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Abstract
Joint determination of price, rebate, investment in preservation technology, and order quantity
is a complex task for retailers today. To help retailers, this paper presents an investigation on a
replenishment policy for deteriorating products that focused on the choice between dynamic
and static rebates under the price, displayed stock level, and rebate-induced demand. With
the objective of maximizing the retailer’s profit, six different models were formulated under
static and dynamic environments to identify optimal price-and-rebate pair and preservation
technology investment policy. Optimal control theory was employed to determine the rate
of dynamic rebate. A hybrid bat algorithm (HBA) is developed to find solutions for the
proposed non-linear optimization problems. The efficiency of the proposed algorithm was
verified with standard test functions. Price sensitivity, the nature of the product, and display
stock elasticity were found to be decisive parameters for a retailer’s rebate strategy. Dynamic
rebate on initial price of the product can significantly improve the profit of the retailer. The
retailer’s investment decision was also significantly influenced by the nature of the product.
Sensitivity analyses were carried out to offer managerial insights.
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1 Introduction

Rebates are an integrated part of retailing used to accomplish objectives such as increasing
traffic of the retail store by attracting more price-sensitive consumers, accelerating flow of
perishable products, eliminating out-of-season inventory. Consequently, the customer rebate
has become a prevalent promotional tool for many retailers. In a broad sense, customer rebate
promotions include any type of program that involves a partial refund from retailers to con-
sumers upon the purchase of a product without additional conditions. Since the introduction
of price and rebate-induced demand by Khouja (2006), researchers have been exploring and
analyzing the impacts of various promotional tools offered by the retailer to the consumer.
In a common practice, diverse businesses make use of rebates. The retailers of groceries,
small and large appliances, convenience items, health and beauty aids, household products,
automobiles, liquor, consumer electronics, and computers provide rebates. The amount of
the rebate offered depends on factors such as the base retail price, the nature of the prod-
uct, on-hand inventory, and the replenishment planning horizon. In a study by the Aberdeen
Group (2011), approximately 50% of retailers used a frequent rebate program as a part of
their promotional mix. These studies have revealed that retailers frequently offer rebates that
range between 10 and 70% on high-value products to push the flow of premium products first
and thereby move consumer goods. Therefore, appropriate mix of price and rebate becomes
an important factor in the business success of modern retailers. With the rapid advancement
of information technologies, adjustment of retail price is straightforward.

For this study, we investigated the inventory replenishment decisions of a retailer by con-
sidering the effects of static and dynamic rebates on the promotion of deteriorating products
under price, display stock level (DSL), and rebate-induced demand. The inventory display
is one of the important aspects in retailing to stimulate, educate, and engage customer to
buy, and it is one of the key themes of our study. Empirical evidence from both marketing
and inventory management literature shows that demand is inventory dependent for apparel
retailers (Wolfe 1968), supermarkets (Levin et al. 1972), home improvement stores (Balakr-
ishnan et al. 2008), and magazine retailers (Koschat 2008), among others. In addition, the
reduction of the deterioration rate through use of suitable preservation technology is also a
challenging issue in retailing. It not only minimizes economic losses but reduces waste, and
hence, the environmental impact. The in-depth impacts of rebate and preservation technology
investment on the profitability of a monopolistic retailer were explored by considering six
different models. We looked at a generalized form of display-inventory-dependent demand.
A rebate strategy was also proposed according to the initial retail price. Optimal control the-
ory was used to obtain the analytical form of the dynamic rebate rate. To solve the problems,
we hybridized the BA with the Mantegna algorithm, and analyzed the HBA by considering
standard non-linear functions. The models were illustrated with some numerical examples,
and the effects of the changes in all parameters on the maximum average profit were eval-
uated through a sensitivity analysis. Our study helps the retailer to select an optimal static
or dynamic rebate based on initial price and preservation technology investment strategy to
maximize per unit profits.

The organization of the remainder of the paper is as follows. In the following subsection,
we present relevant literature and position our research in the literature. Assumptions and
background of the models are presented in Sect. 2. Behavior of static and dynamic models
are subsequently discussed in Sects. 3 and 4 respectively. The detailed descriptions of the
HBA are presented in Sect. 5. Results from comparison and sensitivity analysis are presented
in Sect. 6. Finally, conclusions and future research are presented in Sect. 7.

123

Author's personal copy



Annals of Operations Research (2019) 279:187–219 189

1.1 Literature review

Products such as toys, tools, consumer electronics products, fruits and vegetables, cloth-
ing, furniture, books, sports equipment, musical instruments, and pastries are characterized
by display-dependent demand features. To explore this aspect of retailing, variability of
inventory-level-dependent demand rate on the analysis of the inventory system has been
described by several researchers over the past few decades (Urban 1992; Panda et al. 2009;
Yang 2014; Xue et al. 2017; Jaggi et al. 2018). An overview of inventory-level-dependent
demand can be found in the review article byUrban (2005),who categorized it as additive (lin-
ear functionof the inventoryonhand,Mishra et al. 2017) ormultiplicative (non-linear function
of the stock level, Saha and Goyal 2015). The major limitation of the linear inventory-level-
dependent demand is the condition that more stock on the shelf leads to increased demand.
Chang et al. (2006) pointed out this problem and introduced an upper limit for the displayed
inventory level on the shelf. They argued that most retail outlets have limited shelf space and
“too much piled up in everyone’s way leaves a negative impression on buyer and employee
alike.” In some subsequent studies, such as those from Pal et al. (2005, 2006), a market-
oriented three-component demand rate that depends on DSL was proposed. The authors
argued that “in competitive market place glamorous display of large number of products
with the help of modern light and electric arrangement influences the customers to buy more.
But in practice the demand rate would not be dependent on DSL for large stock. It would
be DSL dependent within a range and beyond the range it is constant.” Gupta et al. (2007)
also developed an inventory model of three-component DSL-dependent demand and used
an advanced genetic algorithm (GA) to find optimal solutions. Three-component demand is
the generalized version of the linear stock-dependent demand problem (Panda et al. 2013;
Bhunia et al. 2014). Prasad and Mukherjee (2016) studied an inventory model of perishable
items with stock and time-dependent demand in a deterministic environment. They studied
the impact of a two-parameter Weibull distribution deterioration rate. Tiwari et al. (2017)
explored the replenishment policy for the retailer that leverages stock-dependent demand for
non-instantaneous deteriorating items. Particle swarm optimization was used to derive an
optimal solution. Mishra et al. (2017) developed an EOQ model with selling price and stock
dependent demand for deteriorating products and determined the optimal price, order quan-
tity, and preservation technology investment from the perspective of the retailer. However,
to the best of our knowledge, the joint effect of investment in preservation technology and
rebate has been ignored in the citedworks.Additionally,we consider three-component display
stock-dependent demand, which is a more generalized version of a linear-stock-dependent
demand.

According to the inventory literature, Ghare and Schrader (1963) first developed a model
for exponentially deteriorating inventory and proposed a differential equation governing
the variation in the inventory system. Thereafter, researchers and practitioners have been
progressively studying inventory systems of deteriorating products and argue in favor of
preservation technology investment (PTI) tominimize deterioration rate. Table 1 summarizes
some of the key published research on this issue and summarizes the contribution of our study:

From Table 1, one can see that the simultaneous effects of rebate and preservation tech-
nology investment have not been studied yet. The retailer consistently tries to accelerate the
flow of deteriorating products by introducing several marketing tools that reduce holding
and disposal costs, preservation technology investments, and so forth. Therefore, one of the
major objectives of this study is to analyze the joint impact of rebate and preservation tech-
nology investment on the replenishment decision of a retailer. Table 1 also shows that the
efficiency of preservation technology investment is independent of lot size. However, dur-
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ing retail store operations, centralized temperature control and proper handling of products,
including cleaning, sorting, adequate packing, and using appropriate disposal equipment,
are crucial. Most retailers rely on these operational improvements to drive additional sales.
Therefore, the investment in preservation technology largely depends on order quantity of the
retailer, and to formulate models, onemust consider the efficiency of preservation technology
investment as a function of initial order quantity. Moreover, as a result of the complexity of
optimization problems, sometimes researchers are bound to apply metaheuristic algorithms
to find replenishment decision solutions under preservation technology investment.

The added complexity of dynamic rebate and efficiency of preservation technology invest-
ment inhibits the application of formal methods at the analytical level, which has prompted
the use of nature-inspired optimization algorithms. To obtain replenishment decision solu-
tions for real-world complex inventory replenishment problems, nature-inspired optimization
algorithms have been found very efficient and have become increasingly popular among
researchers. Some of these meta-heuristic algorithms are successfully used in the inven-
tory literature: harmony search (Taleizadeh et al. 2009), ant colony optimization (Nia et al.
2014), simulated annealing (Saha et al. 2017), greedy randomized adaptive search (Bai et al.
2008), particle swarm optimization (Bhunia et al. 2015; Tiwari et al. 2017) and others. In
this study, the bat algorithm (BA) is hybridized with Mantegna’s algorithm. The resulting
HBA has the advantage of simplicity and flexibility. A recent comparison of BAwith particle
swarm optimization, GA, and other algorithms in the context of e-learning suggested some
clear advantages of BA over other algorithms (Gandomi et al. 2013). Mohamed and Moftah
(2018) also stated that “the bat algorithm outperforms many other meta-heuristic algorithms,
such as PSO and GA, in many optimization fields.” A comparative study by considering
standard non-linear functions was also conducted to establish the efficiency of the proposed
HBA. The proposed algorithm demonstrated faster convergence for our proposed constraint
optimization problems.

A market study by Blackhawk Engagement Solutions (2013) demonstrated that across
retail categories consumers prefer a high-value rebate over some low-value offers. The prob-
lemofmaking a suitable dynamic pricing strategy for retailers has attractedmany researchers.
Some recent interesting results about inventory control were published by researchers con-
sidering dynamic pricing (Boer 2015; Liu et al. 2015; Dye and Yang 2016; Avinadav et al.
2017; Hu et al. 2017). Differing from cited literature, this paper describes our attempt to
verify profitability of retailers using dynamic and static rebates on the basis of initial retail
price under displayed stock level (DSL) dependent demand. Because of the great popularity
of them, rebates have become an integral part of retailing strategy, and retailers use their own
rebate program to attract consumers (Dogan et al. 2010; Yang et al. 2015b). For this study, we
explored the way retailers should use dynamic or static rebate to maximize total profits per
unit time by determining the optimal rebate strategy under dynamic pricing and the optimal
ordering quantity decision under the influence of declining demand in the later stage of a
replenishment cycle. To meet this relatively complex objective, we looked at the way the
retailer could determine the optimal price-and-rebate pair for the deteriorating items. The
pricing scheme applied in this study was similar to a price-skimming. It helps the retailer
realize the amount that consumers are willing to pay. If the initial price is too high, the
retailer can reduce it easily and sells at a market-clearing price. Moreover, at the later stage,
the retailer can attract more price-sensitive consumers. The higher initial price also creates
an anchoring effect in consumers’ minds as they compare subsequent offers with the higher
initial price. For example, despite having limited shelf space compared to that of traditional
supermarkets, modern discount grocery stores are selling goods by setting high initial prices
and then progressively dropping them. Lowering the price of fruit and vegetables at a later
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stage is a promising day-to-day practice for stimulating the purchase of those products and
helps the retailer to get rid of products at the end of the day. In this way, consumers are
pleased to buy product at a lower price, which can create an impact on store choice for future
shopping (Bell and Lattin 1998; Morley 2017).

2 Notation and assumptions

The following notations are used to develop the models:

2.1 Notation

The study uses the following decision variables:

p Sales price per unit at time t ∈ [0, T ]
Q Initial inventory level (Q ≥ S0)
T Length of the replenishment cycle
ψ Preservation technology investment in the replenishment cycle (ψ ≥ 0)
R1(t) Dynamic/static rebate rate at any time t ∈ [t2, T ]
R2(t) Dynamic/static rebate rate at any time t ∈ [t1, t2]

The following parameters are used to describe the model:

I (t) Inventory level at any time t ∈ [0, T ]
Sc Replenishment cost per order ($/order)
c Purchasing cost per unit ($/unit)
h Unit inventory holding cost per unit time ($/unit/unit time)
cd Unit disposal cost per unit ($/unit)
γ1 Sensitivity of rebate in demand of the product at time t ∈ [t2, T ]
γ2 Sensitivity of rebate in demand of the product at time t ∈ [t1, t2]
β Price-elasticity of products, β > max(γ1, γ2)
θ(ψ) Deterioration rate coefficient under preservation technology investment ψ
θ0 Deterioration rate under natural condition
θ1 Minimum deterioration rate under preservation technology investment
S0 Upper limit of DSL dependency parameter
S1 Lower limit of DSL dependency parameter
t1 Point of time at which inventory level reaches S0, I (t1) = S0
t2 Point of time at which inventory level reaches S1, I (t2) = S1
π j j = s1, s2, s3, s4, d1, and d2; denote the retailer’s profit in different models

2.2 Assumptions

1. The models take into account the pricing and replenishment decisions of a retailer who
sells a deteriorating product and provides a rebate to promote and accelerate the flow of
the product. The dynamic rebate rates are determined by optimal control theory. Decision
variables are obtained by the HBA algorithm.

2. Themarket demand rate D(p, I (t), R1(t), R2(t)) is dependent on the three components
of DSL (I (t)), sales price (p), and rebate rates (R1(t) and R2(t)). The functional form of
market demand is as follows:
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D(p, I (t), R1(t), R2(t)) =
⎧
⎨

⎩

a + bS0 − β p if S0 ≤ I (t)
a + bI (t) − β p + γ2R2(t) if S1 ≤ I (t) ≤ S0
a + bS1 − β p + γ1R1(t) if I (t) ≤ S1

(1)

We considered the effect of display-stock elasticity in commonly used demand functions, in
which demand is linearly decreasing in price and linearly increasing in rebate value (Khouja
2006). If the effects of price and rebate (β = γ1 = γ2 = 0) can be excluded, then the demand
function is similar to that determined by (Bhunia et al. 2014). In the demand function, a
(> 0) is the constant demand rate independent of stock level; b( > 0) is the stock-sensitive
demand parameter; β represents the sensitivity of demand with respect to retail price; and
γ1 and γ2 represent the sensitivities of demand with respect to rebates. Inventory is depleted
because of the demand rate a + bS0 − β p and deterioration at any time t ∈ [0, t1], and it
reaches the level of S0 at time t1; that is, I (t1) = S0. Then, inventory is depleted because of
demand rate a + bI (t) − β p + γ2R2(t) and deterioration at any time t ∈ [t1, t2] to time t2
and reaches the level of S1, that is, I (t2) = S1. Finally, the demand becomes independent of
stock and the rest of the inventory is depleted to zero in time T ; that is, I (T ) = 0. Thus, the
demand rate is a function of DSL in the retail outlet within the range S0 to S1. Outside this
range, the demand rate becomes constant with respect to the DSL. If S0 → ∞ and S1 → 0,
then the demand function is converted to linear stack-dependent demand, which is discussed
extensively in the literature (Sarkar 2012; Mishra et al. 2017; Liuxina et al. 2018; Jaggi et al.
2018). If S1 → ∞, then the demand function is converted to two-component stack-dependent
demand, which is also discussed extensively in the literature (Panda et al. 2009; Hsieh and
Dye 2010; Dye and Hsieh 2011; Tiwari et al. 2017). Therefore, for the present study, we
considered a more generalized demand function under inventory-level-dependent demand.

3. The capacity of the retail outlet is greater than S0. The retailer can allocate sufficient
space to keep all the products.

4. The rebate rates are not uniform throughout the replenishment cycle. R1(t) is the
amount of rebate offered by the retailer at any time t ∈ [t2, T ], (0 ≤ R1(t) ≤ p − c). In a
similar fashion, R2(t) is the amount of rebate offered by the retailer at any time t ∈ [t1, t2],
(0 ≤ R2(t) ≤ p − c). Demand rates for products are typically boosted through rebates
on selling price. Therefore, studies are needed on the effects of rebate under the three-
component DSL-dependent demand. The objective of the retailer is to determine the optimal
price-and-rebate pair to maximize profit per unit time. Because of the deteriorating nature of
groceries such as fruits, vegetables, meat, and fish, retailers generally suffer from difficulties
in maintaining large inventories in a stock-dependent market. In this scenario, retailers offer
the necessary amount of DSL and high initial prices at the very beginning of a replenishment
cycle. Then, they gradually provide greater rebates such that the higher initial price creates
an anchoring effect on price-sensitive consumers.

5. The deterioration rate coefficient θ ≡ θ(ψ) = θ1 + (θ0 − θ1)e−ξψQ−λ
is affected

by the investment in preservation technology. According to the literature, the investment
in preservation technology is assumed to be independent from order quantity. However, if
the initial order quantity (Q) increases, then the retailer needs to invest more. Therefore,
the efficiency of the preservation technology is considered as ξQ−λ. If λ = 0, then the
investment remains independent from order quantity. In addition, due to configurations and
characteristics of the product, the deterioration rate cannot be reduced completely. Therefore,
a threshold value of the minimum deterioration rate, θ1, is considered. If θ1 = 0 and λ = 0,
then the assumption alignswith that articulated in the literature (Mishra et al. 2017). However,
θ → θ0 when ψ → 0; that is, the rate of deterioration remains unchanged if the retailer does
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not invest in preservation technology. In a similar pattern, θ → θ1 whenψ → ∞; that is, the
rate of deterioration reaches the lowest possible level for a large investment by the retailer in
preservation technology.

6. The replenishment rate is instantaneous. Because of the deteriorating nature of products,
the inventory level at the end of the replenishment cycle is assumed to be zero. Shortages are
not allowed. Similar to Dye (2013), Mishra et al. (2017), Jaggi et al. (2018), Li et al. (2018),
Pervin et al. (2018), and Wu et al. (2018), we formulated the model for obtaining an optimal
decision for a single replenishment.

3 Static rebate

In this section, four different models for obtaining the replenishment strategies of a retailer
are presented. The objective was to determine the optimal retail price, amount of preservation
technology investment, order quantity, and amount of rebate to maximize profit per unit time
for a retailer selling deteriorating items during a single replenishment cycle. The retailer
procures Q units of the product at the beginning of the replenishment cycle. As time passes,
the inventory of the retailer decreases due to the combined effects of the market demand
and deterioration until time t1. After that time, the demand decreases as the DSL decreases.
The retailer needs to decide the amount of rebate R2, t ∈ [t1, t2] to stimulate demand, if it
is necessary. Finally, after time t2, demand becomes independent of DSL, and the retailer
needs to decide the amount of rebate R1, t ∈ [t2, T ] to enhance the flow of product. The
depletion of the inventory level throughout the replenishment cycle, (0, T ], is governed by
the following differential equations:

İ (t) =
⎧
⎨

⎩

−a − bS0 + β p − θ I (t) if S0 ≤ I (t)
−a − bI (t) + β p − γ2R2 − θ I (t) if S1 ≤ I (t) ≤ S0
−a − bS1 + β p − γ1R1 − θ I (t) if I (t) ≤ S1

(2)

subject to the conditions that I (0) = Q, I (t1) = S0, and I (t2) = S1. The solutions of Eq. (2)
describe the instantaneous inventory level during the replenishment cycle are as follows:

I (t) =

⎧
⎪⎨

⎪⎩

Qe−θ t − (a − β p + bS0)
1−e−θ t

θ
if 0 ≤ t ≤ t1

S0e(θ+b)(t1−t) − (a − β p + γ2R2)
1−e(θ+b)(t1−t)

θ+b if t1 ≤ t ≤ t2
S1eθ(t2−t) − (a − β p + bS1 + γ1R1)

1−eθ(t2−t)

θ
if t2 ≤ t ≤ T

(3)

Continuity of the inventory levels at t1 and t2 and the condition I (T ) = 0 yield

t1 = 1

θ
Log

[
Qθ + a + bS0 − β p

S0θ + a + bS0 − β p

]

(4)

t2 = t1 + 1

θ + b
Log

[
S0(θ + b) + a − β p + γ2R2

S1(θ + b) + a − β p + γ2R2

]

(5)

T = t2 + 1

θ
Log

[
S1θ + a − β p + bS1 + γ1R1

a − β p + bS1 + γ1R1

]

(6)

Using the rate of change of inventory in three time intervals, it can be easy to calculate the sells
revenue and other system costs which are needed to decide price, investment in preservation
technology and how much rebate the retailer can provide:
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1. Sells revenue (SR) in the cycle [0, T] can be calculated as follows

SR = p
∫ t1

0
(a + bS0 − β p)dt + (p − R2)

∫ t2

t1
(a + bI (t) − β p + γ2R2)dt

+ (p − R1)

∫ T

t2
(a + bS1 − β p + γ1R1)dt

= p(a + bS0 − β p)t1 + (p − R2)(a − β p + γ2R2)(t2 − t1)

+ (p − R1)(a − β p + bS1 + γ1R1)(T − t2)

+ b(p − R2)

(
S0 − S1
θ + b

− (a − β p + γ2R2)

θ + b
(t2 − t1)

)

2. The inventory level is different in three different time intervals, thus the holding cost
(HC) and disposal cost (DC) in the cycle [0, T] can be obtained as

HC + DC = (h + θcd)

[∫ t1

0
I (t)dt +

∫ t2

t1
I (t)dt +

∫ T

t2
I (t)dt

]

3. Replenishment cost (RC) and the preservation technology investment (PTI)

RC + PT I = Sc + ψ

4. To purchase the products, the retailer has to pay

PC = cQ

Therefore, the total profit of the retailer (T Ps1) is given by:

T Ps1 = (b(p − R2) − (h + θcd))

(
S0 − S1
θ + b

− (a − β p + γ2R2)

θ + b
(t2 − t1)

)

−ψ − Sc − cQ + p(a + bS0 − β p)t1 + (p − R2)(a − β p + γ2R2)(t2 − t1)

+ (p − R1)(a + bS1 − β p + γ1R1)(T − t2)

− (h + θcd)

θ
(Q − S0 + S1 − (a + bS0 − β p)t1

− (a − β p + bS1 + γ1R1)(T − t2)) (7)

Therefore, the challenge here is to determine replenishment quantity Q, rebate amounts R1

and R2, selling price p, and the preservation technology investment ψ to maximize the total
profit per unit time, and one needs to find solution of the following optimization problem to
get replenishment decision

Maximize π s1(Q, p, ψ, R1, R2) = T Ps1

T
Prob (1)

subject to,

t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, t2 = t1 + 1

θ+b Log
[
S0(θ+b)+a−β p+γ2R2
S1(θ+b)+a−β p+γ2R2

]
,

T = t2 + 1
θ
Log

[
S1θ+a−β p+bS1+γ1R1

a−β p+bS1+γ1R1

]
, Q ≥ S0, p ≥ c, Ri ≥ 0, θ = θ1 + (θ0 −

θ1)e−ξψQ−λ
,

and p − c ≥ Ri ∀i = 1, 2.
Differentiating Eq. (6) with respect to R1 and R2, one can find that ∂T

∂R1
= −S1γ1/((a +

bs1 − pβ + R1γ1)(a − pβ + R1γ1 + S1(b + θ))) < 0 and ∂T
∂R2

= −(S0 − S1)γ2/((a −
pβ + R2γ2 + S0(b + θ))(a − pβ + R2γ2 + S1(b + θ))) < 0. Therefore, the retailer can
reduce replenishment cycle time by providing rebate, and hence accelerate flowof the product
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and reduce amount of deteriorated product also. The first order condition of optimality with

respect to R1 implies, T Ps1

T = ∂T Ps1

∂R1
/ ∂T

∂R1
. Therefore, optimal solution exist if ∂T Ps1

∂R1
=

− 1
θ2

[
S1γ1θ((p−R1+cd )θ+h)
a−pβ+R1γ1+S1(b+θ)

+ ((a + bS1 − pβ + (cd + p − 2R1)γ1)θ − hγ1)(t3 − t2)
]
< 0.

The first term of the expression is always positive. Therefore, it will be always decreasing if
(a+bS1−(β+γ1)p−cdγ1)θ−hγ1

2γ1
> P− R1. But, the retailer can earn positive profit if p− R1 > c,

and we propose the following proposition:

Proposition 1 The customer rebate programme is feasible if (a+bS1−(β+γ1)p−cdγ1)θ −
2cγ1 − hγ1 > 0. Customer rebate always reduces replenishment cycle time significantly.

The above Prob (1) can be extended to verify the profitability of the retailer when the
amount of rebate remains uniform. Substituting R1 = R2 in Eq. (7), the total profit of the
retailer (T Ps2) can be obtained as follows:

T Ps2 = p(a + bS0 − β p)t1 + (b(p − R1) − (h + θcd))
(
S0 − S1
θ + b

− (a − β p + γ2R1)

θ + b
(t2 − t1)

)

+ (p − R1)(a − β p + γ2R1)(t2 − t1) + (p − R1)

(a − β p + bS1 + γ1R1)(T − t2) − cQ − Sc

− (h + θcd)

θ
(Q − S0 + S1

− (a + bS0 − β p)t1 − (a − β p + bS1 + γ1R1)(T − t2)) − ψ (8)

Therefore, one needs to find the solution of the the following optimization problem to
find replenishment decision where the constraints are obtained by substituting R1 = R2

in Eqs. (4)–(6).

Maximize π s2(Q, p, ψ, R1) = T Ps2

T
Prob (2)

subject to,

t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, t2 = t1 + 1

θ+b Log
[
S0(θ+b)+a−β p+γ2R1
S1(θ+b)+a−β p+γ2R1

]
, T = t2 +

1
θ
Log

[
S1θ+a−β p+bS1+γ1R1

a−β p+bS1+γ1R1

]

R1 ≥ 0, Q ≥ S0, p ≥ c, θ = θ1 + (θ0 − θ1)e−ξψQ−λ
, and p − c ≥ R1.

Two problems were proposed to verify the profitability of the retailer where a rebate is
given as soon as the market demand for the product on display starts to decline. In addition,
the solution to an optimization problem is needed to verify profitability of the retailer when
the rebate is provided as soon as the demand becomes independent of the DSL; that is, the
retailer provides a rebate starting at time t2. Substituting R2 = 0 in Eq. (7), the total profit
of the retailer (T Ps3) can be obtained as through the following optimization problem:

T Ps3 = (bp − (h + θcd))

(
S0 − S1
θ + b

− (a − β p)

θ + b
(t2 − t1)

)

− ψ − Sc

+ p(a + bS0 − β p)t1 + p(a − β p)(t2 − t1)

+ (p − R1)(a − β p + bS1 + γ1R1)(T − t2) − cQ

− (h + θcd)

θ
(Q − S0 + S1

− (a + bS0 − β p)t1 − (a − β p + bS1 + γ1R1(T − t2)) (9)
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Therefore, one needs to find the solution of the the following optimization problem to get
optimal decision where the constraints are obtained by substituting R2 = 0 in Eqs. (4)–(6).

Maximize π SDL
s (Q, p, ψ, R1) = T Ps3

T
Prob(3)

subject to, t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, t2 = t1 + 1

θ+b Log
[
S0(θ+b)+a−β p
S1(θ+b)+a−β p

]
, T = t2 +

1
θ
Log

[
S1θ+a−β p+bS1+γ1R1

a−β p+bS1+γ1R1

]

R1 ≥ 0, Q ≥ S0, p ≥ c, θ = θ1 + (θ0 − θ1)e−ξψQ−λ
, and p − c ≥ R1.

Finally, to verify whether the retailer is benefited by providing rebate, one needs to con-
sider the benchmark case where the retailer does not provide any rebate throughout the
replenishment cycle. Substituting R1 = R2 = 0 in Eq. (7), the total profit of the retailer
(T Ps4) is obtained as follows:

T Ps4 = pbS0t1 + p(a − β p)T + (bp − (h + θcd ))

(
S0 − S1
θ + b

− (a − β p)

θ + b
(t2 − t1)

)

− cQ − Sc

− (h + θcd )

θ
(Q − S0 + S1 − (a + bS0 − β p)t1 − (a − β p + bS1)(T − t2)) − ψ (10)

Therefore, one needs to find the solution of the the following optimization problem to get
optimal decision where the constraints are obtained by substituting R1 = R2 = 0 in Eqs.
(4)∼(6).

Maximize π s4(Q, p, ψ) = T Ps4

T
Prob(4)

subject to, t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, t2 = t1 + 1

θ+b Log
[
S0(θ+b)+a−β p
S1(θ+b)+a−β p

]
, T = t2 +

1
θ
Log

[
S1θ+a−β p+bS1

a−β p+bS1

]

Q ≥ S0, θ = θ1 + (θ0 − θ1)e−ξψQ−λ
, and p ≥ c.

The four optimization problems were developed to identify the rebate strategy of the
retailer under a static environment. In the next section, expressions for the profit functions
and rebate rates of the retailer are under a dynamic environment are presented.

4 Dynamic rebate

In this section two different models for obtaining the rebate rates of a retailer under a dynamic
environment are developed. Continuous retail price decreases are often necessary and can
boost downward sales to move inventory faster when required. The retailer initially sets a
high initial price and drops it depending on the circumstances, particularly for a deteriorating
item. This strategy encourages consumers to return to the store in the future also. Similar
to the static environment, the retailer procures Q units of product at the beginning of the
replenishment cycle and provides a rebate, if necessary, at the rate R2(t), t ∈ [t1, t2], as soon
as the demand and the DSL decrease and at the rate R1(t), t ∈ [t2, T ], when the demand
becomes independent of the DSL. The challenges include determining simultaneously the
optimal initial inventory level, Q; replenishment cycle time, T ; selling price, p; rebate rates,
R1(t), t ∈ [t2, T ] and R2(t), t ∈ [t1, t2]; and preservation technology investment, ψ , to
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maximize the total profit per unit time of the retailer (πd1). The optimization problem of the
retailer under the dynamic environment is as follows:

Maximize πd1(Q, p, ψ, R1(t), R2(t), T ) = T Pd1

T
Prob(5)

subject to,

İ (t) =
⎧
⎨

⎩

−a − bS0 + β p − θ I (t) if S0 ≤ I (t)
−a − bI (t) + β p − γ2R2(t) − θ I (t) if S1 ≤ I (t) ≤ S0
−a + β p − bS1 − γ1R1(t) − θ I (t) if I (t) ≤ S1

I (0) = Q, I (t1) = S0, I (t2) = S1, I (T ) = 0, t1 ≥ 0, t2 ≥ t1, T ≥ t2, Ri (t) ≥ 0, θ =
θ1 + (θ0 − θ1)e−ξψQ−λ

, and p − c ≥ Ri (t)and i = 1, 2
where T Pd1 = ∫ t1

0 [p(a − β p + bS0) − (h + θcd)I (t)]dt − cQ − Sc − ψ + ∫ t2
t1

[(p −
R2(t))(a − β p + γ2R2(t) + bI (t)) − (h + θcd)I (t)]dt + ∫ T

t2
[(p − R1(t))(a − β p + bS1 +

γ1R1(t)) − (h + θcd)I (t)]dt .
The above optimization problem is a non-linear maximization problem where R1(t) and

R2(t) represent the control variables, I (t) represents the state variable, and p, Q, ψ , and
T represent static variables. By using the conditions I (0) = Q and I (t1) = S0, the above
problem can be restructured as follows:

πd1 = 1

T

[

p(a − β p + bS0)t1 − (h + θcd)

θ
(Q − S0 − (a + bS0 − β p)t1)

− cQ − Sc − ψ + J1] Prob(5.1)

subject to,

İ (t) =
{−a − bI (t) + β p − γ2R2(t) − θ I (t) if S1 ≤ I (t) ≤ S0

−a + β p − bS1 − γ1R1(t) − θ I (t) if I (t) ≤ S1

t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, I (t1) = S0, I (t2) = S1, I (T ) = 0, t2 > t1, T > t2, Ri (t) ≥

0, p − c ≥ Ri (t) ∀ t, i = 1, 2. where J1 = ∫ t2
t1

[(p − R2(t))(a − β p + γ2R2(t) + bI (t)) −
(h + θcd)I (t)]dt + ∫ T

t2
[(p − R1(t))(a − β p + bS1 + γ1R1(t)) − (h + θcd)I (t)]dt .

Now for given ψ , p, and Q, the following optimal control problem is solved first by
considering the reduced objective function J1 to find the control variables as defined below:

Maximize J1 Prob(5.2)

subject to,

İ (t) =
{−a − bI (t) + β p − γ2R2(t) − θ I (t) if S1 ≤ I (t) ≤ S0

−a + β p − bS1 − γ1R1(t) − θ I (t) if I (t) ≤ S1

I (t1) = S0, I (t2) = S1, I (T ) = 0.
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As amatter of convenience, the following notations are introduced for simplicity, namely,

m1 =
√

θ2 + θb,m2 = −
√

θ2 + θb, M = (h + θcd) − b(a − β p + γ2 p)

2γ2
,

N = − (a − β p + γ2 p)

2

U = M(θ + b/2) − Nb2
2γ2

θ(θ + b)
, V = Mγ2 − 2N (θ + b/2)

2θ(θ + b)
, X = h + θcd

θ

c1 =
b2(S1+V )

2γ2
− (U + φe−θ(T−t2) − X(1 − e−θ(T−t2))(θ + b/2 − m2)

(m2 − m1)em1t2
,

c2 =
b2(S1+V )

2γ2
− (U + φe−θ(T−t2) − X(1 − e−θ(T−t2))(θ + b/2 − m1)

(m1 − m2)em2t2
,

Pontryagin’s maximum principle is used to find the dynamic variables for a specific replen-
ishment cycle, preservation technology investment, and price of the product (Sethi and
Thompson 2000). If λ(t) is the adjoint variable associated with the state equation İ (t),
then the Hamiltonian function (H) for the optimal control problem, depicted by Prob(5.1),
can be formulated as follows:

H =

⎧
⎪⎪⎨

⎪⎪⎩

(p − R2(t))(a − β p + γ2R2(t) + bI (t)) − (h + θcd)I (t) if t1 ≤ t ≤ t2
+λ(t)(−a − bI (t) + β p − γ2R2(t) − θ I (t))
(p − R1(t))(a − β p + bS1 + γ1R1(t)) − (h + θcd)I (t) if t2 ≤ t ≤ T
+λ(t)(−a + β p − bS1 − γ1R1(t) − θ I (t)) .

(11)

The adjoint variable λ(t) must satisfy the following differential equations:

λ̇(t) =
{− ∂H

∂ I = −b(p − R2(t)) + (h + θcd) + (θ + b)λ(t) if t1 ≤ t ≤ t2

− ∂H
∂ I = (h + θcd) + θλ(t) if t2 ≤ t ≤ T .

(12)

The first-order conditions for the maximization of the Hamiltonian H with respect to R1(t)
and R2(t) are obtained by solving ∂H

∂R1(t)
= 0 and ∂H

∂R2(t)
= 0 respectively. On simplification,

R1(t) = (γ1 + β)p − a − γ1λ(t) − bS1
2γ1

, t2 ≤ t ≤ T (13)

R2(t) = (γ2 + β)p − a − γ2λ(t) − bI (t)

2γ2
, t1 ≤ t ≤ t2 (14)

Moreover, ∂2H
∂R1(t)2

= −2γ1 < 0, ∂2H
∂R2(t)2

= −2γ2 < 0, and ∂2H
∂R1(t)2

∂2H
∂R2(t)2

−
(

∂2H
∂R1(t)∂R2(t)

)
=

4γ1γ2 > 0, therefore H is concave with respect to R1(t) and R2(t). Now, backward substitu-
tion technique is used to find rebate rates. By using the transversality condition as λ(T ) = φ,
one can obtain the following equation representing adjoint variable

λ(t) = φe−θ(T−t) − X(1 − e−θ(T−t)), t2 ≤ t ≤ T (15)

Using the value of λ(t) and the condition I (t2) = S1, one can obtain the inventory as

I (t) = S1e
θ(t2−t) − (a − β p + bS1 + γ1 p)

1 − eθ(t2−t)

2θ
t2 ≤ t ≤ T

+ γ1

2

[

X

(
e−θ(T−t)(1 − e2θ(t2−t))

2θ
− 1 − eθ(t2−t)

θ

)

+ φ
e−θ(T−t)(1 − e2θ(t2−t))

2θ

]

(16)
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Simplifying the condition I (T ) = 0, the value of φ used for transversality condition is
obtained as follows

φ =
2θ

[
(a − β p + bS1 + γ p) 1−eθ(t2−T )

θ
− S1e

θ(t2−T ) − γ1X
2

(
1−e2θ(t2−T )

2θ − 1−eθ(t2−T )

θ

)]

γ1(1 − e2θ(t2−T ))
(17)

By eliminating R1(t) and R2(t) obtained in Eqs. (13) and (14), one can find that the inventory
level I (t) and the adjoint variable λ(t) at time t ∈ [t1, t2] are governed by the following
differential equations:

[

D −
(

θ + b

2

)]

λ1(t) + b2 I (t)

2γ2
= M (18)

−λ1(t)γ2
2

+
[

D +
(

θ + b

2

)]

I = N (19)

where D ≡ d
dt . After solving Eqs. (18) and (19), the optimal path representing the inventory

level and adjoint variable at any time t ∈ [t1, t2] are obtained by the following equations:

I (t) = 2γ2c1
b2

(

θ + b

2
− m1

)

em1t + 2γ2c2
b2

(

θ + b

2
− m2

)

em2t − V (20)

λ1(t) = c1e
m1t + c2e

m2t −U (21)

using the continuity conditions I (t2) = S1 and λ1(t2) = φe−θ(T−t2) − X(1 − e−θ(T−t2)),
one may obtain the values of c1 and c2 as considered earlier. Moreover, the inventory level
must be continuous at the point t = t1, that is,

2γ2c1
b2

(

θ + b

2
− m1

)

em1t1 + 2γ2c2
b2

(

θ + b

2
− m2

)

em2t1 = S0 + V (22)

Therefore, the optimization problem Prob (5) is finally defined as follows:

Maxπd1 = 1

T

[(

p − cd − h

θ

)

(a − β p + bS0)t1

− (h + θcd)

θ
(Q − S0) − cQ − Sc − ψ + J1

]

Prob(5.3)

subject to,

I (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qe−θ t − (a − β p + bs0)
1−e−θ t

θ
if 0 ≤ t ≤ t1

2γ2
b2

[
c1(θ + b

2 − m1)em1t + c2(θ + b
2 − m2)em2t

] − V if t1 ≤ t ≤ t2

S1eθ(t2−t) − (a − β p + γ1 p + bS1)
1−eθ(t2−t)

2θ + if t2 ≤ t ≤ T

γ1
2

[
X

(
e−θ(T−t)(1−e2θ(t2−t))

2θ − (1−eθ(t2−t))
θ

)
+ φ

e−θ(T−t)(1−e2θ(t2−t))
2θ

]

λ(t) =
{
c1em1t + c2em2t − P if t1 ≤ t ≤ t2
φe−θ(T−t) − X(1 − e−θ(T−t)) if t2 ≤ t ≤ T

R1(t) = (γ1+β)p−a−γ1λ(t)−bS1
2γ1

, t2 ≤ t ≤ T , R2(t) = (γ2+β)p−a−γ2λ(t)−bI (t)
2γ2

, t1 ≤ t ≤ t2
2γ2c1
b2

(θ + b
2 −m1)em1t1 + 2γ2c2

b2
(θ + b

2 −m2)em2t1 = S0+V , t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]

θ = θ1 + (θ0 − θ1)e−ξψQ−λ
, ψ ≥ 0, p ≥ c + R2(t2), p ≥ c + R1(t3), T ≥ 0.
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Substituting the value of λ(t) from Eq. (15) into Eq. (13), and differentiating partially
with respect to t, one can obtain

∂R1(t)

∂t

= eθ(t+T )(((a − bs1 + pβ − cdγ1 − pγ1)θ + hγ1)(1 − e−(T−t2)θ ) + 2s1θe−(T−t2)θ )

γ1(e2T θ − e2t2θ )
> 0

Therefore, the rate of rebate increases as time progress. It justifies the reality, the retailer
always gives more rebate at the ending of replenishment cycle. Therefore, the following
proposition is proposed.

Proposition 2 The rate of rebate in the final phase increases as time passes.

Similar to pervious section, if the retailer does not provide any rebate when the demand
remains sensitive to the display stock, i.e. R2(t) = 0, ∀ t ∈ [t1, t2], then the profit function
per unit time of the retailer converts into

πd2 = 1

T

[∫ t1

0
[p(a − β p + bS0) − (h + θcd)I (t)]dt

+
∫ t2

t1
[p(a − β p + bI (t)) − (h + θcd)I (t)] dt

+
∫ T

t2

[
(p − R1(t))(a − β p + bS1 + γ1R1(t))

−(h + θcd)I (t)] dt − cQ − Sc − ψ]

Following the similar way, the optimization problem can be represented as follows:

Max πd2 Prob(6)

subject to,

I (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qe−θ t − (a − β p + bs0)
1−e−θ t

θ
if 0 ≤ t ≤ t1

S0e(θ+b)(t1−t) − (a − β p) 1−e(θ+b)(t1−t)

θ+b if t1 ≤ t ≤ t2

S1eθ(t2−t) − (a − β p + bS1γ1 p)
1−eθ(t2−t)

2θ + if t2 ≤ t ≤ T

γ1
2

[
X

(
e−θ(T−t)(1−e2θ(t2−t))

2θ − (1−eθ(t2−t))
θ

)
+ φ

e−θ(T−t)(1−e2θ(t2−t))
2θ

]

R1(t) = (γ1+β)p−a−γ2λ1
2γ1

, t2 ≤ t ≤ T , λ(t) = φe−θ(T−t) − X(1− e−θ(T−t)), t2 ≤ t ≤ T

t1 = 1
θ
Log

[
Qθ+a+bS0−β p
S0θ+a+bS0−β p

]
, t2 = t1+ 1

θ+b Log
[
S0(θ+b)+a−β p
S1(θ+b)+a−β p

]
, θ = θ1+(θ0−θ1)e−ξψQ−λ

,

ψ ≥ 0, p ≥ c + R1(t3), T ≥ t2.

This study proposed only nonlinear constraint optimization problems. It is difficult to find
the optimum solution via an analytical approach. In addition, the number of decision variables
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expanded exponentially in both the objective function and constraints. To obtain the solution
for such complex real-world problems, nature-inspired optimization algorithms have been
found to be very efficient and have become increasingly popular among researchers. In this
study, an HBA is employed and described in Sect. 5.

5 A hybrid bat algorithm

Yang (2010) introduced the BA, which was inspired by the fascinating echolocation behav-
ior of microbats (Colin 2000). Most microbats are insectivores and use sonar to detect prey,
avoid obstacles, and locate roosting crevices. In the BA, echolocation behavior of microbats
is incorporated into the design of an optimization algorithm. After the pioneer algorithm
was introduced, the standard BA and variants have been applied in almost every area of
optimization (Yang 2013). In addition, Huang et al. (2013) showed that the BA provides
guaranteed global convergence under suitable conditions. The algorithm is based on the
following rules:

1. All bats fly randomly with velocity vi at position xi . They can automatically adjust fre-
quency of their emitted pulses and adjust the rate of pulse emission r ∈ (0, 1) on the
basis of the proximity of their target.

2. The loudness can vary in many ways; however, the loudness assumedly varies from a
large positive number A0 to a minimum value Amin . Also, the frequency value of the
ultrasonic burst lies in a range between [ fmin, fmax ].
The BA has some limitations that have inspired researchers to propose variations on

the original. The orthodox BA reflects a balanced trade-off between particle swarm opti-
mization and an exhaustive local search that is controlled by loudness and pulse rate. An
exploration technique was required to decrease the probability of premature convergence
and increase the diversity of exploration. Therefore, we introduced Lévy flight to explore
the unknown large-scale search space. In addition, the inertia function was introduced to
add virtual mass that stabilized the simulated motion of bats and accelerated the conver-
gence rate. The velocity updating equation of the BA is vt+1

i = vti + (xti − x∗) fi . We
replaced the x∗ with a random y, which is any solution in the population ( f (y) > f (xi ))
in a maximization problem, to enhance the intensity of the local search within the pop-
ulation. We used two different velocity functions for exploration and exploitation. The
velocity equation for the local search is vt+1

i = vti r + (y − xti ) fi , where r is generated
by using the chaos function. In this process, we changed the direction of the velocity
vector so that it can perform an extensive global search. The chaos function was used
to produce a chaos number based on the logistics map, which is a one-dimensional map
that generates a chaotic sequence: yn+1 = r0yn(1 − yn), y0 = 0.19, and r0 = 4.
The first 2000 iterations of the logistic map were discarded to exclude the transient
motion that leads to the chaotic attractor. To verify the efficiency of the algorithm, we
conducted a comparative study by considering standard non-linear functions, and corre-
sponding results are given in “Appendix A”. The detailed pseudo-code of the HBA is as
follows:
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A hybrid bat algorithm (HBA)
Initialize the bat population xi and vi , frequencies fi , pulse rete ri , loudness Ai ,
switch probability p, and parameter for Lévy distribution λ (i = 1, 2, · · · , N )
Define objective function π(x), x ∈ Rn . Set the parameter r by using Chaos-
Funtion()
Find the current global best solution : x∗
While(t < Maximum number of iterations)

If p > ε, ε ∈ (0, 1)
For each xi in N

Draw a step vector L by usingMantegna Algorithm

Compute σ 2 =
[

(1+λ)
λ(1+λ/2)

sin(πλ/2)
2(λ−1)/2

]1/λ

GenerateU ∼ (0, σ 2) and V ∼ (0, 1). Compute L = U
|V |1/λ

Conduct global exploration :
vt+1
i = rvti + r L(x∗ − xti ), x

t+1
i = xti + vt+1

i
End For
If At

i > ε AND π(xi ) > π(x∗) , ε ∈ (0, 1)
Accept the new solution
decrease Ai : At+1

i = At
i ∗ α

increase ri : r t+1
i = r0i (1 − e−γ t )

End If
End If
For each xi in N

Update velocities and solutions using:
Choose y among the bat populationwhich has better solution than xi

fi = fmin + ε( fmax − fmin), ε ∈ (0, 1)
vt+1
i = rvti + fi (y − xti )
xt+1
i = xti + vt+1

i
If r ti < ε, ε ∈ (0, 1)

Generate a local solution around the best solution
xt+1
i = x∗ + rε, ε ∈ (−At

i , A
t
i )

End If
If At

i > ε AND π(xi ) > π(x∗) , ε ∈ (0, 1)
Accept the new solution
decrease Ai : At+1

i = At
i ∗ α

increase ri : r t+1
i = r0i (1 − e−γ t )

End If
End For
Find the current global best solution up to t : x∗
t = t + 1

End While
output the best solution x∗ and π

In this study, the penalty method (Deb 2000) is used to find optimal decision for the
developed non-linear constraint optimization problem. Note that, if the optimization problem
is of the following form
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Table 2 Optimal price of the retailer, cycle time, amount of rebate, preservation technology investment, order
quantity, and profit in the static environment

p t1 t2 T R1 R2 ψ Q Profit

π s1 With PTI 140.13 5.62 9.29 11.32 91.62 46.44 4282.77 757.29 1412.12

Without PTI 104.44 0.71 3.18 5.36 24.16 – – 301.39 539.98

π s2 With PTI 138.65 5.78 8.71 11.82 65.21 65.21 4339.51 783.28 1299.82

Without PTI 94.46 0.51 2.74 5.33 0 0 – 272.86 497.71

π s3 With PTI 114.16 4.57 9.07 11.19 51.37 – 3935.97 708.07 1232.72

Without PTI 104.44 0.71 3.18 5.36 24.16 – – 301.39 539.98

π s4 With PTI 100.89 3.89 7.40 11.50 – – 3685.42 652.63 1007.00

Without PTI 94.46 0.51 2.74 5.33 – – – 272.86 497.71

min f (x), x = (x1, x2, . . . , xn)
T ∈ Rn

subject to gi (x) ≤ 0, (i = 1, 2, . . . ,m) h j (x) = 0 ( j = 1, 2, . . . , r)

then, the pseudo-objective function

min f1(x) = f (x) +
m∑

i=1

μimax{0, gi (x)}2 +
r∑

j=1

φ j | h j (x) |

is used to convert it into an unconstrained optimization problem, whereμi , (i = 1, 2, . . . ,m)

and φ j , ( j = 1, 2, . . . , r) are non-negative penalty factors.

6 Computational experiments

In this section, numerical examples, conducted to gain insight into the proposed model,
are presented. In addition, a sensitivity analysis was carried out to examine the effects of
parameter changes on the optimal solution. The following parameter values were considered:
a = 40, b = 0.4, β = 0.5, γ1 = 0.35, γ2 = 0.4, θ0 = 0.3, θ1 = 0.1, ξ = 0.001, λ = 0.05,
θ(ψ) = θ1 + (θ0 − θ1)e−ξψQ−λ

, S0 = 200, S1 = 50, h = 0.1, c = 40, cd = 0.2, and
Sc = 200. The parameters related to the BA on the basis of some preliminary parametric
studies were as follows: fi = U (0, 3), Ai = U (0.8, 1), ri = U (0.5, 1), p = 0.7, λ = 5,
α = 0.98, γ = 0.02, and N = 100. By applying the HBA, the following results were
obtained in the static environment.

From Table 2, one can observe that investment in preservation technology is always prof-
itable for the retailer. The retailer can earn more profit by providing rebates according to
demand variations when applying market-skimming pricing. The retailer sets the highest
price initially, and then provides considerable rebates on the basis of that initial price. In
this situation, the retailer can earn as much profits as possible at the beginning of the replen-
ishment cycle. This strategy gives the retailer the flexibility to invest more in preservation
technology. High rebate amounts offered during the third stage enhance demand considerably
and hence flow of product. Moreover, the length of the replenishment cycle is also greater
under preservation technology investment; therefore, retailers benefit frommaking relatively
long-term plans. Results for the dynamic environment are given in Table 3.
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Fig. 1 a Inventory level. b Rebate value

As in the static environment, investment in preservation technology is also profitable for
the retailer in the dynamic environment.Moreover, by comparing results in Table 2with those
in Table 3, one can see that the dynamic rebate is more profitable for the retailer. Graphical
representation of the rebate rates and inventory levels are depicted in Fig. 1a, b.

Figure 1a, b show that the retailer can accelerate the rate of change of inventory levels by
providing rebates. The rebate value increases steadily as time passes. At the beginning of the
replenishment cycle, the on-hand inventory level is relatively high, and to acquire as much
profit as possible, the retailer sets a high price. Then, to encroach on the market, the retailer
increases the rebate amounts. In the second time interval, demand decreases with DSL; there-
fore, to keep the demand as high as possible, the retailer provides a high value for the rebate.
In a situation similar to the static rebate scenario, the retailer can establish a longterm replen-
ishment plan when investing in preservation technology. Therefore, preservation technology
investment not only reduces the product loss, but the retailer can also compensate for frequent
replenishment costs. The rate of rebate becomes steady in the third phase. It is also consistent
with market-skimming pricing. The retailer tries to earn as much profit as possible when the
demand is comparatively high. The results also show the impact of preservation technology
investment on the optimal order quantity, which is reduced significantly in the absence of
preservation technology investment. Tables 2 and 3 also show that the profit of the retailer is
maximized when the rebate amount differs by time interval. After these trends were found,
the sensitivity analysis with respect to system parameters was carried out to identify retailer
preferences. When the value of one parameter varies, all others remained unchanged. The
results are given in Tables 4 and 5.

On the basis of the computational results, we can obtain the followingmanagerial insights:

1. When the values of parameters a, S0, and b increased, the selling price p increased and the
reserve trend was seen for changes in parameters β, θ1, S1, λ, and γ2. It makes sense that
themarket demand and stock sensitivity have strong and positive effects upon the optimal
selling price. As S0 increases, the demand for the product increases, and therefore, the
retailer can charge a higher price. Results also show that pricing decisions of the retailer
were significantly influenced by the threshold value of theminimumdeterioration rate. As
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Table 5 Sensitivity analysis π s1

p t1 t2 T R1 R2 π s1 Q ψ

a = 50 150.09 5.70 8.93 10.58 93.56 44.86 2282.92 806.65 4356.61

a = 45 145.12 5.67 9.09 10.92 92.74 45.64 1811.86 782.72 4322.28

a = 40 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

a = 35 135.10 5.55 9.49 11.81 90.09 47.02 1045.07 730.04 4236.83

a = 30 130.05 5.46 9.67 12.46 88.03 48.09 712.63 700.51 4182.87

b = 0.50 161.73 6.59 9.64 11.04 121.73 68.77 2704.82 970.26 4745.70

b = 0.45 151.40 6.16 9.49 11.25 111.40 58.06 2010.85 863.40 4529.31

b = 0.4 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

b = 0.35 128.38 4.96 9.00 11.41 70.80 34.69 912.52 650.57 4001.33

b = 0.30 114.89 4.14 8.57 11.52 49.23 22.69 510.62 542.72 3673.75

β = 0.60 112.71 4.73 9.10 11.99 63.65 28.12 588.28 665.40 3954.44

β = 0.55 125.60 5.22 9.23 11.64 77.77 37.25 943.06 714.43 4133.30

β = 0.5 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

β = 0.45 157.21 5.96 9.29 11.02 105.92 56.31 2033.85 794.82 4408.58

β = 0.40 178.04 6.24 9.24 10.72 121.35 67.47 2867.55 826.22 4510.52

γ1 = 0.400 141.37 5.60 9.07 11.07 86.97 48.49 1459.91 745.59 4249.22

γ1 = 0.375 140.79 5.61 9.18 11.19 89.23 47.43 1436.94 751.27 4265.82

γ1 = 0.35 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

γ1 = 0.325 139.37 5.62 9.39 11.44 94.11 45.21 1385.20 763.66 4299.92

γ1 = 0.300 138.48 5.62 9.49 11.56 96.70 43.79 1355.86 770.38 4317.02

γ2 = 0.450 142.71 5.60 9.07 11.07 96.36 48.04 1466.72 744.17 4262.02

γ2 = 0.425 141.50 5.61 9.18 11.19 94.10 47.37 1439.73 750.87 4273.65

γ2 = 0.4 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

γ2 = 0.375 138.57 5.62 9.39 11.44 88.85 45.15 1383.97 763.23 4288.48

γ2 = 0.350 136.78 5.62 9.49 11.56 85.73 43.36 1355.45 768.36 4289.42

S0 = 250 159.85 6.64 10.76 12.79 119.85 72.48 2231.50 1083.23 4986.59

S0 = 225 150.46 6.16 10.07 12.00 110.46 59.92 1807.99 913.57 4652.38

S0 = 200 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

S0 = 175 129.33 5.01 8.35 10.60 69.15 32.87 1072.01 611.68 3862.86

S0 = 150 118.27 4.30 7.23 9.73 46.76 19.68 781.75 475.97 3370.87

S1 = 70 138.53 5.26 8.21 10.78 70.80 31.29 1567.69 718.47 4150.52

S1 = 60 139.37 5.45 8.74 11.06 81.19 38.67 1487.50 738.62 4338.15

S1 = 0.4 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

S1 = 40 140.69 5.77 9.83 11.57 100.69 54.49 1340.28 774.85 4338.15

S1 = 30 140.43 5.91 10.39 11.91 105.43 62.03 1265.17 792.91 4378.53

θ0 = 0.40 140.48 5.73 9.42 11.48 91.09 46.31 1362.56 768.91 4898.97

θ0 = 0.35 140.32 5.68 9.36 11.41 91.33 46.37 1384.76 763.72 4622.02

θ = 0.3 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

θ0 = 0.25 139.87 5.55 9.19 11.20 91.98 46.52 1447.71 748.89 3844.86

θ0 = 0.20 139.50 5.43 9.05 11.03 92.46 46.63 1498.49 736.83 3226.58

θ1 = 0.150 134.21 3.18 6.52 8.76 72.59 34.50 913.64 563.64 2915.77
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Table 5 continued

p t1 t2 T R1 R2 π s1 Q ψ

θ1 = 0.125 137.40 4.19 7.71 9.86 81.83 40.30 1131.82 648.27 3579.04

θ1 = 0.4 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

θ1 = 0.075 142.42 7.81 11.57 13.46 102.24 53.23 1776.63 908.98 5077.00

θ1 = 0.050 143.65 11.63 15.40 17.35 103.65 60.26 2263.37 1149.83 6051.63

λ = 0.07 140.24 5.58 9.26 11.32 90.69 46.01 1359.67 755.18 4675.96

λ = 0.06 140.18 5.60 9.27 11.32 91.17 46.23 1386.47 756.36 4476.64

λ = 0.05 140.13 5.62 9.29 11.32 91.62 46.44 1412.12 757.29 4282.77

λ = 0.04 140.07 5.64 9.30 11.31 92.04 46.64 1436.66 757.99 4094.63

λ = 0.03 140.01 5.65 9.31 11.31 92.43 46.83 1460.12 758.48 3912.43

the threshold value decreases, the retailer needs to investmore in preservation technology,
hence the price of the product increases.

2. When the values of parameters a, γ1, γ2, S1, and θ1 increased, the replenishment time
decreased. However, the reverse trend was found for parameters β, b, S0, and θ0. The
replenishment cycle time was greatly influenced by θ1. The deterioration rate decreased
as θ1 decreased. Therefore, the replenishment cycle time increased. If the price sensitivity
increases, then the retailer cannot charge a higher price to compensate for fixed costs, so
the retailer needs to extend the replenishment cycle time.

3. The preservation technology investment decision of the retailer was positively correlated
with a, b, γ2, S0, S1, θ0, and λ and negatively related with β, γ1, and θ1. In contrast
to findings in the literature, we found that the retailer cannot reduce the deterioration
rate completely. We also found that the threshold value for the minimum deterioration
rate significantly influenced the retailer’s decision on the optimal investment in preserva-
tion technology. A high threshold value of θ1 discouraged the retailer from investing in
preservation technology in every case. This result is quite realistic. If the retailer cannot
reduce the deterioration rate significantly, then the investment on deterioration is not
always profitable for the retailer. We also found that the retailer should invest more in
preservation technology and order more to reduce losses caused by deterioration and to
satisfy market demand, when the deterioration rate is relatively high.

4. The rebate rates R1 and R2 were positively correlated with b, γ2, and S0, and negatively
correlated with β, θ0, and θ1. A mixed trend was found for the parameters a and γ1. After
time t2, the inventory level reached S1 and as a consequence the demand becomes steady.
The retailer needs to provide huge rebate amounts to accelerate the flow of the product
and in this way reduce the effect of deterioration. The rebate sensitivity for the final time
period was crucial for determining the appropriate rebate for the previous period.

5. Finally, the profit of the retailer was positively correlated with a, b, S0, θ0, and λ, and
it was negatively correlated with β, γ1, γ2, S1, and θ1. Overall, a large b implies more
demand, which shortens the sales period and increases the total profit per unit time. As
a consequence, taking measures to enhance b, such as adopting more effective displays,
improving the shopping environment, and so forth, benefits the retailer. The retailer can
enhance profit by reducing the rate of deterioration and thus provide preservation tech-
nology investment. The retailer choices for rebates in static and dynamic environments
are influenced by parameters b, β, γ1, and θ1. The retailer profits in both dynamic and
static environments are depicted in Fig. 2.
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Fig. 2 πd1 versus π s1

From Fig. 2, one can observe that display stock, price, and rebate sensitivities during
the final time period and the threshold value of the deterioration rate are key parameters
for making decision about rebate strategy. If the display stock sensitivity is high or price
sensitivity is low, then the retailer should adopt a static rebate to obtain maximum profit,
otherwise the retailer should choose a dynamic rebate.

From Table 6, one can see that the replenishment cycle increased while Sc increased, and
the reverse trend was followed for the other parameters. That retailer profit decreases with
increased values for cost parameters follows an intuitively derived conclusion. The numerical
results also justify the intuitive conclusion. The higher the value of c, the higher the sales
price, which implies that, when the purchasing cost c increases, the retailer will augment
the increased purchasing cost with the sales price. In addition, when the purchasing cost
c increases, the replenishment cycle increases and the total profit per unit time decreases.
For a large c, the retailer will extend the replenishment cycle and increase the sales price to
compensate for the increased purchasing cost. Moreover, the purchase cost plays a decisive
role for rebate strategy selection.

7 Summary and concluding remarks

In this study, we considered a decision-making problem for a retailer determining sale price,
rebate, investment in preservation technology, and replenishment cycle time, simultaneously
under price, displayed stock level, and rebate-induced demand by maximizing the total profit
per unit time. Models were formulated under static and dynamic environments. To solve the
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models in the dynamic environment, Pontryagin’s maximum principle was employed to find
the optimal rebate. An HBA was developed to find the solutions to the models.

The present study has contributed to the literature in the following ways: First, the effect
of a dynamic rebate on the initial price of a product had not been analyzed, and we found
that such a pricing scheme is sometimes more profitable than the static rebate. The present
study has contributed to the literature in the following ways: First, the effect of a dynamic
rebate on the initial price of a product had not been analyzed, and we found that such a
pricing scheme is sometimes more profitable than use of a static rebate. By determining
price-and-rebate pairs, the retailer can skim as much profits as possible at the beginning of
the replenishment cycle and then adjust the rebate amount as time elapses. The pair creates
a price-anchoring effect in the consumers’ minds that comes into play when they compare
subsequent offerings with the high initial price. This is perhaps the first study in which price,
dynamic or static rebate amount, preservation technology investment, and replenishment
time were determined simultaneously to establish a pragmatic framework for the retailers
selling deteriorating items. Second, the analytical solutions related to the dynamic and static
rebates can serve as powerful tools for making replenishment decisions by a monopolistic
retailer. Computational experiments showed that the price differentiation in three different
phases for a generalized stock-dependent demandproved profitable for the retailer. The results
also demonstrate that price sensitivity in the last phase, when demand becomes independent
from display-stock, plays an important role in the optimal replenishment decision. Third,
retailers need to decide preservation technology investment according to the nature of the
products. The optimal order quantity and preservation technology investment decision are
associatedwith each other. The results indicated that the retailer needs to provide a high rebate
amount, especially in the middle phase, for products with high deterioration rates. Finally,
creating a hybrid algorithm to solve complex optimization problems is a growing avenue of
research. The developed algorithm, HBA, performed efficiently to solve the standard non-
linear functions and the developed models. In time, optimization tools can be useful for
finding solutions to non-linear constraint optimization problems.

Despite its importance and contribution, the present study has some limitations. For
instance, the rebate redemption effect is ignored; therefore, an extended model to study
the effect of the redemption rate and a survey to estimate the range of parameter values
would be worthwhile. The concepts addressed in the paper could also be advanced in several
ways. One could extend the proposed model by incorporating trade credit financing as seen
in (Das et al. 2015) or sales team effort (Cárdenas-Barrón and Sana 2014). One might expand
a single-player optimal solution to multiple players integrated in a supply chain situation, as
presented in (Saha and Goyal 2015) and study the effect of redemption. We formulated the
proposed model under a single-replenishment setting, one may study the effect of rebate in
multi-period setting as discussed in Dye and Yang (2016), Hsieh and Dye (2017).

Acknowledgements The authors are grateful for the valuable comments from the associate editor and anony-
mous reviewers. This research was supported by the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning [Grant no. 2017R1A2B2007812].

Appendix A

Ten popular benchmark functions are used to verify the performance of the new HBA and
compared with that of standard BA. The solution obtained after each trial was recorded for
computingmean values. The best solution, the worst solution, and the mean values are shown
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Table 7 Performance of HBA and BA on some standard test functions

Function name Algorithm Min Max Mean

Eggholder function HBA − 959.641 − 934.851 −954.004

BA − 959.641 − 632.756 − 830.937

Holder Table function HBA − 19.209 − 19.206 − 19.208

BA − 19.209 − 16.118 − 17.549

Dropwave function HBA − 1.000 − 0.996 − 1.000

BA − 1.000 − 0.771 − 0.945

Schafer function N.4 HBA 0.500 0.500 0.500

BA 0.500 0.500 0.500

Cross-in-Tray function HBA − 2.063 − 2.063 − 2.063

BA − 2.063 − 2.063 − 2.063

Michalewicz’s function HBA − 1.801 − 1.801 − 1.801

BA − 1.797 − 1.686 − 1.722

Shubert function HBA − 186.731 − 186.728 − 186.731

BA − 186.731 − 78.509 − 174.358

Easom’s function HBA − 1.000 − 0.925 − 0.995

BA − 1.000 0.000 − 0.157

Rosenbrock’s function HBA 0.000 0.007 0.000

BA 0.000 2.148 0.298

Styblinski-Tang function HBA − 78.332 − 78.331 − 78.332

BA − 78.332 − 62.496 − 76.619

Fig. 3 Convergence evolutions of objective functions

in Table 7. Each algorithm was run 30 times with the maximum number of iterations set as
1000.

Additionally, Fig. 3 represents the evolution at each iteration for two classical benchmark
functions.
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From the aboveTable 7 and Fig. 3, one can find that the hybridization ofBAwithMantegna
Algorithm and Chaotic inertia function induced accelerated convergence rate and enabled
HBA to traverse a large area of objective landscape, which in turn reduced the probability
of premature convergence. The Chaotic inertia function made the trajectory of virtual bats
more diverse and stabilized. The proportion of global search can also be set by changing the
value of switch probability depending on the optimization problem of interest. Therefore,
the hybridization and modifications makes the algorithm robust.
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