90 90 3

C30 3011 100 100 5

Table 2 Range of the parameter
values

fi oi ci s j t

U[300,000, 400,000] U[30,000, 40,000] U[2, 8] U[1, 100]

higher the target level, the more facilities need to be built to close the distance to the demand
area, which results in higher costs. As can be seen, the facilities were built in more costly
locations to achieve higher target levels in some cases.

Analysis were also performed with distributions of flight distance that a drone can fly.
The results are summarized in Table 4. Because the smaller λ refers to the longer distance a
drone can fly, the results show that the cost decreases as λ decreases. Therefore, fewer drone
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Table 3 Sensitivity analysis for different α values

α Class Total cost ($)
∑

i∈I
∑

t∈T
Zit Class Total cost ($)

∑

i∈I
∑

t∈T
Zit

0.9 C1 2,157,495 5 C11 1,768,044 4

0.8 C1 849,160 2 C11 819,192 2

0.7 C1 436,774 1 C11 407,325 1

0.6 C1 417,470 1 C11 407,325 1

0.5 C1 417,470 1 C11 407,325 1

0.9 C2 Infeasible – C12 2,626,039 6

0.8 C2 859,718 2 C12 862,415 2

0.7 C2 429,552 1 C12 415,340 1

0.6 C2 429,545 1 C12 410,709 1

0.5 C2 429,545 1 C12 410,709 1

0.9 C3 Infeasible – C13 2,599,149 6

0.8 C3 909,376 2 C13 850,948 2

0.7 C3 846,914 2 C13 422,750 1

0.6 C3 435,048 1 C13 413,673 1

0.5 C3 435,048 1 C13 413,673 1

facilities are necessary when drones can fly longer distances. If the distance that a drone can
fly is too short, solving the DFLM is impossible under the given conditions.

5.3 Comparison between deterministic approach and stochastic approach

The business performance of the DFLM and a pure deterministic approach mentioned in
Sect. 3.4 were compared. Because the flight distance of a drone is not deterministic, in
some circumstances the drones may not return to the drone facility. When a drone does not
return, the next delivery by drone is disrupted. More seriously, the delivery that the drone
was assigned might have failed to transpire. Satisfying demand during a disaster and the
subsequent recovery is critical because it is linked to the safety of the disaster victims.

In this subsection, we verified the need for stochasticmodeling in the design of the network
considering the drones. The networkswere designed by solving the same problem through the
deterministic and stochastic model. Afterwards, we looked at how the results changed when
the flight distance of a drone follows the normal distribution and the exponential distribution.
The mean and variance of the two distributions were 1

λ
and 1

λ2
, respectively. The evaluation

metrics used for comparison were as follows:

αN Probability that a drone returns to a facility when flight distance of a drone follows
normal distribution

αE Probability that a drone returns to a facility when flight distance of a drone follows
exponential distribution

βN Number of drones that failed to return to the drone facility when flight distance of a
drone follows normal distribution

βE Number of drones that failed to return to the drone facility when flight distance of a
drone follows exponential distribution
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Table 4 Sensitivity analysis for different λ values

λ Class Total cost ($)
∑

i∈I
∑

t∈T
Zit Class Total cost ($)

∑

i∈I
∑

t∈T
Zit

0.00009 C1 2,157,560 5 C11 2,280,740 5

0.00008 C1 2,157,495 5 C11 2,158,056 5

0.00007 C1 2,157,495 5 C11 2,123,846 5

0.00006 C1 2,157,495 5 C11 1,707,678 4

0.00005 C1 1,707,987 4 C11 1,282,127 3

0.00004 C1 852,520 2 C11 831,025 2

0.00003 C1 849,160 2 C11 819,192 2

0.00002 C1 436,774 1 C11 407,325 1

0.00001 C1 417,470 1 C11 407,325 1

0.00009 C2 Infeasible – C12 4,687,675 11

0.00008 C2 Infeasible – C12 3,422,670 8

0.00007 C2 Infeasible – C12 2,798,596 6

0.00006 C2 Infeasible – C12 2,137,032 5

0.00005 C2 Infeasible – C12 1,700,968 4

0.00004 C2 890,065 2 C12 1,304,549 3

0.00003 C2 839,465 2 C12 862,415 2

0.00002 C2 429,952 1 C12 415,340 1

0.00001 C2 429,545 1 C12 410,709 1

0.00009 C3 Infeasible – C13 3,566,052 8

0.00008 C3 Infeasible – C13 3,457,633 8

0.00007 C3 Infeasible – C13 3,005,912 7

0.00006 C3 Infeasible – C13 2,171,188 5

0.00005 C3 Infeasible – C13 1,748,157 4

0.00004 C3 Infeasible – C13 1,338,633 3

0.00003 C3 909,376 2 C13 834,187 2

0.00002 C3 847,418 2 C13 422,750 1

0.00001 C3 435,048 1 C13 413,673 1

Table 5 Results of the deterministic and stochastic approaches for C1

Total cost ($)
∑

i∈I
∑

t∈T
Zit αN (%) βN αE (%) βE

Deterministic
approach

417,470 1 78.3 293.7 81.5 239.5

Stochastic
approach

849,160 2 81.5 250.8 90.1 134.2

Problem C1 was used in the experiment, and each evaluation metric value was averaged
after 20 repeated experiments. Table 5 summarizes the experimental results to show how
each approach copes with uncertainty in terms of evaluation metrics.

Simply looking at network design costs, a pure deterministic approach can lead to overly
optimistic judgments about efficiency. However, looking at the evaluation metrics, we can
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Table 6 Results of the deterministic and stochastic approaches for C1 when λ � 0.0000625

Total cost ($)
∑

i∈I
∑

t∈T
Zit αN (%) βN αE (%) βE

Deterministic
approach

417,470 1 74.5 345.8 74.3 348.5

Stochastic
approach

2,157,495 5 83.5 224.3 96.5 47.0

see that the stochastic model copes with uncertainty much better than the deterministic model
does. The difference became clear when the flight distance of drones follows an exponential
distribution. This is a natural result because the network was designed assuming that the
flight distance of drones follows an exponential distribution. If we consider the purchase cost
of new drones or the penalty for the delay in subsequent shipping, it is difficult to say which
approach dominates in economic terms. To obtain additional insight, we looked at the case
of reducing the flight range of drones. Table 6 shows the experimental results when λ was
readjusted to 0.0000625.

After doubling the parameters, the differences between the two approaches became clearer.
More facilities were established to achieve the target level as the flight range of drones was
reduced. As a result, drones returned to the drone facility with a very high probability. It
was shown that the distances between the drone facility and customers have a significant
impact on the return probability of drones. It was also found that the network was designed
to be sustainable overall because even the farthest customer assigned to each drone facility
satisfied the target level.

5.4 Comparison between the DFLM and heuristic algorithm

Experiments on various problem classes were performed to confirm the time efficiency of
the developed heuristic algorithm. Results of the instances were summarized in Table 7.
The gap between the best solution and the best bound was small in the DFLM. However,
experimenting with increasing the time limit, it was difficult to find the optimal solution for
large size problems through the original model. Some problems could not be solved in the
time limit of 3600 s by the DFLM while the heuristic algorithm found a solution. Even if
both methods could not solve the problem, the heuristic algorithm yielded a better integer
feasible solution within the time limit. As the size of the problem increased, the heuristic
algorithm yielded better solutions than the original DFLM. Therefore, it can be said that time
efficiency and superiority of the heuristic algorithm were demonstrated.

6 Conclusions

Although drones are unlikely to replace existing technologies completely, they have emerged
as alternative options to supplement and complement land- or sea-bound vehicles. Therefore,
integrating drones into humanitarian logistics is expected to be efficient and convenient.
However, operation methods determined without considering the uncertain conditions of
drone operations might produce a negative outcome. In this paper, we provided a stochastic
design framework of ways to deploy drones economically to serve a disaster-affected region
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with uncertain drone flight distance. The developed model is used to determine the optimal
locations for the drone facilities and the capacity, which is the number of drones deployed
from each facility.

For agile decisionmaking, we developed a heuristic algorithm that produces a high-quality
solution. The heuristic algorithmwas developed according to Benders decomposition and the
LP-rounding technique.The computational results showed that using aheuristic algorithmcan
reduce delays in decisionmaking. This time efficiency enables effective real-time response in
disaster situations. Another meaningful conclusion arising from this study is the remarkable
effectiveness of Benders decomposition as a computational strategy for disastermanagement.

For researchers, we believe that the approach developed is applicable to a range of disaster
management operations and opens up a number of future research opportunities. There might
be a controversy about the assumption that the flight distance of a drone follows an exponential
distribution. Although similar assumptions are used in various fields, some researchers may
not accept this assumption. A robust approach, instead of a stochastic optimization, might be
applied to this model in the future research. This approach can alleviate complaints about the
distributional assumption.We also did not consider costs and times for battery recharging.We
assumed that these costs are considered to have a relatively small impact on decision making.
However, further consideration of various situations and variables can also yield meaningful
conclusions.With consideration of these points, solutions that incorporate drones into disaster
management might become more practical and can provide deeper insights.

For practitioners, the approach of this study can give answers to their questions about
practicality. Designing constraints by considering the uncertain features of drones and mak-
ing them tractable provide practitioners with a guideline for the practical use of drones.
Furthermore, the DFLM can be generalized to other facility location problems dealing with
uncertainty. It can be used not only for disaster management but also for commercial purpose
which helps to fully utilize this emerging technology.
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