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Controllable preduction rates in a family production context

ILKYEONG MOON#+, GUILLERMO GALLEGOfY
and DAVID SIMCHI-LEVI}

We consider a single facility dedicated to the production of a family of items where
the policy used is to cycle production through the items every T units of time. This is
known as the Common Cycle or Rotation Schedule and is a special case of the
Economic Lot Scheduling Problem (ELSP). We consider the case in which the
production rates can be reduced from known maximurn rates, Moreover, we assume
that production rates can be changed during the production runs. We optimally
partition the iters into those with high and low holding costs. The former are
initially produced to meet demand whilc the latter arc always produced at their
maximum rates. Numerical examples indicate savings almost twice as large as those
reported in the literature.

1. Introduction

We consider a single facility dedicated to the production of a family of items, The
objective is to find a schedule to minimize the setup costs and holding costs while
satislying demands for the items. This problem is well known as the Economic Lot
Scheduling Problem (ELSP). A comprehensive review up to the 1970s is given by
Elmaghraby (1978). Dobson ( 1987) overcame the feasibility issue by allowing time-
varying production runs and gave an cfficient heuristic.

In this paper, we restrict attention to the policy that cycles production through the
items every T units of time. This policy is known as the Common Cycle Schedule or
Rotation Schedule in the ELSP literature. Sce I ones and Inman (1989) for review of this
approach and for conditions under which a rotation schedule is optimal. A Common
Cycle Schedle is appropriate when the individual item setup cost is not too large
relative to its annua! doliar usage (see Silver and Peterson 1985).

Recently, rescarchers have considered manufacturing strategies that reduce
production rates deliberately. This is consistent with the Just-In-Time manufacturing
philosophy which has been successfully applied in many Japanese manufacturing
companies. Silver (1990) developed procedures to find optimal production rates in a
family production context where a Common Cycle policy is used. He showed that at
most one item reduces its production rate and obtained a closed form solution for the
optimal cycle length and the aptimal production rates. Inman and Jones (1989)
developed a version of the ELSP with change-over or reducible production rates.
Gallego (1989) developed an efficient procedure to find optimal production rates for a
lower bound of the ELSP, He showed that at most one item, typically the slowest,
should reduce its production rate. Then he applied a time-varying heuristic with the
optimal production rates to find a near-optimal feasible cyclic schedule. In all of the
above papers, the production rate is set at the beginning of each production run and is
not allowed to change during the actual run.
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2460 I. Moon et al.

The ELSP is often used to model discrete part manufacturing with small per unit
processing times in that it treats production as if it were continuous. In such systems, it
is often possible to insert arbitrary idle times between each consecutive unit of an item
without incurring a new setup, this is what Inman and Jones (1989) call a ‘change-over’.
In this case, any production rate lower than the maximum can be achieved. In
particular, any item can be produced at its demand rate (see Sheldon 1987). Inman and
Jones (1989) suggested slowing the production rates uniformly over a run by inserting
small and identical idle times between the production of each consecutive unit.
Proposition 1 in Section 2 shows that this is not the right thing to do. In fact what is
optimal is to first produce to meet demand and then produce at the maximum rate, 1€
have larger idle times initially and then none at all. Arizono et al. (1989) discussed the
effects of varying production rates on inventory control and showed that the system
where production rates are controllable is much more cffective than an uncontrollable
system.

The problem we consider here is a generalization of Silver (1990). That is, we
consider the Common Cycle problem and allow production rates to be controlled
during the production runs.

In Section 2, we introduce notation and state the assumptions. In Section 3, we
formulate the problem and develop a method to obtain an optimal schedule. In Section
4, we compare our results with Silver’s (1990} and Inman and Jones’ (1989} using
numerical examples. In Section 5, we extend our results to allow backorders.

2. Preliminaries

Data

the index for the products i=1,...,m;
setup times s, i=l...,m
setup costs A, i=1,...,m
maximum production rates p. i=l...m
unit inventory holding costs B oi=1...,m
constant demand rates 4 i=1,...,m

Without loss of generality, we redefine the product units so all the demand rates are
one. This is accomplished by setting d;=d;/d;=1,p; = p/d; and h; = kd;. The transform-
ation maps many equivalent ELSPs to one that is easier to manipulate. For
convenience relabel items, il necessary, in decreasing order of h, ie. h zh,2.. . 2h,
Let r=(1/p,,....1/p,)7, note that r;= 1/p;=d}/p;. Also, let e be the vector of ones in m
space. Define k=1 _e™r. Note that k is the long run proportion of time available for
setups. For infinite horizon problems k> 0is a necessary condition for the existence ofa
feasible schedule. Dobson (1987) showed that il x>0, then any production sequence
can be converted into a feasible cyclic schedule with time-varying production runs.

Assumptions

(@) No backorders are allowed.

{#) Demand rates are known and constant.

(¢) Setup times are constant and sequence independent.

(d) A cycle is made through the entire family every T years.
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Controllable production rates 2461

(e} Production rates can be controllable at the beginning of the production runs
and during the preduction runs.

(Y by <Y hfl—r)2x.

Assumption (a) is relaxed in Section 5. Assumption (f)is a technicality used in the
proof of the existence of a global minimum. In practice, this assumption is reasonable
and holds in most cases.

Fitst, we prove the rather obvious:

Proposition 1. The optimal schedule that allows the production rates to be
changed during the production runs {Schedule 1) has costs at most as high as the

optimal schedule that allows the reduction only at the beginning of the production run
(Schedule 2).

Proof.  Suppose that in schedule 2 the production rate of item i is reduced from D
to j; and has a production run of f; units of time. Let ¢, = £(B; — D/(p;— 1), see Fig. 1, and
construct a new schedule by producing to meet demand for X; = f;— t; units of time and
then at the maximum rate pi for ¢; units of time. Then the new schedule has lower or
equal holding costs and hence total cost. Note that the cost of this new schedule is at
most as large as that of schedule 2.

A moment should convince the reader that optimal rotation schedules are of the
following form: first, when the inventory of item { hits zero, reduce its production ratc to
mect demands for x; units of time; then produce item i at its maximum rate for {; units of
time. The reason is that the most effective way, in terms of minimizing the average
inventory level, to build up (p—1)t units of inventory in ¢+ x units of time is by
producing to meet demand for x units of time.

The problem can now he stated as follows, There is a single facility on which m
distinct products arc to be produced. We try to find a common cycle length T
production times for meeting demand 15+ Xy production times at maximum rates
Ly, . tyandidle times u,,.. ., u, so that the cycle can be repeated indefinitely, demand
is met and inventory and setup costs per unil time are minimized. In Proposition 2, we
will show that there exist no idle times in the optimal schedule.

inventor
» ¥

schedule2

savings

new schedule
e— i —

Figure 1. Comparison of schedule | and schedule 2.
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3. Formulation and algorithm

The holding cost per cycle for item 1 s Yhipdp, — 1)if (see Fig. 2). Since t;=r{T—x;),
we can express the holding cost per cycle for item I as Ihr{T—x)* where
Fi=1—r;=1—1/p.The objective is to minimize the average holding and setup cost per
unit time. The only constraint is that the common cycle length must be large enough to
accommodate setup times and production run times. Thatis, T3 X (s, +x;+ ;) which
is equivalent to s,/ T +E7x,/T <k. So, we can formulate the problem as follows.

. 1 =
mlnx’T? Z [Al‘+%hifi(T_xi)2]
i1

s.t.;-;éJrEi:%f‘sx (1)

x; =0 i=1,...

; ,m

First, we prove that there are no idle times in the optimal solution, so we have
equality in Equation {1).

Proposition 2. The optimal solution of P always satisfies (1) as equality.

Proof. Suppose Equation (1} is not tight at the optimal solution. Increasing any x;
decreases the objective function contradicting optimality.

Proposition 3. The objective function of P is strictly convex in (x, T).
Proof. Follows directly from verifying that the Hessian matrix is positive definite.

(Remark) Itis interesting to observe that convexity can also be shown by using the
fact that F(x)=f%(x)/g(x} is convex on the convex set C in R™ whenever flx) is a

nonnegative convex function and g{x) is a positive concave {unction on the convex set C
in R". See Drezner et al. (1990).

Even though the objective function is strictly convex in {x, T), a finite solution
minimizing it may not be attained. For instance if x,= T --- constant for all i, then the
objective function decreases to zero as T —» 0. We show the existence of a unique global
minimum by establishing that the level sets of the objective function are compact over
the set of feasible solutions.

inventory

34 T, t; others 8; timme

Figure 2. Inventory cost for a single product.
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Thecrem 1. Problem P has a unique global minimum.
Proof.  See Appendix A,

Let X and y;20 be the Lagrange multipliers corresponding to Equation ( 1) and
x; =0, respectively, Then the Karush-Kuhn-Tucker conditions for P arc:

;A
T( [+ h—#‘; - h’f) =x; 20 complementary slackness with #;20, (@)
i Ay
YAAHY s+ iZFg,#%Zh,-Fixfﬁ%Z hF T2=0 (3
3 s+ YFx;— kT =0. (4)

Equation (2) can be replaced by

where {x}" = max {x,0}.
Equation (3) can be replaced by

AT, A}=é)_2hif.'[min ( T, ,f)]z ~2 A A% 5=0 (6)

i i

Equation (4) can be replaced by

. AN &
H(TJ)—ZS:'"‘Z.F((T‘,‘) —kT=0. {7)

We study the parametric solutions Ty(4)and Ty(4) of the functions AT, D)and g(T, 2)
in Appendix B. We now prcsent an algorithm to solve P

Algorithm

Step 0 Start from an arbitrary 1> max{4', 1),

(See Appendix B for definitions of ! and Aa)
Step I (Compute Ti(A))

Find a largest index j such that

P AN
ﬁ{i)—%-.§.2f12'+%,Z.”ff‘(ﬁi) ~LA AT <0,
and set o j J

= 172
El{l):([}:AEH.Zsf =) ;—‘).2] / 5 _Z_h,-‘,-)

i=jhy
Step 2 (Compute T,(4).)
Find a largest index k such that

fA A A
gl ) -'r_z ff(h _h-)+z Si—K}!‘k'<O,

=k i

and set
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Step 3 (Check stopping criteria.)
If T,(A)= To(A), stop. A* =4 T*= T,(A%) = T,(A%).

0 1 % * ;L* * * * }“*

i = T - S=F, i —_ '.
ptimal x; (1 5 T*) and t} rtmm{T \ hi} for all i
If T,(4}> T»(4), then increase A, Go to Step 1.
1If T,(4)< Ty(4), then decrease 1. Go to Step 1.

The items are partitioned into those with holding cost above the critical level A¥/T*
and those below. The former are initially produced to meet demand, while the latter
always produce at their maximum rates.

4. Numerical examples

First, we solve Silver’s (1990) examples. The normalized data ordered in decreasing
h, are givenin Table 1, the time unit is a year. We refer to the datain Table 1 as problem
1. Problem 2 is different only in p, which is changed to 8. Problem 3 is as Problem 1
except that each s; is multiplied by 10.

{n Table 2, we show the computational details for solving Problem 1 using the
algorithm in the previous section. The optimal common cycle length for schedule 1
(ours) and schedule 2 (Silver’s) need not be same. In Problem 1, the optimal common
cycle length of schedule t is 0-200 while that of schedule 2 is 0-195. In Problem 1, the
optimal solution of schedule 1 is x=(0-018, 0, 0, 0} and t=(0-091, 0-050, 0030, 0-010).

Table 3 shows the computational results for these examples. The percentage shows
the relative savings of each schedule compared to the usual Common Cycle approach.
For Problem 3, there were no savings in either schedule. The savings of schedule 1 and
schedule 2 come from the fact that we can reduce the production rates. The savings of
schedule 1is almost twice that of schedule 2. Additional savings of schedule 1 compared
with schedule 2 come from the fact that we can control production rates during the
production runs. The savings of schedule 1 and sched ule 2 for Problem 1 and Problem 2
compared to no savings for Problem 3 indicate that production rates reductions may
be very worthwhile for lowly utilized facilities. Interestingly, the opposite was observed
in Gallego and Moon (1989, 1990) where setup time reduction was shown to be more
profitable in highly utilized facilities.

We also solve Bombergers’ (1966) famous 10 item problem with different multiples
of the base demand rate. The normalized data with base demand rate ordered in
decreasing h; are given in Table 4, the time unit is a day.

Table 5 shows the computational results for this problem. We also compare our
results to those obtained by Inman and Jones (1989). Even though our schedules are
confined to simple Rotation Schedules, we obtained a significantly lower cost for the
problem with the base demand rate.

Product 5 A; D: hy
pumber (vear) (3] {units/year) {$/unit, year)
1 0-0003 25 2:000 4000
2 0-0003 20 4-000 2000
3 0-0002 20 6-667 900
4 00002 20 20-000 400

Table 1. Data for Silver's examples.
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Step 0: We start from an arbitrary A=750.

{Iteration 1)

Step 1: Since f,(4)= —4-099 <0, f5(4)=135383:>0, s0 j=1. T,(1) =0-196.

Step 2: Since g,(2)= —0-008 <0, g:(4)=0076>0, s0 k=1. T,(1)=0-206.

Step 3: Since Ti{i}< T(4), decrease A, A=}{iy+ A} =375 where Ay=750, 4,=0.

(Tteration 2)

Step 10 Since f,(1) = - 30:092 <0, Si(A)=49174>0, s0 j=2. T,(i)=0-296,

Step 2: Since g (4)= —0:004 <0, 92(A)=00390, s0 k=1. T;(i)==0-102.

Step 3: Since T,i4)> T,(4), increase A. A=Y, +4)=5625 where Ay=T750, 1,=375.

{Iteration 3)

Step |1 Since f,(4)= —39-634 <0, J24)=38825>0, 50 j=1. T,(A)=0223.

Step 2: Since g,(A}= — 0006 <0, g2(4)=00570, s0 k=1. T,(1)=0154.

Step 3 Since Ty(4) > Ty(4), increase 4. A=3(2, +1)=65625 where Ah=1750, 4, =562'5.

(Iteration 4)

Step 1: Since f(A)= —23-143 <0, f,(1)=83649>0, s0 j=1. T,(3)=0211.

Step 2: Since g,(4)= —0-007 <0, g(A)=0067>0, so k=-1. T,(2)=0-180.

Step 3: Since Ty(4)> T,(4), increase 4. A=¥a,+ 4,)=70313 where A, =750, A,=65625.

(Iteration 5)

Step 10 Since fi(1)= — 13940 <0, f,() = 108-652 >0, so j= 1. T,(1)=0-204.

Step 2: Since g,(4)= —0008 <0, gA)=0071 >0, s0 k=1. T,{A)=0193.

Step 3. Since T,(4)> To(4), increase 4. A =44, +A)=726:56 where Ay=750, 4,=70313.

(Iteration 5)

Step 1: Since f,{4)= ~ 9099 <0, f,(A)=121802>0, s0 j= 1. T(4}=0-200.

Step 2: Since g,(1)= —0-008 <0, F2(A)=0074>0, 50 k=1. T;(1)=0-200.

Step 3: Since T,{4)= T3(4), T*=0200 is an optimal common cycle length and i* =726-56.
x=(0018, 0, 0, 0), t=(0-091, G050, 0-030, 0-010)

Table 2. Corputational procedure for problem 1.

Schiedule 1 Schedule 2
{Moon et al) (Silver)
Problem 1 377 16197
Problem 2 23-57% 14-70%

Table 3. Comparison of savings of average cost for Sitver’s examples.

Product 5; A; Pi h,
number (day) (%) (units/day) ($/unit, day)
1 a5 130 152941 0-20896
2 075 200 23-5204 0-03188
3 05 110 100 002321
4 0125 10 18-75 001667
5 0-25 30 475 0-01063
6 0125 20 80 0-00490
7 1 310 400 0-00375
g 025 50 300 0-00223
9 0-125 5 150 0-00170
10 0125 15 300 0-00027

Table 4. Bomberger's data with base demand rate.
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Mulitiples of
base demand Schedule 1 Schedule 2
rates Load {(Moon et al) {Silver) (Inman & Jones)
172 011 9-16* 10-04 916
| 022 13-26 15-22 1372
2 044 20r52 2411 20:31
*: $/day.
Table 5. Comparison of average costs for Bomberger's problem.
inventory
b4

tine

Figure 3. Composition of production times in the backorder case.

5. Extension to the backorder case

We generalize the results to problems where backorders are allowed. Let b; be the
backorder cost per unit time. Divide ¢; into ¢, andt; wheret, isthe production time to
cover the backorders and ¢;” is the production time to build-up inventories. As before,
x; denotes the length of time in which we produce to meet demand exactly. Sce Fig. 3.

The holding cost per cycle for item is Lhpip; — 1(t)* and the backorder cost
per cycle for item i is Lppdpi— V()% From a result in Gallego (1990), optimal
t; =(h/h;+b)t¥ and optimal ;" =(by/h;+b}E. Conscquently, the holding and back-
order cost per cycle for item i becomes

1 b,

b 1 b,
i +b

(pi— Dt :ihafﬁb-ﬂ(T —x)%

hb;
To solve the backorder case simply apply the algorithm with h;= thlb

6. Conclusions

We developed a procedure to solve the Fconomic Lot Scheduling Problem with the
Common Cycle approach where production rates can be controlled during the
production runs. This is an important extension over the earlier work where it was
assumed that a fixed production rate was established for cach item at the beginning of
its production. Substantial savings are possible, specially in under-utilized facilities
and/or in facilities with large sctup costs.
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Appendix A: Proof of Theorem 1

Let z(x, Ty=1/TEm (A +3hF(T —x)*] and D= { T T+ S7x, -xT< 0,
x200=1,.. m}. It is clear that #(x, T) is continuous and that D 1s closed, hence all
level sets of z(x, T) are closed. The existence of a global minimum for 2(x, T foilows
dircctly once we establish that the level sets are bounded and hence compacit,
Boundedness is equivalent to the following condition. See Ortega and Rheinboldt
(1970).

lim z(x*, T = 20 whenever lim %, T = oo (x*, T4eD. (A1)
k— o

k=

Since z(x, T) 2 Egh7{T--2x,), it is sufficient to prove that X3k, (T*— 2x%) satisfy the
above condition. We use the L, norm to prove our resuit. That is, [x, Tzt is
equivalent to Z,x;+ T 1. Consider the following primal and dual problem for Lincar
Programming. We will show that h{t}—> 0 as t-—- o,

(Primal)
h(ty=min } Lhr(T - 2x,)

8.t 'T+Zx,~2t
7

KT—3F.x; BZsl-
i

(Dual 1

max iy +(z si)
i

¥
Stokvdpu=33 A, {(A2)

—Fytus — 4, i=1,....m {A3)
v20,uz0

By substituting u=3Thr —xv from Equation (A 2) into objective function and
Equation (A 3), we obtain

{(Dual 2)

st i .__ff_f_.ugug——vi i=1,...,m
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Dual 2 is feasible iff by <T k72 for all i Recalling that b, zh, ... 2 h,, feasibility
reduces to b,k <X hr;/2, which is guaranteed by condition {f). Clearly, v¥ =max, {[hif;
+15hi Y[+ x]} for large £, so by the weak duality theorem

h(t) = (2 si) v+ (%,_ Y hifi— xv*) L.

Consequently, h(t)—oc as —® satisfying (A 1). Uniqueness follows from strict
convexity of kz(x, T).

Appendix B: Characteristics of f(T, 4) and g(T, A).

Let fo(D) =10, )= —Z,A,—Axs;<0 and f{A)=f(A/h, A), i=1,....m. For 10, we
have fy(A) <f (D) <. .. <fuld). Let io=ooandfori=1,....m, let 4, be the positive root of
f{A). Clearly, Ao Ay .. 2 A, See Fig. 4.

For A €[4;4 1, Aj],_ﬂ(i)£0§ﬁ+l(/1), and since f(T, 4) is increasing in T, Te[ilh,
Ah ], s0 it follows that f{A)<f(T, A< fi44(4). Then, by continuity, there exists a
unique root T(Aeli/h;, Afhy. ] such that f(T,(4), A)=0. Moreover, it is clear that
Ty(A)=Alh; j= 1,2,...m. In fact, for 2 e(4;. 1 A a little algebra reveals that

Tl(i)z([ZA,--kasifiZ::P] / o h,-r,-)m.
i i i<l ey

Now fix i€[4;,, 4;] and T,(%) and consider the function

ERGVES RO WIS WIS W

isjti i

Clearly / is the largest real root of f(T',(%), ). Then, since f(T,(4), 7) is quadratic and
convex in 4, it follows that
O]
d4

1e.
F1<0. (B 1)

But, this is true for all ieldjy1n A5
Now, from Equation (B1)

ary (T4 [of (1, 4) Fi, .
A = — ’aA— /ﬁlg(gsiéjﬁf)/;jhir" T <0,
Thus, T(4) is decreasing in A4 1, A5) for each j=0,1,....m—1, and hence in the
interval [A. 4¢]-

Let g{d)=g(A/h,4), i=1,....m and set go(d)=-—o0. For 220, we have
golN<g A< < gulh) g{{#) is linear in 4. The slope of 4 can be cither negative or
nonnegative. Let A° =0and fori= 1.....m, let i be the positive root of g{A) il it exists o1
«. Clearly, 1°<A'<...<A". Moreover, 2! is finite since the slope is negative
(= —«/h,). See Figure 5.

For ie[ A, 15+ 1] with 2* < 00, k= 1, g ) SO<gus ,(4), and since g(T, 4) is increasing
in T, Te[A/hy, Afhy+ 1, so it follows that g, (D <g(T, D<K g () Tt follows that there
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Figure 4. Shape of f{1).

Am

gnifA)

Figure 5. Shape of a:(2).

exists a unique root T (NelA/hy, Afhy .., ] such that g(T5(2), A= 0. Moreover, it is clear
that T,(A=Ah,, k=1,2,.._m. For Ae(4*, 25 1), a little algebra reveals that

world p e

0L F [
[ N o
GA ik i\Zk ik [>0.

Thus, T, (1) is piecewise linear and mcreasing in e[ A% 2¥* '] and hence in the interval
[4% 2.

Since T,(4) (respectively, T,(1)) is strictly decreasing (respectively increasing), there
exists a unique 2* such that T{(A%)=T,(4%).

Consequently

e Copyright @ 2001. All Rights Reseved.
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