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This article addresses the single machine scheduling problem in which the actual processing time of jobs change depending on an 
elapsed time between its start time and a released time or completion time of a recent maintenance activity. The introduced problem 
reflects production industry of chemical and metallurgical processes. The objective of this problem is to determine a sequence of 
jobs and the number and positions of maintenance activities on a single machine to minimize the makespan. We introduce a mixed 
integer linear programming (MILP) model for the problem. We then propose column generation (CG) algorithms by using Dantzig-
Wolfe decomposition approach. The performances of the CG algorithms are evaluated with randomly generated examples. 
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1. Introduction 

The scheduling problems with deteriorating jobs and deterioration-maintenance activities (DMAs) have been 
received increasing attention in operation research and arising in applications such as steel production with 
metallurgical processes [1]. The deteriorating job is defined as a job of which processing time increases depending on 
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a state of the job such as temperature. For example, in executing a steel product, a temperature of a material to be 
processed may get out of a workable range due to its self-cooling. In this case, thus the state of the material necessarily 
be adjusted causing additional processing time, called deterioration time, before processing the corresponding job. In 
this study, a deterioration time of a job linearly increases based on its waiting time. The deterioration of job has an 
important effect on a scheduling criterion of a manufacturing system because the total deterioration time of the entire 
system rapidly increases as the waiting times of the jobs increase. Meantime, there is an activity, called DMA, that 
restores conditions of sub-sequential jobs. In real manufacturing situations, a DMA can be interpreted as a decision 
to release a batch of some jobs at a certain time point in a schedule to save waiting times of the jobs. Therefore, 
simultaneous determination of two decisions, i.e., the schedule of jobs and the assignments of DMAs, is important to 
control the manufacturing system in minimizing completion-time-based criteria such as the makespan. 

A comprehensive literature review on scheduling problems and models, in which deteriorating jobs and DMA(s) 
are considered, was described by Cheng, Ding, and Lin [2] and Woo and Kim [3]. Since Gupta and Gupta [4] initially 
introduced the scheduling problem to sequencing deteriorating jobs on a single machine, many researchers have 
considered extended problems under several criteria such as the makespan, total completion time and total tardiness. 
These problems were solved using exact methodologies, i.e., polynomial-time algorithm, optimal policy, and 
mathematical programming [5–10]. Meanwhile, maintenance is an important activity in production systems because 
the activity affects the efficiency of production or product quality. Recently, the studies on scheduling problems 
considering both deteriorating jobs and maintenance for recovering deterioration have been popular topics to 
researchers [11]. Lodree and Geiger [12] addressed a single machine scheduling problem with simple linear 
deteriorations of jobs and a DMA. They proposed an optimal policy for providing optimal schedules, but they allowed 
only one DMA. Zhang et al. [13] addressed an extended problem in which multiple DMAs are allowed and a duration 
time of DMA is also dependent on its start time. They introduced a polynomial time algorithm referring to the 
optimality property of Gupta and Gupta [4]. The algorithm can provide optimal schedules for the problem if the 
number of DMAs is fixed. Yang and Yang [11,14] considered scheduling problems with deteriorating jobs and DMAs 
whose time is relevant to its start time. They provided a polynomial time algorithm for minimizing the makespan and 
total completion time of the single machine system, respectively. However, their algorithms were only reasonable for 
a special case of the problems where the maximum number of DMAs, that is less than the number of jobs, is already 
known. When there is no limit of the number of DMAs, the algorithms cannot find optimal solutions within the 
polynomial time. Meanwhile, Woo and Kim [3,15] proposed metaheuristic algorithms to solve the scheduling problem 
with deteriorating jobs and multiple DMAs for minimizing the makespan. 

To the best of our knowledge, even if many researchers addressed scheduling problems with deteriorating jobs and 
multiple DMAs, no researchers studied an efficient algorithm for obtaining optimal solutions of the problem in which 
no limit of the number of DMAs is allowed. In this study, we propose a column generation (CG) algorithm. We also 
present three advance approaches enhancing the performance of the CG algorithm in terms of efficiency and develop 
three variant CG algorithms. The performances of the algorithms are evaluated with randomly generated instances. 

The remaining of the article is organized as follows. In Section 2, we describe the scheduling problem with 
deteriorating jobs and DMAs and introduce a mixed integer linear programming (MILP) model. In Section 3, we 
propose a CG algorithm based on Dantzig-Wolfe decomposition approach. In Section 4, we describe the advance 
approaches for enhancing CG algorithm and introduce variant CG algorithms. In Section 5, numerical experiments 
are conducted to evaluate the performances of the CG algorithms. Finally, conclusions and further research are 
presented in Section 6. 

2. Problem statement 

Fig. 1 describes a single machine schedule of deteriorating jobs and multiple DMAs. There is a given set 
 1,2, ,I n  {1,2,..., }I n  of jobs to be scheduled. Each job is available at time zero and must be scheduled without 

preemption. Original processing time i  and linear deterioration rate i  are given associated with a job i I . The 
deterioration times of the jobs are assumed to be dependent on its start time. Accordingly, an actual processing time 
of every job is i i is   where is  is a start time of job i . More precisely, the deterioration time of job i , i is , 
gradually increases based on its start time if there is no proceeding DMA. We assume that any job cannot be processed 
during a DMA. The single machine can include one or more DMAs. The objective is to minimize the makespan. For 
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the described problem, we develop a MILP formulation, named OP, to find the optimal schedule. Decision variables 
for OP are as follows: 

Decision variables 

is  start time of job i I  

ie  temporary variable representing a completion time of the recent DMA for a sequence of job i I  

ijx  equals to 1, if job i I  precedes job; j I ; 0, otherwise 

iy  equals to 1, if job i I  accompanies a DMA; 0, otherwise 

iz  equals to 1, if the state of job i I  is refreshed; 0, otherwise 

iC  completion time of job i I  

maxC  makespan 

The MILP formulation OP is formulated as follows: 

OP: minimize maxC     (1) 

subject to 1,ji
j I

x


   i I    (2) 

:

,ij ji
i I i j j I

x x
  

    i I    (3) 

1ii
i I

x


     (4) 

 1 ,i iie M x    i I    (5) 

 1 ,i j i jie e M y x      , :i j I i j     (6) 

 1 ,i i ie s M y      i I    (7) 

(1 ,)i i i i is C z        i I    (8) 

   1 ,i i i i i i is s e C z          i I    (9) 

 1 ,i j j ijC y s M x      , :i j I i j     (10) 

,i maxC C   i I    (11) 

The objective function (1) seeks to minimize the makespan. Constraint (2) describes that each job must be assigned 
with exactly one preceding job. We note that index j  for a preceding job can be the same wih index i  for a succeding 
job. The corresponding variable represents a decision on an assignment of the job to the beginning at a schedule. 
Constraint (3) shows that at most one succeeding job can exist for each job. Constraint (4) ensures that only one job 
can be assigned to the beginning of a schedule. Constraints (5)-(7) update the recent completion time of a DMA for 
each succeeding job. Constraints (8) and (9) calculate the completion time of a job. If the job is accompanied by a 
DMA, the completion time is defined by Constraint (8). Otherwise, the completion time is defined by Constraint (9). 
Constraint (10) ensures the precedence relationship of jobs and defines the start time of a succeeding job. Constraint 
(11) defines the makespan for a schedule. 

 

Fig. 1. Single machine schedule of deteriorating jobs and multiple DMAs. 
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3. Decomposition approach 

In this section, we propose an extended formulation MP where a set of partitioned jobs, called buckets, is considered 
as a column of the formulation. We show that the formulation is valid for the addressed problem and it can be a master 
problem for CG approach. Next, we derive a pricing sub-problem for generating new feasible buckets applying 
Dantzig-Wolfe decomposition and then introduce a formulation for the sub-problem named SP1. Finally, the 
procedure of a CG algorithm for providing a dual or optimal solution for the addressed problem is organized. 

3.1. Extended formulation 

In the addressed problem, if there are partial schedules called bucket that consist of partitioned jobs and no DMA, 
then the completion time of a schedule comprised of the buckets and several DMAs is the same regardless of its 
sequence of buckets [3]. Applying Dantzig-Wolfe decomposition [16], we now decompose the addressed problem 
into a master problem for selecting buckets and a sub-problem corresponding to a partial schedule. 

Let   denote the set of all feasible buckets. Let pf  be a processing time for executing jobs associated with bucket
p . For each job � ∈ �, let 1ipa   if bucket p  contains job �, and 0ipa  , otherwise. Define binary variables for
p : 1pw   if bucket p  is a part of a schedule, 1pw  , otherwise. Then, we obtain an extended formulation for 

the addressed problem: 

MP: minimize  p p
p

f w 


      (12) 

subject to 1,ip p
p

a w


   i I    (13) 

Objective (12) corresponds to the original Objective (1). The number of DMAs in a complete schedule for the 
problem exactly equals to the number of buckets partitioning all jobs minus one. Constraint (13) means that each job 
must be covered by exactly one feasible bucket. 

3.2. Column generation approach and bucket sub-problem 

As the number of buckets   can be considerably large, it is intractable to solve MP by enumerating all the 
columns. Hence, we apply the CG approach, a procedure to efficiently solve a master problem by reiteratively adding 
a necessary column into the relaxed mater problem of restricted columns, called as a restricted master problem [17,18]. 
CG approach has been applied to handle large-scale decision problem in various fields such as cutting stock [19], 
vehicle routing [20], and lot sizing and scheduling [18,21]. 

When we solve a linear program by using the simplex algorithm, the algorithm proceeds a current basic solution 
to the next better one with a feasible direction for the relevant objective function. This procedure is achieved by 
replacing a basic variable with a non-basic one with a negative reduced cost to the basis. The reduced cost is a unit 
cost consisting of the cost of related variable and cost from compensating a change in the basic variables. Exploiting 
this property, CG approach reiteratively handles a pricing sub-problem of finding a feasible column that can improve 
the objective value of the current restricted master problem. Accordingly, the objective of the pricing sub-problem is 
to find a new feasible column with negative reduced cost. 

For the master problem MP, a pricing sub-problem is to find a feasible bucket with negative reduced cost. Let i   
be the dual price associated with job i  updated by the linear programming (LP) relaxation of the current restricted 
MP relevant to  . Then, we obtain a reduced cost pr  corresponding to a candidate bucket p  as follows: 

p p ip i
i I

r f a 


       (14) 
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By using the function of the reduced cost, more precisely, a bucket sub-problem is to find a subset of jobs i.e., 
bucket and the sequence of the jobs such that the cost of the corresponding partial schedule minus the total dual 
variable values of these jobs is minimized. A formulation for the sub-problem, named SP1, can be obtained by 
transforming Constraints (8) and (10) as follows: 

SP1: minimize max i ji
i I j I

C x 
 

      (15) 

subject to  Constraints (2)-(4) and (11)     

 1 ,i i i is C      i I    (16) 

 1 ,i j ijC s M x     , :i j I i j     (17) 

Objective (15) represents the reduced cost of a column for the restricted MP. 

3.3. Overall procedures of the proposed CG algorithm 

The CG algorithm, named CG_SP1, is implemented as follows: Initialize a restricted MP with columns in  . If 
  is an empty set, then initialize   with I  columns that contain each job; Solve the restricted MP; Next, update 
coefficients of the sub-problem by using the dual variables for jobs; Solve the sub-problem; Add a new column to the 
restricted MP if the column is found with a negative reduced cost, terminate, otherwise. These procedures are repeated 
until there is a column that can save the cost for the MP. 

In the sub-problem, meanwhile, the same column that already exists in the restricted MP can be obtained. To control 
adding the same column in the MP, we reiteratively impose a constraint, known as cut-set inequality, that makes a 
solution point relevant to the existing bucket infeasible. The cut-set inequality for generating new valid buckets is as 
follows: 

 
\

1 ,
p p

ij ij p
i I j B i I j I B

x x B
   

       p    (18) 

where pB  is a set of jobs which are included in bucket p . 

4. Advanced approaches for CG algorithm 

Most of the computation (CPU) times of CG algorithm are resulting from searching feasible buckets in sub-
problems. Actually, when we solved some instances of bucket sub-problems for executing 12 or more jobs, the 
calculation time of single SP1 took more than 1,800 seconds. To handle this intractability of SP1, we introduce three 
advanced approaches for saving CPU times of the CG algorithm. First, we propose another formulation for the bucket 
sub-problem. Next, valid constraints are imposed on the formulation to make generated bucket tight. Lastly, bucket 
heuristic for providing some feasible buckets to restricted MP is developed. 

4.1. Formulation for the bucket sub-problem with an optimality property 

There is a useful lemma for sequencing jobs whose processing times linearly increase with its start time if it is no 
need to determine positions of DMAs. 

Lemma 1. For the scheduling problem max| |1 i i i iM p s C   , a schedule of jobs that are sequenced in non-
decreasing order of /i i   is an optimal solution. 

Proof. This can be verified by observing the difference between the makespans of an arbitrary schedule contain two 
consecutive jobs and the modified schedule where the only two jobs are swapped (see Gupta and Gupta [4]). □ 
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Under this lemma, we no longer have to search the sequence of partial jobs in finding feasible buckets. In other 
words, if we choose some jobs to be associated with a new bucket, then the sub-schedule, that equals to the 
nondecreasing order of the relevant jobs, dominates other sub-schedules of the jobs. To tighten regions of valid 
feasible buckets, we propose another valid formulation for the sub-problem by using Lemma 1 as follows: 

SP2: minimize
1

n

n i i
i

C u y


      (19) 

subject to 0 0C      (20) 

 1 1 (1 ),i i i i i iC y C M y         1i n     (21) 

1 ,i i iC C My     1i n     (22) 

1 1(1 ),i i iC M x       1i n     (23) 

 1 ,
p p

i i p
i B i I B

y y B
 

   
‚

  p    (24) 

Objective (19) represents the reduced cost of a column for the restricted MP. Constraint (20) means that available 
time is zero. Constraints (21) and (22) describe that the completion time of the succeeding index can be defined based 
on that of the preceding index, and if the job of the succeeding index is not included in the bucket solution, the 
completion time of it is defined as that of the preceding index with no additional cost. Constraint (23) means that the 
deterioration time of a succeeding job cannot exceed the DMA time. Constraint (24) corresponds to Constraint (18). 

4.2. Generation of tight buckets 

In CG, a feasible bucket is generated to be added into columns of the restricted MP until there is no feasible subset 
of jobs with negative reduced cost. However, the bucket is not necessarily relevant to an optimal schedule while the 
reduced cost of its relevant column is negative. For example, there is an instance where four jobs and DMA of 10 unit 
time exist as described in Table 1. If we initialize columns with buckets of only one job, then dual variable values are 
updated as i   for each job � at the first run of the restricted MP. We can get a feasible bucket of all the jobs, i.e., 
{1, 2, 3, 4} and completion times of the jobs by Eq. (16). However, it can be easily seen that the bucket is not relevant 
to an optimal solution: if we exclude job 4 from the bucket and add a bucket with job 4 such as {1, 2, 3} and {4}. In 
other words, if we add a DMA before the last job, we can save the cost by 10.89 minus 10 unit time. In fact, in the 
proposed CG algorithm, some buckets can be generated that are valid but not relevant to an optimal solution due to 
significant deterioration times.  

Table 1. Schedule of four-jobs example. 

Job Processing time Deterioration rate Ratio Start time Deterioration time Completion time 

1 28 0.18 155.56 0 0 28 

2 33 0.17 194.12 28 4.76 65.76 

3 26 0.11 236.36 65.76 7.23 98.99 

4 35 0.11 318.18 98.99 10.89 144.88 

 
Hence, it is valid that jobs whose deterioration time exceeds the DMA time can be stipulated in generating a bucket. 

Thus, we add the following constraint to the sub-problem: 

 1j i ijC M x      , :i j I i j     (25) 

Constraint (25) stipulates a deterioration time occurred by a succeeding job must be less than the DMA time.  
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4.3. Bucket generation heuristic 

It can be a burden to find feasible buckets in an instance with large-sized jobs because we handle an integer 
programming for the sub-problem. Hence, we present a heuristic for providing feasible buckets (or columns) to CG 
algorithm as initial buckets. It is not a new approach to use some columns obtained from a heuristic as the initial 
column of CG algorithm. But it is known an efficient way to reduce iterations for generating columns in CG procedure 
[20]. 

The Longest Processing Time first (LPT) rule is an effective rule-based heuristic for balancing loads of parallel 
machines [22]. Meanwhile, suppose that the number of DMAs required for a schedule is already known as q . Then, 
the addressed problem is exactly the same as the problem to assign all jobs to 1q   buckets. Considering a bucket as 
a machine for the load-balancing problem, we propose a bucket generation heuristic by adopting the feature of the 
LPT heuristic. The procedure of the bucket generation heuristic is as follows: First, set the number of buckets be as 
large integer number as possible such as I ; Next, select a job in order of the ratio of jobs, and then assign this job to 
a bucket where its expected completion time is minimized; Decrease the number of buckets by one, then repeat the 
procedures until the number reaches zero. As mentioned in Section 3.4.1, this procedure also generates some buckets 
that are valid but not relevant to an optimal solution due to considerable deterioration times. Hence, we add a 
termination condition that a deterioration time of a single job exceeds the DMA time into the heuristic.  

 
Applying the approaches that were introduced in Section 4.1-4.3, we finally organize three variants of the CG 

algorithm. First one, named CG_SP2, uses formulation SP2 instead of SP1 for generating buckets. The second one, 
named CG_SP2/C, generates buckets tightened by Constraint (25). The last one, named CG_SP2/C/H, initializes 
columns of the restricted MP with the buckets resulting from the bucket generation heuristic.  

5. Numerical Experiments 

Here we report the performances of the four proposed CG algorithms, i.e., CG_SP1, CG_SP2, CG_SP2/C, and 
CG_SP2/C/H. The numerical experiments are conducted on 3.4 GHz Intel Core i5-3570 CPU. We set a CPU time 
limit of 1,800 seconds to a termination condition for each run of an algorithm even if a CG algorithm has not yet found 
all feasible buckets with negative reduced costs. To obtain solutions of mathematical programs, we used a commercial 
solver, known as ILOG IBM CPLEX 12.8. The CPU time limit was also imposed when an OP model was solved.  

Referring to the experiment design of previous study [3], all instances for the experiments were randomly generated 
with a set of problem settings characterized by the following three factors: the number of jobs I , DMA time  , and 
mean of deterioration rate  . Original processing times were generated by  0.8 480 / , 1.2 480 /U I I  . Note 
that to reflect the production plan for a working day, we assumed the working hour is 480 min. Deterioration rates 
were generated by  5, 5 /100U     . Because the complexity of MILP highly depends on the number of jobs 
to be scheduled, we set two groups of problem settings for small-sized jobs and large-sized jobs as described in Tables 
2 and 3. Then, we randomly generated 10 instances for each problem setting. Therefore, we had 120 small-sized 
instances and 120 large-sized instances.  

We run CPLEX solver and all the proposed CG algorithms for the instances of the first group. The results for the 
instances are summarized in Table 3. The average number of buckets, average CPU times, average dual objectives for 
ten instances in each problem setting, and the number of optimal solutions are reported for each CG algorithm. CPLEX 
solver found optimal solutions for the problem instances under 8 jobs. However, for the instances over 12 jobs CPLEX 
solver just provided feasible solutions with dual bounds. For all the instances, the CG algorithm where SP2 
formulation is applied, i.e., CG_SP2, CG_SP2/C, and CG_SP2/C/H completed their procedures within the CPU time 
limit and could provide the same dual or optimal solutions. But, CG_SP1 algorithm could not complete the procedure 
for the instances over 12 jobs. In this case, only the primal solution with the initial 12 buckets was outputted because 
SP1 did not find a next feasible bucket within the CPU time limit. It is shown that generating a bucket by using the 
formulation SP2 is more efficient than SP1. For the number of buckets, CG_SP2/C algorithm, in which Constraint 
(25) is imposed in the sub-problem, could provide the same solution with less searching for an average of 14 percent 
buckets compared to CG_SP2 algorithm. This means that tightening feasible buckets by using Constraint (25) dose 
not cut off the optimal solutions and helps to efficiently search the feasible bucket relevant to the optimal solutions. 
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Similarly, CG_SP2/C/H algorithm, in which initial columns (or buckets) are provided by the bucket heuristic, 
provided the same solution with less searching for an average of 18 percent buckets compared to CG_SP2/C algorithm. 
This possibly means that initial buckets obtained by the bucket heuristic are somewhat related optimal solution. The 
CPU time of CG_SP2/C/H was the smallest, followed by that of CG_SP2/C and CG_SP2. 

Table 2. The result for the instance setting of small-sized jobs. 

 
We excluded CG_SP1 algorithm in the following experiments on solving the instances of the second group because 

the algorithm had not completed some instances over 12 jobs within the time limit. Hence, we run CG_SP2, 
CG_SP2/C, and CG_SP2/C/H for the instances with large-sized jobs. Table 3 summarizes the results for the instances. 
We additionally recorded the last negative price, i.e., the reduced cost of a bucket recently generated, for a single run 
of an algorithm. Less value of the price implies that more feasible buckets should be searched in running of an 
algorithm. When all the algorithms completed their procedure within the CPU time limit, the same solutions were 
provided for an instance. While, not all algorithms were able to complete the procedures within the time limit for some 
instances associated with 9th, 11th, and 12th instance settings in Table 3. This is because the branch and bound algorithm 
solving the sub-problems relatively have to more branch variables as a valid bucket can contain more jobs. Note that 
if the DMA time increases or the deterioration rates decrease, then relatively many jobs can be included in a valid 
bucket with satisfying Constrain (23). Particularly, the average numbers of buckets found by CG_SP2 for the instances 
associated with the 9th, 11th, and 12th instance settings were less than those found by CG_SP2/C and CG_SP2/C/H 
(see Table 3). This possibly means that Constraint (25) not only made the CG algorithm to efficiently search feasible 
buckets but also shortened the CPU time incurred by the sub-problems for the instances. Meanwhile, the average 
numbers of buckets found by CG_SP2/C/H were larger than those found by CG_SP2/C. The difference between both 
average numbers was approximately equal to the number of the initial buckets obtained by the bucket heuristic.  

Table 3. The result for the instance setting of large-sized jobs. 

Inst. Set. CG_SP2 CG_SP2/C CG_SP2/C/H 

I    
  Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of  
Opt. 

Avg. 
price 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of  
Opt. 

Avg. 
price 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of  
Opt. 

Avg. 
price 

15 10 15 56.3 2.08 591.11 1 - 47.7 1.59 591.11 1 - 44.3 1.53 591.11 1 - 
15 20 25 50.7 1.55 615.78 4 - 50.8 1.57 615.78 4 - 50.8 1.8 615.78 4 - 
15 20 15 78.1 4.32 639.88 10 - 63.4 3.73 639.88 10 - 53.7 2.7 639.88 10 - 
15 20 25 57 2.16 673.29 3 - 48.2 2.74 673.29 3 - 41.2 2.57 673.29 3 - 

30 10 15 176.1 121.95 642.64 6 - 136.7 85.31 642.64 6 - 113.3 66.2 642.64 6 - 
30 10 25 121.7 24.37 684.81 3 - 103.6 13.7 684.81 3 - 84 10.02 684.81 3 - 
30 20 15 214.8 687.29 711.65 0 - 157.8 498.2 711.65 0 - 147.7 454.63 711.65 0 - 
30 20 25 175.4 125.26 778 4 - 135.4 100.03 778 4 - 117.4 87.43 778 4 - 

45 10 15 68.1 1,800 802 0 -28.43 183.2 1,797.75 653.36 0 -0.05 171 1,779.61 653.34 0 -0.05 
45 10 25 235.5 609.01 702.97 0 - 193.1 682.85 702.97 0 - 163.8 544.69 702.97 0 - 

Inst. Set. CPLEX CG_SP1 CG_SP2 CG_SP2/C CG_SP2/C/H 

I    
  Avg.  

CPU. 
# of 
Opt. 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of 
Opt. 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of 
Opt. 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of 
Opt. 

Avg.  

  

Avg.  
CPU. 

Avg. 
Obj. 

# of 
Opt. 

4 20 10 0.06 10 8 0.13 541.7 9 8 0.07 541.7 9 8 0.09 541.7 9 6.5 0.05 541.7 9 
4 20 20 0.05 10 4 0.03 561.8 10 4 0.03 561.8 10 4 0.04 561.8 10 4 0.06 561.8 10 
4 40 10 0.05 10 11.1 0.18 568.6 7 11 0.11 568.6 7 9.4 0.1 568.6 7 7.3 0.06 568.6 7 
4 40 20 0.06 10 9.5 0.15 608.8 10 9.4 0.08 608.8 10 9.5 0.08 608.8 10 7.3 0.05 608.8 10 

8 20 10 64.13 10 27.6 92.45 594.6 8 27.2 0.36 594.6 8 23.2 0.25 594.6 8 17.8 0.17 594.6 8 
8 20 20 74.35 10 22.6 41.41 613.3 10 22.8 0.23 613.3 10 22.7 0.21 613.3 10 17.4 0.14 613.3 10 
8 40 10 44.04 10 34 161.06 647.9 0 34.1 0.47 647.9 0 29 0.35 647.9 0 25.7 0.31 647.9 0 
8 40 20 85.04 10 26.9 69.12 693.9 4 27 0.31 693.9 4 23.7 0.21 693.9 4 18 0.14 693.9 4 

12 20 10 1,800 0 12 1,800 715.8 0 52.5 1.62 617.6 3 43.1 1.29 617.6 3 36.3 1.04 617.6 3 
12 20 20 1,800 0 14.1 1,800 702.9 0 43.5 0.95 650.1 10 38.2 0.83 650.1 10 28.6 0.52 650.1 10 
12 40 10 1,800 0 12 1,800 955.6 0 61.3 1.83 692.6 3 49.1 1.58 692.6 3 44.9 1.47 692.6 3 
12 40 20 1,800 0 12 1,800 954.7 0 55.1 1.56 745.7 8 47.3 1.35 745.7 8 38.5 1.01 745.7 8 

Avg. 622.32 6.7 16.4 630.38 678 4.8 29.7 0.64 628 6.8 25.6 0.53 628 6.8 21.0 0.42 628 6.8 
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45 20 15 45   1,800 1361.2 0 N/A 79.5 1,800 993.4 1 -43.3 105.6 1,799.2 762.05 5 -1.75 
45 20 25 45 1,800 1358.5 0 N/A 168 1,800 844.65 0 -0.11 175.2 1,800 844.6 0 -0.03 

Avg. 110.3 581.5 684.21 2.1 -28.43 114 565.62 710.96 2.3 -14.49 105.7 545.87 691.68 2.6 -0.61 

6. Conclusions 

We addressed the scheduling problem with deteriorating jobs and multiple DMAs. The objective of this problem 
was to determine a sequence of jobs and the number and positions of DMAs on a single machine to minimize the 
makespan. We developed a MILP model for the problem. We then proposed an extended formulation on subsets of 
jobs called buckets. Sequentially we proposed a CG algorithm named CG_SP1, in which the sub-problems are 
reiteratively solved to generate new feasible buckets. To enhance the performances of the algorithm in terms of 
efficiency, we suggested three approaches: Using another valid formulation for the sub-problems where an optimality 
property is applied; Imposing constraints for tightening feasibility of buckets; Generating initial columns with bucket 
generation heuristic. We then developed three variant CG algorithms, CG_SP2, CG_SP2/C, and CG_SP2/C/H. The 
performances of the proposed CG algorithms were evaluated by conducting numerical experiments through randomly 
generated instances. Our major findings are as follows: Generating a bucket by using the formulation SP2 was more 
efficient than that by using the formulation SP1; Constraint (25) for tightening feasibility of buckets could save the 
CPU time in solving the sub-problems and was effective in generating buckets relevant to optimal solutions; The 
proposed bucket generation heuristic could provide some buckets relevant to optimal solutions to the CG algorithm. 

Further research will develop a branch and price algorithm referring to the CG algorithms proposed in this paper 
and will extend the addressed problem to a parallel machine scheduling (PMS) problem with ready time or unrelated 
PMS problem.  
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