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a b s t r a c t 

When creating a product line, a retailer must make several decisions simultaneously: the selection of the 

product types to include in the product line as well as the order quantity and price of each selected 

product type. This study investigates joint product line decisions by considering the dynamic substitu- 

tions of products as driven by the valuations that customers place on the products and the availability of 

each product type, which changes as consumers purchase a product. An integer programming model was 

developed for joint decisions of product selection, price, and order quantity in the product line problem 

to maximize the total profit of the retailer. To solve the model, we propose a hybrid genetic algorithm 

(HGA) that uses special genetic operators and heuristic algorithms to ensure the feasibility and efficiency 

of solutions. Computational experiments demonstrate the superiority of the proposed HGA over the so- 

lution obtained by CPLEX for large scale problems. Useful managerial insights on the joint product line 

decisions are also derived from the numerical results. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

A retailer’s product line refers to a set of substitutable goods

hat serve identical needs or markets but differ in some secondary

spects. A product line may be composed of the same products

ith different brands or brand products that differ in terms of

olor, function, origin, or flavor ( Maddah & Bish, 2007 ). Retail-

rs manage their product lines by adding or removing a type of

roduct in their stores to satisfy customers from different markets

hrough careful selection of prices and order quantities. 

Retailers usually prefer to keep a steady product line because

onsumers find shopping easier if they can compare products dur-

ng sales periods. To attract customers from many market seg-

ents, a retailer broadens the product line by including more

roduct types. However, because shelf and storage spaces are lim-

ted, the retailer may need to include a limited number of prod-

ct types, and therefore, customers may fail to find the product

ype they want. Furthermore, managing different types of products

ay increase operational costs, such as those related to purchasing,

olding inventory, and conducting administrative functions, which

arm the retailer’s profit. Thus, the retailer should carefully decide

hich products are included in the product line, and many use
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ptimization tools in this situation ( Irion, Lu, Al-Khayyal, & Tsao,

012 ). 

The product line decision should be made concurrently with

ther relevant operational decisions, such as pricing and purchas-

ng. These decisions help determine the inventory level of each

roduct in the selected product line. Through the collection and

nalysis of sales data, retailers can determine the price and order

uantity of each product type in the product line while considering

he preferences of customers who belong to different market seg-

ents. Hence, this study addresses the joint product line decisions

roblem with consideration of pricing and purchasing decisions as

ased on customer preferences for product types. 

In a retail store, consumers place value on each type of product

nd choose the product types that maximize their surplus; that is,

hey select a product after they determine the difference between

he valuation they place on the product (reservation price) and the

rice the retailer places on it. This choice behavior is referred to as

he max-surplus choice rule (MSCR) in the literature; see, for exam-

le, Green and Krieger (1985) . In the product line decisions prob-

em, the MCSR is an often-cited deterministic rule that describes

he customer’s choice of a product type in the product line based

n the highest consumer surplus ( Mayer & Steinhardt, 2016 ). 

If the preferred choice of product type is not available, the

ustomer may switch to another product type that is available and

an be substituted for the favorite one. Because the availability

f products is successively reduced by a customer’s purchase,

http://dx.doi.org/10.1016/j.ejor.2017.03.062
http://www.ScienceDirect.com
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buyers who come later face fewer available products in the store

than those who came earlier. As a result, late customers may buy

products that they would not select if their first choices had been

available. We consider the retailer’s decision under such customer

substitution behavior, which is called dynamic substitution. See,

e.g., Mahajan and van Ryzin (2001) and Burkart, Klein, and Mayer

(2012) for the details. Despite the popular use of dynamic substi-

tution in retail stores, few researchers have studied it in relation

to the product line decisions problem. 

Product line selections as well as purchasing and pricing deci-

sions are important and have significant impacts on retailers’ prof-

its. Due to the complex interrelationship among these choices and

the large scale of the problem, jointly considering these three deci-

sions is challenging; however, the solution is important in light of

growing interests on the product line decisions problem. The ob-

jective of this study is to develop a decision model that can help a

retailer simultaneously determine the best product selection, pric-

ing, and purchasing decisions for a product line. An integer pro-

gramming (IP) model is used to describe the problem and a hy-

brid genetic algorithm (HGA) is proposed to efficiently solve it. The

analysis shows that the proposed algorithm successfully computes

the near-optimal solutions reasonably well. 

This paper is organized as follows: in Section 2 , the literature

review is presented and in Section 3 , an IP model is developed for

the joint product line decisions problem. In Section 4 , a hybrid ge-

netic algorithm is used to solve the realistic, large, product line se-

lection problem. In Section 5 , computational experiments are con-

ducted, and in Section 6 , conclusions are offered. 

2. Literature review 

Monroe et al. (1976) developed one of the first integer program-

ming models for the product line selection problem by maximiz-

ing the discount cash flows from the selected product line. Later,

Shugan and Balachandran (1977) and Dobson and Kalish (1988) in-

corporated choices of consumers, who aim to maximize their util-

ities in their product line problem. Zufryden (1982) introduced a

binary integer program for the product line selection problem. The

objective was to maximize the sum of consumers’ choices under

the max-surplus choice rule (MSCR). Green and Krieger (1985) pro-

posed a heuristic algorithm for the product line selection problem

by considering the total utility measure of the retailer’s optimal

choice of product line that incorporates the consumers’ optimal

choice. 

Dobson and Kalish (1993) extended Green and Krieger’s (1985 )

model to consider jointly both price setting and selection of a fixed

number of products. In addition, they considered fixed costs per

product. Dobson and Kalish (1993) sought to maximize the welfare

or profit under the MSCR. van Ryzin and Mahajan (1999) integrated

the product line purchasing and inventory management decisions.

They used the homogeneous expected utilities of consumers to de-

scribe how consumers substitute for a favorite product not carried

by a retailer; that is, they explained selection-based substitution . Li

(2007) also studied the joint product line selection and purchasing

decisions problem for a single period with different cost parameter

values among products. Maddah and Bish (2007) considered joint

decisions of selection, pricing, and inventory in the product line

problem under the selection-based substitution. Gajjar and Adil

(2010) and Irion et al. (2012) considered product line selection and

pricing decisions using a mixed integer programming model that

incorporated the space elasticity, which is based on the assumption

that sales depends on product placement on the retailer’s shelf. 

Consumer substitution of product types, as introduced herein,

is independent of the product inventory levels and reflects con-

sumer preferences on product types and their combinations. We

call this static substitution of consumers . Popular models used to an-
lyze this substitution include the multinomial logit model (MNL).

owever, sometimes consumers also substitute goods when the re-

ailer carries the favorite product, but it is out of stock; this type of

onsumer behavior is called stockout-based substitution or dynamic

ubstitution, and in the decisions problem the consumer’s choice

epresents the selection made from the available products in the

roduct line of the retailer. Mahajan and van Ryzin (2001) consid-

red dynamic substitution in which consumers take the available

nventory into account before choosing product types to purchase.

urkart et al. (2012) and Mayer, Klein, and Seiermann (2013) also

ddressed the product line pricing problem under the dynamic

ubstitution. 

In dynamic substitution, the shelf space constraint of the

etailer is crucial in product line decisions. Yücel, Karaesmen,

alman, and Türkay (2009) considered the shelf space constraint in

heir product line decisions of product selection, purchasing, sup-

lier selection, and inventory management. However, their model

id not incorporate consumer’s preference. 

In this paper, we present a joint product line selection, purchas-

ng, and pricing decisions problem. The work is based on consumer

hoice and substitution in the retailer’s product line and explains

ays to make product line selecting, purchasing, and pricing deci-

ions that maximize the retailer’s total profit when the cost param-

ters across products differ. In addition, the dynamic substitution

rom the limited availability of shelf space and product inventory

s addressed in the model. 

. Model 

The proposed model features a retailer who chooses the types

f products included in a product line as based on available shelf

pace in one selling season. In addition, the retailer sets the price

nd order quantity of each product type in a season in which no

urther replenishment is possible. When ordering a type of a prod-

ct, the retailer incurs a fixed ordering cost that accounts for logis-

ics and other administrative costs. The retailer considers the shelf

pace and restricts the total number of products ordered. 

In the selling season, each consumer who arrives at the re-

ailer’s store has placed a preconceived, personal valuation on each

ype of product. Each consumer will choose the product that em-

odies the maximum difference between the valuations placed on

t and the retail price such that the customer expects the value at-

ributed to the product to exceed the retailer’s price of it. For sim-

licity, the model limits each buyer to one unit of the product in

he product line. We define the duration of time from the arrival

f a consumer to the next consumer’s arrival to the retailer by a

eriod in our model. Each time a consumer buys a product, the re-

ailer recognizes a holding cost for each unit of remaining product;

his cost includes any deterioration value of a product or any inter-

st cost incurred during the period. We assume that each product

ype may have a different holding cost rate. 

Based on the assumptions that the retailer sets the prices of

roducts from a set of several available prices and that the order

uantity is an integer, an integer programming (IP) model was cre-

ted to describe the retailer’s pricing and ordering decisions. In ad-

ition, the choice of product types included in a product line is

lso described with an indicator variable. 

To describe the problem, a sequence of events is delineated.

t the beginning of a selling season, a retailer obtains the list of

vailable products from several suppliers, who may offer differ-

nt brands that satisfy high- or low-level market segments. Then,

he retailer selects the products to order, the quantity of each

elected product, and the prices to charge consumers to maxi-

ize the total profits during the selling period. In this decision-

aking process, the retailer must also consider consumer choice
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∑

∑

I

∑

nd relevant costs for purchasing and maintaining inventory after

rdering. 

A set of potential products is denoted by j ( j = 1 , . . . , J ) . The

roducts have an inventory cost denoted by h j , purchasing cost de-

oted by c j , and ordering cost denoted by o j . A time period i is

enoted by t i , which represents the interarrival time between con-

umer i − 1 and i , with t 0 : = 0 . Also, we normalize the length of

he selling season to 1 without loss of generality, which is imposed

y 
I ∑ 

i =1 

t i = 1 . Then, for product type j , we assume that a holding

ost of h j is incurred if one unit of that product type remains

hroughout the selling season. Based on this definition, the hold-

ng cost of product type j for time period i is calculated by t i h j for

ach unit of product type j that is available for time period i . 

A retailer chooses the products to offer on the shelf from a list

f products available to purchase from suppliers. The retailer then

etermines the order quantity of product j , denoted by Q j for j = 1,

, J . Due to marketing considerations, the retailer chooses price P j 
or each product j from a set of pre-defined discrete price points

ith N elements; P j ∈ { P j1 , . . . , P jn } , where n indicates the price in-

ex such that n = 1 , . . . , N. There are I consumers who come to

he retailer’s store; they are numbered in one period indexed by

 ( i = 1 , . . . , I ) . The inventory of product j available for the newly

rrived consumer i is denoted by I i j . If consumer i chooses product

j, then the inventory of the product is reduced by1. Hence, Q j = I 0 j 
nd product j is available for consumer i if I i −1 , j > 0. With this def-

nition of inventory of product j for consumer i (i.e., I i, j ) , we can

alculate the holding cost for period i by t i 

J ∑ 

j=1 

I i j h j . 

The valuation the consumer places on product j (i.e., the reser-

ation price) is denoted by V i j . To make our problem computa-

ionally tractable to derive insights, we optimize the price of each

roduct based on a given stream of consumers’ valuations ( V i j ) in

he same manner as Burkart et al. (2012) and Mayer et al. (2013) .

ach consumer selects no more than one available product type,

enoted by C i , that provides the highest positive consumer surplus

 V i j − P jn ) as per the MSCR: 

 i = arg ma x j∈ { 1 , ... ,J } 
{

V i j − P jn | 
(
I i −1 , j > 0) ∩ ( V i j − P jn ≥ 0 

)}
(1) 

In Eq. (1) , I i −1 , j > 0 means that product j is available for con-

umer i , and V i j − P jn ≥ 0 means that consumer i ’s valuation of

roduct j is higher than the price of product j. The maximum op-

rator over j means that consumer i will buy the available prod-

ct to obtain the maximum surplus. If V i j − P jn ≥ 0 is not true for

ny available product, then consumer i leaves without buying any-

hing. Under dynamic substitution, the available inventory level of

 product may be successively reduced in each period. As a conse-

uence of this depleted inventory, late-arriving consumers tend to

ace a restricted choice in products available for purchase. 

The following indexes are used in the IP model for product line

election, pricing, and purchasing decisions of the retailer: 

 = 1 , 2 , . . . , I Indices of the consumers 

j, k = 1 , 2 , . . . , J Indices of the products 

, m = 1 , 2 , . . . , N Indices of the price points 

While we set N as the number of price points for all product

ypes, this model can address a situation in which each product

ype has varying price points. For example, if Product Type 1 has

hree price points and Product Type 2 has four price points, we

et N = max{3,4} = 4. Then, we set P 14 = 0 or to infinity to exclude

his choice from our model. 

The parameters used in the model follow: 

 jn n th price point of product j, i.e., P j ∈ { P j1 , . . . , P jn } 
 i jn Modified consumer surplus of consumer i for product j

at price point P jn 
 i jn = 1 + V i j − P jn , if V i j − P jn ≥ 0 , or S i jn = 0, otherwise 

 j Unit purchasing cost of product j

 j Unit inventory cost of product j

 j Ordering cost of product j

 i j Reservation price of consumer i for product j

ype _ num Number of product types 

 Total shelf space 

 j Occupied space for product j 

 i Interarrival time of consumer i 

Let the product that occupies the smallest shelf space be prod-

ct k . Then, s j is such that s k = 1 , which satisfies s j ≥ 1 for all j .

his ensures that S has a greater value than the sum of orders for

ll products ( 
∑ J 

j=1 
Q j ≤ S). Then, S can be used as a proxy for the

otal order quantity, which is a useful way to maintain linearity in

he model. 

The decision variables used in this model follow: 

 i jn 
1 : If consumer i chooses product j at the price point P jn 
0 : otherwise 

 jn 
1 : If product j is offered at price point P jn 
0 : otherwise 

i j 
1 : If product j is available for consumer i 

0 : otherwise 

 j 
1 : If product j is selected by the retailer 

0 : otherwise 

 i j Remaining inventory of product j after consumer i makes

purchase 

 j Order quantity for product j

The objective function in Eq. (2) is used to maximize the re-

ailer’s total profit. It includes the total revenue (TR) as shown in

q. (3) and the subtraction of the inventory cost (TIC) as shown in

q. (4) , total purchasing cost (TPC) as shown in Eq. (5) , and total

rdering cost (TOC) as shown in Eq. (6) . 

ax T P ( g, y, Q ) = TR − TIC − TPC − TOC (2) 

R = total revenue = �I 
i =1 �

J 
j=1 

�N 
n =1 x i jn P jn (3) 

IC = total inventory cost = 

I ∑ 

i =1 

( 

t i 

J ∑ 

j=1 

I i j h j 

) 

(4) 

TPC = total purchasing cost = 

J ∑ 

j=1 

c j Q j (5) 

TOC = total ordering cost = 

J ∑ 

j=1 

o j y j (6) 

The constraints for the retailer’s decision problem are as fol-

ows: 

N 
 

n =1 

g jn = 1 for all j (7) 

J 
 

j=1 

N ∑ 

n =1 

x i jn ≤ 1 for all i (8) 

 i j = I i −1 , j −
N ∑ 

n =1 

x i jn for all i, j (9) 

 J 

j=1 
s j Q j ≤ S (10) 
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s  
y j × S ≥
I ∑ 

i =1 

N ∑ 

n =1 

x i jn for all j (11)

J ∑ 

j=1 

y j ≤ type _ num (12)

τi j ≥
N ∑ 

n =1 

x i jn for all i, j (13)

τi j × S ≥ I i −1 , j for all i, j (14)

τi j ≤ I i −1 , j for all i, j (15)

x i jn ≤ S i jn × g jn for all i, j, n (16)

S i jn 

(
τi j + g jn − 1 

)
≤

∑ J 

k =1 

∑ N 

m =1 
S ikm 

x ikm 

for all i, j, n (17)

∑ I 

i =1 
t i = 1 , t 0 = 0 (18)

Q j , I i j ≥ 0 for all i, j (19)

Q j = I 0 j for all j (20)

x i jn , τi j , g jn , y j ∈ { 0 , 1 } for all i, j, n (21)

Constraint (7) ensures that for each product exactly one price

point can be chosen. Constraint (8) means that every consumer can

purchase, at most, one product or leave without purchasing any-

thing. Constraint (9) illustrates that the inventory level of a prod-

uct is reduced by 1 after a consumer makes a purchase. Constraint

(10) accounts for limited shelf space for a product line such that

the total occupied space with total order quantity of products in-

cluded in the product line cannot exceed the shelf space of the

retailer. Constraint (11) suggests that consumers can only buy the

products that a retailer has selected to sell and ordered at the

beginning of the period. Constraint (12) suggests that the num-

ber of selected types of items cannot exceed the retailer’s limit

for the product line. Constraint (13) indicates that the purchase

behavior of each consumer toward one product can be realized

if and only if the product is available. Constraint (14) forces τi j 

to become 1 if product j is available for consumer i . Constraint

(15) forces τi j to become 0 if product j is unavailable to consumer

i . Constraint (16) represents the purchase of a product at a selected

price point, which is only possible if and only if the correspond-

ing consumer surplus is non-negative. Constraint (17) forces a con-

sumer into purchasing when at least one consumer surplus for any

product is non-negative. At the same time, the purchased product

should be available at a certain price point when the consumer
Table 1 

Comparisons of related papers. 

Author (year) Consideration Methodology 

Kraus and Yano 

(2003) 

Selection, pricing, consumers 

probabilistic choice 

MIP heuristics 

Aydin and Porteus 

(2008) 

Pricing, purchasing, price-based 

substitution, demand function 

MIP heuristics 

Yücel et al. (2009) Selection, purchasing, demand 

substitution, supplier selection 

IP 

Burkart et al. 

(2012) 

Pricing, consumers max-surplus choice, 

dynamic substitution 

MIP heuristics 

This paper Selection, pricing, purchasing, 

consumer max-surplus choice, dynamic 

substitution 

IP hybrid genetic 

algorithm 
rrives. The constraint also ensures that consumers buy the prod-

ct that yields the highest possible consumer surplus. Constraint

18) implies that for the duration of the problem the total inter-

rrival times is normalized to 1 with the initial period set to 0.

onstraint (19) ensures that the decision variables are nonnegative

nd Constraint (20) initializes the inventory level for each prod-

ct. Constraint (21) demonstrates the binary nature of the decision

ariables. 

. The hybrid genetic algorithm 

A genetic algorithm (GA) is a population-based search and opti-

ization method inspired by Darwin’s theory of evolution. The two

ain concepts of evolution, natural selection and genetic dynam-

cs, play key roles in this method. A GA and basic principles were

rst introduced by Holland (1975) and have been widely used in

arious areas during the last four decades. The GA has the advan-

age of being usable with other techniques to improve search per-

ormance. An algorithm incorporating a search method within a GA

s called a “hybrid genetic algorithm” (HGA). 

While some heuristics and generic algorithms (GAs) have been

onsidered, we see that the existing heuristics and GAs cannot be

sed for the joint product line decisions problem. Due to the com-

lexity in our formulation including holding cost, pricing, and or-

ering for a large scale of problems that has not been considered

ogether, we need to develop a new HGA in this paper. We com-

are our paper and other related papers with similar heuristics and

lgorithms in Table 1 . 

A hybrid generic algorithm (HGA) is proposed to solve large

cale problems in this study. The suggested HGA structure is shown

n Fig. 1 . As represented in the figure, after the HGA is initiated

ver the population and the generation counter is set to 1, chromo-

omes are generated and selected before crossover and mutation

re conducted. After chromosome manipulations, the fitness of the

olution is evaluated and the algorithm repeats until the termina-

ion condition is satisfied. 

.1. Chromosome generation 

In a GA, the solution must be represented in proper form. Tra-

itionally, chromosomes are represented as simple binary strings;

owever, this representation is not useful for solving the joint

roduct line decisions problem. Therefore, a chromosome consist-

ng of three parts, one for each decision in the problem, is ex-

lained. One part represents the product selection for a product

ine (selection), the other shows the prices for each selected prod-

ct (pricing), and a third stands for the order quantity of each

elected product (purchasing). An example of a chromosome in

his study is presented in Table 2 . 

The efficiency of the algorithm greatly depends on the initial

olution. Therefore, a simple heuristic is proposed to create a fea-
Limitation 

No purchasing decision considering variable costs 

No consideration on Dynamic Substitution 

Only small and medium size problems up to 20 0 0 consumers 

No selection decision 

Only small size problem up to 10 0 0 consumers 

No pricing decision 

Only small size problem up to 100 but provide some managerial insights 

No selection and purchasing decisions 

Large size of price points but only small size of consumers up to 10 0 0 
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Fig. 1. Flowchart of the proposed hybrid genetic algorithm. 

Table 2 

Example of a chromosome. 

Product 1 2 3 4 5 6 7 8 9 10 

Selection 1 0 0 1 1 1 0 1 0 0 

Pricing 30 35 45 60 65 75 80 85 95 95 

Purchasing 84 65 70 100 41 116 98 50 62 88 
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Fig. 2. Two-cut point crossover of genes for product selection. 
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c  
ible initial solution. This heuristic uses a sorting procedure based

n the consumer choice process. The detailed steps for the heuris-

ic are as follows: 

Step 1: Get the defined beta-distribution reservation prices for

each potential product, each of which features parameters

α j and β j , and regard them as reservation prices V i j for

i = 1 . 

Step 2: Calculate the mean of each reservation price E( V i j ) : 

E 
(
V i j 

)
= 

α j 

α j + β j 

× 100 . 

Step 3: Calculate the critical consumer surplus c v j for each prod-

uct: 

c v j = E 
(
V i j 

)
− c j − h j 

Step 4: Order one of the products such that the maximum critical

consumer surplus value is reached and create the critical

consumer surplus table. 

Step 5: Update the table by deleting the selected product. 

Step 6: Go back to Step 4 until type_num products are assigned. 

.2. Chromosome selection 

In an HGA, the generic operator consists of selection, crossover,

nd mutation. The selection is the stage in which individual chro-

osomes are chosen from a population. In this algorithm, parents

re chosen through the roulette wheel method. In this approach,

he fitness of each chromosome is calculated and used to associate

 probability of selection with each individual chromosome. Usu-

lly a roulette wheel is divided into proportions such that when it

s rotated, a ball lands in one of the possible partitions. Likewise,

ith this method, a solution is selected from a range of possibil-

ties such that there is a chance that some weaker solutions may

urvive through the selection process. This inclusion of the weaker

olutions proves advantageous as it may contain some components

seful in the recombination process. 
.3. Chromosome crossover and mutation 

The crossover operation is a diversification mechanism that en-

bles the GA to generate a solution in previously unvisited areas

f the gene pool. In this algorithm, a two-cut crossover operator is

sed. Crossover occurs with a probability of P c . 

To conduct a crossover, two arbitrary cutting lines, c1 and c2 ,

re placed on P 1 . The genes between two cutting lines are copied

o the same location on O 1 . The rest of the genes on O 1 are copied

n order of sequence from the genes on P 2 . O 2 is built through the

ame process. 

An example of crossover is illustrated in Fig. 2 . After crossover

f the product selection, prices and order quantities will be ad-

usted correspondingly. The processes for product and price selec-

ions are illustrated in Figs. 2 and 3 . 

In a GA, mutation produces a random change in a chromo-

ome. The main difference between mutation and crossover is that

he mutation operators affect one chromosome; that is, they are

nary, while crossovers are binary operators. Mutation plays the

rucial role of replacing genes of chromosomes during evolution
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Fig. 3. Two-cut point crossover of genes for price assignment. 

Fig. 4. Inversion mutation of a gene for product selection. 

Fig. 5. Random point mutation of a gene for price assignment. 
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so that they can maintain diversity in the population. Genes carry

the characteristics that make each individual unique. 

In this study, mutation occurs with a probability of P m 

. For

product selection, the inversion mutation is used. The combination

of n 1 and n 2 cannot contain more genes than exist in the chromo-

some. Furthermore, n 1 and n 2 should not consist of the same num-

ber. The gene with the smaller value is designated as n 1 . The genes

from n 1 to n 2 are rearranged in reversed order; see Fig. 4 . For price

assortment and order quantity assignment, a random point muta-

tion operator is used. Fig. 5 shows an example of random point

mutation for price assignment. 

4.4. Improved genetic operators 

The operators created to vary the gene pool are widely used for

GAs. However, due to the complexity of the joint product line de-

cisions problem, the chromosome required for the model contains

three parts, which may result in a badly converged GA. This possi-

bility is shown through some simple examples. Furthermore, to in-

crease the diversity in the search space and avoid premature con-

vergence of the GA, two more operators were added to the model:

dynamic mutation probability and population catastrophe. 
.4.1. Dynamic mutation probability 

The dynamic mutation probability approach added to this study

as first proposed by Deif et al. (2012) . The mutation is conducted

y dividing the chromosomal population into two groups and as-

igning different mutation operators to each one of them. For chro-

osomes with fitness values higher than average, a high value P m 

s set to increase the diversity of the search space and to ensure

he solution proceeds all the way to an optimal point. For low fit-

ess chromosomes, P m 

is set to a low value to reduce the compu-

ation time. 

The algorithm can be explained as follows: 

In a given population, let f c be the fitness value of any chromo-

ome c and let f a v g be the average fitness value. Then, the muta-

ion probability P m 

is determined as follows: 

If f c ≥ f a v g , a high mutation probability is assigned. 

If f c < f a v g , a low mutation probability is assigned. 

.4.2. Population catastrophe 

The genetic catastrophic algorithm (GCA) was first presented by

in and Li (1997) . It is used to recover the population diversity

hen premature convergence has occurred. 

Generally, the catastrophic operation includes two steps: 

(1) Remove a certain number of individuals with low fitness val-

ues from the current population. 

(2) Regenerate individuals via various methods and put them

into the current population to replace the removed ones. 

Through the addition of various new individuals to the cur-

ent population, the diversity of the population can be greatly im-

roved. 

.5. Fitness function and termination conditions 

The fitness function plays a role similar to that of the environ-

ent in evolution. Each individual in the population represents a

otential solution to the problem. A fitness function is computed

or each string in the population and the string with the maxi-

um fitness function value is selected as a possible solution to the

roblem. Eq. (2) is used as a fitness function in the proposed GA.

o calculate the fitness value, information on all the individual and

roduct-specific reservation prices is necessary. Hence, 30 scenar-

os were developed for each class and the average was calculated

n each scenario. These calculations were made with the IBM ILOG

PLEX Optimization Studio. 

The populations were listed in descending order of fitness value

nd only the top 50% were included in the new population. The

peration is terminated in one of two ways. When the fitness value

eached a fixed number of generations, iteration of the genetic op-

ration is completed and the best chromosome is given as a solu-

ion. When the fitness value of the best chromosome has not been

mproved over a fixed number of generations, the operation will

e stopped. 

. Computational experiments 

The IP model in this study was conducted using the IBM ILOG

PLEX Optimization Studio for the exact solution. The IP model

ith the HGA was run in C# language in Windows 7 on a PC with

ntel Core 2.0 gigahertz. Although the computer specifications were

ppropriate for the job, these models were unable to solve prob-

ems as large as those with 20 0 0 consumers, 5 product types, and

0 price points within the pre-set time limit. However, HGAs can

nd solutions within a reasonable computation time for large scale

roblems. 
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Table 3 

Class components. 

Class Data sets Explanations 

components 

C 1 {3, 5, 8, 10} Number of product types ( type _ num ∈ C 1 ) 
C 2 {30 0, 50 0, 80 0, 10 0 0} Number of consumers ( I ∈ C 2 ) 
C 3 {3,5,10} Number of pre-defined price points ( N ∈ C 3 ) 
C 4 {low, high} Overlap D of the density functions of the 

reservation prices ( D ∈ C 4 ) 

Table 4 

Price points. 

Class C 3 ( N ∈ C 3 ) Data sets 

N = 3 {33, 67, 100} 

N = 5 {20, 40, 60, 80, 100} 

N = 10 {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 

Fig. 6. High overlap of the probability density function (PDF). 
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Fig. 7. Low overlap of the probability density function (PDF). 
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.1. Design of experiment 

To provide a large variety of real world instances for the joint

roduct line decisions problem, 
∏ 4 

i=1 C i = 96 problem classes were

onstructed with four different sets of components C 1 , . . . , C 4 . The

etails for each class of components are illustrated in Table 3 . 

Due to marketing considerations, a retailer must choose a price

 j for each product j out of a set of pre-defined discrete price

oints: P jn ( n = 1 , . . . , N ) ; i.e., P j ∈ { P j1 , . . . , P jn } in Table 4 . For

implicity and tractability, we assumed that price points across all

roducts were identical. Also, we set the interarrival times identi-

al for all products (i.e., t i = 1 /I) ; however, specific peak and non-

eak times of consumer arrival in the retail store can be easily in-

orporated in the calculation of inventory holding cost ( Eq. (4) ) by

djusting the time period (i.e., t i for i = 1,…, I ) such that the peak

imes are relatively short compared to non-peak times. 

We set consumer reservation price V i j for product j by con-

umer i . Just as Burkart et al. (2012) , we used Beta ( αj , βj ) distribu-

ion to collect data on consumer reservation prices. With the beta

istribution, various types of consumers’ reservation prices across

ifferent products can be incorporated. 

First, the reservation prices across products are relatively simi-

ar (i.e., a high-overlap class). The behaviors of consumers in this

lass are associated with low price elasticity values and relatively

ow maximum values of the density function, which means that

hey do not have differential preferences for different types of

roducts. Fig. 6 shows the probability density function (PDF) of
onsumers’ reservation prices for the high-overlap class. Second,

onsumers may show explicit preferences for specific products.

his occurs when reservation prices does not overlap across each

roduct (i.e., a low-overlap class). Fig. 7 presents the PDF of reser-

ation prices for the low-overlap case. 

In our numerical experiment, consumer reservation prices are

ormalized with the beta distribution and then scaled to the inter-

al [ 0 , 100 ]. The overlap D ∈ C 4 of the density functions of reserva-

ion prices are reflected in the data. The details for the consumer

eservation prices sets are shown in Table 5 . 

The values of other parameters that we used for the numerical

xperiment are presented in Table 6 . 

.2. Results and insights 

In this section, the results of experiments for 96 classes con-

ucted with the devised mathematical model are reported. These

xperiments were used to maximize the total profit for a retailer

ho could select between 10 potential products. For each problem

lass, 30 scenarios were generated by random reservation prices

rawn for each consumer and each product; then, average re-

ults of these scenarios were calculated using CPLEX. Computation

imes to obtain the exact solutions with CPLEX are summarized in

able 7 . In the table, “X” indicates that the solution was unobtain-

ble within a reasonable period of time. The HGA always yields a

olution, and computation times with the HGA are shown in Table

 . To validate the proposed algorithms, the optimal solutions were

ompared with solutions from the HGA. In Table 9 , we calculate

he gap of the retailer’s profits obtained from CPLEX and the HGA.

he table shows that the gap remains a reasonably small (3%) in

ost of our numerical experiments. 

Some managerial insights can be confirmed through the results

f these experiments. First, the relationship between a retailer’s

rofit and the type_num limit indicates that a large type_num value

oes not always yield a high profit for the retailer; an optimal

umber of product types applies to a product line. Fig. 8 illustrates

his relationship by presenting the results of classes featuring low

verlap and 3 pre-defined price points. Out of 10 products, the re-

ults indicate that for the I = 30 0, 50 0, and 80 0 classes, the optimal

ype_num remains 8, although total 10 number of the products is

vailable (i.e., type _ num ≤ 10) . 

Second, for a small type_num value, the profit of the retailer for

eservation prices from the high overlap PDF is relatively similar

o the profit from the low overlap PDF. However, for large values
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Table 5 

Reservation prices. 

Class C 4 ( D ∈ C 4 ) Parameters 

α j β j 

D = high overlap {1.7, 2.0, 2.3, 2.5, 2.7, 2.9, 3.1, 3.2, 3.3, 3.2} {3.0, 3.1, 3.2, 3.1, 3.0, 2.9, 2.6, 2.5, 2.1, 1.8} 

D = low overlap {3.0, 3.7, 4.4, 5.1, 5.8, 6.6, 7.1, 7.3, 7.4, 7.3} {7.0, 7.3, 7.4, 7.3, 7.1, 6.6, 5.8, 5.1, 4.0, 3.7} 

Table 6 

Other parameter values. 

Parameters Values 

Unit inventory costs h j , j = 1,…,10 {0.5, 1.0, 1.2, 0.7, 1.5, 0.9, 2.0, 1.5, 1,0, 0.8} 

Unit purchasing cost c j , j = 1,…,10 {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} 

Ordering costs o j , j = 1,…,10 {50, 40, 125, 100, 160, 255, 200, 175, 295, 75} 

Occupied space l j , j = 1,…,10 {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} 

Table 7 

Computation times to obtain the exact solution using CPLEX. 

I = 300 I = 500 I = 800 I = 10 0 0 

Overlap N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 

3 High 100 156 739 318 563 2617 789 1657 7449 1076 3292 20,979 

Low 178 228 469 382 594 1263 865 2124 6887 X 2854 8518 

5 High 523 1568 9562 1842 4133 X 3154 X X X X X 

Low 135 919 2154 403 2924 X 1072 11,303 X 4941 X X 

8 High 1253 1872 14,650 3332 6810 X 12,803 17,155 X X X X 

Low 67 257 8595 185 1173 22,476 336 5249 X 620 6232 X 

10 High 1034 951 3855 4575 7289 X 8919 22,652 X 18,661 X X 

Low 55 265 8375 131 885 20,087 252 1657 X 272 5907 X 

X indicates that CPLEX does not produce a solution for 24,0 0 0 seconds. 

Table 8 

Computation times to obtain the heuristic solution with the HGA. 

I = 300 I = 500 I = 800 I = 10 0 0 

Overlap N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 

3 High 5953 5352 5183 9117 8100 7982 13,821 12,259 12,095 17,757 16,686 15,994 

Low 5520 4971 4807 9257 8305 8203 14,465 12,850 12,453 18,246 17,793 16,935 

5 High 4337 4028 3997 6554 6110 6056 10,935 10,262 10,080 13,778 13,019 12,843 

Low 4054 3837 3772 6582 6229 6157 10,978 10,442 10,333 14,152 13,959 13,233 

8 High 3271 3441 3308 4998 5269 5077 8176 8007 7796 10,542 10,517 10,195 

Low 3339 3171 3083 5223 5193 5076 8217 8172 8195 11,576 11,429 11,107 

10 High 2786 2450 2268 4274 3795 3571 6479 6053 5913 8650 8107 8059 

Low 2583 2279 2134 4540 4117 3722 6882 6241 5942 9397 9383 9390 

Table 9 

Gap between the exact solution from CPLEX and the HGA (%). 

I = 300 I = 500 I = 800 I = 10 0 0 

Overlap N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 N = 3 N = 5 N = 10 

3 High 3.89% 1.06% 2.80% 0.99% 8.62% 1.82% 0.31% 1.10% 0.10% 1.02% 0.92% 3.48% 

Low 0.98% 0.12% 5.69% 2.62% 1.29% 4.21% 0.60% 1.65% 1.99% X 1.06% 5.18% 

5 High 2.14% 3.36% 3.73% 1.60% 2.47% X 0.30% X X X X X 

Low 0.17% 5.25% 3.95% 0.93% 1.31% X 2.22% 2.52% X 3.59% X X 

8 High 0.35% 2.54% 1.47% 0.58% 0.46% X 0.53% 4.08% X X X X 

Low 3.81% 3.79% 1.94% 3.06% 2.29% 4.70% 2.34% 0.74% X 2.25% 2.28% X 

10 High 0.63% 3.58% 4.86% 2.63% 0.71% 1.65% 1.41% 4.93% X 4.94% X X 

Low 3.98% 4.21% 2.82% 2.43% 3.31% 5.09% 3.89% 2.45% X 4.23% 4.72% X 

X indicates that CPLEX does not produce a solution for 24,0 0 0 seconds. 
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of type_num , the difference of the retailer’s profits from the high

overlap and low overlap PDFs is relatively large. Reflecting con-

sumer characteristics, a large value for type_num tends to mean a

relatively high retailer’s profit for highly differentiated consumers

(with low overlap) than is achieved when consumers are poorly

differentiated (with high overlap). Fig. 9 illustrates this relationship

with 300 consumers and 3 pre-defined price point classes. 

Third, Fig. 10 shows that pre-defined price points are associated

with higher profit. This finding is consistent with common knowl-

edge. 
. Conclusions 

In this study, the joint product line decisions problem is used to

etermine optimum product selection, purchasing, and pricing for

 retailer. In making these decisions, the retailer incorporates con-

umer choice processes, ordering and holding costs for each prod-

ct, and the resulting dynamic substitution in each period, which

epends on product availability. An integer programming model

as developed for this joint product line decisions problem. The

odel was designed to maximize a retailer’s profit, which includes
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1 2 3 4 5 6 7 8 9 10

300 12,204 16,839 18,207 20,983 22,503 23,721 24,599 24,623 24,626 24,626

500 20,529 28,595 30,869 34,795 37,008 38,913 40,380 40,897 41,213 41,313

800 32,562 45,207 49,303 56,193 60,256 63,654 66,324 65,419 67,042 67,304

 -

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

Pro�it vs Type_num

300 500 800

Fig. 8. Results of low overlap and 3 pre-defined price points. 

 1  2  3  4  5  6  7  8  9  10
High 10,568 15,460 17,418 18,378 18,630 18,675 18,675 18,675 18,675 18,675

Low 12,204 16,839 18,207 20,983 22,503 23,721 24,599 24,623 24,626 24,626

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

 20,000

 22,000

 24,000

 26,000

Reservation price vs Type_num

High Low

Fig. 9. Results of 300 consumers and 3 pre-defined price points. 

3 5 10

300 18,675 22,021 23,966

500 31,728 37,227 40,252

800 51,008 60,290 65,702

15,000

25,000

35,000

45,000

55,000

65,000

75,000

Pro�it vs Price point

Fig. 10. Results of high overlap classes. 
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the total revenue after eliminating inventory, purchasing, and or-

dering costs. A large variety of real-world instances of the joint

product line decisions problem was considered such that the com-

putational experiments included 96 problem classes of four differ-

ent sets of components. 

To solve the model, an efficient HGA was developed and pro-

posed. The HGA combines effective heuristic algorithms with the

genetic algorithm by taking the efficiency of solution processes and

the quality of solutions into account. We found that the proposed

algorithm achieves a solution with reasonably small error com-

pared to the optimal solution obtained by CPLEX for small prob-

lems. Furthermore, for large problems, we observe that the HGA

overcame the computational burden under which CPLEX fails to

solve the problem. Therefore, the HGA was shown to be a useful

method to solve the joint decisions model of a product line for

large scale problems. 

Based on the results, some useful managerial insights were de-

rived. First, an optimal number of product types characterizes the

product line selection problem. Second, the impact of consumer

valuation (reservation price) on the optimal number of product

types in the product line was determined. Lastly, a common sense

solution in selecting the number of price points was supported as

a way to maximize the retailer’s profit. 

For further study, the demand formulation could replace the

reservation prices. Also, because the model presented is based on

the assumption of lost sales, a penalty cost for unsatisfied demand

could be incorporated in a follow-up study and would likely reveal

interesting findings. 
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